283 research outputs found

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Environmental Issues in Internet of Things: Challenges and Solutions

    Get PDF
    The Internet of Things (IoT) is an emerging technology which extends the boundaries of Internet to include a wide variety of devices. However, the technologies that facilitate its implementation come with some challenges. Its effect on the environment is one of these. To reflect the interest in this field, the paradigm of green IoT is used in research and practice. In this paper, we survey state-of-the-art technologies and applications in this new area. According to previous research, the IoT is a suite of technologies that enables a connection between millions of devices and sensors. These technologies mean that more resources are used and that there is more e-waste; however, it also leads to new possibilities to help the environment and society through natural disaster prevention. Each IoT technology brings benefits by reducing the negative effects of the activities for which it is used, and by using it directly in environmental protection. We investigate the challenges of and the solutions brought about by the essential components of the IoT on the environment, in accordance with these two fields of interest

    A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    Get PDF
    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed

    Multiple Sensor on Clustering Wireless Sensor Network to Tackle Illegal Cutting

    Get PDF
    This paper is intended to purpose a designed system using Wireless Sensor Network application. It is multiple sensors to tackle illegal cutting in the stage of a timber harvesting. This paper also discusses network performance and the costs of the purposed system. In every node in the networks, the system was built using a combined sound sensor and vibration sensor in which incorporated using Xbee Pro S2C. It is considered as a communication module at each sensor node and Arduino Nano to process the data.  The Wireless Sensor Network has been designed in three networks with the configuration of master and slave nodes in each network. This system was testing using several scenarios to have the data performance of the networks and the performance of the proposed system in the small forest and the opened area. The costs of the purposed system also compared related to the previous system. The result showed the optimum distance that can be applied in the WSN network as a real-time application using Xbee Pro S2C is less than 30 meters; meanwhile the time consumed to communicate between nodes is below 5 s. Therefore, the more slaves in the subnetwork will affect the performance of the system. The proposed system runs smoothly as predicted in the purposed system. All the testing is 100% completed and can be handled by the proposed system

    Challenges, applications and future of wireless sensors in Internet of Things: a review

    Get PDF
    The addition of massive machine type communication (mMTC) as a category of Fifth Generation (5G) of mobile communication, have increased the popularity of Internet of Things (IoT). The sensors are one of the critical component of any IoT device. Although the sensors posses a well-known historical existence, but their integration in wireless technologies and increased demand in IoT applications have increased their importance and the challenges in terms of design, integration, etc. This survey presents a holistic (historical as well as architectural) overview of wireless sensor (WS) nodes, providing a classical definition, in-depth analysis of different modules involved in the design of a WS node, and the ways in which they can be used to measure a system performance. Using the definition and analysis of a WS node, a more comprehensive classification of WS nodes is provided. Moreover, the need to form a wireless sensor network (WSN), their deployment, and communication protocols is explained. The applications of WS nodes in various use cases have been discussed. Additionally, an overlook of challenges and constraints that these WS nodes face in various environments and during the manufacturing process, are discussed. Their main existing developments which are expected to augment the WS nodes, to meet the requirements of the emerging systems, are also presented

    Exploring Broadband Enabled Smart eEnvironment: Wireless Sensor (Mesh) Network

    Get PDF
    This paper explored the emergent importance of the use sensors as complementary or as alternative to environmental sensing and monitoring, industrial monitoring, and surface explorations. Advances in wireless broadband technology have enabled the use Wireless Sensor (Mesh) Network (WSN), a type mobile ad hoc network (MANET), in all facet of human endeavor. As a next-generation wireless communication, which centered on energy savings, communication reliability, and security, WSN has increased our processing, sensing, and communications capabilities. Hence, this paper is an exploration of recent reliance on sensors as result of broadband enabled smart environment for activities, such as environmental and habitat monitory, military surveillance, target tracking, search and rescue, and logistical tracking and supply-chain management

    Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks

    Get PDF
    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information

    Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture

    Get PDF
    Simple SummaryMonitoring the welfare of cattle and sheep in large pastures can be time-consuming, especially if the animals are scattered over large areas in semi-natural pastures. There are several technologies for monitoring animals with wearable or remote equipment for recording physiological or behavioural parameters and trigger alarms when the acquired information deviates from the normal. Automatic equipment allows continuous monitoring and may give more information than manual monitoring. Ear tags with electronic identification can detect visits to specific points. Collars with positioning (GPS) units can assess the animals' movements and habitat selection and, to some extent, their health and welfare. Digitally determined virtual fences, instead of the traditional physical ones, have the potential to keep livestock within a predefined area using audio signals in combination with weak electric shocks, although some individuals may have difficulties in responding as intended, potentially resulting in reduced animal welfare. Remote technology such as drones equipped with cameras can be used to count animals, determine their position and study their behaviour. Drones can also herd and move animals. However, the knowledge of the potential effects on animal welfare of digital technology for monitoring and managing grazing livestock is limited, especially regarding drones and virtual fences.The opportunities for natural animal behaviours in pastures imply animal welfare benefits. Nevertheless, monitoring the animals can be challenging. The use of sensors, cameras, positioning equipment and unmanned aerial vehicles in large pastures has the potential to improve animal welfare surveillance. Directly or indirectly, sensors measure environmental factors together with the behaviour and physiological state of the animal, and deviations can trigger alarms for, e.g., disease, heat stress and imminent calving. Electronic positioning includes Radio Frequency Identification (RFID) for the recording of animals at fixed points. Positioning units (GPS) mounted on collars can determine animal movements over large areas, determine their habitat and, somewhat, health and welfare. In combination with other sensors, such units can give information that helps to evaluate the welfare of free-ranging animals. Drones equipped with cameras can also locate and count the animals, as well as herd them. Digitally defined virtual fences can keep animals within a predefined area without the use of physical barriers, relying on acoustic signals and weak electric shocks. Due to individual variations in learning ability, some individuals may be exposed to numerous electric shocks, which might compromise their welfare. More research and development are required, especially regarding the use of drones and virtual fences

    A Study for Remote Monitoring of Water Points in Mauritania Based on IoT (LoRa) Technology

    Get PDF
    Wetlands in Mauritania contain the most important water sources necessary for the survival of rural communities in the country. In these areas, the main rural activities such as animal husbandry, agriculture, and fishing take place. Lack of water or flooding must be monitored to plan solutions in advance. After a comparative study of IoT wireless technologies, we proposed that LoRa technology is the most suitable for our field of application. However, in certain areas where access to the cellular network is difficult, we propose the addition of satellite communication in the LoRamonitoring system to achieve information collected at any point in the world via the cloud and the Internet. We carried out a practical case for the areas covered by the UMTS (3G) cellular network using devices integrating LoRaWAN to evaluate the performance of this technology. The results show the success of the communication over a distance of 14 km
    corecore