4,004 research outputs found

    Computing the blocks of a quasi-median graph

    Get PDF
    Quasi-median graphs are a tool commonly used by evolutionary biologists to visualise the evolution of molecular sequences. As with any graph, a quasi-median graph can contain cut vertices, that is, vertices whose removal disconnect the graph. These vertices induce a decomposition of the graph into blocks, that is, maximal subgraphs which do not contain any cut vertices. Here we show that the special structure of quasi-median graphs can be used to compute their blocks without having to compute the whole graph. In particular we present an algorithm that, for a collection of nn aligned sequences of length mm, can compute the blocks of the associated quasi-median graph together with the information required to correctly connect these blocks together in run time O(n2m2)\mathcal O(n^2m^2), independent of the size of the sequence alphabet. Our primary motivation for presenting this algorithm is the fact that the quasi-median graph associated to a sequence alignment must contain all most parsimonious trees for the alignment, and therefore precomputing the blocks of the graph has the potential to help speed up any method for computing such trees.Comment: 17 pages, 2 figure

    Local search heuristics for multi-index assignment problems with decomposable costs.

    Get PDF
    The multi-index assignment problem (MIAP) with decomposable costs is a natural generalization of the well-known assignment problem. Applications of the MIAP arise for instance in the field of multi-target multi-sensor tracking. We describe an (exponentially sized) neighborhood for a solution of the MIAP with decomposable costs, and show that one can find a best solution in this neighborhood in polynomial time. Based on this neighborhood, we propose a local search algorithm. We empirically test the performance of published constructive heuristics and the local search algorithm on random instances; a straightforward tabu search is also tested. Finally, we compute lower bounds to our problem, which enable us to assess the quality of the solutions found.Assignment; Costs; Heuristics; Problems; Applications; Performance;

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Bucolic Complexes

    Full text link
    We introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. They are defined as simply connected prism complexes satisfying some local combinatorial conditions. We study various approaches to bucolic complexes: from graph-theoretic and topological perspective, as well as from the point of view of geometric group theory. In particular, we characterize bucolic complexes by some properties of their 2-skeleta and 1-skeleta (that we call bucolic graphs), by which several known results are generalized. We also show that locally-finite bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties.Comment: 45 pages, 4 figure

    A critical reassessment of the role of mitochondria in tumorigenesis

    Get PDF
    <p><b>Background:</b> Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results.</p> <p><b>Methods and Findings:</b> In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis.</p> <p><b>Conclusion:</b> The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research.</p&gt

    On embeddings of CAT(0) cube complexes into products of trees

    Full text link
    We prove that the contact graph of a 2-dimensional CAT(0) cube complex X{\bf X} of maximum degree Δ\Delta can be coloured with at most ϵ(Δ)=MΔ26\epsilon(\Delta)=M\Delta^{26} colours, for a fixed constant MM. This implies that X{\bf X} (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ)\epsilon(\Delta) trees, and that the event structure whose domain is X{\bf X} admits a nice labeling with ϵ(Δ)\epsilon(\Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the computation of the bounds in Theorem 1. Some figures repaire

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Molecular evolution of the sheep prion protein gene

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) are infectious, fatal neurodegenerative diseases characterized by aggregates of modified forms of the prion protein (PrP) in the central nervous system. Well known examples include variant Creutzfeldt-Jakob Disease (vCJD) in humans, BSE in cattle, chronic wasting disease in deer and scrapie in sheep and goats. In humans, sheep and deer, disease susceptibility is determined by host genotype at the prion protein gene (PRNP). Here I examine the molecular evolution of PRNP in ruminants and show that variation in sheep appears to have been maintained by balancing selection, a profoundly different process from that seen in other ruminants. Scrapie eradication programs such as those recently implemented in the UK, USA and elsewhere are based on the assumption that PRNP is under positive selection in response to scrapie. If, as these data suggest, that assumption is wrong, eradication programs will disrupt this balancing selection, and may have a negative impact on the fitness or scrapie resistance of national flocks

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    corecore