4,004 research outputs found
Computing the blocks of a quasi-median graph
Quasi-median graphs are a tool commonly used by evolutionary biologists to
visualise the evolution of molecular sequences. As with any graph, a
quasi-median graph can contain cut vertices, that is, vertices whose removal
disconnect the graph. These vertices induce a decomposition of the graph into
blocks, that is, maximal subgraphs which do not contain any cut vertices. Here
we show that the special structure of quasi-median graphs can be used to
compute their blocks without having to compute the whole graph. In particular
we present an algorithm that, for a collection of aligned sequences of
length , can compute the blocks of the associated quasi-median graph
together with the information required to correctly connect these blocks
together in run time , independent of the size of the
sequence alphabet. Our primary motivation for presenting this algorithm is the
fact that the quasi-median graph associated to a sequence alignment must
contain all most parsimonious trees for the alignment, and therefore
precomputing the blocks of the graph has the potential to help speed up any
method for computing such trees.Comment: 17 pages, 2 figure
Local search heuristics for multi-index assignment problems with decomposable costs.
The multi-index assignment problem (MIAP) with decomposable costs is a natural generalization of the well-known assignment problem. Applications of the MIAP arise for instance in the field of multi-target multi-sensor tracking. We describe an (exponentially sized) neighborhood for a solution of the MIAP with decomposable costs, and show that one can find a best solution in this neighborhood in polynomial time. Based on this neighborhood, we propose a local search algorithm. We empirically test the performance of published constructive heuristics and the local search algorithm on random instances; a straightforward tabu search is also tested. Finally, we compute lower bounds to our problem, which enable us to assess the quality of the solutions found.Assignment; Costs; Heuristics; Problems; Applications; Performance;
COMs: Complexes of Oriented Matroids
In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured
them as asymmetric counterparts of oriented matroids, both sharing the key
property of strong elimination. Moreover, symmetry of faces holds in both
structures as well as in the so-called affine oriented matroids. These two
fundamental properties (formulated for covectors) together lead to the natural
notion of "conditional oriented matroid" (abbreviated COM). These novel
structures can be characterized in terms of three cocircuits axioms,
generalizing the familiar characterization for oriented matroids. We describe a
binary composition scheme by which every COM can successively be erected as a
certain complex of oriented matroids, in essentially the same way as a lopsided
set can be glued together from its maximal hypercube faces. A realizable COM is
represented by a hyperplane arrangement restricted to an open convex set. Among
these are the examples formed by linear extensions of ordered sets,
generalizing the oriented matroids corresponding to the permutohedra. Relaxing
realizability to local realizability, we capture a wider class of combinatorial
objects: we show that non-positively curved Coxeter zonotopal complexes give
rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition
Bucolic Complexes
We introduce and investigate bucolic complexes, a common generalization of
systolic complexes and of CAT(0) cubical complexes. They are defined as simply
connected prism complexes satisfying some local combinatorial conditions. We
study various approaches to bucolic complexes: from graph-theoretic and
topological perspective, as well as from the point of view of geometric group
theory. In particular, we characterize bucolic complexes by some properties of
their 2-skeleta and 1-skeleta (that we call bucolic graphs), by which several
known results are generalized. We also show that locally-finite bucolic
complexes are contractible, and satisfy some nonpositive-curvature-like
properties.Comment: 45 pages, 4 figure
A critical reassessment of the role of mitochondria in tumorigenesis
<p><b>Background:</b> Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results.</p>
<p><b>Methods and Findings:</b> In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis.</p>
<p><b>Conclusion:</b> The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research.</p>
On embeddings of CAT(0) cube complexes into products of trees
We prove that the contact graph of a 2-dimensional CAT(0) cube complex of maximum degree can be coloured with at most
colours, for a fixed constant . This implies
that (and the associated median graph) isometrically embeds in the
Cartesian product of at most trees, and that the event
structure whose domain is admits a nice labeling with
labels. On the other hand, we present an example of a
5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes
which cannot be embedded into a Cartesian product of a finite number of trees.
This answers in the negative a question raised independently by F. Haglund, G.
Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the
computation of the bounds in Theorem 1. Some figures repaire
Ramified rectilinear polygons: coordinatization by dendrons
Simple rectilinear polygons (i.e. rectilinear polygons without holes or
cutpoints) can be regarded as finite rectangular cell complexes coordinatized
by two finite dendrons. The intrinsic -metric is thus inherited from the
product of the two finite dendrons via an isometric embedding. The rectangular
cell complexes that share this same embedding property are called ramified
rectilinear polygons. The links of vertices in these cell complexes may be
arbitrary bipartite graphs, in contrast to simple rectilinear polygons where
the links of points are either 4-cycles or paths of length at most 3. Ramified
rectilinear polygons are particular instances of rectangular complexes obtained
from cube-free median graphs, or equivalently simply connected rectangular
complexes with triangle-free links. The underlying graphs of finite ramified
rectilinear polygons can be recognized among graphs in linear time by a
Lexicographic Breadth-First-Search. Whereas the symmetry of a simple
rectilinear polygon is very restricted (with automorphism group being a
subgroup of the dihedral group ), ramified rectilinear polygons are
universal: every finite group is the automorphism group of some ramified
rectilinear polygon.Comment: 27 pages, 6 figure
Molecular evolution of the sheep prion protein gene
Transmissible spongiform encephalopathies (TSEs) are infectious, fatal neurodegenerative diseases characterized by aggregates of modified forms of the prion protein (PrP) in the central nervous system. Well known examples include variant Creutzfeldt-Jakob Disease (vCJD) in humans, BSE in cattle, chronic wasting disease in deer and scrapie in sheep and goats. In humans, sheep and deer, disease susceptibility is determined by host genotype at the prion protein gene (PRNP). Here I examine the molecular evolution of PRNP in ruminants and show that variation in sheep appears to have been maintained by balancing selection, a profoundly different process from that seen in other ruminants. Scrapie eradication programs such as those recently implemented in the UK, USA and elsewhere are based on the assumption that PRNP is under positive selection in response to scrapie. If, as these data suggest, that assumption is wrong, eradication programs will disrupt this balancing selection, and may have a negative impact on the fitness or scrapie resistance of national flocks
Combinatorics and geometry of finite and infinite squaregraphs
Squaregraphs were originally defined as finite plane graphs in which all
inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e.,
the vertices not incident with the outer face) have degrees larger than three.
The planar dual of a finite squaregraph is determined by a triangle-free chord
diagram of the unit disk, which could alternatively be viewed as a
triangle-free line arrangement in the hyperbolic plane. This representation
carries over to infinite plane graphs with finite vertex degrees in which the
balls are finite squaregraphs. Algebraically, finite squaregraphs are median
graphs for which the duals are finite circular split systems. Hence
squaregraphs are at the crosspoint of two dualities, an algebraic and a
geometric one, and thus lend themselves to several combinatorial
interpretations and structural characterizations. With these and the
5-colorability theorem for circle graphs at hand, we prove that every
squaregraph can be isometrically embedded into the Cartesian product of five
trees. This embedding result can also be extended to the infinite case without
reference to an embedding in the plane and without any cardinality restriction
when formulated for median graphs free of cubes and further finite
obstructions. Further, we exhibit a class of squaregraphs that can be embedded
into the product of three trees and we characterize those squaregraphs that are
embeddable into the product of just two trees. Finally, finite squaregraphs
enjoy a number of algorithmic features that do not extend to arbitrary median
graphs. For instance, we show that median-generating sets of finite
squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the
corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
- …
