
KATHOLIEKE
UNIVERSITEIT

LEUVEN

OEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0242

LOCAL SEARCH HEURISTICS FOR MULTI-INDEX
ASSIGNMENT PROBLEMS WITH

DECOMPOSABLE COSTS
by

H.J. BANDEL T
A. MAAS

F. SPIEKSMA

D/2002/2376/39

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6468655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Local search heuristics for multi-index assignment problems
with decomposable costs

Hans-Jiirgen Bandelt; Arjan Maastand Frits C.R. Spieksma+

September 5, 2002

Abstract

The multi-index assignment problem (MIAP) with decomposable costs is a natural
generalization of the well-known assignment problem. Applications of the MIAP arise for
instance in the field of multi-target multi-sensor tracking. We describe an (exponentially
sized) neighborhood for a solution of the MIAP with decomposable costs, and show that
one can find a best solution in this neighborhood in polynomial time. Based on this
neighborhood, we propose a local search algorithm. We empirically test the performance
of published constructive heuristics and the local search algorithm on random instances;
a straightforward tabu search is also tested. Finally, we compute lower bounds to our
problem, which enable us to assess the quality of the solutions found.

Keywords: Heuristics, tabu search, control systems.

1 Introduction

In the well-known asssignment problem one is given two (disjoint) n-sets I and J, and a cost
Ci,j for each pair (i,j) E I x J. The problem is to select n pairs such that every element of
I U J occurs once in a selected pair while the sum of the costs of the selected pairs is minimal.

This paper addresses a generalization of this two-dimensional assignment problem that
involves k :::: 3 (instead of two) n-sets. Different types of generalizations are possible, e.g.,
when k = 4, and given a cost for each quadruple, one could ask for

1. n quadruples such that each element of every n-set occurs once in a quadruple, or

2. n2 quadruples such that each pair of elements occurs once in a quadruple, or

3. n3 quadruples such that each triple of elements occurs once in a quadruple,

while minimizing in all cases the sum of the costs of the selected quadruples. We focus here
on the generalization described under 1; thus, we consider the problem of finding n (different)
k-tuples such that each element occurs once in a k-tuple. This variant is called the axial
k-index assignment problem. The goal of this paper is, for the special case of decomposable
costs,

'Mathematisches Seminar, Universitiit Hamburg, Bundesstr. 55, D-20146 Hamburg, Germany.
tDepartment of Mathematics, Maastricht University, P.O. Box 616, NL-6200 MD, The Netherlands.
~Katholieke Universiteit Leuven, Department of Applied Economics, Naamsestraat 69, B-3000 Leuven,

Belgium.

1

• to experimentally assess the quality of two types of heuristics proposed in Bandelt et
al. [3],

• to describe an (exponentially sized) neighborhood, and to show that a best solution
within this neighborhood can be found in polynomial time,

• to experiment with local search heuristics based on this neighborhood,

• to describe a Lagrangian relaxation scheme that yields lower bounds for the optimum
value of instances of our problem.

Subsection 1.1 gives a precise description of the problem and Subsection 1.2 mentions appli
cations and related literature. In Section 2 we propose the neighborhood, and describe two
local search algorithms based on it. Section 3 describes the setup of our computational exper
iments, and Section 4 describes the performance ofthe algorithms on the instances generated.
Section 5 deals with lower bounds based on Lagrangian relaxation, and finally Section 6 states
the conclusions.

1.1 Problem description

A more formal description of our problem is as follows. Given an n-set A (n ;::: 2) and an
index set K = {I, ... ,k} with k ;::: 3 elements (sometimes referred to as the "colors"), we
denote by

Ar={r}xA for 1 ::; r ::; k

k disjoint copies of A. Then the Cartesian power AK constitutes the set of all transversals
("clusters") of the sets AI, A2, ... ,Ak, that is, for each element a = (a(I), ... , a(k)) of A K
exactly one element, viz (r, a(r)), of Ar (1 ::; r ::; k) is captured. To each cluster a E AK a
cost Ca is associated. The problem is now to find n clusters such that each element of UrEK Ar
occurs once in a cluster, while the sum of the costs of the selected clusters is minimal. An
integer programming formulation is as follows.

(MIAP) minimize c(x) = 2:: CaXa (1)
aEAK

such that 2:: Xa = 1 for r E K, i E A; (2)
aEAK: a(r)=i

Xa E{O,I} for a E AK. (3)

We will assume in this paper that the costs Ca are not completely arbitrary but depend on
given pairwise distances d(u, v) between elements u, v from different color sets. Specifically,
the costs Ca are assumed to satisfy the following equality:

Ca = 2:: d((r,a(r)), (s,a(s))) (4)
r,sEK,r<s

Thus, the cost of a cluster equals the sum of the (~) distances involved. Our motivation for
considering this specific type of cost function is that in most applications (see Subsection 1.2)
the cost coefficients exhibit a certain structure that conforms to (4).

2

1.2 Literature and Applications

The axial multi-index assignment problem (MIAP) has been introduced by Pierskalla [15]
in 1968. In case k is fixed, many applications of the k-index assignment problem have been
described in literature. In particular, the case k = 3 has received quite some attention; we
mention applications in the field of production planning and rostering (see e.g. Spieksma [21]
for an overview). Applications for larger values of k seem to be less abundant: we mention
Fortin and Tusera [9] (routing in meshes) and Pusztaszeri et al. [18] (tracking elementary
particles) .

In the case that the value of k is not prespecified, one prominent field of applications
of the MIAP is the so-called data-association problem in multi-target tracking problems. A
short description of this problem is as follows: given is a single radar (or sensor) that surveys
its vicinity in a circular fashion. After each revolution of the radar (called a scan), a set of
measurements induced by objects in the vicinity of the radar has become available. Such
a measurement can consist of the location, speed, height, etc. of the object involved. Of
course, a single object may induce a measurement in different scans. The problem is now
to partition the set of all measurements into subsets, such that all measurements from the
same subset are induced by a single object. This subset of measurements is called a track.
One can verify that this problem can be formulated as a multi-index assignment problem
by letting Ar be the set of measurements found in scan T, T = 1,2, ... (see Morefield [13],
Pattipati et al. [14] and Poore and Rijavec [17]). It should be pointed out that although the
cost coefficients arising in this setting possess a certain structure, they are not decomposable
in the sense of (4) (see Robertson [19]). Solution methods based on Lagrangian relaxation
for these problems have been described by, among others, Chummun et al. [5], Pattipati et
al. [14] and Poore [16]. Storms and Spieksma [23] describe a method based on solving the
linear programming relaxation, followed by a rounding procedure. Robertson [19] describes
a greedy, randomized adaptive search procedure.

A variant of this problem arises when we consider a single scan of multiple radars that
survey the same area. Then, again, one is interested in determining which measurements
come from the same object. Letting AT be the measurements of radar T yields a multi-index
assignment problem. In this case, however, we argue that a straightforward model of this
variant admits decomposable cost coefficients. Let us first consider an (idealized) setting
where the position of each of n stationary objects is measured by k radars simultaneously,
giving a potential total of nk measurements. Due to measurement errors, atmospheric con
ditions etcetera, the location of an object measured by radar T will in general differ from the
location measured by another radar s. How to decide which set of measurements, one from
each radar, originates from a same object? It is very natural to take the Euclidean distance
between any two measured locations from different radars as the cost of deciding that these
two measurements originate from a same object. Next, by choosing as the cost of a k-tuple of
measured locations the sum of the (~) distances, we have cost coefficients satisfying (4). Of
course, in general, a radar measures more than location only. For instance, speed, direction,
elevation may be measured as well. Thus, measuring an object yields a vector of values.
Again, however, one can summarize the difference between two vectors in a single number
to indicate the difference between the two vectors. In this way one can capture the costs of
deciding that two measurements originate from the same object.

The 3-index assignment problem with decomposable costs is NP-hard. This follows di
rectly from a result in Spieksma and Woeginger [22] where it is shown that even when the

3

points of Al U A2 U A3 lie in the plane, the problem of partitioning the point set into triangles
from Al x A2 X A3 such that the sum of the circumferences of the triangles is minimal is
NP-hard. Thus, since it is apparently unlikely that a polynomial time algorithm that gives
optimal solutions exists, heuristics are the designated way to get hold of good solutions within
reasonable computing times.

Bandelt et al. [3] describe approximation algorithms for special cases of the multi-index
assignment problem including the case where the cost coefficients satisfy (4) (see Subsec
tion 2.2). More specifically, they consider the case where the distance function d satisfies a
(relaxed) form of the triangle inequality, and prove approximation results under this assump
tion. Computational results for these algorithms in case k = 3 and k = 4 are reported in
Bierlein [4] and Crama and Spieksma [6]. A recent polyhedral study of the MIAP can be
found in Magos et al. [12]. Further work on the MIAP can be found in Riischendorf [20] and
Gilbert and Hofstra [11]. Aiex et al. [2] describe the application of greedy randomized local
search procedures to the 3-index assignment problem; we refer to Aarts and Lenstra [1] for
an overview of local search methods.

2 Local Search

This section proposes a neighborhood of a solution to the MIAP (Subsection 2.1), and it
describes two constructive heuristics for the MIAP (Subsection 2.2).

2.1 The neighborhood

Every bipartition of the index set K into a (proper, nonempty) subset L and its complement
K \ L induces a bipartition of any cluster a E AK into the corresponding two restrictions
("partial clusters") aL E AL and aK\L E AK\L, so that a can be identified with the pair
(aL, aK\L)' Accordingly, every feasible solution x to the MIAP, which consists of n disjoint
clusters al, ... ,an E AK, splits into feasible solutions XL (consisting of al, ... ,a2) and XK\L
(consisting of ak\L"" ,aK\L) of the MIAP relative to Land K \ L, respectively. Since the

union of any two partial clusters from AL and AK\L (such as ai U a~\L) yields a cluster from

AK, there are n! ways to recombine the two feasible partial solutions XL and xK\L into a new
feasible solution yEA K. Thus, the neighborhood of X relative to L (0 =1= L c K) is defined
as the n!-set NL(x) of all solutions y = y(7r) that consist of the n disjoint clusters

1 11"(1) n rr(n)
aL U aK\L'" . ,aL U aK\L'

where 7r is any permutation of {I, ... ,n}.
Since the costs c(x) of a solution x are decomposable, the costs C£ (x Ll are well defined by

restricting the summation in (4) over all colors r < s from L. Now define the costs CL,K\L (x; 7r)
of the recombination of XL with x K\L determined by the permutation 7r of {I, ... ,n} as
follows:

n

CL,K\L(X;7r) = L Ld((r,ai (r)),(s,a11"(i)(s))). (5)
rEL,sEK\L i=1

Then, in particular,

4

Therefore a best neighbor y E NL(x), that is, a best recombination of XL and XK\L, is
found by solving an ordinary binary assignment problem between the two n-sets {al, ... , a'iJ
and {ak\L" .. , aK\L} with respect to the cost function 7r >--7 CL,K\L(X; 7l').

Whereas a single neighborhood can thus be searched for a best solution in polynomial
time, it would need exponential time to visit all neighborhoods NL(x), 0 =I L c K. In the
local search heuristics proposed here, we therefore cycle only through a limited number of
subsets L, namely either all singletons (heuristic LSI) or all doubletons (heuristic LS2), until
no improvement has been achieved after a full round of k singletons or (~) doubletons visited.

Algorithm LS 1

Input: distance function d determining C via (4), start solution xo.

Iteration (t 2: 1): given xt-I, put h = 1 + (t - 1) modulo k and compute a best solution xt
in N{h} (x t- 1).

Stop: c(xt) = c(xt-k) for t ;:::: k.

Output: solution X that is locally optimal with respect to NL(x) for each singleton L.

Algorithm LS2

Input: distance function d determining c via (4), start solution xo, lexicographic ordering
Ll = {I, 2}, L2 = {I, 3}, ... , Lm = {k - 1, k} of all doubletons.

Iteration (t 2: 1): given xt-I, put h = 1 + (t -1) modulo (~) and compute a best solution
xt in NLh (xt- I).

Stop: c(xt) = c(xt-m) for t ;:::: (~).

Output: solution x that is locally optimal with respect to NL(x) for each doubleton L.

2.2 The starting solution

In our experiments we used three ways of getting hold of a starting solution. One way is
simply constructing a random solution, the other two ways are proposed in Bandelt et al. [3]
and are described hereunder.

2.2.1 The hub heuristics

The single-hub heuristic first chooses a so-called hub color h, h E K. Then it solves k - 1
assignment problems between the points of Ah and AT, r E K \ h (using the costs d(u,v),
u E Ah, V E AT, r E K \ h).

Algorithm SINGLE-HUB

Input: distance function d, color h E K.

Iteration (r E K \ h): compute a minimum cost assignment ZhT between Ah and AT with
respect to d.

5

Output: the unique MIAP solution x that extends all binary assignment solutions Zhr, that
is, x{h,r} = Zhr for r E K \ h.

Algorithm MULTI-HUB

Iteration (h E K): run SINGLE-HUB for each hub color h E K.

Output: the best solution of the k solutions found.

Notice that the complexity of MULTI-HUB equals the complexity of solving O(k2) assign
ment problems.

2.2.2 The recursive heuristics

An obvious drawback of the hub heuristic is that it does not consider all distances within a
cluster when computing a solution. The recursive heuristic avoids this drawback as follows.
It specifies a sequence of the k colors, say a permutation 0- of {l, ... , k}, and then constructs
a chain of partial MIAP solutions yl, y2, ... , yk = x, relative to the sets Ll = {0-(1)}, L2 =

{a(1), 0-(2)}, ... , Lk = K, so that the final MIAP solution x extends the partial solutions in
this sequence, viz., XLr = yr for 2 ::; r ::; k - 1. The costs of an assignment between the
clusters in a partial MIAP solution yr-l and the points of Ao-(r) is defined analogously as in
(5): for each partial cluster and assigned point it sums over the distances between the r - 1
points of a cluster and the new point from Ao-(r)'

Algorithm SINGLE-RECURSIVE

Input: distance function d, permutation 0- of {I, ... , k}.

Iteration (r = 2, ... , k): compute a minimum cost assignment between the partial MIAP
solution yr-l relative to L r - 1 = {0-(1), . .. , o-(r - I)} and the points of Au(r)' Then, via
this assignment, yr-l is extended to the partial MIAP solution yr relative to L r .

Output: the MIAP solution x = yk obtained in the last step.

Notice that in principle there are k! different permutations, each giving rise to a possibly
different solution returned by SINGLE-RECURSIVE. In our implementation, we run the follow
ing two algorithms, which generate only k or (~), respectively, many permutations, so that
every singleton or doubleton of colors would come first in the processing order exactly once:

Algorithm RECURl

Iteration (1 ::; h ::; k): run SINGLE-RECURSIVE for a randomly generated permutation 0-
with the proviso 0-(1) = h.

Output: the best solution of the k solutions found.

Algorithm RECUR2

Iteration (1 ::; i < j :S k): run SINGLE-RECURSIVE for a randomly generated permutation a
with the proviso 0-(1) = i and 0-(2) = j .

6

EE
Figure 1: Type 4 instances for, from left to right, k =4, k = 8, k = 16, k = 32

Output: the best solution of the (~) solutions found.

The complexity of SINGLE-RECURSIVE is equal to the complexity of solving k assignment
problems, plus O(n2k2) (for updating the costs of the partial clusters formed). This implies
that, apart from the complexity caused by solving O(k2) (O(k3)) assignment problems, there
is an O(n2k3) (O(n2k4)) term in the complexity bound of RECUR 1 (RECUR2).

3 The experiments

We have generated in total 80 instances, each with nk = 128 points. There are four types of
instances. For each type we generated:

• 5 instances with k = 4, n = 32,

• 5 instances with k = 8, n = 16,

• 5 instances with k = 16, n = 8, and

• 5 instances with k = 32, n = 4.

The points in the instances of type 1 are randomly generated in the plane. More specifically,
for each of the 128 points an integral x-coordinate and an integral y-coordinate is randomly
drawn from [0,999]. The distance between a pair of points is the Euclidean distance rounded
down to the nearest integer. An instance of type 2 is generated such that each distance
between a pair of points is randomly drawn from [0,9]. An instance of type 3 is generated
such that each distance between a pair of points is randomly drawn from [0,4]. Finally, an
instance of type 4 is again a geometric instance of the following kind. We partition the square
(0,999) x (0,999) into k rectangles. Each of the sets Ar (r = 1, ... , k) resides in a rectangle
(see Figure 1 for a picture). We will refer to the instances of type 1 and type 4 as Euclidean
instances.

To solve the assignment instances in our experiments, we used the code of Jonker and
Volgenant [8] (see Dell' Amico and Toth [7] for a computational study of various implemen
tations of algorithms that solve the assignment problem). All our algorithms were coded in
Java, and we used a PC with a Pentium 500 processor and 64Mb internal memory.

4 The results

4.1 Starting heuristics

We first compared the quality of the solutions found by the heuristic MULTI-HUB and the
two recursive heuristics RECUR1 and RECUR2. Both MULTI-HUB and RECUR1 need to solve
O(k2) assignment problems; RECUR 1 needs an additional updating step, and is at least

7

theoretically computationally more expensive (see Subsection 2.2). RECUR2 needs to solve
O(k3) assignment problems. The outcomes are given in Table 4.l. The numbers reported
are averages over five instances. Columns 2, 5 and 8 (called 'value') contain the average
values found by respectively MULTI-HUB, RECUR1, and RECUR2. The percentages given in
columns 5 and 8 indicate the amount of improvement over the average solution value found
by MULTI-HUB. Columns 3, 6 and 9 (called 'best') report how many times (out of the five
instances) the corresponding heuristic found a solution with a value that was a best among
the three solution values found by MULTI-HUB, RECUR1, and RECUR2. Finally, columns 4,
7 and 10 (called 'time') describe the computing times needed in milliseconds.

Heuristics
MULTI-HUB RECUR1 RECUR2

Type 1 value best time value best time value best time

k=4 342.4 0 11.2 315.2 (7.9%) 3 274.2 314.8 (8.1%) 4 244.2
k=8 1063.4 0 6.2 981 (7.7%) 1 132.4 979 (7.9%) 4 175.2
k = 16 3009.4 0 3.6 2894.4 (3.8%) 0 85.2 2872.6 (4.5%) 5 214
k = 32 7562.6 0 3 7433.6 (l.7%) 2 64.4 7429.8 (l.8%) 4 479.4
Type 2
k=4 624.2 0 12.8 437.4 (29.9%) 2 262.8 430 (31.1%) 3 262.6
k=8 1973 0 6 1568.2 (20.5%) 1 122.6 1555.4 (2l.2%) 4 18l.4
k = 16 4757.8 0 3 4195.8 (1l.8%) 1 80 4173 (12.3%) 4 205.4
k = 32 10452.4 0 3.4 9816.2 (6.1%) 0 74.8 9722.4 (7.0%) 5 482.8
Type 3
k=4 371.6 0 3 283.8 (23.6%) 2 30l.8 281 (24.4%) 4 233.8
k=8 1111 0 5.4 922.4 (17.0%) 1 12l.6 915.2 (17.6%) 5 18l.8
k = 16 2634.2 0 3 2370.2 (10.0%) 0 72 2356 (10.6%) 5 12l.8
k = 32 5710.4 0 2.6 5402.8 (5.4%) 0 114 5377.2 (5.8%) 5 193.8
Type 4
k=4 1101 0 12.2 1064.4 (3.3%) 2 255.2 1064.4 (3.3%) 4 226.6
k=8 2467.4 0 6 2399.4 (2.8%) 1 114.8 2395.6 (2.9%) 5 136.2
k = 16 5174.8 0 3 5096.8 (l.5%) 1 71 5094.6 (1.5%) 5 120.8
k = 32 10585 0 2.2 10511.2 (0.7%) 0 5l.4 1050l.2 (0.8%) 5 192

Table 1: Starting heuristics

It turns out that the solutions of the recursive heuristics are better than the solutions
found by MULTI-HUB. This is in particular true for the case of non-Euclidean instances with
small values of k. For each type of instances the improvement decreases with increasing k.
From the Euclidean instances, the improvement of the recursive heuristics over MULTI-HUB
is twice as large for the type 1 instances compared to the type 4 instances. Summarizing,
the less structure is present in the instances, the more improvement there is of the recursive
heuristics over MULTI-HUB. RECUR2 is slightly better than RECUR1; especially with larger
k, it finds more often a better solution than RECUR1, although the improvement in value is
not large.

All computation times are within 0.5 seconds. Specifically, MULTI-HUB is extremely fast.

8

Computation times of RECUR1 and RECUR2 are an order of magnitude larger. Comparing
computation times of RECUR1 and RECUR2 it turns out that for k = 32, RECUR2 can take
up to 8 times longer as RECURl.

4.2 Local search

We now investigate the quality of the neighborhood proposed in Section 2.1, as measured by
the outcome of the local search algorithms LSI and LS2. Each of these two algorithms was
run using three starting solutions: the solution found by MULTI-HUB, the best solution found
by RECUR1 and RECUR2, and a random solution. Thus, we can distinguish 6 local search
algorithms. We report the outcome of these 6 variants in Tables 2 and 3 below.

LSI
Hub starting solution Recursive starting solution Random starting solution

Type 1 value best time value best time value best time

k=4 309.8 5 734 310.8 2 604 310.4 3 630
k=8 976 2 662 972.4 1 580 975.2 3 648

k = 16 2871 3 1032 2865.8 5 844 2888.8 1 920
k = 32 7439.2 2 1614 7427 5 1306 7431.8 2 1924
Type 2
k=4 431.2 0 780 421 3 614 426.4 2 600
k=8 1529.4 4 770 1529 1 584 1549.4 0 706

k = 16 4141.6 1 1032 4119.8 3 924 4159.2 1 1018
k = 32 9733 1 2316 9677.2 4 1484 9787.4 0 2020
Type 3
k=4 282.4 1 650 279.4 2 570 279.8 2 636
k=8 909.2 0 866 902.6 5 668 913.6 0 682

k = 16 2342.4 0 1010 2331 4 910 2342.4 1 1068
k = 32 5372.6 1 1956 5358.8 4 1634 5388 0 2010
Type 4
k=4 1061.8 3 790 1062.2 2 580 1061.2 1 582
k=8 2395.4 0 694 2391.4 5 626 2395.4 1 670

k = 16 5091.2 1 1198 5088 3 856 5091 1 1010
k = 32 10501.8 0 1718 10496.4 4 1454 10508.2 1 1848

Table 2: LSI

First of all, the local search algorithms LSI and LS2 almost always improve on the best
solution found so far. In particular, the improvement for the non-Euclidean instances is
percentage-wise larger than for the Euclidean instances, both for LSI and for LS2.

Second, let us comment on the choice of the starting solution. At least for the non
Euclidean instances, it seems that a better starting solution yields a better final outcome, both
for LSI and LS2. In the case of Euclidean instances, however, the local search algorithms
with either hub starting solution or recursive starting solution only marginally improve on
the solutions found using a random starting solution. For k = 32, starting with a recursive

9

LS2
Hub starting solution Recursive starting solution Random starting solution

Type 1 value best time value best time value best time

k=4 324 1 612 313.4 4 606 333.4 0 670
k=8 990.2 0 912 973.2 5 724 997.2 0 1066
k = 16 2897.8 0 2132 2868.8 5 1426 2889.8 0 2482
k = 32 7435.8 2 6548 7427 5 3846 7439.8 1 8588
Type 2
k=4 493.4 0 626 429.2 5 586 500 0 638
k=8 1604.4 0 1088 1553 5 658 1617.2 0 1046
k = 16 4199.4 0 2670 4154.2 3 1650 4190.6 2 2244
k = 32 9739 0 15080 9677.8 5 7952 9761.6 0 11744
Type 3
k=4 316.8 0 724 280.6 5 582 311.8 0 658
k=8 947.6 0 1110 914.4 5 670 940.6 0 1054
k = 16 2353.2 1 2572 2345.2 5 1712 2374.2 0 3230
k = 32 5379.2 0 10282 5361.6 4 5988 5383.8 1 11984
Type 4
k=4 1068.2 3 624 1063.2 2 598 1068.6 0 606
k=8 2404.4 0 1052 2395.4 5 670 240Q.4 0 970
k = 16 5094.8 1 2240 5090.6 4 1540 5097.8 0 2108
k = 32 10505.8 0 9110 10494.8 4 6812 10500.8 1 9460

Table 3: LS2

solution results in arriving faster at a local optimum; for other values of k, computation times
are comparable.

Finally, a perhaps somewhat surprising outcome is that LSI seems better than LS2, that
is, the neighborhood that results from 'splitting off' one color gives better solutions than
the neighborhood that splits off two colors. Also, computation times of LS2 are much more
increasing with k than the computation times needed by LSl.

Overall, the best strategy for a local search algorithm seems to use LSI applied to the
best solution found by RECUR 1 and RECUR2.

4.3 Tabu search

How good are the local optima found by the local search algorithms? Can we find better local
optima by 'disturbing' the current local optimum found, spend some more computation time
and end up in a new local optimum? To answer this question we implemented a straightfor
ward tabu search algorithm. When a local optimum is found, we disturb it by either randomly
selecting two points of a same color and interchange their assignment (variant 1, denoted by
TSd, or randomly select four points of a same color, and interchange their assignment (vari
ant 2, denoted by TS2). Next, we continue this procedure by using either LSI or LS2 to
arrive at a possibly different local optimum. We run TS1 for 60 seconds, and TS2 for 150 sec-

10

onds. Thus, in total we have four tabu search variants denoted by TS 1 (LSI) and TS2(LSl)
(see Table 4), and TS 1(LS2) and TS2(LS2) (see Table 5). Column 2 of either table reports
the average values found by LSI, LS2 using as a start solution the best solution found by
RECURI and RECUR2. Column 3 lists the average value found by TS 1 (LSl), TS1 (LS2).
Column 4 indicates for how many instances the corresponding tabu search variant found a
better solution than LSI, LS2. Column 5 denotes the average value found by TS2(LSl),
TS2(LS2). Finally, column 6 indicates for how many instances the corresponding tabu search
variant found a better solution than LSI, LS2.

Tabu search
LSI TS1 (LSl) TS2(LSl)

Type 1 value value better value better

k=4 309.8 309.2 3 309.2 3
k=8 976 967.8 5 967.8 5

k = 16 2871 2865.6 1 2865.6 2
k = 32 7439.2 7427 0 7427 0
Type 2
k=4 431.2 394.6 5 395.6 5
k=8 1529.4 1456.4 5 1455.4 5

k = 16 4141.6 4046.8 5 4020.8 5
k = 32 9733 9641.8 4 9621.4 5
Type 3
k=4 282.4 262.8 5 263.8 5
k=8 909.2 867 5 866.6 5
k = 16 2342.4 2293 5 2287.6 5
k = 32 5372.6 5337 5 5337.6 5
Type 4
k=4 1061.8 1055 5 1055 5
k=8 2395.4 2379.6 5 2379.2 5
k = 16 5091.2 5075.6 5 5074.4 5
k = 32 10501.8 10487.4 5 10487 5

Table 4: Tabu search with LSI

Each of the tabu search variants finds in most cases a better solution than the original
local optimum. The instances of type 1 seem less susceptible for improvement than the
instances of the other types. In particular, the tabu search algorithms improve significantly
the solutions found for the non-Euclidean instances when k = 8,16,32. TS2 is better than
TS 1 for k = 16,32; for smaller values of k, there is no clear advantage for TS2.

5 Lower bounds

This section describes two different ways of computing a lower bound on the optimal value of
an instance ofthe problem. Both lower bounds are based on applying a subgradient procedure
to a Lagrangian relaxation of an integer programming formulation of the problem. In either

11

Tabu search
LS2 TS1(LS2) TS2 (LS2)

Type 1 value value better value better

k=4 313.4 313.4 1 313.6 0
k=8 973.2 970.8 2 972 1
k = 16 2868.8 2866.6 3 2867 2
k = 32 7427 7427.6 0 7427.6 0
Type 2
k=4 429.2 430 0 430 0
k=8 1553 1537.2 4 1535.8 5
k = 16 4154.2 4072.6 5 4053.6 5
k = 32 9677.8 9665 4 9636.8 5
Type 3
k=4 280.6 280.6 0 280.6 0
k=8 914.4 908.6 4 905.6 4
k = 16 2345.2 2312.8 5 2309.2 5
k = 32 5361.6 5349 5 5340.2 5
Type 4
k=4 1063.2 1061.6 4 1061.6 5
k=8 2395.4 2388.6 5 2389 5
k = 16 5090.6 5081 5 5078.4 5
k= 32 10494.8 10489.6 5 10489.4 5

Table 5: Tabu search with LS2

case the bound obtained would be dominated by solving the corresponding LP-relaxation.

5.1 A first lower bound

First, we describe how we can apply Lagrangian relaxation to formulation (1)-(3) given in
Subsection 1.1. Then we sketch the use of an iterative subgradient procedure to find the lower
bounds.

Let us fix two indices, say hI, h2 E K, and let us apply Lagrangian relaxation to all
constraints using multipliers Ari' r E K \ {hI, h2 }, i = 1, ... , n. It follows that we can write
the resulting objective function (called the Lagrangian) as follows:

n n

min 2:: CaXa - 2:: L L AriXa + L 2:: Ari·
aEAK rEK\{hj,h2} i=1 aEAK: a(r)=i rEK\{hj,hZ} i=1

Rearranging terms yields for the Lagrangian:

n

min 2:: (ca - 2:: Ar,a(r))xa + 2:: L Ari· (6)
aEAK rEK\{hj,hz} rEK\{hj,h2} i=1

Observe that the remaining constraints in model (1)-(3) are nothing else but the familiar
constraints of an ordinary assignment problem. Thus, we are only interested in assigning the

12

points of Ahl to the points of A h2 . That implies that the only 'interesting' cost coefficients,
say g(i,j), are those for which

g(i,j)=min{ca - L Ar,a(r): a EAK,a(hd =i,a(h2) =j},i,j= 1, ... ,n.
rEK\{h1,hd

The problem with cost coefficients g(i,j) is an ordinary assignment problem. Thus, given La
grange multipliers Ari' T' E K,l ::; i ::; n, we can solve the resulting problem yielding a solution
x~. Obviously, this gives us a lower bound. Moreover, we use the solution x~ to compute a
new set of values for the Lagrange multipliers, thereby employing a subgradient procedure as
follows. Let the derivative J-Lri of the Lagrangian (6) with respect to the multipliers Ari be
equal to:

J-Lr,i = 1- L x~
aEAK: a(r)=i

for T' E K, 1 :::; i :::; n.

We then iteratively set, for each T' E K, 1 ::; i ::; n:

Ar,i := max(Ar,i - PJ-Lr,i, 0),

where P is a step length. In our implementations we used the quotient of the difference
between the current relaxation value (CRV) and the value of the best known solution (BKS),
and the norm of the vector A as a value for p, i.e., P = (BKS - CRV)/IIAI1 2. For each pair
of indices hI, h2 E K we ran this procedure for a 1000 iterations, and stored the best lower
bound found.

Computationally, the bottleneck in this subgradient procedure is computing the costs
g(i,j). This takes O(nk-2) operations. In fact, computation times for cases with k > 4
become prohibitive. Therefore, we have only computed this lower bound for the instances
with k = 4.

This approach is a generalization of the approach employed by Frieze and Yadegar [10] for
the 3-index assignment problem. Finally, notice that this approach is valid for any instance
of MIAP, i.e., we do not use here the fact that the costs are decomposable.

5.2 A second lower bound

To describe our second lower bound, we first propose a formulation that explicitly makes use
of the fact that the costs Ca are decomposable. For each u EAr, v E As (T' t= s), we introduce
binary variables Zuv indicating whether u and v are joined in a single cluster (zuv = 1) or not
(zuv = 0). There is a formulation for each h E K, so we assume some hE K is prespecified:

minimize L L L d(u,v)zuv
r,sEK uEAr vEA.

such that L Zuv = 1 for u E Ah, T' E K \ hi
VEAr

L Zuv = 1 for v EAr, T' E K \ hi
uEAh

(7)

(8)

(9)

Zuv + Zuw - Zvw :::; 1 for u E Ah,V E Ar,w E As,T',s E K \ hi (10)

zuvE{O,l} foruEAr,vEA.,T',sEK. (11)

13

Equalities (8) imply that each point of Ah is assigned to a point from each other color set;
equalities (9) imply that each point not in Ah is assigned to a point from A h. The inequalities
(10) imply that if point u E Ah is assigned to v E Ar (Le., Zuv = 1) and if point u E Ah is
assigned to w E As (Le., Zuw = 1), then the points v and w are assigned to each other (Le.,
Zvw = 1).

When we apply Lagrangian relaxation to constraints (10) using multipliers Au,v,w, a model
results that amounts to solving k - 1 independent assignment problems, namely for each
r E K \ h an assignment problem between Ah and Ar. Observe that the number of multipli
ers equals O(k2n 3); hence we can compute the cost coefficients in the resulting Lagrangian
relatively fast. Similarly, as for the first Lagrangian relaxation, we compute the derivative
Pu,v,w of Au,v,w, and we set

Au,v,w := Au,v,w + PPu,v,w for all U E Ah, v E A" W E As, r, s E K \ h.

We used a value of P = 0.1 throughout the procedure and, for each choice of h E K we
ran the procedure for a 1000 iterations.

5.3 Performance of the lower bounds

The perfomance of the lower bounds described above is reported in Table 6. In this table
we report in columns 2 and 3 the average value (over 5 instances) of the quotient of the best
solution found and the average value of the first and second lower bound respectively.

II First lower bound Second lower bound
Type 1 II
k=4 1.069 1.025
k=8 - 1.057
k = 16 - 1.064
k = 32 - 1.071
Type 2
k=4 1.088 1.510
k=8 - 1.820
k = 16 - 1.734
k =32 - 1.437
Type 3
k=4 1.089 1.312
k=8 - 1.574
k = 16 - 1.524
k = 32 - 1.347
Type 4
k=4 1.039 1.010
k=8 - 1.018

k = 16 - 1.021
k = 32 - 1.018

Table 6: Lower bounds

14

The first lower bound shows that, at least for the instances with k = 4, a solution is found
within 10% of the optimum. The results are better for the Euclidean instances. The second
lower bound turns out to be quite strong for the Euclidean instances, dominating the first
lower bound (k = 4). As an example, the best solutions found to the instances of type 4
with k = 4 are (on average) within 1% of the optimum. Also, the performance on the type
1 instances is quite well, and only moderately increases with k. However, the second lower
bound is quite weak on the non-Euclidean instances, in particular for the type 2 instances.

6 Conclusion

This paper deals with the multi-index assignment problem with decomposable costs. We
proposed a local search algorithm based on a new neighborhood. We tested this algorithm
along with constructive heuristics. Our conclusions can be summarized as follows:

• the hub heuristic MULTI-HUB needs very little computing time,

• the recursive heuristics RECUR 1 and RECUR2 give better solutions than MULTI-HUB,
especially for non-Euclidean instances,

• local search improves the solutions found by the constructive heuristics; in particular,
the neighborhood based on 'splitting off' one color set significantly improves the solution
values for the non-Euclidean instances.

• a tabu search method is able to improve on the local optima found so far; for the
Euclidean instances, we can prove using lower bounds computed by a subgradient pro
cedure, that the solutions found are on average within 8% of the optimum value (and
are often much better).

Summarizing, local search is a viable, attractive method for computing solutions to multi
index assignment problems with decomposable costs.

References

[1] Aarts, E.H.L. and J.K. Lenstra (editors, 1997), Local Search in Combinatorial Optimiza
tion, Wiley, Chichester.

[2] Aiex, R.M., M.G.C. Resende, P.M. Pardalos and G. Toraldo (2000), GRASP with path
relinking for the three-index assignment problem, Manuscript.

[3] Bandelt, H.-J., Y. Crama and F.C.R. Spieksma (1994), Approximation algorithms for
multidimensional assignment problems with decomposable costs, Discrete Applied Math
ematics 49, 25-50.

[4] Bierlein, R. (1993), Mehrdimensionale Zuordnungsprobleme: Algorithmen und Anwen
dungen, Master's thesis of the University of Passau, Germany.

[5] Chummun, M.R., T. Kirubarajan, K.R. Pattipati and Y. Bar-Shalom (2001), Fast data
association using multidimensional assignment with clustering, IEEE Transactions on
Aerospace and Electronic Systems 37, 898-913.

15

[6] Crama, Y. and F.C.R. Spieksma (1992), Approximation algorithms for three-dimensional
assignment problems with triangle inequalities, European Journal of Operational Re
search 60, 273-279.

[7J Dell'Amico, M. and P. Toth (2000), Algorithms and codes for dense assignment problems:
the state of the art, Discrete Applied Mathematics 100, 17-48.

[8] Jonker, R. and A. Volgenant (1987), A shortest augmenting path algorithm for dense and
sparse linear assignment problems, Computing 38, 325-340.

[9] Fortin, D. and A. Tusera (1994), Routing in meshes using linear assignment problem,
in: Operations Research '93, editors A. Bachem, U. Derigs, M. Jiinger and R. Schrader,
Physica-Verlag, Heidelberg, 169-171. .

[10] Frieze, A.M. and J. Yadegar (1981), An algorithm for solving 3-dimensional assignment
problems with application to scheduling a teaching practice, Journal of the Operational
Research Society 32, 989-995.

[11] Gilbert, K.C. and R.B. Hofstra (1988), Multidimensional assignment problems, Decision
Sciences 19, 306-321.

[12] Magos, D., I. Mourtos and G. Appa (2002), Polyhedral results for assignment problems,
Research Report LSE-CDAM-2002-0l, London School of Economics.

[13] Morefield, C.L. (1977), Applications of 0-1 integer programming to multitarget tracking
problems, IEEE Transactions on Automatic Control 22, 302-312.

[14J Pattipati, K.R., S. Deb, Y. Bar-Shalom and R. Washburn (1992), A new relaxation
algorithm and passive sensor data association, IEEE Transactions on Automatic Control
37, 197-213.

[15J Pierskalla, W.P. (1968), The multidimensional assignment problem, Operations Research
16, 422-431.

[16J Poore, A.B. (1994), Multidimensional assignment formulations of data-association prob
lems arising from multitarget and multisensor tracking, Computational Optimization and
Applications 3, 27-57.

[17] Poore, A.B. and N. Rijavec (1993), A Lagrangian relaxation algorithm for multi
dimensional assignment problems arising from multitarget tracking, SIAM Journal on
Optimization 3, 545-563.

[18] Pusztaszeri, J.-F., P.E. Rensing, T.M. Liebling (1996), Tracking elementary particles
near their primary vertex: a combinatorial approach, Journal of Global Optimization 9,
41-64.

[19] Robertson, A.J. (2001), A set of greedy randomized adaptive local search procedure
(GRASP) implementations for the multidimensional assignment problem, Computational
Optimization and Applications 19, 145-164.

[20J Riischendorf, L. (1983), On the multidimensional assignment problem, Methods of Op
erations Research 47, 107-113.

16

[21] Spieksma, F.C.R. (2000), Multi index assignment problems: complexity, approximation,
applications, in: "Nonlinear Assignment Problems, Algorithms and Applications", edited
by L. Pitsoulis and P. Pardalos, Kluwer, Dordrecht, pages 1-12.

[22J Spieksma, F.C.R. and G.J. Woeginger (1996), Geometric three-dimensional assignment
problems, European Journal of Operational Research 91, 611-618.

[23] Storms, P. and F.C.R. Spieksma (2002), An LP-based algorithm for the data association
problem in multitarget tracking, to appear in Computers and Operations Research.

17

