55 research outputs found

    Toward a further understanding of object feature binding: a cognitive neuroscience perspective.

    Get PDF
    The aim of this thesis is to lead to a further understanding of the neural mechanisms underlying object feature binding in the human brain. The focus is on information processing and integration in the visual system and visual shortterm memory. From a review of the literature it is clear that there are three major competing binding theories, however, none of these individually solves the binding problem satisfactorily. Thus the aim of this research is to conduct behavioural experimentation into object feature binding, paying particular attention to visual short-term memory. The behavioural experiment was designed and conducted using a within-subjects delayed responset ask comprising a battery of sixty-four composite objects each with three features and four dimensions in each of three conditions (spatial, temporal and spatio-temporal).Findings from the experiment,which focus on spatial and temporal aspects of object feature binding and feature proximity on binding errors, support the spatial theories on object feature binding, in addition we propose that temporal theories and convergence, through hierarchical feature analysis, are also involved. Because spatial properties have a dedicated processing neural stream, and temporal properties rely on limited capacity memory systems, memories for sequential information would likely be more difficult to accuratelyr ecall. Our study supports other studies which suggest that both spatial and temporal coherence to differing degrees,may be involved in object feature binding. Traditionally, these theories have purported to provide individual solutions, but this thesis proposes a novel unified theory of object feature binding in which hierarchical feature analysis, spatial attention and temporal synchrony each plays a role. It is further proposed that binding takes place in visual short-term memory through concerted and integrated information processing in distributed cortical areas. A cognitive model detailing this integrated proposal is given. Next, the cognitive model is used to inform the design and suggested implementation of a computational model which would be able to test the theory put forward in this thesis. In order to verify the model, future work is needed to implement the computational model.Thus it is argued that this doctoral thesis provides valuable experimental evidence concerning spatio-temporal aspects of the binding problem and as such is an additional building block in the quest for a solution to the object feature binding problem

    Toward a further understanding of object feature binding : a cognitive neuroscience perspective

    Get PDF
    The aim of this thesis is to lead to a further understanding of the neural mechanisms underlying object feature binding in the human brain. The focus is on information processing and integration in the visual system and visual shortterm memory. From a review of the literature it is clear that there are three major competing binding theories, however, none of these individually solves the binding problem satisfactorily. Thus the aim of this research is to conduct behavioural experimentation into object feature binding, paying particular attention to visual short-term memory. The behavioural experiment was designed and conducted using a within-subjects delayed responset ask comprising a battery of sixty-four composite objects each with three features and four dimensions in each of three conditions (spatial, temporal and spatio-temporal).Findings from the experiment,which focus on spatial and temporal aspects of object feature binding and feature proximity on binding errors, support the spatial theories on object feature binding, in addition we propose that temporal theories and convergence, through hierarchical feature analysis, are also involved. Because spatial properties have a dedicated processing neural stream, and temporal properties rely on limited capacity memory systems, memories for sequential information would likely be more difficult to accuratelyr ecall. Our study supports other studies which suggest that both spatial and temporal coherence to differing degrees,may be involved in object feature binding. Traditionally, these theories have purported to provide individual solutions, but this thesis proposes a novel unified theory of object feature binding in which hierarchical feature analysis, spatial attention and temporal synchrony each plays a role. It is further proposed that binding takes place in visual short-term memory through concerted and integrated information processing in distributed cortical areas. A cognitive model detailing this integrated proposal is given. Next, the cognitive model is used to inform the design and suggested implementation of a computational model which would be able to test the theory put forward in this thesis. In order to verify the model, future work is needed to implement the computational model.Thus it is argued that this doctoral thesis provides valuable experimental evidence concerning spatio-temporal aspects of the binding problem and as such is an additional building block in the quest for a solution to the object feature binding problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Spikes, synchrony, sequences and Schistocerca's sense of smell

    Get PDF

    Action perception theory of cognition and communication

    Get PDF
    A new perspective on cognition views cortical cell assemblies linking together knowledge about actions and perceptions not only as the vehicles of integrated action and perception processing but, furthermore, as a brain basis for a wide range of higher cortical functions, including attention, meaning and concepts, sequences, goals and intentions, and even communicative social interaction. This article explains mechanisms relevant to mechanistic action perception theory, points to concrete neuronal circuits in brains along with artificial neuronal network simulations, and summarizes recent brain imaging and other experimental data documenting the role of action perception circuits in cognition, language and communication

    Motor cognition–motor semantics: Action perception theory of cognition and communication

    Get PDF
    A new perspective on cognition views cortical cell assemblies linking together knowledge about actions and perceptions not only as the vehicles of integrated action and perception processing but, furthermore, as a brain basis for a wide range of higher cortical functions, including attention, meaning and concepts, sequences, goals and intentions, and even communicative social interaction. This article explains mechanisms relevant to mechanistic action perception theory, points to concrete neuronal circuits in brains along with artificial neuronal network simulations, and summarizes recent brain imaging and other experimental data documenting the role of action perception circuits in cognition, language and communication

    Neuromagnetische Korrelate der Plastizität im auditorischen Kortex aufgrund von Diskriminationslernen

    Full text link
    In dieser Dissertation wird der Frage nachgegangen, ob intensives Diskriminationslernen plastische Veränderungen im auditorischen Kortex bewirkt. Im 1. Experiment wurde daher die Wirkung eines dreiwöchigen Frequenzdiskrimi-nationstrainings untersucht. Zwei magnetoenzephalographische (MEG) Messungen definierten die ?normalen? MMN-Amplituden, eine Messung während, am Ende des Trainings und 3 Wochen danach wurden damit korreliert. Im Laufe des Trainings verbesserte sich die gerade noch unterscheidbare Frequenzdifferenz deutlich und erhöhten sich die Amplituden der N1m und des MMF bis zum Ende des Trainings und fielen 3 Wochen danach leicht ab. Im 2. Experiment wurden die neuronalen ?Spuren? des Lernens von nicht-nativem Mora-timing untersucht. Deutsche Probanden lernten in 10 Trainingseinheiten von 1 1/2 Stunden japanische Wortpaare zu diskriminieren, die sich in mehreren Stufen durch die Länge eines Mora unterschieden. Ein deutlicher Anstieg der Diskriminationsleistung korrelierte signifikant mit der MMF-Amplitude und mit der Abnahme der Reaktionszeiten im Training und der Latenzen der MMF. Im 3. Experiment wurden japanische Probanden als Muttersprachler mit dem gleichen Paradigma auf Kurzzeitplastizität untersucht. Im Vergleich zu den deutschen Probanden zeigte sich eine erhöhte Sensitivität des MMF für kleinere Unterschiede auf dem ?anni?- und ?kiyo?-Kontinuum vor dem Training. Es konnte erstmalig gezeigt werden, dass intensives Diskriminationslernen zu plastischen Veränderungen im menschlichen Gehirn führen, wie sie in neuromagnetischen Antworten gezeigt wurden. Muttersprachler weisen dafür eine erhöhte Sensitivität, jedoch keine Kurzzeitplastizität auf

    Improving Associative Memory in a Network of Spiking Neurons

    Get PDF
    In this thesis we use computational neural network models to examine the dynamics and functionality of the CA3 region of the mammalian hippocampus. The emphasis of the project is to investigate how the dynamic control structures provided by inhibitory circuitry and cellular modification may effect the CA3 region during the recall of previously stored information. The CA3 region is commonly thought to work as a recurrent auto-associative neural network due to the neurophysiological characteristics found, such as, recurrent collaterals, strong and sparse synapses from external inputs and plasticity between coactive cells. Associative memory models have been developed using various configurations of mathematical artificial neural networks which were first developed over 40 years ago. Within these models we can store information via changes in the strength of connections between simplified model neurons (two-state). These memories can be recalled when a cue (noisy or partial) is instantiated upon the net. The type of information they can store is quite limited due to restrictions caused by the simplicity of the hard-limiting nodes which are commonly associated with a binary activation threshold. We build a much more biologically plausible model with complex spiking cell models and with realistic synaptic properties between cells. This model is based upon some of the many details we now know of the neuronal circuitry of the CA3 region. We implemented the model in computer software using Neuron and Matlab and tested it by running simulations of storage and recall in the network. By building this model we gain new insights into how different types of neurons, and the complex circuits they form, actually work. The mammalian brain consists of complex resistive-capacative electrical circuitry which is formed by the interconnection of large numbers of neurons. A principal cell type is the pyramidal cell within the cortex, which is the main information processor in our neural networks. Pyramidal cells are surrounded by diverse populations of interneurons which have proportionally smaller numbers compared to the pyramidal cells and these form connections with pyramidal cells and other inhibitory cells. By building detailed computational models of recurrent neural circuitry we explore how these microcircuits of interneurons control the flow of information through pyramidal cells and regulate the efficacy of the network. We also explore the effect of cellular modification due to neuronal activity and the effect of incorporating spatially dependent connectivity on the network during recall of previously stored information. In particular we implement a spiking neural network proposed by Sommer and Wennekers (2001). We consider methods for improving associative memory recall using methods inspired by the work by Graham and Willshaw (1995) where they apply mathematical transforms to an artificial neural network to improve the recall quality within the network. The networks tested contain either 100 or 1000 pyramidal cells with 10% connectivity applied and a partial cue instantiated, and with a global pseudo-inhibition.We investigate three methods. Firstly, applying localised disynaptic inhibition which will proportionalise the excitatory post synaptic potentials and provide a fast acting reversal potential which should help to reduce the variability in signal propagation between cells and provide further inhibition to help synchronise the network activity. Secondly, implementing a persistent sodium channel to the cell body which will act to non-linearise the activation threshold where after a given membrane potential the amplitude of the excitatory postsynaptic potential (EPSP) is boosted to push cells which receive slightly more excitation (most likely high units) over the firing threshold. Finally, implementing spatial characteristics of the dendritic tree will allow a greater probability of a modified synapse existing after 10% random connectivity has been applied throughout the network. We apply spatial characteristics by scaling the conductance weights of excitatory synapses which simulate the loss in potential in synapses found in the outer dendritic regions due to increased resistance. To further increase the biological plausibility of the network we remove the pseudo-inhibition and apply realistic basket cell models with differing configurations for a global inhibitory circuit. The networks are configured with; 1 single basket cell providing feedback inhibition, 10% basket cells providing feedback inhibition where 10 pyramidal cells connect to each basket cell and finally, 100% basket cells providing feedback inhibition. These networks are compared and contrasted for efficacy on recall quality and the effect on the network behaviour. We have found promising results from applying biologically plausible recall strategies and network configurations which suggests the role of inhibition and cellular dynamics are pivotal in learning and memory

    Strategies for creating new informational primitives in minds and machines

    Get PDF
    Open-endedness is an important goal for designing systems that can autonomously find new and expected solutions to combinatorically-complex and ill-defined problems. Classically, issues of open-ended generation of novelty in the universe have come under the rubric of the problem of emergence. We distinguish two modes of creating novelty: combinatoric (new combinations of existing primitive
    • …
    corecore