154 research outputs found

    Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota

    Get PDF
    BACKGROUND - Mechanisms purported to contribute to the pathophysiology of heart failure with normal ejection fraction (HFnlEF) include diastolic dysfunction, vascular and left ventricular systolic stiffening, and volume expansion. We characterized left ventricular volume, effective arterial elastance, left ventricular end-systolic elastance, and left ventricular diastolic elastance and relaxation noninvasively in consecutive HFnlEF patients and appropriate controls in the community. METHODS AND RESULTS - Olmsted County (Minn) residents without cardiovascular disease (n=617), with hypertension but no heart failure (n=719), or with HFnlEF (n=244) were prospectively enrolled. End-diastolic volume index was determined by echo Doppler. End-systolic elastance was determined using blood pressure, stroke volume, ejection fraction, timing intervals, and estimated normalized ventricular elastance at end diastole. Tissue Doppler e velocity was used to estimate the time constant of relaxation. End-diastolic volume (EDV) and Doppler-derived end-diastolic pressure (EDP) were used to derive the diastolic curve fitting (α) and stiffness (β) constants (EDP=αEDVβ). Comparisons were adjusted for age, sex, and body size. HFnlEF patients had more severe renal dysfunction, yet smaller end-diastolic volume index and cardiac output and increased EDP compared with both hypertensive and healthy controls. Arterial elastance and ventricular end-systolic elastance were similarly increased in hypertensive controls and HFnlEF patients compared with healthy controls. In contrast, HFnlEF patients had more impaired relaxation and increased diastolic stiffness compared with either control group. CONCLUSIONS - From these cross-sectional observations, we speculate that the progression of diastolic dysfunction plays a key role in the development of heart failure symptoms in persons with hypertensive heart disease

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Histopathology of familial versus nonfamilial dilated cardiomyopathy

    Full text link
    Idiopathic dilated cardiomyopathy is most likely a heterogenous group of diseases characterized by ventricular dilatation and dysfunction. Approximately 20% of patients with idiopathic dilated cardiomyopathy have familial disease, which may be inapparent by review of the family history alone. It has been suggested that histopathologic features, particularly the presence of bizarrely shaped mitochondria, may be useful in distinguishing familial from nonfamilial disease.We investigated 57 patients with dilated cardiomyopathy, 13 familial and 43nonfamilial or indeterminate. Pathologic examination of right endomyocardial biopsy specimens showed no significant differences between the familial, nonfamilial, or indeterminate groups by light microscopy or electron microscopy. We conclude that the distinction between familial and nonfamilial dilated cardiomyopathy cannot be made by histopathologic examination in most cases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30544/1/0000177.pd

    Final analysis of the ALTTO trial:adjuvant trastuzumab in sequence or in combination with lapatinib in patients with HER2-positive early breast cancer [BIG 2-06/NCCTG N063D (Alliance)]

    Get PDF
    BACKGROUND: Dual anti-human epidermal growth factor receptor 2 (HER2) blockade has improved the outcomes of patients with early and metastatic HER2-positive breast cancer. Here we present the final 10-year analysis of the ALTTO trial.PATIENTS AND METHODS: The ALTTO trial (NCT00490139) is a prospective randomized, phase III, open-label, multicenter study that investigated the role of adjuvant chemotherapy and trastuzumab alone, in combination or sequentially with lapatinib. The primary endpoint was disease-free survival (DFS) and secondary endpoints included overall survival (OS), time to distant recurrence and safety.RESULTS: Overall, 6281 patients with HER2-positive early breast cancer were included in the final efficacy analysis in three treatment groups: trastuzumab (T), lapatinib + trastuzumab (L + T) and trastuzumab followed by lapatinib (T→L). Baseline characteristics were well balanced between groups. At a median follow-up of 9.8 years, the addition of lapatinib to trastuzumab and chemotherapy did not significantly improve DFS nor OS. The 10-year DFS was 77% in T, 79% in L + T and 79% in T→L, and the 10-year OS was 87%, 89% and 89%, respectively. The incidence of any cardiac event was low and similar in the three treatment groups.CONCLUSIONS: With a longer follow-up, no significant improvement was observed in DFS in patients treated with dual anti-HER2 blockade with lapatinib + trastuzumab compared to trastuzumab alone. The 10-year survival rates for the combination group are consistent with other studies that have explored dual anti-HER2 therapy.</p

    Individuals responses to economic cycles: Organizational relevance and a multilevel theoretical integration

    Get PDF

    RIG-I Is Required for the Inhibition of Measles Virus by Retinoids

    Get PDF
    Vitamin A can significantly decrease measles-associated morbidity and mortality. Vitamin A can inhibit the replication of measles virus (MeV) in vitro through an RARα- and type I interferon (IFN)-dependent mechanism. Retinoid-induced gene I (RIG-I) expression is induced by retinoids, activated by MeV RNA and is important for IFN signaling. We hypothesized that RIG-I is central to retinoid-mediated inhibition of MeV in vitro. We demonstrate that RIG-I expression is increased in cells treated with retinoids and infected with MeV. The central role of RIG-I in the retinoid-anti-MeV effect was demonstrated in the Huh-7/7.5 model; the latter cells having non-functional RIG-I. RAR-dependent retinoid signaling was required for the induction of RIG-I by retinoids and MeV. Retinoid signaling was also found to act in combination with IFN to induce high levels of RIG-I expression. RIG-I promoter activation required both retinoids and MeV, as indicated by markers of active chromatin. IRF-1 is known to be regulated by retinoids and MeV, but we found recruitment of IRF-1 to the RIG-I promoter by retinoids alone. Using luciferase expression constructs, we further demonstrated that the IRF-1 response element of RIG-I was required for RIG-I activation by retinoids or IFN. These results reveal that retinoid treatment and MeV infection induces significant RIG-I. RIG-I is required for the retinoid-MeV antiviral response. The induction is dependent on IFN, retinoids and IRF-1

    Native human adipose stromal cells: localization, morphology and phenotype

    Get PDF
    International audienceObjectives:Beside having roles in energy homeostasis and endocrine modulation, adipose tissue (AT) is now considered a promising source of mesenchymal stromal cells (adipose-derived stromal cells or ASCs) for regenerative medicine. Despite numerous studies on cultured ASCs, native human ASCs are rarely investigated. Indeed, the phenotype of ASCs in their native state, their localization within AT and comparison with bone marrow-derived mesenchymal stromal cells (BM-MSCs) has been poorly investigated.Design:To address these issues, the stroma vascular fraction (SVF) of human AT was extracted and native cell subtypes were isolated by immunoselection to study their clonogenic potential in culture. Immunohistology on samples of human AT in combination with reconstruction of confocal sections were performed in order to localize ASCs.Results:Compared with BM-MNCs, all native ASCs were found in the CD34(+) cell fraction of the AT-SVF. Native ASCs expressed classical mesenchymal markers described for BM-MSCs. Interestingly, CD34 expression decreased during ASC cell culture and was negatively correlated with cell proliferation rate. Immunohistological analysis revealed that native ASCs exhibited specific morphological features with protrusions. They were found scattered in AT stroma and did not express in vivo pericytic markers such as NG2, CD140b or alpha-smooth muscle actin, which appeared during the culture process. Finally, ASCs spontaneous commitment to adipocytic lineage was enhanced in AT from obese humans.Conclusions:The use of complementary methodological approaches to study native human ASCs revealed their immunophenotype, their specific morphology, their location within AT and their stemness. Furthermore, our data strongly suggest that human ASCs participate in adipogenesis during AT development.International Journal of Obesity advance online publication, 25 January 2011; doi:10.1038/ijo.2010.269
    corecore