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Abstract

This thesis starts from the assumption that individual neuronal action potentials (spikes)
have computational and dynamical significance. Two of the types of activity that net¬
works of spiking neurons can engage in are sequences and synchrony. The first part
of the work reviews the role spikes, sequences and synchrony play in coding, dynamics
and learning in the nervous system and models of the nervous system. Models of spik¬
ing neurons, especially the spike response model (SRM), feature strongly, as do synfire
chains, a form of spatiotemporal sequence.

A methodology chapter deals with the problem of efficient simulation of networks
of threshold-fire neurons such as integrate-and-fire (IF) neurons and SRM neurons.

I show that networks of SRM neurons can be simulated with larger time steps than
are required for numerical integration of equivalent networks of IF neurons. I extend
an interpolation method for more accurate simulation of IF neurons to noiseless and
stochastically-firing SRM neurons, and show that a network of noiseless, interpolated
SRM neurons can be simulated with larger time step than the equivalent network of
interpolated IF neurons.

Synfire chains can be learned with a temporal learning rule and a supervised training

protocol. I extend previous analyses of the speed of recall of a synfire chain by (a)
explicitly including the speed at which the synfire chain was trained and (b) performing
an analysis on a synfire chain comprising discrete neurons rather than starting from a

continuum approximation. I conclude that synfire chains can be recalled much faster
than the speed at which they were trained.

The final part of the thesis is a modelling study of a system that incorporates
spikes, sequences and synchrony, the olfactory system of the locust Schistocerca gre-

garia. Building the model leads to the problem of setting the mean weights in a network
of reciprocally-connected excitatory and inhibitory spiking neurons on the basis of the
desired oscillation time period and phase lead of the excitatory neurons over the in¬

hibitory neurons. The solution to this problem includes a generalisation of a locking
theorem from the literature to certain types of networks with nonuniform connections.

Finally, I integrate the theoretically-determined mean weights into the locust model
and present simulation results from it.
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Chapter I

Introduction

How does the nervous system compute? What is the neural code? In the 1920s, Adrian
and Zotterman (Adrian, 1928) showed that the phenomenon of electrical spikes is an

important element of the code. Spikes are spatially- and temporally-localised travelling

pulses in the membrane potential. They all have very similar amplitudes and shapes
and can travel long distances through nervous tissue. Although not all neurons spike,
the vast majority of neurons in vertebrate nervous systems produce spikes, as do a good

proportion in invertebrate systems. How does the nervous system use these spikes?
One school of thought says that spikes are simply a consequence of the need to prop¬

agate information over long distances and that the nervous system has to work around
this need. In this picture — called rate coding — the nervous system averages the
number of spikes over space and time to produce a firing rate, which it then interprets.

The other school of thought takes the point of view that whatever the evolutionary
origin of spikes, the nervous system tries to make as much use of them as possible, and
averaging over lots of them is simply wasteful. Advocates of temporal encoding argue

that the timing of individual spikes both in single neurons and across populations can

encode information and be used for processing. They also tend to argue that rate-coders
have not developed

... the flavour of thinking needed to exploit the possibilities of temporal
organization. It is perhaps closest in kinship to the dying art of railway
planning, in which awareness of the organizing (or disorganizing) power of
small changes in timing used to be a dominant intuition. (MacKay, 1962,
p. 44)

There is strong evidence for both types of coding in different parts of the nervous

system. Indeed, rate coding is not incompatible with certain forms of temporal coding.
I side with the temporal encoders, however, in believing that the flavour of thinking
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necessary to exploit the possibilities of temporal coding and processing has not been
sufficiently developed.

Although the rate versus temporal coding debate has been very vigorous, the rate
versus temporal divide goes further. It has been shown theoretically that the dynamics
of networks of spiking neurons are much richer than those of traditional artificial neural
network (ANN) units. Recent experiments have shown that learning at synapses de¬
pends on the timing of individual pre- and postsynaptic spikes, rather than their firing

rates, as was thought previously.

1.1 Aim of the thesis

The initial aim of my thesis was to discover more about how the timing of spikes can

be used to process or encode information. However, as time as gone on, the aim of the
thesis has shifted towards the dynamics of networks of spiking neurons and how they
learn.

We might regard the processing and encoding aspects of neural networks — the
neural code — as the holy grail of brain research and the question of the mechanics

underlying processing and encoding as subsidiary. However, I believe there are con¬

ceptual problems with studying the theory of encoding in central systems directly. I
believe that studying the dynamics and learning presents a much more tractable way

into the problem.

1.2 Overview of the thesis

The first three main chapters are mainly review chapters, although I will also introduce
some technical prerequisites for the later chapters.

Chapter 2 deals with spikes. I begin with the history of the spike, or action potential.
I then move onto the various ways in which the nervous system might interpret the

spiking activity of other neurons, in other words, how spikes might encode information.
Models of spiking neurons play an important role in this thesis. Accordingly, a large
amount of chapter 2 is devoted to models of spiking neurons from the very realistic

Hodgkin-Huxley model to the less realistic integrate-and-fire model. The spike response

model is a flexible model that can lie more or less anywhere between these two models.
I go on to review recent work that shows that, contrary to the prevailing view for the
last twenty-five years, the precise timing of individual spikes is important for learning.
I will consider briefly how the dynamics of networks of spiking and rate-based neurons
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differ, and then go onto consider the difficult issue of what constitutes "coding".

In chapter 3 I consider sequences. By sequences I mean sequences of patterns,
or, equivalently, spatiotemporal patterns. It is clear that networks that produce and
recognise sequences must exist in nature. I review some of the work done on learning
and recalling various types of spatiotemporal patterns. This turns out to be very related
to some classic ANN models. A particular type of spatiotemporal pattern is the synfire
chain. I describe synfire chains and weigh the experimental evidence for and against
them. Although the evidence for them is not conclusive, synfire chains still merit the
theoretical study of their dynamics and learning; I go on to review the work so far.

Chapter 4 deals with the final theme of this thesis, synchrony. Synchrony often
occurs with, and is confused with, oscillations; I try to explain the difference between
the two. I consider there to be two main forms of synchrony: stimulus-locked synchrony
and stimulus-independent synchrony. The former type of synchrony has been observed
in the auditory system and is uncontroversial. The role of the latter type is less clear
and has been the subject of much speculation. There is also a good deal of experimental
evidence that is consistent with the idea that synchrony encodes the parts of distributed

representations which belong together — the binding problem. I will present some of
the work on how both rate-based and spike-based models synchronise and desynchronise
and introduce a useful theorem that will be particularly relevant later on in the thesis.

Chapter 5 is methodological in nature. In it, I extend work done on simulating
integrate-and-fire neurons more efficiently to spike response model neurons. I also
extend the method to cope with a certain kind of noise. Although this chapter stands
on its own, I use the methods developed in it for simulations later on in the thesis.

The next four chapters are the theoretical and modelling parts of the thesis.

In chapter 6 I investigate sequence learning. In particular, I investigate how the

speed at which a synfire chain was learned affects its speed of recall. I conclude that
such sequences will be recalled much faster than they were learned.

The motivation behind chapter 7 is to investigate how spikes, sequences and syn¬

chrony interact in a real system. The olfactory system of the desert locust Schistocerca
gregaria provides an intriguing example of such a system. Although there is a good
deal of network-level physiological data from the system, the mechanism of the activ¬

ity of the locust olfactory system is unknown. This justifies building a "bottom-up"
model of the locust olfactory system, which I do on the basis of the detailed anatomy
and physiology presented earlier in the chapter. In the course of building the model
I encounter a problem of how to set the values of one group of parameters, the mean
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weights between different types of units. There are, however, some unused physiological
constraints, which should constrain the mean weights.

Solving this problem turns out to be somewhat involved, so 1 devote the whole
of chapter 8 to it. In the process of doing so I generalise the locking theorem due
to Gerstner et al. (1996b), which states under what conditions uniform networks of
spiking neurons synchronise, to certain types of nonuniform networks. The solution to

the problem reveals some unexpected results about the time period and relative phase
of firing of groups of excitatory and inhibitory neurons.

In chapter 9 I integrate the theoretical results of the previous chapter into the model

developed in chapter 8.

Finally, in chapter 10, I list what has been achieved in this thesis, what implications
this has for neuroscience, and suggestions for further work.

This section gives an overview of some of the artificial neural network (ANN) ideas and
terminology used later on in the thesis. I outline the elements common to all ANNs in
section 1.3.1. Section 1.3.2 deals with recurrently-connected neural networks and how

they can be trained to store patterns. In section 1.3.3 I describe feedforward networks
and how they can be trained using the delta rule and the backpropagation rule. Hertz
et al. (1991) provide extensive coverage of the ideas presented in this section.

1.3.1 The elements of artificial neural networks

Artificial neural networks comprise units linked by connections. Each unit has a state

or activation associated with it; this may be binary or real-valued. In general the
activation of each unit could be a nonlinear (and possibly stochastic) function of all of
the activations of all units in the network at all previous points in time. In practice,

simpler models provide enough complexity to study.
Common to all the ANNs presented here is the modelling of connections by a real-

valued or binary weight and calculation of the input to each unit as the weighted sum

of the activations of other units in the network. We can represent this in the equation

where hi(t) is the input to the ith unit in a network of N neurons at time f, Xi{t) is
the activation of each unit, Wij is the weight of the connection from the jth to the «th

1.3 Artificial neural networks

N

(1.1)
1=1
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unit and the optional term is the threshold.
The activation of each unit can be computed from its input either deterministically

or stochastically. In the deterministic case, it is a function of the input:

Xi(t + 1) = g(hi(t)) . (1.2)

The activation function g(-) is often a nonlinear function such as a sigmoid g(x) —

1/(1 + exp(—2j3h)). It may be a Heaviside (step) function

*(*>={? :>»• <L3)
In this case the unit is one when the input wijxj exceeds the threshold and
is 0 otherwise. In the stochastic case, the units are generally binary-valued and the
probability of a unit being on is a function of its input.

Artificial neural networks come in a variety of different architectures. Feed-forward
networks can be described as a number of layers, with the units of each layer projecting
to units in the next. The first layer serves as an input layer and the final one as

an output layer. Networks in which there at least one loop of connections are called
recurrent networks.

Recurrent networks are dynamic: given starting unit activations, the state of the
network (as described by the activations of all its units) does not necessarily remain
static. As with all dynamical systems, the state of the network will either relax to
a steady state (stable attractor), cycle periodically through a number of states (limit
cycle) or follow an aperiodic orbit in state-space (chaotic attractor). The way in which
the units are updated may affect the dynamics and is therefore important. When the
network is updated synchronously (for example Little, 1974) the activation of all units
is calculated from the activations of all units at the previous time step. In asynchronous

update (for example Hopfield, 1982), units are chosen at random and updated from the
current activations in the network. By recasting the update of the activation of each
unit as a differential equation, the network can be updated continuously (for example
Hopfield, 1984).

1.3.2 The Hopfield Model

Hopfield (1982) studied how to store binary patterns in a fully-connected, recurrent
network comprising binary units and asynchronous update. A similar network with

synchronous update had been studied earlier (Little, 1974; Little and Shaw, 1978), but
the network came to prominence after Hopfield's analysis.
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The network is described as above, except that in the following I will use the statis¬
tical Physics convention of denoting the activation of unit i by Si and the weights by

Jij. The activations can take the values +1 or —1, and are analogous to nuclear spins
and the weights are analogous to magnetic coupling between nuclear spins. As before,
each unit receives an input hi that depends on the weighted activity of the other units
and the threshold is 0:

N

hi{1) = • (1-4)
i=1

Each of P patterns p is described by a vector with elements £?. Its elements can

take the values 1 or —1 and there are equal numbers elements with either value. The

weights are set using the learning rule:

= ^ £«.%"■ p-5)
This rule is broadly based on the ideas of Hebb (1949) in that pre- and postsynaptic
activity lead to potentiation of a synapse.

Hopfield (1982) showed that the learning rule tends to lead to the deterministic
version of the network with asynchronous update settling into stable attractor states
where the activations of the units of the network are closely aligned with one of the

patterns. If the network is initialised so that its activity is similar to one of the pat¬

terns (this could mean a degraded version of the pattern or part of the pattern), the
network will tend to relax towards the complete pattern. Amit et al. (1985a,b) studied
a version of the network that used stochastic units whose randomness was controlled

by a pseudo-temperature. Their rigourous statistical mechanical analysis showed that:
asynchronous update and synchronous update lead to similar results; that if the units
are too noisy (that is high pseudo-temperature), the network activity is completely dis¬
ordered; and that at low pseudo-temperatures (that is, less noisy units) superpositions
of patterns are also stable states of the network. Furthermore, they shoed that the

capacity of the network (the number of patterns that can be stored before the stored
patterns become unstable) was about 0.14N

In the deterministic case, we can see why the attractor states should be stable by
a simpler signal-to-noise analysis (Hertz et ah, 1991). Suppose the network is in the
state corresponding to pattern v, so that Si = The activation will be given by

hi = (i.6)
j

=

s (IT)
j v
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j m/i/
(1.8)

The final term is called the crosstalk term. For uncorrelated patterns, it will be dis-

numbers of patterns the activation of units that should be on (activity of 1) will be
close to 1 so these units will remain on as their activation is positive. Similarly, units
that should be off will remain off. For higher numbers of patterns, the spread of acti¬
vation will be greater, and the lower tail of the distribution centred on activation of 1
will creep below zero, meaning that some units that should be on will be turned off.
Similarly, some units that should be off will be turned on, and above a critical value
of P/N the recall of patterns will become unstable. The capacity calculated using this
method is similar that of Amit et al. (1985b).

1.3.3 Feedforward neural networks

Another type of network architecture is connected in a feedforward fashion, rather than

recurrently. The simplest, one layer, feedforward network comprises input units with
activities Xj which are connected by weights Wj and an output unit whose activity is

where the function g(x) is a squashing function, typically a threshold function or a

sigmoid function.
When the squashing function is a threshold function, the network is known as a

perceptron. One application of the perceptron is as a classifier of patterns into one of
two groups. To set the weights of the perceptron so it acts as a classifier, it is trained
on a set of pairs of input vectors and their desired classifications fh At each time

step the weights are incremented by an amount

This rule, known as the delta rule, says that if the input is positive and the target value
is greater than the actual output, the weight should be increased so as to increase the

output. The amount the weight is increased is proportional to the discrepancy between
the target and the output and to the size of the input, since it is more important to
alter the weights from the input units that give the greatest contribution to the output.

The perceptron is rather limited as a classifier, as it can only separate certain types
of patterns, namely those that are linearly separable. To separate more complex groups

tributed binomially around a mean of zero with a standard deviation of \] jj- For small

(1.9)

AWj oc — (y^1 — fM)£j ■ (1.10)
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of patterns, we can add a hidden layer between the input and output layers containing
units with activities m. The weights from the first layer to the hidden are Vij and the
weights from the hidden layer to the output layer are Wjj. The weights from the hidden
layer to the output layer can be trained as before. With sigmoidal units, change in the

weights upon presentation of a pattern p is

However, there are no target values for the weights from the input layer to the hidden

layer, so the same rule cannot be used there. The solution to this problem is the

backpropagation algorithm (Rumelhart et ah, 1986). The learning rule for the units
from the input to hidden layers is given

Here, for each hidden unit, we have replaced the difference between the target and
desired value by the sum of error terms from the output units of that hidden unit (the
first term in brackets). Hence the error has been backpropagated.

All the forms of learning discussed so far have been supervised learning, in which
the knowledge of the inputs and the corresponding desired outputs is known to the

learning rule. The complement to supervised learning is unsupervised learning. Here
there are no desired outputs presented at the same time as the inputs; the learning
rule simply works on the activities of the output units caused by the inputs and the
current weights. Networks trained in an unsupervised fashion learn to pick out different
statistical features of the input vectors, depending on the network architecture and the

learning rule.
An example of an unsupervised network is a one-layer network like the perceptron

described above, but with a linear activation function g{x) — x. If this network is
trained with a Hebbian learning rule

Atvi:j oc - (y^ - £f)yf(i - Vi)uj .^

^ ✓
(1.11)

(1.12)

Atui oc Xiy (1.13)

then it learns to find the first principal component of a set of data points with zero

mean.



Chapter 2

Spikes

Since the starting point of much of the work in this thesis is the action potential, or
spike, it seems appropriate to start off by focussing on spikes. This introductory chapter
deals with how spikes encode information, how spiking neurons can be modelled, how
networks of spiking neurons learn, and how networks of spiking neurons behave.

Before dealing with spikes, it is necessary to know what neurons and synapses are.

I outline this in slightly historical fashion in section 2.1. In section 2.2 I give a brief
historical overview of the spike.

Individual spikes can offer many possible ways of encoding information, learning

synaptic strengths and embodying network dynamics. Despite this, most research since
Adrian first recorded action potentials has focussed on the time-averaged firing rate of
neurons rather than their individual spikes. Section 2.3 gives a working definition of
rate codes and temporal codes, and presents some temporal codes found naturally.

Models of spiking neurons are useful for a number of reasons, not least because

they allow us to investigate the dynamics of networks of neurons. In section 2.4 I
focus on models of spiking neurons, starting from the most complex and realistic point
neuron model, the Hodgkin-Huxley model, going to arguably the simplest model, the
IF model, and ending up with a simple extension of the IF model that can be used to
model neurons approaching the complexity of the Hodgkin-Huxley model.

Recent work has shown that the timing of individual spikes is important for learning
and synaptic adaptation. Section 2.5 explains how, and relates the modern temporal

learning rule to Hebb's rule.

The dynamics of networks of spiking neurons are potentially much richer than those
of graded response units. For example, they may synchronise on a millisecond timescale
and can support sequences of precise firing patterns. Section 2.6 will outline these
possibilities and present the results of recent theoretical work on network synchrony

9
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and the response of population firing rate to input.

2.1 Neurons and synapses

This section gives a short overview and history of the neuron and its logical counterpart,
the synapse. Unless otherwise stated this information is based on Shepherd (1994).

In 1865 Otto Dieters made first observations of neurons in which their defining
features were apparent. Figure 2.1 shows a modern cartoon picture of a group of
neurons. The central part of a neuron is the cell body or soma. From the soma protrude
two types of processes. The first type are thin and branch many times. Because of their
similarity to branches they became known as dendrites; all the dendrites are sometimes
referred to as the dendritic arborisation. The second type is a single, unbranched tube
called an axon (originally it was known as the "axis cylinder").

Dieters' observation did not, however, make it clear that the neuron was a single
cell. One theory — the reticular theory — held that the nervous system must be
continuous like arteries and veins of the blood system. Techniques for staining single
cells came in 1885 when Camillo Golgi discovered how to stain individual neurons in
tissue. Santiago Ramon y Cajal took up these methods, and worked to stain many cells
in the nervous system. He believed in the neuron doctrine, namely that the entities he
was staining were individual cells, that nerve signals passed through the dendrites and

axons, and that signals passed between cells where axons and dendrites met. In 1891
evidence from Cajal's anatomical preparations finally established the neuron doctrine
and Wilhelm Waldeyer coined the term neuron for nerve cell.

As with all cells, neurons have an electrical potential difference across their mem¬

brane called the membrane potential. It arises from the permeability of the membrane
to different types of ions and the ionic pump that maintains differences in the con¬

centrations of various ions on either side of the membrane. In contrast to other cells,
the membrane potential in neurons can vary quickly, allowing neurons to pass signals.
The permeability of the membrane to ions is due to many types of channels. In neu¬

rons, these channels change their permeability in response to the membrane potential,
certain types of ions and neurotransmitters, thus endowing neurons with complex com¬

putational properties.

Traditionally, the membrane potential is measured with respect to the external
medium. At rest the potential is negative. Increasing the potential makes it less

negative and such a change is called a depolarisation. Making the potential more

negative is called hyperpolarisation.
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Figure 2.1: The neuron. From Kandel et al. (1995).
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^/Transmitter molecule

Figure 2.2: Section of cell membrane. The membrane is made up of a lipid bilayer that
is somewhat permeable to ions. Distributed over the membrane are ion channels that
can be open or closed to different ions. Their opening and closing can be controlled
by the membrane potential, ionic concentrations and neurotransmitters. From Brodal
(1992).

In 1897 Sherrington coined the term synapse for a connection from one nerve cell
to another. His work in spinal reflexes led him to believe that synapses only work in
one direction. This idea, which agreed with Cajal and van Gehuchten's theory that the
dendrites and soma of neurons are its receptor parts and the axon is its effector part,
became known as the Law of Dynamic Polarisation.

Synapses can be electrical or chemical. Electrical synapses are direct electrical con¬
nections between neurons that allow charge to flow directly. They can be bidirectional
or unidirectional (an exception to the Law of Dynamic Polarisation). They are not very
common in the vertebrate nervous system.

The vast majority of synapses in the vertebrate nervous system are chemical synapses.
In chemical synapses there is a clear distinction between the presynaptic and postsynap¬

tic terminals of the neuron. Inside the presynaptic terminal are many vesicles (sacks)
of neurotransmitter. On depolarisation of the presynaptic terminal region, vesicles
dock with the membrane wall, releasing neurotransmitter into the synaptic cleft. The
neurotransmitter then diffuses across the cleft to the postsynaptic terminal where it
docks with receptors sensitive to that neurotransmitter. Some of these receptors di¬

rectly cause channels to open, and other receptors release second messengers into the

postsynaptic terminal, that, in turn, dock with channels. The open channels allow
ions to flow into or out of the postsynaptic neuron, thereby changing the postsynaptic
membrane potential.

Synapses that allow through ions that tend to depolarise the membrane are known as

excitatory synapses as extensive depolarisation leads to propagation of nerve impulses.

Synapses that allow through ions that cause hyperpolarisation are called inhibitory

synapses. Receptors are classified according to the neurotransmitters to which they are
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Figure 2.3: The chemical synapse and spike transmission. The synapse comprises
a presynaptic terminal and a postsynaptic terminal, separated by the synaptic cleft.
Neurotransmitter is stored in vesicles in the presynaptic terminal. When a spike arrives
at the presynaptic terminal, it causes calcium ions to flow in. The calcium causes the
vesicles to move to the presynaptic membrane, where they dock with the membrane
and release their neurotransmitter into the cleft. The neurotransmitter diffuses across

the cleft. When it arrives at the postsynaptic membrane it causes channels to open.
From Brodal (1992).

sensitive. For example acetylcholine receptors are sensitive to acetylcholine. Receptors
can be further subdivided according to different substances that activate them. For

example nicotinic acetylcholine receptors are sensitive to nicotine but not muscarine
whereas muscarinic acetylcholine receptors are sensitive to muscarine but not nicotine.

In 1791 Luigi Galvani showed that frog muscles could be stimulated by electricity

(Shepherd, 1994). This finding led to the belief that nerves communicated by "animal
electricity". In the 1840s Carlo Matteuci and Emil du Bois Reymond established that
nerve impulses involve real electricity. However, nerves are not just like electrical wires,
as Herman von Helmholtz demonstrated in 1850 when he discovered that nerve impulses

propagate relatively slowly. This implied that an active biological mechanism supported
the propagation of nerve impulses, and led to the name action potential for the nerve

impulse.
At the time these experiments were performed very little was known about the

microscopic structure of the nervous system, so of necessity the measured quantities

2.2 The action potential
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Figure 2.4: The action potential.

were the macroscopic properties of nerve fibres. Although the neuron doctrine became
established at the end of the nineteenth century, it took another 20 years before the

activity of single neurons was recorded. The limiting factor was lack of methods of low
noise amplification (Rieke et ah, 1997).

Adrian and Zotterman developed these methods. Their work (summarised by
Adrian, 1928) showed that a characteristic response of sensory neurons (cutaneous
receptors) to stimuli is a sharp depolarisation localised within about 1 ms of time. This
characteristic response was the correlate of action potential, and became known as the
spike, due to its appearance in a recording trace. They found that spikes are always
similar in size and shape. This means that the only information the rest of the nervous

system has from spiking sensory neurons is the times of their spikes.

Since then, spikes have been observed in many different types of cells in the nervous

systems of vertebrates and invertebrates. They are generated in (or near) the soma

of nerve cells, and propagate at a steady rate down their axons with no attenuation.
Thus they provide a way of communicating over long distances in the nervous system.
The Hodgkin-Huxley model (see section 2.4.1) describes the mechanism of propagation
which relies on active, voltage-dependent, conductances in the cell membrane.

Although we believe action potentials are the dominant mode of communication
between neurons, they are not the only mode. For example, receptors and horizontal
and bipolar cells in the retina communicate by graded response potentials. One disad¬

vantage of graded response potentials is that their amplitude decays after propagating
short distances, so they are not suitable for long distance communication in the central
nervous system (CNS).



2.3. Spike codes 15

2.3 Spike codes

If the timing of spikes is the main method of neuronal communication, how do they
encode the information that neurons process? In section 2.3.1 I introduce the ideas of

interpreting neuronal spiking activity as rate codes or temporal codes. In general, to
make sense of a neuron's spikes, the experimenter and other neurons in the nervous

system have to perform some sort of averaging. Section 2.3.2 defines three types of av¬

erage and introduces a frequently-used experimental measure. This allows me to define
the difference between rate codes and temporal codes more rigourously in section 2.3.3.
In section 2.3.4 I present some examples from the nervous system where the timing of

spikes does convey information. Up until this point, I will have been using the term

"coding" rather loosely. Section 2.3.5 presents my thoughts on the definition of cod¬

ing. I have not found a satisfactory general definition of coding in the nervous system,
nor have I been able to produce one myself. However, I do reach the conclusion that
network models are a valuable method of exploring the ways that neurons use spikes
to process information.

2.3.1 Rate codes and temporal codes

Adrian and Zotterman (Adrian, 1928) found that frog cutaneous receptors responded
with more spikes when the load on them was increased. Thus was born the idea of rate

coding, the idea that the firing rate of neurons encodes information. The idea that rate
coding is the main or only way that neurons encode information has been the dominant
paradigm in electrophysiology since Adrian and Zotterman's discovery (Barlow, 1972;
Rieke et al., 1997). Neurophysiologists have used it to elucidate much of the function
of visual, olfactory, somatosensory and central systems. For example, the notion of
feature selectivity in the visual system was found on the basis of rate coding.

Although rate codes have much explanatory power, sequences of spikes (spike trains)
could encode much more information by using the timing of spikes, as a simple example
shows. Consider a 100 ms long spike train. If we assume that the temporal resolution of
the nervous system is about 2 ms, and that the maximum neuronal firing rate is 500 Hz,
then there are 50 possible positions for spikes. Using a rate code the spike train could
convey 51 different pieces of information, from zero spikes to 50 spikes. A code that
uses the full potential of the spike train could encode up to 250 pieces of information

by treating the spike train as a binary number.
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2.3.2 Averaging and spike train statistics

This section is intended as an introduction to the spike train analysis that is used in
this thesis. For more comprehensive reviews, see Rieke et al. (1997) or Koch and Segev
(1998), chapter 9.

When Adrian talked about a firing rate, he meant the number of spikes occurring
in a certain period of time divided by the length of the time period. In other words
he averaged the spike train across time. However, to obtain a rate we can also average

across more than one neuron or more than one trial of an experiment. Thus there
are three main ways of averaging, each of which roughly corresponds to a conventional

meaning of the word "rate" (Gerstner, 1998):

Time averaging: Count the number of spikes in a time window and divide by the

length of time to give a rate.

Trial averaging: Repeatedly measure spike trains produced under the same condi¬
tions to produce an average spike train.

Population averaging: Average the number of spikes across a population.

These averages are not mutually exclusive. For example, we can repeatedly count

the number of spikes in a given time window after presenting a stimulus (time and trial
averaging). Or we can count the number of spikes produced by a population of neurons
in a given time window (time and population averaging).

One very useful combination of averages is time averaging in a sequence of small
time bins and trial averaging (figure 2.5). When the origin of the time axis is locked to
the occurrence of a stimulus, the resulting vector of spike counts is known as the post

stimulus time histogram (PSTH) (Perkel et ah, 1967a). The histogram is sometimes
smoothed with a kernel such as a Gaussian (Richmond et ah, 1987). We can think of
the PSTH being the discrete approximation to an underlying "time-dependent rate"

(Rieke et al., 1997).
On its own, the PSTH does not tell us about the relationship between spike times

in a spike train. For example, in bursting neurons the firing rate might remain constant

over a long time scale but the timing of spikes could be correlated on a short time scale
within spike trains. To uncover features like this in the spike train, we must look at

higher order statistics of spike trains.
The autocorrelation matrix, denoted by C(t, t') is the next highest order statistic of

spike trains. If the spike train is represented by S(t), then the autocorrelation matrix
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Figure 2.5: The post stimulus time histogram (PSTH). The top panel shows spike
trains elicited in response to a stimulus at time 0. The bottom panel shows the PSTH
resulting from counting the number of spikes in 1 ms bins.

is given by

= (5(t)5(f')) , (2.1)

where (■) represents trial averaging. In principle, the 5(f) could be a function comprising
delta functions at the spike times; however in practice it will be a vector of spike counts
in time bins centred on t. Therefore the autocorrelation matrix will have the same

number of rows and columns as there are time bins in the spike trains. Figure 2.6 gives

examples of autocorrelation matrices generated by an integrate-and-fire model neuron

(see section 2.4.4) with stationary and nonstationary spike trains.

Stationarity is a property of a stochastic point process, that is a process where
indistinguishable events happen at randomly distributed points in time. It means that
"the underlying probability distributions governing the times of occurrence of the point
events do not vary with respect to an arbitrary translation of the time axis" (Perkel
et al., 1967a, p. 395). Spike trains are examples of point processes and in the context of
spike trains stationarity implies that the underlying firing rate must be constant. Spike
trains that are not stationary are nonstationary.

We can make an important simplification if we assume that the spike train is sta-



18 2. Spikes

100

to

E

100 100

lllllilliL
■ mrnmu^.

100 100

Figure 2.6: Two examples of the autocorrelation matrix of a randomly-generated spike
train. The top panels are the autocorrelation matrices C{t, t'). The bottom panels con¬
tain the corresponding PSTH. Left-. A non-stationary spike train. It is non-stationary,
since the rate r(t) is not constant. The matrix is not constant along its leading diag¬
onals as it would have to be for C(t,t') = C(t — t'). Right: A stationary spike train.
Here r(t) is almost constant and there are the value of the matrix along the leading
diagonals is almost constant. The spike trains were generated injecting current into a

noisy integrate-and-fire (IF) model neuron. The membrane time constant of the neu¬
ron was 10ms and its threshold was 1 (normalised units). The current decayed from 3
(normalised units) initially to 0 100 ms later in the non-stationary case and was held
at 2 in the stationary case. The number of trials averaged over was 100.
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tionary. Then (see Rieke et al., 1997, for a derivation) we can write

C(t,t') = C(t - t') . (2.2)

We can see that this is the case in the correlation matrix corresponding to the stationary

spike train in figure 2.6, since the value of the correlation matrix is constant along

diagonals with a gradient of one.
Perkel et al. (1967a) named the quantity C(t) normalised by the average firing

rate the autocorrelation function. It is often referred to simply as the autocorrelation,
and sometimes is called the autocorrelogram. Although it might be confused with the
autocorrelation matrix, I shall also refer to it as the autocorrelation. In its normalised

form, it gives the probability of a spike at t + r given a spike at t and is sometimes
referred to as the conditional rate. It is also common to subtract the square of the mean

rate from C(t) to give a function that tends to zero as t tends to infinity (Koch and
Segev, 1998). For simplicity, I will deal with unnormalised quantities in this section.

Since the probabilities are stationary we can average over time to obtain a better
estimate: C(r) = (S(t + r)S(t)) (the horizontal bar denotes time averaging). This
states explicitly that we are averaging over trials; in practice, there may be enough
data to make averaging over trials unnecessary. We can express the time-averaged part
of C{t) as the more familiar conventional autocorrelation function1:

If we trial average over the activities of two neurons i and j we obtain the cross-

correlation matrix (or function of two variables) Cij(t,t') = (Si(t)Sj(t')). Vaadia et al.
(1995) call the cross-correlation matrix the joint peri-stimulus time histogram (JPSTH).
By either name, the matrix has the same number of rows and columns as there are bins.
As with the autocorrelation, if both spike trains are stationary the cross-correlation will

depend only on the time difference between the t and t' and we can write the it as a

function of the time difference, that is Cij(t,t') = Cij(t — t'). It is this function that
is typically referred to as the cross-correlation function (Perkel et al., 1967b). As with
the autocorrelation, the cross-correlation is often constructed from data using time-

averaging.
The differences between time-averaging and trial averaging and between stationary

and non-stationary spike trains are worth emphasising. There may be information in
1It is not clear whether the term autocorrelogram might refer to the purely time-averaged part

of the autocorrelation (see, for example, Engel et al. 1990), though the terms autocorrelation and
autocorrelogram seem to be used quite interchangeably.

(2.3)
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the cross-correlation matrix that is missed in the cross-correlation function (Vaadia
et ah, 1995).

The interpretation of the cross-correlation is not always straightforward. A flat
cross-correlation is a fairly good indication that the spike times between neurons are

independent, since if we were to measure spike times from random instants in time (not
necessarily spike times) we would see a flat distribution. A cross-correlation with one

or more bumps in it indicates that the firing times of the two neurons are dependent
on each other.

There are more measures of correlation of spike trains of different or the same

neuron. For example the interspike interval (ISI) is similar to the correlation function,
except that only interval between adjacent firings of the neurons are included.

2.3.3 The distinction between rate codes and timing codes

So far, I have used the terms rate code and temporal code rather loosely. The distinction
between the two is, however, not obvious and there is not yet unanimity in the literature
as to what counts as a temporal or rate code. Ultimately, the question is more one of
semantics than of fact — what matters most is the methods by which spike trains from

single neurons and populations of neurons are generated and analysed. Nevertheless,
it is illuminating to consider the question briefly.

One approach is to look at encoding of time-varying stimuli in spike trains. Dayan
and Abbott (2001) make the distinction between an independent spike code, in which
the spike train is an inhomogeneous Poisson process generated from the time-dependent

firing rate which is in turn a function of the stimulus, and a correlation code, in which
the spikes are not encoded independently. An example of a correlation code would
be if interspike intervals were used to encode information. It seems intuitive that an

independent spike code should count as a rate code.

(In the case of an independent spike code, the autocorrelation would be flat in the
case of a constant stimulus. In the case of a correlation code with interspike interval

coding, we would expect to see peaks in the autocorrelation separated by the interval

corresponding to the stimulus quantity.)
Dayan and Abbott argue that the issue of temporal versus rate coding arises when

we come to measure the spike times of the spike train in order to extract the maximum
amount of information from it. The resolution at which we have to look at the spikes
determines whether we are dealing with a temporal code or a rate code. So, for ex¬

ample, if we have to measure spikes with millisecond precision, the code would count
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as temporal, whereas if it suffices to measure spikes within a window tens of millisec¬
onds long, the code would be a rate code. The problem with this definition is that
it is not clear where the dividing line between temporal and rate lies. Furthermore,
the resolution will depend on the frequency spectrum of the stimulus. If a signal with

high-frequency components generated spike trains according to an independent spike

code, we would require high temporal precision (at least as great as the inverse of the
Nyquist frequency) in order to decode the spike train. Yet the spike train would have
been generated in a way which intuitively feels like a rate code.

One solution to this problem is to compare the frequency spectra of the stimulus
and spike train (or trial-averaged rate) (Theunissen and Miller, 1995). If frequency
components of the response greater than the highest frequency present in the stimulus
are required to extract maximal information from the spike train, the code counts as a

temporal code; otherwise it is a rate code.

A problem with this definition of rate code is that it leads to decoding strategies
that appear to be temporal being counted as rate codes. In the stimulus-reconstruction

technique (Bialek et ah, 1991; Rieke et ah, 1997) the stimulus is estimated from a spike
train by convolving the spikes with a filter constructed by comparing large amounts
of stimulus and spike train data (see figure 2.7). This filter can be negative and vary

sharply with time. Furthermore, the filter could quite short relative to the average

interspike interval — there might only be a couple of spikes in the duration of one
filter. The timing of spikes would therefore seem to be quite important — if they
were randomly shifted by a fraction of the average interspike interval, we would expect
the effect on the estimation to be much more catastrophic than it ought to be for a

rate code. However, according to the definition of Theunissen and Miller, this counts
as a rate code since convolution in the time domain is equivalent to multiplication
in the frequency domain, so no frequency components of the spike train higher than
the highest component in the (estimated) stimulus are used to decode the spike train.
Another absurdity in this definition is that spike trains that have been generated using
a form of correlation code can still be decoded adequately using a single filter, and
therefore count as a rate code (Rieke et ah, 1997).

Although somewhat paradoxical, I will stick with this distinction. It still leaves
codes where nonlinear convolution (that is, using a filter that depends on the timing of
two or more spikes) to count as "temporal codes".

So far, only single-neuron codes have been discussed. An important question is how
to decode populations of neurons. Dayan and Abbott (2001) define an independent-
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Figure 2.7: The reconstruction (solid line) of the time-dependent angular velocity sig¬
nals (broken line) obtained by filtering the spike train of an HI cell in the blowfly
(Calliphora erythocephela) visual system. The upward spikes represent the response to
the stimulus and the downward spikes represent the response to the negative of the
stimulus. The reason for these two recordings is the asymmetric response of HI cells.
Inset: The filter used to reconstruct the response. From Bialek et al. (1991).
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neuron code as one in which the spike trains of different neurons can be combined
without taking into account correlations between different neurons. When correlations
do have to be taken into account, the code is a population-correlation code. Synchrony
and oscillations do not by themselves constitute a population correlation code; this is

only the case if significant amounts of information can be shown to be conveyed by the
correlations.

2.3.4 Examples of temporal codes

There are many different possible temporal codes, for example interval codes, latency
codes, filtering codes and population synchrony codes (Bullock, 1993). Some of these
codes involve decoding the output from more than one neuron and the codes do not

always mutually exclude each other. Nevertheless, experimentalists have discovered
systems in which interpreting the spike trains in ways other than the time-averaged
rate provides more information about the stimulus. Here are some examples.

An example where the stimulus is aperiodic is the fly visual system, where the
timing of spikes HI cells encode the velocity of the visual field (Bialek et ah, 1991;
Rieke et ah, 1997). The stimulus-reconstruction technique (see previous section) was

used to estimate the stimulus from the timing of spikes in HI cells (see figure 2.7).
Coding using spike timing does not seem to be limited to the vertebrates or systems

with dynamic stimuli. In the locust olfactory system (to be discussed in detail in
chapter 7) the excitatory neurons at the second stage of processing appear to encode
odour identity with the spatiotemporal pattern of activation of excitatory neurons over

a period of about Is (Laurent, 1996; Laurent and Davidowitz, 1994). In addition to
the spatiotemporal pattern, oscillations are imposed on the activity. The oscillations
seem to be important for refining the representation of the odour, as when they are

pharmacologically abolished honeybees find it harder to discriminate between similar
odours.

To conclude this section, there is now ample evidence for systems in which the timing
of spikes in one neuron or across a population of neurons encodes more information than
a time-averaged or population-averaged rate.

2.3.5 On the definition of coding
This section is rather tangential to the thesis, since the focus of the thesis is more on

the way networks of spiking neurons work rather than what they encode. However, at
this point it is worth noting that I have been using the terms coding and rate code and
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temporal code rather loosely. Theunissen and Miller (1995) define the coding problem
as follows:

Deciphering the neural code at any particular location within a neural sys¬
tem can be reduced to three interconnected tasks, representing a quali¬
tative characterization of the observed stimulus-response characteristics of
the neurons under study. The first task is to determine the quantity and
qualitative nature (such as the specific parameters characterizing a complex
sensory stimulus) of the information encoded in the spike trains of the neu¬
ron or neuronal ensemble under study. The second task is to determine the
nature of the neural symbols with which that information is encoded — that
is, all of the information encoded in the mean firing rates of the cells, or
is some significant proportion of the information encoded in more complex
statistical features of the spike train patterns? The third task is to define
relevant, objective measures of significance with which the information and
neural symbols are correlated.

They define the second of the tasks — determining the nature of the neural symbols
— as the encoding problem. I believe that deciphering the neural code in this way

is reasonably tractable near the sensory periphery, but will be impossible in central

systems. As Peter Dayan (personal communication) has pointed out, the problem lies
with the first of the tasks, determining the stimulus-response characteristics of central
neurons. Neurons deeper in the nervous system code for more than one thing. Although
we might be able to find out one aspect it appears to code for, it is very likely that the
cell is coding for many more things.

Is it possible to extend the definitions of encoding and decoding from the sensory

periphery to central systems? Unless there is a direct behavioural route from perception
to action we will not be able to tell exactly what sensory information the system encodes;
there is no obvious "stimulus". It might be argued that we could proceed iteratively: If
we know what all of a cell's presynaptic neurons are encoding, then we should be able to
manufacture inputs to it that encode known information. This would certainly not be

easy. In particular the procedure demands that we know all of the information a neuron

encodes, and we are almost bound to "lose" features the further up the system we go.

A more fundamental objection is that unmeasurable internal states — for example

memory states — might also count as part of the stimulus.

Perhaps we could treat the stimulus of a particular neuron as the activity of all
of its presynaptic neurons. In this case we would need to know the distribution of

firing patterns of the neuron and its presynaptic neurons in vivo in order to decode the

output spike train. We might be able to apply the stimulus reconstruction technique to
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reconstruct the input spike trains (the stimulus). In many cases we might expect this
to fail, since the neuron could be extracting features rather than trying to maximise
information transmission. Also, this would not tell us what information the spike train
stimulus represented in the first place.

An alternative approach for the cerebral cortex (and possibly other central systems)
is to make the assumption that it behaves as a generalised computer and to investigate
the modes of computation between the fundamental computing units. That is, assume
that there are some underlying internal state variables that represent activation in a

class of ANN that are represented by spike trains. For example, the firing delay of a
neuron could represent activation in a feedforward network (Maass, 1997, 1996). Each
hypothesis generates conditions that neurons must meet for that hypothesis to be true.
For example if quantities are encoded in some way in the timing of spikes, neurons

they project onto must be sensitive to these timings in order to use the information.

Therefore, logically, we may be able to weed out some hypotheses experimentally, but
we will not able to prove that any hypothesis is the true description of encoding.

Hypotheses about encoding are tied up hypotheses about the fundamental comput¬

ing units. So we must hypothesise about what the activity of neurons encodes and the
fundamental computing units themselves. Some hypotheses are:

• Groups of neurons could be the fundamental unit (Shadlen and Newsome, 1994).
They would communicate by weighting each other's mean firing rates much as

the neurons in many types of ANN analogue quantities. Some groups of neurons

might serve as short term memory units (Amit, 1995).

• The time delay of spikes represents analogue activation of an ANN and neurons

compute by producing appropriately delayed spikes on the basis of input spikes

(Maass, 1997).

• Activity runs through chains of neurons which represent features. These chains
can be dynamically linked to represent multi-featured objects and concepts (Bien-
enstock, 1995).

All these theories presuppose that the code is fairly uniform throughout at least
large parts of the cerebral cortex. This is not an unreasonable assumption given the
fairly uniform nature of the cerebral cortex. Also, the hypotheses are not be mutually
exclusive; the different modes could operate in different areas of the cerebral cortex. I
will return to some of these theories later on.
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2.4 Models of spiking neurons

As a large part of this thesis will be on modelling networks of spiking neurons, now

seems an appropriate time to introduce models of spiking neurons. I will proceed to

present the membrane potential equation, the biophysical foundation of all spiking neu¬

ron models, in section 2.4.1. The classic realistic neuron model that uses the membrane

potential equation as its basis is the Hodgkin-Huxley model, described in section 2.4.2.
In section 2.4.3 I will discuss the ways of coupling together spiking neurons. The

simplest spiking neuron model is the integrate-and-fire model, which I describe in sec¬

tion 2.4.4. In section 2.4.5 I describe a recent derivative of it, the spike response model.
This model has the advantage of analytical tractability, and can easily incorporate
noise.

2.4.1 The membrane potential equation

At the heart of the most realistic neuron models lies the membrane potential equation.
It is derived by treating the soma or a dendritic or axonal segment of a cell as an

electrical circuit comprising a resistor, a capacitor and a current source (see figure 2.8).
This idea goes back at least as far as Lapicque (1907). The components are coupled
in parallel, and represent: the resistance of the membrane, R, to current flow; the
capacitance (the ability to store charge) of the membrane, C; the membrane current
jmem flowjng in^0 the cell through channels in the membrane; any synaptic current /syn

flowing through channels controlled by other neurons; and possibly an external current
Jext, injected by the experimenter. Together, these factors induce a membrane potential
V that changes with time. Prom Kirchoff's first law and the relationship between
current flowing into a capacitor and the voltage across it, we obtain the fundamental

equation of excitable membranes:

cdV(f)_ = +7mem^+jsyn^ + /ext^ (2.4)at R

The differences between the neuron models using this equation are all in the membrane
current term Imem(t).

2.4.2 The Hodgkin-Huxley model
The classic neuron model using this equation is the Hodgkin-Huxley model of the squid
giant axon (Hodgkin and Huxley, 1952). Here the membrane current /mem(t) is the
total current flowing through sodium, potassium and "leakage" channel conductances.
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Inside
V

Outside

Figure 2.8: The membrane circuit. The lower line represents the outside of the neuron
and has a potential of OmV. The upper line represents the inside of the cell and has a

potential of V mV.

The current through the sodium conductance is gNam3/i(V(t) — Vka) where gNa is
the maximum sodium channel conductance, m and h are state variables, V(t) is the
membrane potential and Vka is the sodium reversal potential. The state variables are

the solutions of rate equations of the form

where the functions am(y) and /3m(H) are found empirically by voltage-clamp2 experi¬
ments. Each state variable ranges between zero and one, and we can imagine that they

represent the probability that one of a number of "gates" that make up the channel
is open. Thus we can view the sodium channel as comprising three m-type gates and
one h-type gate, all of which have to be open in order for the channel to conduct.

(Hodgkin and Huxley found the powers to raise the state variables to empirically and
then proposed the explanation in terms of gates.)

The potassium channel conductance is proportional to one state variable n raised to
the power four and has a maximum conductance of gK and a reversal potential of Vk-
The leakage current represents voltage-independent channels with conductance gl that
will tend to drive the membrane towards the resting potential Vf,- Putting together
the various currents gives the membrane current component of the Hodgkin-Huxley

equation:

The Hodgkin-Huxley model accounts very well for the data from the squid giant
axon. (For other types of neurons, different channel types and combinations of channel

2These experiments involve clamping the membrane potential at various voltages by controlling the
current fed into the neuron by an intracellular electrode. Small changes in the voltage result in the
conductances settling to a value that depends on the voltage. The time constant of the settling can be
measured, and along with the new value of the state variable can give an estimate of the value of a{V)
and j3(V) for a particular depolarisation.

-jj- = am(V)(l - m) - /3m(V)rn , (2.5)

Imem(t) = gNa,m3h(V - HNa) + gKn\V - Vk) + gL(V ~ VL) ■ (2.6)
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types are needed.) Once all the functions and constants are known, the four coupled
differential equations (one in V and the other three in the state variables m, h, and n)
can be solved numerically. Injection of delta pulses of current into the model results
in a discontinuous (step) increase in membrane potential. If this increase is below
a certain level (known as the threshold initial depolarisation, Tuckwell, 1988b), the
membrane potential decays directly back to its resting level. If the increase is above the
threshold initial depolarisation, the membrane potential will rise steeply (or depolarise)
to about 40mV, then return quickly to resting potential (repolarise), overshoot the
resting potential (thus hyperpolarising the membrane) and gradually return to the
resting potential. This process is known as an action potential and the sharply rising
and falling parts of it occur within about 1 ms.

The reason why action potentials are generated can be understood as follows. When
a external current causes the membrane potential to rise the value of m increases

(sodium channels open). The dependence of m on the membrane potential is roughly
sigmoidal. As the membrane potential reaches the sharply rising part of this sigmoid
curve, many sodium channels start to open. As the sodium reversal potential is much

higher than the resting potential, the voltage increases further causing more sodium
channels to open. This snowball effect produces a sharp rise in the membrane potential.
The slower potassium channels (the n state variable) start to open soon after this rise
and allow current to flow out of the neuron because of the low potassium reversal

potential. Also the inactivating variable h decreases as voltage increases, adding to

the effect. The membrane potential quickly swoops back down to its resting level,

overshooting somewhat to hyperpolarise the neuron. For a period, it is impossible
to generate a new spike by injecting current (absolute refractory period); thereafter
the trigger voltage required to spike is higher than from the resting state (relative
refractory period). Eventually all the state variables return to their resting states and
the membrane potential returns to its resting level.

The equations can be extended and solved to show that spikes tend to propagate

along axons or dendrites at a fairly constant rate determined by the passive parameters

of the axon such as the membrane resistance, the internal resistance and the membrane

capacitance, as well as the active parameters such as cem(V) and

Although these equations were designed to deal with the squid axon, they can in

principle be extended to deal with any neuron in nervous system by including different

types of channels. As well as voltage-dependent channels, as modelled by Hodgkin and

Huxley, non-voltage mediated effects (such as the effect of calcium concentration) can
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also be built into such models.

A further generalisation of the Hodgkin-Huxley model is to models of neurons with

spatial structure. In compartmental models, the neuron is split up into many com¬

partments which are assumed to be at the same potential throughout. Current can
flow between compartments as well as through the membrane. With an extra term to

describe the current from other compartments and extra terms to describe the effect
of different conductances, equation (2.6) and equations of the form of (2.5) apply to
each compartment. Neurons can be simulated to levels of realism constrained only by

computational resources and physiological knowledge. It is also possible to simulate
networks of compartmental neurons, though computational limitations tend to dictate
that each neuron has fewer compartments.

Although the Hodgkin-Huxley model is realistic, it is also rather complex and can

only be solved analytically in a handful of cases (Tuckwell, 1988b). Consequently,
there have been a number of attempts to simplify it. One approach is to reduce the
number of differential equations by making approximations and reducing the number of
variables. FitzHugh-Nagumo neurons (FitzHugh, 1961) exemplify this method. Kepler
et al. (1992) have proposed a systematic way of reducing conductance-based models.

Although in the Hodgkin-Huxley model there is no well-defined threshold potential
at which an action potential is produced, the "point of no return" is similar under a

variety of input conditions. Another class of models, threshold-fire models, use this
observation as well as the fact that the time course of spikes is always similar. Fur¬

thermore, in the region below the threshold voltage the behaviour of the membrane
potential is a fairly linear function of input current; the nonlinearities created by the
voltage-dependent conductances only come into play when the neuron spikes. Therefore
it is possible to simplify the model by leaving out the voltage-dependent conductances
and simply making the neuron spike when the membrane potential crosses a threshold.
After spiking, the membrane potential is reset to its resting potential. There may also
be an enforced refractory period during which the neuron cannot fire and a relative re¬

fractory potential during which the threshold is higher than normal so that the neuron

is less likely to fire.

Although the former class of models are interesting, they do not simplify things
as much as using threshold models does. As we will see, some threshold-fire models
are quite a good approximation to Hodgkin-Huxley neurons, and by extension to real
neurons. I will therefore concentrate on two of these models, the integrate-and-fire (IF)
model (Lapicque, 1907; Tuckwell, 1988a) and the SRM (Gerstner, 1991). Before doing
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so, I will discuss models of synapses.

2.4.3 Synaptic dynamics
The synaptic current can be modelled to varying degrees of realism. In general, the

synaptic current from the jth to the 1th neuron is given by

= (2.7)

where I7tev is the postsynaptic reversal potential and gij(V,t) is the synaptic conduc¬
tance. The synaptic conductance may depend on a number of factors.

In very realistic models, the conductance gij(Vj,t) is the solution of differential
equations with terms depending on the presynaptic voltage. Ermentrout (1998) calls
such synapses gated synapses.

A simpler way of modelling the conductance is to trigger a function of time alone
whenever a spike arrives at the synapse:

= 9ij si (* ~ 4°) ' (2-8)
f

where Sj (t) is a synaptic gating variable, g^ is the maximum synaptic conductance for
the synapse and t\^ is the /th last firing time of neuron i. (We can therefore describe
the spiking activity of a neuron i by the set of firing times {4^}-) A typical gating
variable is given by the alpha function (figure 2.9):

a(t) = -e~rQ(t) , (2.9)
T

where 0(t) is the Heaviside (step) function (see section 1.3.2 for definition) and where r
is the time constant of the conductance. In this case the time course of the conductance

change does not depend on the presynaptic membrane potential and we say the synapse

is ungated. In either cases, the combination of conductance and voltage produces a

postsynaptic current (PSC).
The maximum conductance g^ may depend on the previous history of the synapse.

In a somatic whole-cell recording from layer V pyramidal neurons from rats in slice
Tsodyks and Markram (1997) discovered synaptic depression: the EPSP amplitude in
response to a spike train in a presynaptic neuron decreased in size during the spike
train. The underlying mechanism for this behaviour is that the spike train releases
vesicles docked at the presynaptic terminal faster than they can be replenished. This
phenomenon is known and modelled in other systems, for example inner hair cells of
the cochlea (Meddis, 1986).
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Figure 2.9: The alpha function t/re t^T with r = 5 ms.

2.4.4 The integrate-and-fire model

The integrate-and-fire (IF) neuron is the simplest of the threshold-fire neuron models.
It is based on the membrane potential equation (2.4) with the membrane potential
currents omitted. However, when the membrane potential V hits the threshold the
neuron fires and the membrane potential is reset. Most often the neuron is reset to its

resting potential though sometimes the reset can be noisy, and the membrane potential
differs somewhat from this value. Without loss of generality, I set the resting potential
to OmV in this thesis.

Often we rewrite the membrane potential equation (2.4) by multiplying by R to

give

where rm = RC is the membrane time constant.

With this very basic model of one IF neuron, it is possible to derive results such
as the firing frequency of a neuron for a given constant input current. To model a
network of spiking neurons, we can connect IF neurons with gated or ungated synapses.

These can be simulated easily and relatively analytically tractable (see, for example,
Ermentrout, 1998; van Vreeswijk et ah, 1994).

We can simplify the ungated synapse further since in IF models, the voltage is by
definition in a relatively small range between the resting potential and the threshold. As
the reversal potential for excitatory synapses is usually much bigger than the threshold
this means that is not unreasonable to approximate the voltage part of (2.7) as a

constant and deal with a fixed current time course, 7(f) for excitatory synapses. This
is not true for inhibitory synapses, as their reversal potential is closer to the threshold,

(2.10)
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and the voltage factor in (2.7) will vary by at least a factor of two between resting
potential and the threshold. As the inhibitory current is most important when the
membrane potential is near threshold, we can approximate the driving potential by
the difference between the threshold and reversal potential for the inhibitory synapse.

This may lead to unphysiologically negative potentials, but the effect should not be too

great near to the threshold. The approximation will be more valid if the membrane

potential hovers close to the threshold. I call this the voltage-independent or current-
based ungated synaptic model. The equation for the membrane potential reads in full:

Here the dimensionless quantity Jf,- replaces the maximum conductance and 7(t) is the
form of the current and has the units of amps.

2.4.5 The spike response model

Gerstner (1991) first introduced the SRM and it has been presented subsequently in a

number of papers (see, for example, Gerstner and van Hemmen, 1992; Gerstner et al.,
1993a; Gerstner and van Hemmen, 1994a). In fact the SRM comes in two flavours,
which I will call the simple and extended versions. In section 2.4.5.1 I will take the

approach of the introduction of Gerstner, 1998 by deriving the simple SRM from the
IF model. Section 2.4.5.2 presents the small modification to the simple SRM necessary

to make the extended SRM, which is equivalent to a renewal process. In section 2.4.7
I weigh the advantages and disadvantages of the SRM.

2.4.5.1 The simple spike response model

We can represent the reset of the IF neuron more rigourously than in the previous
section by using delta functions. Following Gerstner (1998), we can add an extra reset
current to the right hand side of (2.11):

This term expresses the effect of an infinitesimally short pulse of current leaving the
neuron when it fires. The effect of this term when integrated is to reset the membrane

potential to 0mV (the resting potential) whenever there is a spike. Mathematically, we
show this by solving the equation

dVi
Tm-rr

OO

Cd£ 6{t - t\f)) . (2.12)
/=!

dVi
Tm-T-

OO

+ Vi = —RCd S(t - t\f))
/=!

(2.13)
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to give
00 ft — \

Vi(t) = -0£ 9(t - t|/}) exp i- . (2.14)
/=1 \ Tm /

We can extend this approach by integrating the other current terms. Since (2.11) is
a linear differential equation, we can add the solutions to give the membrane potential
as a function of time:

N 00 00

m = E E - P]) + E »*(* - *.(/)) + KextM, (2.15)
j=1 /=i /=i

where

£:(f) = — f 7(t — t')e~T™dt' , (2-16)
7"m «/0

Vi(t) = -i?@(f)exp > (2-17)

and
/? r00 t'

V°xt(t) = — Ifxt(t-t')e~^dt' . (2.18)
''"m "<0

We can interpret the function e(f), which has the dimensions of volts, as a postsy¬

naptic potential (PSP) function. The kernel r](t) also has the dimensions of volts, but
it has no interpretation in conventional physiological terms. I shall return to it shortly.

This integrated IF equation (2.15) is the basis for the SRM. In the conventional
notation of the SRM, each model neuron has a membrane potential hi(t). This is a

sum of the synaptic potential h^yn(t), the refractory potential /rjef(t) and the external
potential hfct(t):

hl{t) = hfn{t) + hf(t) + hT\t) . (2.19)

This notation derives from the conventional notation for artificial autoassociative neural

networks (Hertz et al., 1991). These networks may be viewed as systems of coupled
atomic spins (denoted by Si) which sum to produce a local magnetic field hi. I shall
use this notation when dealing with SRM neurons in the rest of this thesis.

We can identify hi(t) with V)(t) in (2.15), hsyn(t) with the first term on the right
hand side of (2.15), fi-ef(t) with the second term on the right hand side of (2.15) and
h\xt{t) with Vfx\t). To summarise, this gives us:

N 00

h?n(t) = E E ~ t(P) (2-20)
1=1 /=l
OO

hf(t) = E^ME ■ (2-21)
/=1
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Figure 2.10: The membrane potentials in an SRM neuron. The top three lines, labelled
a, b and c, represent the spikes and EPSPs in presynaptic neurons a-c. They sum
in neuron d, whose total membrane potential is denoted by the lowest solid line. It
is clearly a weighted sum of the membrane potentials a-c, and when it reaches the
threshold (horizontal dashed line), neuron d spikes. Its total membrane potential then
falls to —oo for a while (the absolute refractory period) before converging on the summed
EPSPs. The dotted line denotes the summed EPSP input and the dash-dotted line
denotes the refractory potential.

Figure 2.10 shows an example of the time courses of the different potentials in an SRM
neuron.

In the SRM, the functions 77(f) and e(f) need not be the integrals of currents weighted
by decay as in (2.16) and (2.17); they can be more general. This is especially useful for
the kernel 77(f), which we refer to as the refractory function. We can use this function
to model the absolute and relative refractory properties of the neuron, as well as the
reset. For example, one possible choice is the rectangular hyperbola

v(t) -OO 0 < f < Tabs
VP

t "Tabs Fabs F ^
(2.22)

This kernel simulates the absolute refractory period of rabs with an infinitely negative

potential and the relative refractory period with a finitely negative potential.

We can use the refractory function to model phenomena such as after-depolarising

potentials and the associated burst firing tendencies of neurons (Gerstner and van

Hemmen, 1994b).
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2.4.5.2 The extended spike response model

A simplification is to consider only the last F spikes of neuron i so that

K\t) = f>(t - tP) . (2.23)
/=!

With a refractory function with a form like (2.22), if F is greater than 1, the neuron

remembers more than one spike and tends to adapt its firing rate. In the case where
F = 1, the neuron only remembers its last firing event. This means we can classify it as
a renewal process (Gerstner, 1995) and therefore use the properties of renewal processes
in derivations. Unfortunately, the resulting simplified SRM is not formally equivalent
to the IF model any more, even with the correct kernels (2.16) and (2.17).

An extension to the SRM rectifies this problem. Gerstner (1995) made the PSP
kernel a function of two variables, where the extra variable is the last time of spiking
of the post-synaptic neuron. Thus the synaptic potential becomes

^ynw = H «(* ~t*<1 - tj/))' (2-24)
3 5

where n(s, t) is the value of the PSP evoked in a postsynaptic neuron that fired s ago

by a presynaptic neuron that fired t ago. To get back to the IF model, we can set

(Gerstner, 2000)
= { e(i)-e(t-s)e-s/T» s>0 ' (2'25)

where e(t) is defined as in (2.16) and is always zero for negative arguments. If the
presynaptic neuron has fired after the postsynaptic neuron, that is t < s, the second
term in the equation is 0 since its argument is negative and the PSP is given by e(t).
If, however, the presynaptic neuron has fired before the postsynaptic neuron, that is
t > s, the second term is not zero. At the time of firing, that is when t = 0, the two

terms cancel out, effectively resetting the membrane potential to zero.

The contribution due to the external current will also depend on the last postsy¬

naptic firing time too:

Vext(t,ti) = — f l' I?x\t-t')e-^dt' . (2.26)
I'm JO

This is just the same as (2.18), except for the upper limit of the integration, which is
t — U rather than infinity. Since this external potential depends on t — ti alone, and
since we accomplish the reset by the boundary conditions on the integrals, there are

no explicit current spikes to integrate to obtain 77(f). Since Uext(f, U) depends only on
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Figure 2.11: The extended alpha function n{t — ti,t — tj). The potential increases
from the presynaptic firing time tj until the postsynaptic neuron fires at t;. Then the
potential is reset, and integration begins again.

t — ti it is formally equivalent to 77(f) and we can equate the two; it is conventional to do
so (Gerstner, 1995, 2000). In the case of constant current injection, that is /syn = Iq,
we can solve the integral (Gerstner, 1995) to give

2.4.5.3 Noise in the spike response model

Gerstner (1998, 2000) outlines three types of noise that could affect IF neurons and by
extension SRM neurons.

Noisy threshold: There is not a fixed threshold, but rather a region of membrane

potential in which a spike is triggered.

Noisy reset: The neuron has a fixed threshold, but is reset to a random value around
a mean. This results in the next spike being earlier or later than it would have
been had there been a deterministic reset.

Noisy integration: Noise is added to the current in equation (2.11).

In the rest of this thesis I will concentrate on the first of these three. The reason for this

is mainly ease of analysis and implementation in a SRM network, though the second
has also been used in analysis (Gerstner, 2000). The third would be difficult, if not
impossible to implement in an SRM network, and is also hard to deal with analytically

(Gerstner, 1998).

77(f) = i?/0(l-e-t/T») . (2.27)
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To implement the noisy threshold, we imagine that the neuron has a probability of
firing per unit time that increases with the membrane potential. We can express the
firing probability as

PF{h-St) =r~1(/i)5t , (2.28)

where r_1(h) is the escape rate and 6t is a infinitesimal time interval. A typical choice
for the escape rate is based on the kinetic reaction constant (Gerstner and van Hemmen,

1992):
r'\h) = —e^h~^ , (2.29)

TO

where /? is the inverse temperature and gives a measure of the noise and where tq char¬
acterises the rate at threshold. For large /?, the escape rate r~ (h) changes from 0 to
infinity as h increases past $, and the function effectively implements a deterministic
threshold. For small /3, there is a finite probability of firing when the membrane poten¬
tial is below threshold and firing is not guaranteed when it is above. Therefore spike
times can be earlier or later than they would have been if produced deterministically.

Given that a spike has fired at time it is useful to know the probability of it

firing at some time t, later than Following Gerstner and van Hemmen (1994a)
I denote this PF(t\t^). In any particular infinitesimal time period 5t at time t the
probability of firing is equal to the probability that the neuron has not yet fired times
the probability that the neuron fires in that time segment:

P2F(t|t(1)) = S(t\t^)PF(h(t)) , (2.30)

where 5(t|t^1^) is the survivor function (Perkel et ah, 1967a) and where t > t^l\ The
survivor function represents the proportion of neurons at time t that have not fired
since t^. Since the spiking probability only depends on the membrane potential, the
survivor function is the product of the probabilities of the neuron not firing at successive
time steps. With n time steps of length 5t = (t — fW)/n, taking the limit as n —> oo

gives
n

5,(t|t''1^) — lim J^[ ^1 — r_1 (h ^(t — 6t^ . (2-31)n_>°°
i=o

In this limit of 5t —> 0 each term of the product is a linear approximation of an ex¬

ponential function exp r_1 (h ~ t^)i/njj Stj. Substituting in this exponential
function simplifies the equation as we can convert the product into a summation in the

argument of the exponential:

S(t\t^) = exp ^ lim —r-1 (h ((t — t^)i/n) fitjj (2.32)
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= exp J r 1 (h{t')) dt!. (2.33)
One immediate use of this expression for the survivor function is in simulations

with discrete time steps. In each time step of length At, we assume that the membrane

potential is constant. The expression for the firing probability is then one minus the
probability that the neuron does not fire in the interval At:

PF(h\ At) = 1 — S(t + At|f) = 1 — exp . (2-34)

Here the survivor function means something slightly different to before, as it is not

fixed on a spike time, but rather an arbitrary time.
There are many more applications for the survivor function, including calculating

the ISI distribution and in general network activity calculations (see, for example,
Gerstner and van Hemmen, 1992; Gerstner, 1995, 2000).

2.4.6 Relationship between the neuronal models
We have already seen that the Hodgkin-Huxley model, the IF model and the SRM are

all derived from the membrane potential equation (2.4). Furthermore, we have seen that
the SRM model can be derived from the IF, and so can be seen as a generalised version
of the IF model, but that when used in a limited form (the simple SRM remembering
finite numbers of its own spikes) cannot function as an IF neuron.

Kistler et al. (1997) have shown that the extended SRM with appropriately chosen
kernels and threshold resembles the output of a Hodgkin-Huxley model by injecting
the same noisy current into both models. The simple SRM does not do so well, and a

simple IF model does even worse.

2.4.7 Advantages and disadvantages of the spike response model
What is to be gained by integrating the IF model neuron to create the SRM? I see two
main advantages of the SRM:

• It is more general than the IF model so that neurons with arbitrary biological
kernels can be simulated (section 2.4.6, Kistler et ah, 1997).

• It is analytically tractable, offering general results which may be solved for ar¬

bitrary biological functions and constants. The SRM has proved a useful tool
in studying general population dynamics of networks of neurons (Gerstner and
van Hemmen, 1992; Gerstner et ah, 1993a; Gerstner, 1995, 2000) especially in
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locking and stability phenomena. Some of the results later on in this thesis will
also demonstrate its analytical utility.

In the form presented here it also has disadvantages:

• It is not as general as IF models with voltage-dependent PSCs (Gerstner, 1995).

• In analysis it is more awkward to feed it currents that are arbitrary functions of
time as they should be integrated first, and not all functions are integrable.

The simulations of Ermentrout (1998) and Gerstner (1998) suggest that the loss of detail
due to the first point is acceptable. Ermentrout simulated the membrane conductance
at a gated synapse in response to a single spike and approximated its time course with
a sum of exponentials type alpha function. The waves of activity produced in two IF
neuron networks, one with synaptic conductances generated by gated channels and one

with the explicit approximated conductances gave indistinguishable results.

2.5 Spike learning
Do individual spikes play a role in learning, or are only time- or population-averaged
rates important? Hebb's rule itself does not explicitly specify the timing of spikes,

though causality is implicit in it. The long term potentiation (LTP) paradigm implicitly
deals with rates averaged over a time window of hundreds of milliseconds. Section 2.5.1
outlines Hebb's rule and the classical LTP results, which I refer to as rate-dependent

synaptic plasticity. Later theoreticians have examined the idea of spike timing de¬
pendent synaptic plasticity (STDSP), where the timing of individual spikes affects the
synaptic strength. Recent experiments have confirmed that the timing of individual
pre- and postsynaptic spikes is important in potentiating or depressing synapses. I out¬
line the theoretical and experimental aspects of STDSP in section 2.5.2. I shall return
to the functional implications of the STDSP later. In section 3.2 I will discuss synfire
chains, which can be seen as a special case of sequences. In chapter 6 I will investigate
how the temporal learning rule affects aspects of the recall of sequences.

2.5.1 Hebb's rule and rate dependent synaptic plasticity
Hebb (1949) proposed that features were represented by groups of concurrently active
neurons, which he called cell assemblies3. To explain how cell assemblies formed, he
proposed the well-known learning rule:

3This contrasts with the localist, "pontifical" or "cardinal" cell coding championed by (Barlow,
1972).
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When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently take part in firing it, some growth process or metabolic change
takes place in one or both cells such that H's efficiency, as one of the cells
firing B, is increased, (p. 62)

Precise time scales are not mentioned in Hebb's rule, although there is a notion
of causality: cell A must be active before cell B in order to contribute to its firing.
In principle, the learning rule could take account of how much individual presynaptic

spikes contribute to the firing of the postsynaptic cell. If, however, both cells are firing
persistently (say at a constant rate) then we could argue that individual spikes are not

particularly important and that firing rates adequately describe the activity of both
neurons. This is the idea of rate-dependent synaptic plasticity.

The Hebb rule has been used as the basis of much theoretical work on neural

networks. Heteroassociative networks (Willshaw et ah, 1969), autoassociative net¬
works (Hopfield, 1982) and the backpropagation learning rule for feedforward networks
(Rumelhart et ah, 1986) all use abstractions of the Hebb rule to learn.

The experimental phenomenon of LTP in hippocampal slices has confirmed Hebb's

proposal (see Bliss and Collingridge, 1993, for a review). In the original LTP experi¬
ments an extracellular electrode stimulated a group of presynaptic neurons with 50 or

so high frequency (order of 100 Hz) current pulses. Strong pulses caused a long-term
(order of hours) increase in the synaptic efficacy, whereas weak pulses caused no or only
a short-lasting change in the synaptic efficacy. This property was called cooperativity
because the inputs from many fibres have to cooperate to effect learning. However,
when the weaker inputs were paired with stronger ones, the synapses corresponding
to the weaker inputs were strengthened in the long term, showing that LTP was as¬

sociative. Finally, only those synapses that had been presynaptically activated were

potentiated, showing that LTP was input-specific.

The explanation for the LTP results was that sufficiently strong inputs were required
to depolarise the postsynaptic neuron enough. Only when both post- and presynaptic
neurons were active concurrently was the synapse potentiated. This was later confirmed

experimentally by pairing postsynaptic and presynaptic depolarising pulses at 1 Hz.

It is worth noting that traditional LTP does not control the timing of both pre-

and postsynaptic spikes. It appears that the assumption of rate-dependent synaptic

plasticity is implicit in traditional LTP.
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2.5.2 Spike timing dependent synaptic plasticity

Recent work has suggested that the timing of individual spikes can change synap¬

tic strengths, a phenomenon we can call spike timing dependent synaptic plasticity

(STDSP).
Gerstner et al. (1993b) hypothesised that information about the postsynaptic neu¬

ron firing could reach the synapse by means of backpropagated activity from its soma.

Were this activity localised in time and space (as is a conventional spike), the synapse

would receive very precise information about the firing time of the postsynaptic neu¬

ron. Precise information about the firing time of the presynaptic neuron could come

from concentration of neurotransmitter in the synaptic cleft. Supposing there was some

way of putting together these two pieces of information, when a backpropagating spike
arrived at the synapse, the synapse would be potentiated in proportion to the amount

of neurotransmitter there. Thus individual pairs of spikes could potentiate the synapse

and the amount of potentiation could depend on the time difference between pre- and

postsynaptic spikes. Figure 2.12 shows the principle graphically. Allowing for axonal
and dendritic delays, this means that when presynaptic spikes precede postsynaptic
ones by a short time the synapse is potentiated, whereas all other spike combinations
do not alter its strength. Gerstner et al. (1993b) proposed that the time window for
potentiation was identical to the time course of the neurotransmitter concentration,
which they modelled with a ~1 ms wide Gaussian.

The evidence from mammalian cortical pyramidal (Markram et al., 1997), devel¬
oping frog retinotectal (Zhang et al., 1998) and rat hippocampal (Bi and Poo, 1998)
synapses has confirmed the hypothesis that synapses can be potentiated by pairs of
pre- and postsynaptic spikes and that the amount of potentiation depends on the in¬
terval between the spikes. The main differences to the prediction are: firstly that
appropriately-timed spikes can depress the the synapse; and secondly that the time
window in which spikes can affect the synaptic weight is of the order of 20 ms, an order
of magnitude greater. When a presynaptic spike arrives shortly (within about 20 ms)
before a postsynaptic one, the synapse is potentiated and when the converse is true it is

depressed. Figure 2.13 shows how the amount of potentiation depends on the relative

timing of the pre- and postsynaptic spikes.
The evidence of Bi and Poo (1998) suggests that only relatively weak synapses that

can be potentiated, whereas synapses with any strength can be depressed. This is
consistent with the maximum synaptic strength being limited.

Neither LTP or long term depression (LTD) occurs when the postsynaptic neuron
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Figure 2.12: The mechanism of potentiation. The presynaptic neuron fires at time tpre
and reaches the presynaptic terminal Aax later, causing neurotransmitter to be released
according to the function F(t). Meanwhile, the postsynaptic neuron has fired at time
fpost and a spike from its soma has taken Adend to get to the postsynaptic terminal.
The amount of potentiation 5J is equal to the concentration of neurotransmitter at the
presynaptic terminal when the postsynaptic backpropagated spike arrives.
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Figure 2.13: a. The temporal learning rule in frog retinotectal cells. The time of from
the presynaptic spike to the postsynaptic spike is plotted along the abscissa; negative
times indicate the presynaptic neuron fired before the postsynaptic one. The change
in the EPSC amplitude is plotted on the ordinate. (From Zhang et al., 1998.) b. The
temporal learning rule in glutamatergic rat hippocampal cells. Same interpretation of
axes as a. except that the abscissa is reversed. (From Bi and Poo, 1998.)
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expressing the 7-aminobutyric acid (GABA) subtype of glutamate channels. This sug¬

gests that the synaptic strengths from excitatory neurons to inhibitory neurons are not

changed by this particular mechanism.

Both LTP and LTD depend on glutamate receptors of the 7V-methyl-D-aspartate

(NMDA) subtype being activated, as when NMDA channels were pharmacologically
blocked, no potentiation can take place. When L-type Ca2+ channels in the postsynap¬

tic neurons are pharmacologically blocked, LTD cannot be induced and the extent of
LTP is reduced. As NMDA receptors allow in Ca , this implies that the mechanism of
potentiation depends on the spatiotemporal patterns of Ca2+ in the postsynaptic cell

(Bi and Poo, 1998). This is consistent with the implication of Ca2+ in the induction of
traditional LTP (Bliss and Collingridge, 1993).

The cellular mechanism of potentiation is not fully understood at present. However,
the mechanism does seem to involve backpropagated action potentials, as postulated
by Gerstner et al. (1993b). In cortical pyramidal neurons (Stuart and Sakmann, 1994)
and hippocampal CA1 neurons (Spruston et al., 1995) spikes propagate actively back
to the postsynaptic synapse from the soma, opening L-type Ca2+ channels .

Other types of STDSP have been found between different types of neurons in dif¬
ferent systems (Abbott and Song, 1999). One is the complete opposite of the rule just
described in that presynaptic spikes before postsynaptic spikes lead to depression and
whereas when they occur after postsynaptic spikes, the synapse is potentiated.

Regardless of the potentiation mechanism, the resulting learning rule can be ex¬

pressed as follows. If ti is the firing time of the postsynaptic neuron, t3 the firing time
of the presynaptic neuron and Adend the dendritic delay to the backpropagating spike,
the learning rule

6Jij (X r (ft + Adend) - (tj + Afj), Ji3) , (2.35)

expresses the change in synaptic efficacy for a pair of spikes in the spike trains of
the two neurons. The potentiation function T(t,J) expresses the relationship between
temporal separation of spikes, the current strength of the synapse and potentiation or

depression. We can combine all the small changes 5Jij over a period of activity in the
network. Since weight strengths cannot increase infinitely, the dependence of T(t,J)
on the weight should be such that it converges on a steady value. For small numbers
of paired spikes, we may be able to ignore the weight-dependence of the potentiation
function.
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2.6 Spike dynamics

Wilson and Cowan (1972) assumed that the population rate in groups of interact¬
ing neurons was the appropriate variable to be working with. From this assumption

they derived integral equations for the population activity in interacting excitatory and
inhibitory groups. As the integral equations were difficult to work with, they trans¬
formed them into differential equations by a "time coarse-graining" procedure. They
then applied phase plane analysis to the equations and found oscillating and stable so¬

lutions and hysteresis states, depending on the input to the system and the connections

strengths within and between the groups. The oscillations displayed by the system led
to the name Wilson-Cowan oscillator.

Wilson-Cowan oscillators can serve as a model of a cortical column. When con¬

nected together, as columns in a sheet of cortex are, they can synchronise (Konig and
Schillen, 1991) or desynchronise with each other (Schillen and Konig, 1991). (See also
section 4.3.1.)

The decay time constant of the activity limits the speed at which Wilson-Cowan
oscillators can respond to input. As it is normally of the order of 10 ms, this means

Wilson-Cowan oscillators will miss very short time scale temporal phenomena.

Similarly, the response speed of many artificial neural network (ANN) models is
limited by time constants. Most ANN models implicitly use time or population rates

as the fundamental measure of activation. The time evolution of the systems may be

one-step (for example heteroassociative memories, feedforward networks), may proceed
by stochastic update (Hopfield, 1982), or by differential equations (Hopfield, 1984). In
the differential equation evolution the time constant limits the response speed of the
network.

The dynamics of networks of spiking neurons are potentially much richer than those
of graded response units. For example, they may synchronise on a millisecond timescale

(see chapter 4), or can support sequences of precise firing patterns (see chapter 3). Over
the past decade, theoretical work has uncovered the conditions required for network

synchrony and asynchrony and has investigated the learning of sequences.

Studying networks of spiking neurons can also confirm and clarify assumptions
about rate coding, as does the recent work (Spiridon and Gerstner, 1999; Gerstner,
2000) that shows that the population firing rate of networks of spiking neurons can

respond surprisingly quickly to rapid changes in input. Many of these results are gen¬

eralisations of previous work with phase oscillators and coupled differential equations.
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2.7 Summary

Although neurons can communicate by graded response potentials and by extracellular
neurotransmitter diffusion, the dominant method of communication is the action po¬

tential, or spike. A spike is a sharp increase in the membrane potential localised within
about 1 ms of time. Individual spikes could offer many possible ways of encoding in¬

formation, learning synaptic strengths, and embodying network dynamics. Despite

this, most research since Adrian first discovered action potentials has focussed on the
time-averaged firing rate of neurons rather than their individual spikes.

Part of the reason for this is that the number of possible spike codes is overwhelming;
interval codes, latency codes, filtering codes, population synchrony codes and sequen¬

tial patterns are all possibilities. Some of these codes involve decoding the output
from more than one neuron and the codes do not always mutually exclude each other.
Nevertheless, experimentalists have discovered systems in which interpreting the spike
trains in ways other than the time-averaged rate provides more information about the
stimulus. Examples include the mammalian auditory system, the fly visual system and
the locust olfactory system.

The membrane potential equation is the biophysical basis of all spiking neuron

models. In a complex model, such as the Hodgkin-Huxley model, channels that depend
on voltage and ionic concentration account for the neuron's sub-threshold and spiking

dynamics. A simpler model, such as the IF model, concentrates on the subthreshold

dynamics and produces spikes only when the membrane potential reaches threshold.
By using the fact that PSPs are fairly well stereotyped functions of time, the nonlinear
channel dynamics can be completely omitted, thus simplifying the model further. It
is from this simplified IF model neuron that the SRM neuron can be derived straight¬

forwardly by integrating with respect to time. This "integrated IF neuron" has the
advantage of ease of analysis, particularly with a escape rate firing noise model. It can
also be generalised to model arbitrary PSPs and refractory properties.

Hebb's rule postulates that when a presynaptic neuron contributes towards a postsy¬

naptic neuron's firing, the synapse between the two is strengthened. Under the assump¬

tion that the timing of individual spikes is unimportant, this rule can be formulated in
terms of firing rates (rate-dependent synaptic plasticity). A number of artificial neural
network models implicitly make this assumption. "Classic" LTP confirms Hebb's rule.

However, the timing of individual spikes is not controlled, so it is not clear whether a

rate-based description of activity would be appropriate. Recent work has shown that
the timing of individual spikes can affect synaptic plasticity. A typical form of spike
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timing dependent synaptic plasticity (STDSP) in glutamatergic neurons is that when
the presynaptic neuron fires before the postsynaptic neuron, the synapse is potentiated,
whereas if the postsynaptic neuron fires first, the synapse is depressed. Spikes further
apart in time are less effective at inducing either potentiation or depression; the time
window is about 20 ms wide.

The dynamics of networks of spiking neurons are potentially much richer than those
of graded response units. For example, they may synchronise on a millisecond timescale,
or can support sequences of precise firing patterns. Over the past decade, theoretical
work has uncovered the conditions required for network synchrony and asynchrony
and has investigated the learning of sequences. Studying networks of spiking neurons

can also confirm and clarify assumptions about rate coding, as does the recent work
that shows that the population firing rate of networks of spiking neurons can respond

surprisingly quickly to rapid changes in input. Many of these results are generalisations
of previous work with phase oscillators and coupled differential equations.



Chapter 3

Sequences

Sequences of patterns abound in nature. Animals must be able to recognise sequences,

such as the movement of a predator or the sequence of sounds corresponding to a

phoneme, and produce sequences, such as motor movements.

The neural substrate of sequence generation has been studied theoretically for a

long time. Sequence recognition has also been explored theoretically, for example in
the hippocampus (Levy, 1996). However, these models use rate-based neurons which
implicitly assume that individual spikes are not important.

Another type of neural sequence is one where the spikes in individual neurons repeat
in a precise order. I call this kind of sequence spatiotemporal firing patterns. Spatiotem-
poral firing patterns are closely related to synfire chains, a concept proposed by Abeles

(1991) to account for various aspects of cortical activity. This chapter is intended as

a comprehensive review of spatiotemporal firing patterns and synfire chains. I am not
aware of a review of this scope in the literature.

In section 3.1 I will describe neural network models that store spatiotemporal pat¬

terns, from a simple modification of the Hopfield network to a network of spiking neu¬

rons trained with temporal learning rule. In section 3.2 I will describe synfire chains
and in section 3.3 1 will describe the relationship between spatiotemporal firing patterns
and synfire chains.

There has been some theoretical work on the dynamics of synfire chains. Section 3.4
lists the various types of instability that synfire chains are subject to. Some of them are

common to stable attractor networks, such as the capacity constraint. Others, such as

those caused by strongly correlated patterns close together in the sequence, are peculiar
to temporal networks.

To further motivate the study of synfire chains, I present some of the possible
functions of synfire chains in section 3.5. These range from being a short term memory

47
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to implementing finite state automata.

In section 3.6 I will present the evidence for and against synfire chains. This is a

controversial area, as to detect synfire chains, sparse data has to be interpreted ap¬

propriately. The experimental evidence for spatiotemporal patterns in the mammalian
cortex is suggestive but not conclusive. Nevertheless, the idea of spatiotemporal se¬

quences and synfire chains does not seem implausible, and I conclude that study of
their dynamics is worthwhile.

An important question is how spatiotemporal firing patterns can be learned. Sec¬
tion 3.7 explains how an asymmetrical temporal learning rule in conjunction with a su¬

pervised learning protocol can be used to train generalised synfire chains. This method
of training has been investigated implicitly and is relevant to the idea of copying syn¬

fire chains. Attempts to encourage synfire chains to self-organise with an asymmetric

temporal learning rule have not been very successful.

3.1 Spatiotemporal patterns
An obvious extension of neural networks that store static patterns (see section 1.3.2) are
networks that store sequences of patterns. As each pattern can be thought of as being

spread across space and the patterns are spread across time, we can view a sequence

of patterns as a spatiotemporal pattern. (This is not to say that all spatiotemporal
patterns are sequences of patterns.)

Simple, small networks that reproduce sequences of patterns have been studied for

many years in the form of central pattern generators (CPGs) (see Shepherd, 1994, for
an overview). They are the neural circuits that underly rhythm generation in motor

systems. Although they do store sequences of patterns, they cannot be trained to re¬

call arbitrary patterns spread across large numbers of neurons. It seems reasonable
to suppose that higher areas of the nervous system need to be able to perform this
task. For example, episodic memory sequences consist of arbitrary sequences of dif¬
ferent memories, each of which we may suppose corresponds to a pattern of neuronal
activation.

Amari (1972) investigated the behaviour of networks of threshold neurons with
— 1/ + 1 activations that were connected by a weight matrix:

=
• (3.1)

His analysis indicated that with synchronous update, it was possible for such networks
to store sequences of patterns defined by . This is similar to the system studied later
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Figure 3.1: Schematic diagram of the connectivity of a Hopfield-style sequence network.
The differently-shaded circles represent neurons belonging to different patterns in a
network. In a Hopfield-style network neurons of one pattern are connected to each
other and to the next pattern.

by Herrmann et al. (1995) by mean field methods.
Hopfield (1982) suggested a method of learning a sequence of patterns by modifying

the learning rule for the standard Hopfield network so that the neurons of one pattern

also activate the next pattern in the sequence:

= jjD## + K+1^) . (3-2)
where ^ is the activity of the zth neuron in the /rth pattern of a sequence and A is
a parameter that determines how strong the weights from one pattern onto the next

pattern are. Figure 3.1 shows the connectivity schematically and figure 3.2 shows the
type of output we would expect from this network with asynchronous update. Implicit
in this rule is the spike timing dependent synaptic plasticity (STDSP) described in
section 2.5.2 since the asymmetric part of the weight matrix depends on the activity of
the network at two different points in time.

When presented with a pattern , we expect the activation of the units h" to be
given by

hi = (3-3)

= + Ar+1 + E EWW + K+1W> ■ W)

For uncorrelated adjacent patterns, the third term (the crosstalk term) in (3.4) should
be small compared to the first terms. For A < 1, determines the sign of and
so pattern u is stable. For A > 1, pattern v + 1 will dominate the sign of hvu, and
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Figure 3.2: Example of the type of sequence expected from a temporal Hopfield network
with asynchronous update. Each grid of dots represents the activity of neurons at one
time step. In fact this sequence was produced using a different type of weight matrix
to Hopfield's original equation (3.2) by Nishimori et al. (1990).

so the network becomes unstable to the attractor for the next pattern. With asyn¬

chronous update, the rule was not very successful at reproducing learned sequences

(Hertz et al., 1991). It is, however, possible to achieve spatiotemporal pattern recall
with asynchronous update with a somewhat complicated learning rule that requires

potentiation or depression of connections between patterns that are any distance apart

(Nishimori et al., 1990). This aspect of the rule detracts from its biological plausibility.

Braitenberg (1978; reviewed in Palm, 1990) proposed the idea of a Gedankenpumpe
or thought-pump. With a similar set of weights to this above, by lowering and raising
the threshold periodically it could be possible to store and reproduce a sequence of pat¬
terns. If the network is recalling one pattern, lowering the threshold will cause other
neurons to ignite — probably those that belong to the next pattern in the sequence,

as they will have most input from the currently-active group. Once the second pat¬

tern is fully active, its recurrent excitation should be sufficient to keep it firing when
the threshold is raised again. The original pattern might die because of refractory ef¬
fects. The thalamus could control neuronal excitability in the cortex, thus acting as an

effective periodic change in threshold (Palm, 1990).

Levy (1996) has investigated learning of sequences of patterns in networks of sparsely-
connected McCulloch-Pitts threshold neurons with synchronous update. Global shunt¬

ing input and recurrent inhibition help to control activity levels in the network. Rather
than using prespecified weights, as in a Hopfield network, learning occurs online. The

learning rule is a simplified temporal Hebbian rule. Whenever a neuron is active,
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Figure 3.3: Pattern storage in Levy's (1996) network. In both diagrams, each vertical
column represents the activity of the network at one time step. Left. The network is
trained by activating a subset of adjacent neurons and shifting the group on each time
step (visible as the diagonal stripe at the top). Adjacent patterns are therefore highly
correlated. Right. The network recalls the sequence of patterns when prompted by the
first in the sequence.
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Figure 3.4: Schematic diagram of spatiotemporal pattern connectivity.

all weights from presynaptic neurons decay by a fraction and connections from all

presynaptic neurons that were active on the previous time step are strengthened. The
network is trained by presenting part of the network with sequences of patterns. Ad¬

jacent patterns in the network can be quite correlated (see figure 3.3). Sequence recall
proceeds by activating the first pattern or first few patterns in a sequence.

Herz et al. (1988) developed Hopfield's idea in a different direction. They assumed
there are many connections with different delays between each pair of neurons and
that learning occurs only when the spike in the presynaptic neuron occurs at exactly
the axonal delay before the spike in the postsynaptic neuron. Thus their potentiation
function was effectively a delta function. They showed that sequences of patterns could
be learned with this rule. This rule will lead to there being connections from neurons

in one pattern to neurons in the next and subsequent patterns, as shown in figure 3.4.
The previous work used rate-based or binary neurons. Gerstner et al. (1993b)

applied a similar sort of learning rule in a network of SRM neurons:

<3-5>
H v

This rule leads to a similar connectivity to the Herz et al. (1988) model, as shown in
figure 3.4. Typical patterns produced by the network are shown in figure 3.5. The

patterns were quite uncorrelated, though sometime neurons could fire more than once

during the same spatiotemporal pattern.

Although the weights determine the patterns and the order in which they are re¬

called, the magnitude of the threshold determines whether and how fast the patterns

may be recalled for a given set of weights. If it is too high no units will ever fire; if it is
too low the units will be firing at the maximum frequency allowed by their refractory
period. For values between these extremes, the threshold has the effect of controlling
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Figure 3.5: Recall of a stored spatiotemporal pattern, a. Part of a spatiotemporal
pattern used to train the weights of a network according to an abstraction of the
temporal learning rule of Zhang et al. (1998). b. Output from the trained network on
presentation with the first four patterns. Parameters will be discussed in chapter 6.

the speed of recall since each unit fires when the membrane potential crosses the thresh¬
old while rising. The membrane potential will cross a lower threshold sooner, causing

activity to propagate faster.

3.2 Synfire chains
Abeles (1991) proposed synfire chains to account for a number of phenomena in the
primate neocortex:

Precisely timed spike patterns: In experiments from various areas of the cortex,

there appeared to be more repeating precisely timed spike patterns within the
same neuron and across different neurons than would be expected with neurons

firing independently at the same rate.
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Connectivity and processing: The anatomy of the neocortex is strongly recurrent
whereas processing appears to be feed-forward and hierarchical (Abeles, 1991).

Low firing rate: Cortical neurons fire at around 1-5 Hz. Abeles' calculations and
those of other workers indicated that even with inhibition, neurons in randomly-
connected networks could not fire stably at this rate unless there was external
excitation.

The experimental evidence for precisely timed spike patterns is now disputed (see
section 3.6) and the low firing rates can be accounted for theoretically by fast, strong
inhibition (Amit and Brunei, 1997). Despite this, synfire chains are an interesting
theoretical concept with testable predictions and have not been disproved. I shall go
on to describe them and how they account for the data.

The term "synfire chain" refers to a combination of an anatomical structure and a

mode of propagation through that structure. The word "chain" refers to a sequence

of groups of neurons (known as nodes or pools) embedded in a neural network. This
sequence is defined by diverging and converging connections between adjacent nodes

(see figure 3.6). It is possible for the same neuron to appear twice or more in different
nodes of the same chain and the neurons of the same node do not have to be physically
close to each other. The word "synfire" refers to the mode of activity propagation

through the chain. Under certain conditions (see section 3.4), the neurons of each node
fire almost synchronously and send their spikes to the next node. The neurons of this
node fire almost synchronously, and so activity propagates along the chain. This mode
of propagation is called synfire propagation.

The first of Abeles' experimental phenomena, precisely timed spike patterns, is ex¬

plained by the fact during synfire propagation there should be very little dispersion

(1-3 ms) in a node's firing times and the delay between any pair of nodes' mean firing
times should be the same whenever activity passes through the chain. Thus, during

prolonged recordings from two or more neurons in the same chain (though not nec¬

essarily the same node) the same patterns of intervals between the neurons firing on

a 1-3 ms time scale should recur. As it is possible for the same neuron to belong to
different nodes in the same chain, there may even be repeated patterns in one neuron.

The second phenomenon is explained by the ordered connectivity of the synfire
chain embedded in a network of randomly-connected neurons. Thus the connectivity
can appear to be recurrent, whereas the processing — or at least activity propagation
— appears to be feed-forward.

The stability argument is more subtle. First of all, Abeles considered a randomly-
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connected patch of cortex containing 20000 neurons with 25% connectivity. He con¬

cluded that with only excitatory neurons, activity will either saturate or die out, de¬

pending how many neurons are initially active. This is because a certain number of
presynaptic spikes are required to activate a postsynaptic neuron. The probability of
a neuron receiving at least this number of connections from a group of active neurons

increases as the size of the active group increases. If the group is below a critical size,
fewer neurons will be activated than were originally active and the activity dies out.
If it is above the critical size, more neurons will fire and the number of neurons firing
snowballs. Abeles reckoned that with inhibition it is difficult to obtain the low firing
rates present in the cortex without external excitation.

The cortex does receive tonic inputs from other areas of the brain (most notably
the thalamus), which could provide the external excitation that would account for the
low firing rates. Notwithstanding this solution, Abeles proposed another. Chains of
diverging and converging connections with somewhat strengthened synapses superposed
on the background connectivity could keep activity low. In each node of the chain there
would be fewer neurons than the critical number that causes the network activity to

snowball, but activity would propagate within the chains, thereby maintaining activity.
However there was a problem if the activity propagated asynchronously through the
chain. The number of neurons concurrently activated in a number of successive nodes

might exceed the critical number and lead to explosion of the activity. There were two

approaches to this problem:

1. anatomical separation of nodes; that is, remove the background random connec¬

tions; and

2. synchronous transmission; that is, minimise the temporal overlap between nodes
firing.

The second solution is adopted in synfire chains.

3.3 Spatiotemporal patterns and synfire chains
At this point it is worth noting that there is a strong connection between spatiotemporal

patterns and synfire chains.

Firstly, there is a link between the activity patterns in a synfire chain and a spa¬

tiotemporal pattern. We can regard the neurons of each node in a synfire chain as

a pattern; thus synfire propagation is the same as recalling a sequence of patterns
synchronously.
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There is also a link between the connectivity in networks supporting synfire chains
or spatiotemporal patterns. We can define the set of neurons comprising the fith node
analogously to the set of neurons comprising the pth pattern: Since only adjacent
nodes in a synfire chain are connected, the weight matrix in a network in which one

synfire chain was embedded would be

This equation is a special case of the general spatiotemporal pattern weight matrix (3.5).
The anatomy of synfire chains is thus a special case of the more general spatiotemporal

pattern connectivity, since there can be only connections between adjacent patterns.
These similarities suggest that synfire chains might be learned with the same mech¬

anism as is proposed for spatiotemporal patterns, namely a temporal learning rule. In
this case, a useful generalisation to the concept of synfire chains is to have non-adjacent
connections as well as adjacent connections. The reason for this is that if the learning
rule has a sufficiently broad temporal spread, the firing of nodes several stages apart

may trigger learning.

In this section I will outline a number of factors that affect the recall of synfire chains
without venturing too much into mathematics, which I will do in the course of explaining
the derivations in chapter 6.

There are five possible instabilities in the propagation of synfire chains that con¬

strain the weights, threshold, sparseness and number of links stored in a network of
fixed size. In section 3.4.1 I discuss the instability I call temporal coherence. It was
first investigated by Abeles (1991), who referred to it as "dynamical stability". The
terminology of the last four instabilities is due to Wennekers (1999a). Asynchronous
background instability (section 3.4.2) and chain death due to fluctuating potentials (sec¬
tion 3.4.3) are both consequences of a capacity analysis of the network in the limit of
a large network. Cross excitation (section 3.4.4) and chain death due to refractoriness
(section 3.4.5) occur in networks where the asymptotic analysis breaks down.

Although the weight matrix specifies the order in which activity passes through
nodes, it does not determine the frequency or speed at which nodes are recalled. Sec¬
tion 3.4.6 discusses the factors that affect the speed.

(3.6)

3.4 Dynamics
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Figure 3.7: Demonstration of temporal coherence and chain death due to fluctuating
potentials. Left. Plots of the membrane potentials of neurons from the first node
(upper) and second node (lower) in a synfire chain. The threshold of 4 is labelled by a
solid horizontal line. Right. Corresponding raster plots (the neurons of the first node
arc labelled 1-5; those of the second are 6-10). The variation in weights and delays
between the two groups of neurons causes dispersion in the firing times of the second
node and causes one of the neurons (6) not to fire, because its membrane potential does
not reach threshold.

3.4.1 Temporal coherence

Although the term "synfire" indicates the firing is synchronous, in fact there will be

always some temporal dispersion of the firing times within a node (see figure 3.7).
Does this temporal dispersion increase rapidly or stabilise as activity propagates down
the chain? Abeles (1991) argued qualitatively that under cortical conditions, activity
would stabilise, being robust to small amounts of jitter in the firing times of neurons.
Herrmann et al. (1995) and Hertz (1999) confirmed this quantitatively in the case where
the rise time of the EPSP is small compared to the temporal jitter. They found that
synfire propagation is stable, given a large enough average connectivity, large enough
nodes, an appropriate shape of EPSP and small enough fluctuations around the average

connectivity level, thresholds and EPSP size.

Aertsen et al. (1996; Diesmann et al., 1996, 1999) reached similar conclusions in a

simulation study. They used the concept of pulse packets, the probability density of an
active neuron as a function of time. They found the mean response of an IF neuron

with a noisy membrane potential to input pulse packets parameterised by the total
number of spikes and temporal dispersion. They characterised the output similarly
and thus were able to find a neural transmission function that gives the relationship
between the height and width of incoming and outgoing pulse packets. From the neural
transmission function they determined a parameter range in which synfire transmission
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is stable, that is, for which the pulse packet width does not increase. This led to

conditions for minimum width and connectivity of chain. They estimated 100 spikes
— that is 100 neurons in a node — were needed for stable transmission. A drawback

of this analysis is that it deals with transmission in the mean (Diesmann et al., 1999).
A particular input activity pattern drawn from the mean distribution might not be
sufficient to fire the next node in the chain, especially on the margins of stability as

calculated with pulse packets. This will tend to reduce the stable parameter range.

3.4.2 Asynchronous background instability

The weight matrix (3.6) makes clear that synfire chains can be thought of as an asso¬

ciative memory. As with all associative memories, synfire chains can only store a finite
number of patterns before recall breaks down. Herrmann et al. (1995) exploited the
similarity with an autoassociative network of sparse 0/1 patterns studied by Tsodyks
and Feigel'man (1988). The update of the network was synchronous, so that at each
time step the activity of the network corresponded to those neurons that would have
fired in a synfire chain with the same connectivity at the same time step. There was

inhibition to control the activity of the network and the activation function of the
network was a step function which implemented a threshold.

They used mean field analysis to obtain fixed point equations for the activity of
the network and the overlap of the patterns. Stability analysis showed that for a given

capacity of the network, if the threshold is below a certain level, the activity level

explodes. In the limit of large network size, the cells that fire are uncorrelated with
the simultaneously active synfire patterns. This gives rise to the name asynchronous

background instability (Wennekers, 1999a).

(Bienenstock (1995) and Hertz (1999) calculated the capacity using a simpler signal
to noise calculation.)

3.4.3 Chain death due to fluctuating potentials

The equations of Herrmann et al. (1995) show that if the firing thresholds are high,
and the variance of the potentials in a node are also high due to a large number of
stored patterns, then some neurons in a node may fail to fire causing activity to die out

(see figure 3.7). Wennekers (1999a) calls this instability chain death due to fluctuating
potentials.
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3.4.4 Cross excitation

In small networks the asymptotic analysis (Herrmann et al., 1995) breaks down because
the background noise between cells is not independent. In this case there may be

exceptionally large overlaps between nodes that might erroneously activate other nodes
if the threshold is low (Wennekers, 1999b).

3.4.5 Chain death due to refractoriness

Overlap of nodes is responsible for chains dying when there is a high threshold and a

refractory period. This is because if two nodes that are close together in the sequence

overlap strongly, many of the neurons in the second node will be refractory when their
turn to fire comes because they will have recently fired (Wennekers, 1999b).

3.4.6 Speed of recall

In the original picture of synfire chains, the speed at which nodes fired was considered
to be constant. However, as explained in section 3.1 in the context of spike-based

spatiotemporal patterns, the speed of recall can be modulated by changing the threshold
or, equivalently a control input (Arnoldi and Brauer, 1996; Wennekers and Palm, 1996).
To recap, the lower the threshold, the sooner the membrane potential in a given neuron

will reach the threshold, and therefore the faster activity will propagate.
Arnoldi and Brauer (1996) have investigated this phenomenon with simulations

and others (Wennekers and Palm, 1996; Wennekers, 1999b; Ermentrout, 1998) and
have analysed a somewhat more general system where connections are not restricted to

neighbouring nodes.

Changing the recall speed could be a useful property for recalling patterns (for
example motor sequences) at variable speeds. It could also be used to synchronise the
activity of two synfire chains, as Bienenstock's (1995) model requires. Arnoldi and
Brauer (1996) showed this was possible using weak inter-chain excitatory connections.
Variable speed of recall also has interesting implications for the detection of synfire
chains (see section 3.6).

3.5 Coding
This section describes a number of proposals as to how synfire chains could process

information.
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3.5.1 Synfire chains as spatiotemporal pattern memory

As pointed out in section 3.3, we can think of synfire chains as a special case of a spa¬

tiotemporal pattern memory in which the patterns are retrieved synchronously. The
nervous system certainly needs to be able to produce sequences of patterns, for ex¬

ample motor patterns or episodic memory patterns in the hippocampus (Levy, 1996).
Whether or not the patterns need to be produced synchronously is an open question.

Nevertheless, the possibility seems reasonably likely and it therefore seems worthwhile
to investigate the properties of synfire chains that might relate to pattern storage.

Wennekers and Palm (2000) and Wennekers (1999b) have shown that a slight mod¬
ification to synfire chains allows them to act as sequence recognisers. The trick is to

set up the synfire chain so that it needs extra activation at each node to allow it to

propagate. The extra activation comes from the scalar product of stored weights and an

input pattern as in a conventional associative network. Again, it is not known whether
the brain uses this method of pattern recognition.

3.5.2 Synfire chains as reverberating short term memory

The end of a synfire chain can be connected back to its beginning to create a loop. In
this structure, once a node is activated, activity will reverberate around the loop (Abeles
et ah, 1993). This state can be regarded as a stable attractor. Thus, the network can

act as a short term memory (STM) or working memory state. It should be possible to
store a number of loops in a group of neurons. Inhibitory input could be responsible
for quenching the activity.

It is possible to build networks of spiking neurons that store stationary attractors

(Gerstner and van Hemmen, 1992) by means of purely excitatory connections. In these
networks the recall can be either asynchronous or synchronous. However, firing rates

are unrealistically high and the ISI histograms of individual neurons are not distributed

exponentially, because they fire almost periodically. It is difficult to keep the activity
at realistic levels with inhibitory neurons without quenching the activity of the network

completely.

3.5.3 Synfire chains as transmission mechanism

Synfire chains could be a mechanism for transmitting activity across long distances in
the cortex (J. Murre, personal communication), though given the long range connections
that exist in the cortex this seems unlikely.
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3.5.4 Synfire chains as multilayer perceptrons

Abeles (1991) proposed that synfire chains are equivalent to multilayer perceptrons (see
section 1.3.3). This is true insofar as synfire chains exhibit feed-forward propagation
of activity. However, on their own, synfire chains do not process information; the
activation at each node is always the same (or similar) on each pass of activity through
the chain. By contrast, the activations in the units of a multilayer perceptron depend
on the input pattern.

Would it be possible to modify the synfire chains to implement multilayer percep¬
trons? There would need to be a number of possible routes through a particular chain
that would lead to a different output at the final node. Although I cannot prove that
it would be impossible, the problem of learning indicates this would an unpromising
line of research. Learning would require the backpropagation algorithm, which requires
feedback from all layers higher than a certain layer back to that layer. Although spike

timing dependent synaptic plasticity (section 2.5.2) might allow this, it is not clear that
the error would be propagated properly.

3.5.5 Synfire chains as primitive features

Bienenstock (1995) proposed that synfire chains represent primitive features. He wanted
to show that representations in the neocortex could be built up compositionally, that
is recursively, out of previously constructed entities. For compositionality to work,
there needs to be some way of binding entities dynamically. Therefore, if synfire chains

represent primitive features, it should be possible to bind them dynamically by some

mechanism. Narrower synfire chains could be dynamically linked by weak connections
to form broader chains thereby allowing recursive representations.

A proposed linking mechanism is to synchronise the activity of two activated chains.
Bienenstock (1995) proposed that this could be achieved by weak connections from the
node of one chain to the next node of another chain and vice versa.

Using simulations, Abeles et al. (1994) showed how weak connections could be
learned between synfire chains embedded in a random, sparsely-connected network.
The basic training protocol was to activate a pair of synfire chains simultaneously and
if activity successfully propagated to end of both chains, apply Hebbian learning to
the inter-chain connections. The synaptic modification was stronger for smaller time
intervals between pre- and postsynaptic cells, consistent with the experimental evidence

(section 2.5.2). After sufficient training synfire activity in one chain activated the chain
it had been paired with.
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Although these simulations certainly demonstrated the possibility of learning synfire
chains dynamically, it is not clear how dependent the result was on various aspects of
the simulations. Such aspects include: the particular neuron model (refractory IF neu¬

rons with various channels); the activity-dependent dynamic threshold; and the weight
decay factor. A further questionable aspect was the connectivity. Each synfire chain
in a pair was embedded in a sub-network containing both excitatory and inhibitory

connections1, but the links between these sub-networks were purely excitatory. This

obviously restricts the generality of the result, although arguments could probably be
made about the pattern of excitatory and inhibitory cortical connectivity.

I can not think of a knock-down theoretical argument against using synfire chains as

primitive features and synfire binding, although perhaps a careful look at the numbers
of synfire chains required for the theory might prove instructive.

3.5.6 Synfire chains as finite state automata

Wennekers (1999b) has shown that slightly modified synfire chains can be arranged
so as to implement finite state automata. The slight modification is to add an extra

gating input to nodes, similar to the one needed to make a sequence-recogniser. This
effectively allows a node to act as an AND gate, thereby allowing nodes to be excited

only when they receive the correct external and internal input. Thus the nodes and
external inputs of a finite state automaton can be implemented. The model can be
extended to implement a non-deterministic finite state automaton.

This result is interesting as it shows that synfire chains can compute. However, it
is worth noting that relatively simple systems such as time-discrete, binary threshold
neurons can implement finite state automata.

3.6 Experimental evidence for synfire chains

Synfire chains are a nice theoretical construct, but do they exist? In section 3.6.1 I
summarise the evidence for synfire chains. I outline some criticisms of the methods and
data in section 3.6.2. Finally, in section 3.6.3, I discuss the arguments for and against.

JAn interesting point is that when fully trained, the total activity of the assemblies was also corre¬
lated. Due to the inhibitory-excitatory connections, the overall activity was oscillatory, with the period
being regular in the case of moderate learning, and irregular in the fully trained network. Abeles et al.
(1994) speculated that the stimulus-dependent, oscillatory, synchronised activity found experimentally
(Gray et ah, 1989; Gray, 1994) might be a consequence of this process, which they call synfire binding.
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3.6.1 The evidence for synfire chains

As mentioned in section 3.2, the synfire hypothesis predicts precise time locking (1-3 ms)
between cells recorded from within the same node. We might expect it to be difficult
to find synchronous firing of neurons experimentally, as the chain will probably be very
sparse, so there will be an extremely low probability of finding neurons in the same

node. However, the (constant speed) synfire hypothesis also predicts that there will be
precisely timed spike patterns (PTSPs) between neurons on a timescale of hundreds of
milliseconds, due to the small dispersion of activity. Repeated spatiotemporal patterns
in one or more neurons would therefore provide indirect evidence for synfire chains.

Early attempts at finding patterns in spike trains of single neurons (Marczynski
and Sherry, 1971; Marczynski et ah, 1980) used the pattern of interspike time interval
increases and decreases rather than the precise temporal patterns to determine whether
neurons were producing unusual spike patterns. Marczynski and others found above-
chance patterns of increases and decreases in the caudate nucleus of unanaesthetised,
immobilised cats (Marczynski and Sherry, 1971) and in the hippocampal neurons of
cats during rapid eye movement and motionless quiet wakefulness but not during slow
wave sleep (Marczynski et al., 1980).

Dayhoff and Gerstein (1983a,b) proposed a method for detecting excess temporal
patterns within a neuron by comparing counts of "words" (that is patterns of ISIs) in
the recording with the null hypothesis numbers of spikes created by shuffling the ISI
histogram of the recording. They also proposed a template method for determining
how many of each pattern was present. Put together, these two methods allowed them
to discover above-chance numbers of repeating temporal patterns in over 50% of cells in
the Crayfish claw control system and 50% of neurons from the striate cortex of lightly
anaesthetised cats, albeit at a very low resolution of about 50 ms.

Lestienne and Strehler (1987) found evidence for excessive numbers of repeating
doublets and triplets of spikes at a time resolution of 0.14 ms in 100 ms time windows
of activity recorded from neurons in the monkey visual cortex.

Abeles and Gerstein (1988) developed an efficient pattern-matching algorithm based
on the idea on representing the spike train by punched holes in a piece of paper. When
a copy of one spike train punched tape is pulled past the another, excessive patterns
are evident when more holes than usual align. The amount by which the tape has
been pulled is the interval between the two spikes in a PTSP. This is in fact the same

as performing a cross correlation analysis on the spike trains and looking for large
peaks. They also developed a significance test that worked quite well for stationary
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and near-stationary spike trains but failed on spike trains with considerably varying
rates.

Villa and Abeles (1990) found evidence for spatiotemporal firing patterns in the
auditory thalamus of an anaesthetised cat using this algorithm. Abeles et al. (1993)
used the same pattern-matching algorithm to discover excessively-repeating PTSPs in
the frontal cortex of behaving monkeys. They found an excess of repeating PTSPs in

1, 2 or 3 neurons in 30-60% of cases, allowing for a timing jitter of 1-3 ms. For a given
behavioural condition there were many different patterns, though one pattern did not

correspond to more than one behavioural condition. In 13 out of 20 cases the elevated

firing rate above 40 Hz was mainly associated with repeated spatiotemporal patterns.
The most marked excess patterns mainly comprised one or two units. The repeated

activity in one or two units was interpreted as reverberations in the synfire chain, that
is recurrent connectivity.

Prut et al. (1998) have matched recordings from the premotor and prefrontal ares of
monkeys performing a task with various aspects of that task. They found evidence that

suggests the identity of the PTSP correlates to the behavioural state. Furthermore, the

time-dependent firing rate did not provide a better description of the behavioural state
than the PTSPs.

3.6.2 Criticism of the evidence for synfire chains

There are three main criticisms of the evidence for synfire chains.

3.6.2.1 The "null hypothesis" criticism

PTSPs can occur by chance as well as by design. Whether the number of PTSPs
detected in an experiment are significant or not depends on the null hypothesis used to
determine how many PTSPs would be expected to occur by chance. The simplest null

hypothesis is a uniform Poisson process with the same firing rate as the neurons recorded
from. The expected number of PTSPs depends in a highly nonlinear way on the firing
rate. When using a uniform Poisson null hypothesis, it is therefore important to make
sure that the variation in the firing rate is small over the firing period. For variable

firing rates the minimum null hypothesis should be a nonuniform Poisson process based
on an estimate of the time-dependent rate.

Oram et al. (1999) have gone one step further in their search for PTSPs across

triplets and quadruplets of lateral geniculate nucleus (LGN) and primary visual cortex
(VI) neurons in the awake fixating rhesus monkey. Their "spike matched" null hypoth-
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Figure 3.8: An example of a precisely timed spike pattern (PTSP). Each box contains
a number of spike rasters from trials in a different neuron; the same trial from each
neuron is plotted at the same height in each box. The rasters have been aligned so that
the PTSP is evident. The PTSP is a triplet: its first spike is at time 0 in neuron 5; its
second is in neuron 2 at 31 ms later; and its final spike is 52 ms later in neuron 6. The
second and third spikes are not perfectly aligned; this reflects the jitter allowed in the
pattern-matching algorithm. From Prut et al. (1998).

esis is based on a nonuniform Poisson process but additionally matches the number of
spikes on a trial-by-trial basis and matches the ISI histogram by removing short inter¬
vals that occur less frequently in the neural data because of refractory properties of
the neurons. They found that the number of PTSPs in their data was not significantly
different from the number predicted by the "spike matched" null hypothesis. Other

possible null hypotheses, including uniform Poisson and nonuniform Poisson, underes¬
timated the number of PTSPs actually produced. The number of PTSPs was correlated
almost perfectly with the spike count, indicating that the number of PTSPs might not

convey any more information than the time-averaged rate. Information theoretic analy¬
sis bore this out: the number of PTSPs conveyed only a third of the information carried
by the spike count, and even a combined spike count and number of PTSPs code did
not convey any more information than the rate.

3.6.2.2 The "correlation with behaviour" criticism

Another criticism (Shadlen and Newsome, 1994) of the experiments of Abeles et al.
(1993) is that they made no attempt to correlate the identity of the PTSPs with the
current behaviour or state of the animal. The experiments of Prut et al. (1998) answer
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this criticism and show that the identity of the PTSP does correlate to the behavioural
state.

3.6.2.3 The "too many single-spike patterns" criticism

One puzzling aspect of the frontal cortex data is the preponderance of three-spike
patterns made up from the firing times of one or two units rather than three units.
If the units that make each node are chosen from a uniform distribution we would

expect to observe far more triplets from different neurons than from the same neuron

(see appendix A.l). In fact, we see almost the opposite, with the percentages of 1,
2 and 3 unit triplets being 70%, 29% and 1% respectively (Abeles et al., 1993) and
24%, 43% and 24% respectively (Prut et ah, 1998). Therefore, either the assumption of
uniform participation must be wrong, or there may be some bias in the measurement

and detection of the repeating patterns. Abeles et ah (Abeles et ah, 1993; Prut et ah,
1998) believe the distribution of participation is strongly non-uniform and that the
synfire chains are circularly connected so that activity reverberates around them. This
would tend to favour single unit recordings more than the uniform case, since activity
would certainly return back to the neuron. However, the patterns should then all have
the same intervals, which they appear not to.

3.6.3 Discussion

The "null hypothesis" criticism of Oram et ah (1999) is the most convincing of the
criticisms of evidence for synfire chains. However, it does not rule out synfire chains

conclusively.

Firstly, none of the possible functional roles of synfire chains mentioned in section 3.5

predicts that the number of times a PTSP appears conveys information. Rather they

predict that the same PTSPs should appear in different trials, and that their identity
should be correlated with behavioural or cognitive states. Secondly, the results of Oram
et ah (1999) are from visual areas rather than frontal areas. It may be that synfire chains
exist in frontal areas and not in visual areas. Finally, a factor which no experiments
have taken into consideration is that of variable speed of synfire chains. If, as suggested
in section 3.4.6, the speed of recall is variable, then the intervals between neurons in
successive nodes in a chain will not be constant, and the chain will be impossible to

detect using current methods. Although it is not inconceivable that new methods could
be developed to detect chains propagating at variable speeds, they will have to be much
more sophisticated that today's methods. This does not mean that synfire chains are
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unfalsifiable in principle, though it may prolong the debate between the proponents

and opponents of synfire theory.
It is also worth noting that although synfire chains are one possible cause of excessive

PTSPs, another mechanism could produce the same effect. Therefore, experiments to
determine the existence and coding properties of excessively repeating PTSPs can only

prove that synfire chains do not exist.
To conclude, there are two answers to the question "do synfire chains exist in the

mammalian brain" depending on where we look. In visual areas, the answer is "probably
not" and in frontal and auditory areas it is a cautious "possibly". Despite this, I believe
that there is still enough doubt about the existence of synfire chains to make their
theoretical study worthwhile. More ideas about how they might function could lead to
more precise, testable hypotheses.

3.7 Learning
In this section I will review work done on learning synfire chains. I believe that as with
conventional neural networks, there are two possible methods of learning synfire chains:

supervised and unsupervised. In section 3.7.11 will review work done on learning synfire
chains might form in an unsupervised fashion from a network with random connections
due the random activity of the network and a suitable learning rule. In section 3.7.2 I
discuss aspects of supervised learning.

3.7.1 Unsupervised Learning
If the identity of the neurons of a node does not convey any meaning we might expect
the synfire chains to self-organise. (An example where the identity does not matter
is the "synfire chains as primitive features" scenario discussed in section 3.5.) Abeles
(1991) argued heuristically that synfire chains should be able to self-organise from a

randomly-connected network. Hertz and Prugel-Bennett (1996) explicitly modelled the
Hebbian learning of synfire chains, using synchronously updated, leaky IF neurons with
shunting inhibition proportional to total activity. There was initially random 25% con¬

nectivity and weights were randomly distributed. They adjusted the parameters of
the weight distribution and the inhibition so that the level of background activity was

stable. They then tried to make synfire chains self-organise by using a Hebbian rule
with a one-step time delay and by repeatedly presenting a stimulus to the same small
group of neurons. This protocol alone did not cause synfire chains to form, though with
various strategies it is possible to learn 20 nodes. These strategies included sequential
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stimulation of groups of neurons, a more abrupt nonlinear learning rule, adaptive in¬

hibition, normalisation of presynaptic weights and an adaptive threshold. The main
limit on learning seemed to be as the random connectivity changed, the spontaneous

activity became unstable. Hertz (1999) suggests that short-term synaptic modification
(Tsodyks and Markram, 1997) might improve synfire chain self-organisation.

3.7.2 Supervised Learning
Another possibility for learning synfire chains is that there is some external network
with connections to the network in which the synfire chain is to be learned. Possible
teacher-student pairs are the hippocampus and the neocortex (McClelland et ah, 1995)
or the motor cortex and the basal ganglia.

Excitation from the external network could activate groups of neurons in the target
network in the same order repeatedly. If this happens enough times while a temporal

learning rule is in operation, we would expect to end up with a weight matrix similar
to the prespecified one (3.5) given earlier in the chapter. With the exception of the
preceding section, we have thus been considering supervised learning throughout this

chapter.
In section 3.4.6 I discussed how the speed of recall could vary as a function of the

threshold and other parameters. If we are explicit about supervised learning, another,
hitherto neglected speed comes in to play, namely the training speed. This is speed (or
frequency) at which the patterns are presented to the network by the external network.
In chapter 6 I will present analysis that explicitly considers the training speed.

3.8 Summary

Sequences in their most general form encompass a progression of activity from one state

to the next. Although this could be in the form of firing rates, such as dynamic attractor

networks, a spike-based alternative is spatiotemporal firing patterns. Spatiotemporal

firing patterns can be learned with an asymmetrical temporal learning rule and recalled

by activating the first few neurons in the pattern.

Synfire chains are the name given to the neural substrate and activity pattern of
one particular form of spatiotemporal spiking pattern. Here the neurons are organised
into a sequence of groups known as nodes. When activity propagates down the chain,

activity within each group is synchronous. In the original conception of synfire chains,
there were only connections between adjacent groups. Synfire chains help keep activity
constant in a system without requiring unrealistically fast inhibition.
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Synfire chains have many possible functions, including spatiotemporal pattern mem¬

ory, reverberating short term memory a transmission mechanism, primitive features and
a basis for implementing finite state automata.

Synfire chains or spatiotemporal firing patterns manifest themselves as precise, re¬

peated time intervals in single and multiunit recordings. There are algorithms to dis¬
cover precise, repeated time intervals in spike train data, but the statistics of showing
that there are a significant number of repeated time intervals are disputed. The experi¬
mental evidence for spatiotemporal patterns in the mammalian cortex is suggestive but
not conclusive. Nevertheless, the idea of spatiotemporal sequences and synfire chains
does not seem implausible, so study of their dynamics is worthwhile. Less precise

sequences are present in many other systems, for example the mammalian hippocam¬

pus and the locust olfactory system. Studying synfire chains might throw up results

applicable to less synchronised systems.

There has been some theoretical work on the dynamics of synfire chains. There
are simple arguments that show the conditions on the variance of the weights, time

delays and neuronal noise in order to obtain temporally coherent pulses of activity
at each node. A network of neurons can only support a certain number of synfire
chains before activity becomes unstable, as with a standard Hopfield network. The

firing threshold can be set higher to prevent this instability, but if it is set too high,
chains will fail because the potential is not sufficient to reach the firing threshold. In
small networks, exceptional overlaps between nodes in different chains are more likely,

causing activation to spread from one chain to another. A similar problem arises when

overlap occurs between nodes close together as many neurons may be in a refractory
state when they are due to fire.

Attempts to encourage synfire chains to self-organise with an asymmetric temporal

learning rule have not been very successful. "Supervised" learning has been investigated
implicitly and is relevant to the idea of copying synfire chains. The speed of propagation
of synfire chains can be controlled by the threshold.

I will present my work on this in chapter 6.



Chapter 4

Synchrony

The purpose of this chapter is to introduce some of the experimental evidence for,
function of and mechanisms underlying synchronous activity in the nervous system.

Oscillations and synchrony are ubiquitous in nervous systems. Although they often
occur together, they are distinct concepts. Section 4.1 gives an definition of synchrony
and oscillations in terms of their detection using cross-correlation functions, already
discussed in chapter 2.

Synchrony has been proposed as a way of encoding certain types of information.
Section 4.2 gives examples of how synchrony appears to encode information in the
visual, auditory and olfactory modalities. Neuronal firing can be locked to the time
course of a stimulus or can be synchronised with other neurons. One potential use of
synchrony that has received much attention in recent years is as a mechanism to bind

together distributed representations in the nervous system.

In section 4.3 I review theoretical work on the dynamics of synchrony in networks of

graded response and spiking neurons and with purely inhibitory or excitatory connec¬

tions. For a network with a certain type of uniform connectivity, the SRM encountered
in chapter 2 provides a way of deriving a general condition on whether a network will
remain in a synchronous state.

4.1 Synchrony and oscillations
A working definition of synchrony is that different neurons fire within a few milliseconds
of each other. The cross-correlation function (see section 2.3.2) is one way of showing
whether neurons are firing synchronously over a period of time. In the case of a pair
of neurons firing synchronously, we would expect to see a single large peak in the
cross-correlation function at a time lag of zero.

What we would see in the rest of the cross-correlation function would depend on

71
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the nature of the neurons' activity. If, in addition to firing synchronously, the neurons

were firing fairly periodically, we would expect to see bumps in the cross-correlation

away from the centre peak. This is the case of synchronous oscillations, the subject
of a great deal of research in recent years (see section 4.2.3.2). Despite the research
interest, synchrony can also occur without oscillations. In this case, there will just be
a peak at a time lag of zero against a fairly constant background at other time lags.

The converse of synchrony without oscillations is oscillations without synchrony.
This could occur when recording from two neurons that are firing periodically at the
same frequency, but with a phase lag between them. The locust olfactory system (to
be discussed in chapter 7) is an example of where there are oscillations, though not

synchrony between neurons of different classes.

4.2 Synchrony codes

This section presents a selection of codes involving synchrony. It is by no means ex¬

haustive; for a more comprehensive review see Gray (1994). Perhaps the most straight¬
forward type of synchrony code is one in which the neural response is synchronised to

a stimulus. In section 4.2.1 I present evidence that shows that such a code exists in the

auditory system. Synchrony need not be stimulus-locked; in section 4.2.2 I present an

example from the auditory system where synchrony represents the presence or absence
of a quality in the stimulus. Section 4.2.3 deals at some length with a controversial

proposed use of synchrony as a solution for the binding problem, the problem of indi¬

cating to the nervous systems which parts of distributed representations belong to the
same object. In section 4.2.4 I describe how synchronous oscillations also seem to refine

representations of odours in the locust olfactory system.

4.2.1 Stimulus-Locked synchrony in the auditory system

Figure 4.1 shows how in the mammalian auditory system, neurons in the auditory nerve

lock their firing to the periodicity of sounds impinging on the ear (Kiang, 1980). This
information is used by the CNS to determine phase differences between the ears (Carr,
1993). The firing rate of neurons in the auditory nerve encodes the intensity of stimuli.
Thus the firing of the auditory nerve is a dual code.
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FREQUENCY (kHz)

Figure 4.1: Auditory nerve fibre locking to a stimulus. The bottom trace shows the
stimulus presented, a swept tone ranging in frequency from 0.2 kHz to 1.4 kHz. The
middle trace shows the post stimulus time histogram (PSTH) of the neuron's discharges
averaged over 960 repetitions of the stimulus. It is clear to see that at lower frequencies
the auditory nerve discharges are locked to the stimulus amplitude. The top graph is
a tuning curve based on the discharge rate of one neuron from the cat auditory nerve.
The solid line indicates the sound pressure level of a pure tone at the frequency on the
abscissa required to elicit an increase in firing rate of 10 spikes per second. The dotted
line indicates the level of the sound of the swept tone shown in the bottom trace. From
Kiang (1980).
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4.2.2 Synchrony in the auditory system

Another example from the auditory system, though further from the periphery, comes
from deCharms and Merzenich (1996), who recorded from two locations of the primary
auditory cortex of marmoset monkeys. Firing rates in response to no stimuli were the
same as the firing rates in the tonic part of a prolonged stimulus. But during the tonic

part of the continuous stimulus the correlation between the two neurons increased. The
correlation was not stimulus-locked, so seemed to originate from the network dynamics
of the system.

4.2.3 Binding by synchrony
This section deals with a controversial theory, that of binding by synchrony. Sec¬
tion 4.2.3.1 outlines the binding problem and the theory developed to solve it. Evi¬
dence from the visual system that appears to support this theory is presented in sec¬

tion 4.2.3.2. In section 4.2.3.3 I present theories of how binding by synchronisation

might be extended in central systems. Finally, I end with some of the criticisms of the

binding by synchrony theory in section 4.2.3.4.

4.2.3.1 The theory

While developing a theory of translation-invariant shape recognition, Milner (1974)
encountered the problem of how the nervous system represents primitive unities, that is,

parts of an object that belong together. The psychological analogue of this is known as

the binding problem, and has been discussed since the time of the Gestalt psychologists.
To solve this problem, he suggested:

If adjacent, or nearly adjacent, cells interact when excited, in such a way as

to synchronize and perhaps intensify each other's activity, this could provide
the unifying characteristic that ties the elements of a figure together. At
subsequent levels of the pathway, impulses from the cells fired by one whole
would arrive as synchronous volleys, whereas impulses from different figures
would have a random temporal relationship to each other, (p. 526)

Thus stimuli could induce synchrony and this synchrony can be read-out at higher
levels of the nervous system because groups of neurons firing synchronously are more

effective at making other neurons fire than asynchronously firing groups.

Independently, von der Malsburg (1981) put forward the correlation theory of brain
function. In a similar vein to Milner, he suggested the correlations between cellular

signals on a 2-5 ms time scale served to mark those signals as belonging together.
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He also proposed synaptic modulation on a fast (millisecond) timescale, as well as

conventional long term synaptic plasticity. The fast plasticity provides a mechanism
for separating concurrently activated assemblies by changing the effective connectivities
between the cells in each assembly.

4.2.3.2 Experimental evidence from the visual system

Evidence in favour of the correlation theory in the visual system has accumulated.

Figure 4.2 illustrates the key result, stimulus-dependent synchronisation. When two
cells in primary visual cortex with non-overlapping receptive fields (RFs) are excited
by different parts of something that is perceived as the same object, the cells synchro¬
nise their activity. If each cell is responding to a different object, their responses are

uncorrelated (Gray et ah, 1989). In fact the strength of correlation depends on the
Gestalt coherence of the object. The neurons with non-overlapping RFs are most cor¬

related when stimulated with different parts of the same moving bar, are somewhat less
correlated when the bar was split in the centre, but the two parts were collinear, and
showed no correlation when the different parts of the bar moved in opposite directions.

This synchrony occurs in the context of oscillations. Gray et al. (1989) showed
the spiking activity of neurons in the same column of the cat visual cortex oscillated

synchronously in the gamma frequency range of 40-60 Hz. The synchronous oscillations
can occur within columns and between columns (Gray et ah, 1989; Eckhorn et ah, 1988),
between different brain areas (Eckhorn et ah, 1988) and between hemispheres (Engel
et ah, 1992). Singer and Gray (1995) comprehensively review all this work. Engel
et ah (1990) discusses the basis of the methodology of these investigations, auto- and
cross-correlation histograms.

The substrate for the oscillations was postulated to be due to the lateral connections
between neurons in the visual cortex (Engel et ah, 1992). This is because the inputs
to either side of the visual cortex remain segregated after the optic chiasm, so it would
be not be possible for common input from the thalamus to synchronise the activity.
When the corpus callosum was cut, synchronisation was abolished, confirming this
theory. However, the synchronisation could be due to feedback activity from later

stages of the visual system, which would also be abolished by severing the corpus

callosum (Bugmann, 1997).
Another possibility is that the synchronisation is established early in the processing

system. Neuenschwander and Singer (1996) found that synchrony could be evoked in
the retina. In retinal ganglion cells in anaesthetised cats, stationary and moving light
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Figure 4.2: The Gestalt criteria of continuity and common fate are satisfied by syn¬
chronous firing between cells with different RFs but similar orientation preferences.
Multiunit recordings were taken from two sites in area 17 of the cat visual cortex sepa¬
rated by 7mm. A-C. The thick vertical bars represent the stimuli and the arrows show
their direction ofmovement. The shaded rectangles correspond to the visual fields of the
recorded neurons, with the thin vertical bars indicating their preferred orientation. The
circle marks the centre of the visual field. D-F. The corresponding cross-correlograms
of recorded activity. The number in the upper right corner is a measure of correlation
strength, where "ns" stands for "not significant". The scale bars indicate the number
of spikes. (From Engel et al., 1992.)
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stimuli evoked oscillatory responses in the frequency range of 61-114 Hz. There was

stimulus-dependent synchronisation between cells as far as 20° of visual angle apart.

They also found oscillatory correlations in the 35-125 Hz range between cells in LGN
of anaesthetised cats. The oscillations could be coherent between hemispheres, but
not between eyes, indicating that the retinal oscillation drives the LGN oscillations.

Although the LGN oscillations could be due to feedback from higher visual areas such
as area 17 and area 18 this seems less likely because of the difference in frequency range

(30-60Hz as opposed to 60-120Hz).

4.2.3.3 Central systems

Phillips and Singer (1997) proposed that synchronisation plays an important role in a

general scheme of cortical computation. They suggested that the basic cortical processor
has receptive field (RF) and contextual field (CF) inputs. The RF inputs are meant to
represent external information, are feedforward and largely determine the output of the
processor. By contrast, the CF inputs are lateral or recurrent and serve to modulate
the output of the processor rather than changing it directly. They help improve the
coherence of the information passed forward, so that similar pieces of information will
tend to reinforce each other (coherent Infomax). Phillips and Singer suggest that the
synchronous oscillations implement the CF inputs to neurons.

The idea of synchronous oscillation has been proposed to deal with consciousness
and attention (Crick and Koch, 1990; Singer, 1994). One possibility is that a saliency
map or "spotlight of attention" could promote synchronous oscillations in areas of
the primary visual cortex to make them more salient to higher levels of processing.
Crick and Koch (1990) speculate about the number of oscillations in the brain. One
global oscillation would be of little use since there could be a "best set" of fast firing
neurons that would not need to be reinforced by oscillations. Oscillations might overlap
and interfere with each other to different extents. There might be between about 4-7
coherent cycles in the brain at one time, and if these cycles correspond to attention or

memory states they could explain the limits on human attention and memory.

4.2.3.4 Criticism of binding by synchrony

Wilson and Bower (1991) modelled the visual cortex using fairly realistic spiking neu¬

rons and anatomy. There were local inhibitory connections and longer distance excita¬

tory connections. They presented continuous stimuli (like the bars used in the experi¬

ments) and found fairly weak 40 Hz auto- and cross-correlations locally within stimuli.
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The extent of correlation was determined by longer distance excitatory circuits, the
correlation length in objects being limited to twice the distance of the long-distance
connections. Furthermore, where synchrony did occur, it was only possible to find a

phase difference of zero between neurons by averaging over trials; there was no common

phase difference for within-trial phase locking as in the experiments. Wilson and Bower
felt that this presented a challenge to the theory of binding by synchrony, since it would
not be possible for one large object to be represented by neurons firing at the same

phase.

Amit (1997), in replying to Phillips and Singer (1997), criticises the idea that syn¬
chronisation is a necessary physiological solution to a cognitive problem, the binding

problem. The solution is dependent on the correct parameters, and so it is not a nec¬

essary one. He also questions the amount of synchronisation required, and claims that
the observed amounts are not great compared to the amounts seen in random networks

(Amit and Brunei, 1997).

Golledge et al. (1996) criticise synchrony by binding on a number of counts. From a

physiological viewpoint, they doubt whether neurons can be coincidence detectors and
they note that it is more difficult to get synchrony between single unit recordings than
it is to get oscillations. Golledge et al. argue most convincingly from a psychophysical
basis. Experiments show that feature binding is very fast and indicate that object

recognition requires only 20-30 ms of neural activity. This does not leave much time
for binding with 40 Hz cycles. Furthermore most information from a spike train is
available from the first 50 ms, that is only two cycles of 40 Hz. Less convincingly, they

argue that the oscillations could be due to chance. This, they claim, is because a high
level of firing implies a high level of synchronous firing by chance. As an alternative,

they propose a spatial-attentional mechanism via the dorsal stream. Most radically

they propose that the binding problem is not a problem because animals do not have
to deal with as much information as we think. Therefore there is space in the cortex for
information to reconverge physically in the system. This seems to be an incarnation of
the grandmother or "cardinal" cell hypothesis (Barlow, 1972) and is a difficult argument
to prove or disprove either way, as we do not have an exact figure on the amount of
information a brain has to deal with, nor do we know what the possibilities of non-

synchrony-based computation are.

Gray (1999) provides a comprehensive overview of the temporal correlation hypoth¬
esis and the debate surrounding it.
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4.2.4 Refining the odour in the olfactory system
In the locust and honeybee olfactory systems, oscillations in the second stage of pro¬

cessing appear to be necessary for fine discrimination between similar odours (Stopfer
et ah, 1997). Chapter 7 covers this in more detail.

4.3 Synchrony dynamics
In this section I will review theoretical work on synchrony in networks of graded response

neurons and networks of spiking neurons. The earliest models of network synchrony
were based on graded response units such as the Wilson-Cowan oscillator. I discuss them
in section 4.3.1 along with some of their applications. More recently, the synchronisation
of networks of spiking neurons have been studied. I will summarise the variety of
different systems studied and try to draw out some general principles in section 4.3.2.

Finally, in section 4.3.3,1 will present the locking theorem due to Gerstner et al. (1996b)
that unifies the plethora of models to some extent. It also demonstrates the analytical
utility of the SRM (see chapter 2).

4.3.1 Rate-based synchrony

As the stimulus-dependent synchrony results appeared from the late 1980s onwards

(see section 4.2.3.2), interest grew in modelling them. As the oscillations occurred
between cortical columns, the fundamental unit of the models was a cortical column.
The Wilson-Cowan oscillator (Wilson and Cowan, 1972, see section 2.6) and similar
relaxation oscillators with excitatory and inhibitory groups provided the model of a
cortical column.

In order to model the synchronisation and desynchronisation necessary for binding
and segmentation by synchrony, these oscillators have been connected together in a

number of ways. For example, Wang and coworkers (Campbell and Wang, 1996; Wang,
1996) use local excitatory-excitatory connections between excitatory and inhibitory
units arranged in a two-dimensional grid representing a visual area. They use fast
synaptic plasticity (von der Malsburg, 1981; von der Malsburg and Schneider, 1986) as

a normalisation mechanism to achieve synchrony between neurons in connected regions
and a global inhibitor to prevent accidental synchronisation. The global inhibition
is supposed to represent either general inhibitory activity from within the cortex, or
thalamic inhibition. The network can segment up to five objects simultaneously present
in the scene.
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A different approach was taken by Konig and Schillen (Konig and Schillen, 1991;
Schillen and Konig, 1991). Their model had short-range inhibitory connections and
longer-range excitatory connections between units. The connections had time delays
and there was no fast synaptic plasticity or global inhibitor. The units responded pref¬

erentially to bars of different orientations and were arranged topographically, similar
to parts of a hypercolumn in the early visual system. With the correct time delays
and connection weights, a bar with orientation between two of the orientation detec¬
tors synchronised the activity between them. However, two orthogonal bars each of
which was close to one of the orientation detectors made the activity of the orientation
detectors desynchronise (figure 4.3).

Similar models with excitatory-inhibitory neuronal units have been applied to bind¬

ing and segmentation in the visual (Schillen and Konig, 1994; von der Malsburg and
Buhmann, 1992) and auditory (Wang and Brown, 1999) systems.

These models suggest that binding and segmentation by synchrony is possible with
a variety of different architectures (global inhibitor, different excitatory and inhibitory
connection radii) and synaptic mechanisms (fast synaptic plasticity). As models of po¬
tential mechanisms and as engineering systems (for example Wang and Brown, 1999)
they are interesting. However, as models of the visual system, I believe they are not

sufficiently constrained to make predictions about the true mechanisms of synchroni¬
sation. As Gerstner and van Hemmen (1994b) have pointed out, spikes are a more

fundamental quantity to use than firing rates, and spike-based synchronisation may

turn out to be quite different to rate-based synchronisation.

4.3.2 Spike-based synchrony

Is synchrony different with spiking units? Since the late 1980s, theoretical work has
been done on the synchronous properties of networks of spiking neurons connected by

purely excitatory and purely inhibitory neurons. The basic units of these networks are

IF or SRM neurons or mathematical abstractions of them. They are linked by pulses,
like spikes. The PSC function associated with each spike can be delta function (which
causes a step increase in potential), decaying exponential or alpha function.

Although the individual units in such systems can be thought of as IF neurons, they
tend to be called oscillators since when IF neurons are sufficiently tonically activated

they fire regularly. As the spikes are a form of pulse, this class of models is known as

pulse-coupled oscillators. Furthermore, the units are sometimes not pure IF neurons,

but rather abstractions of them that allow different kinds of analysis.
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Figure 4.3: Stimulus-dependent assembly formation in the Konig and Schillen model.
The top part of A represents the orientation sensitivity of feature detectors. The
highlighted detectors are the ones that the recordings come from. When a bar of
orientation between the two detectors is presented (lower part of A, left) the input
across the detectors is as shown in the top, left-hand part of B, and the activity of the
oscillators is synchronised as shown by the time traces (middle part of B) and cross-
correlation function (lower part of B). When the two bars with orientations on either
side of the selected orientation units are presented, the outputs are desynchronised
(right column of A and B). ((from Schillen and Konig, 1991).)
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In section 4.3.2.1 I will discuss networks of such neurons connected by excitatory

synapses, in section 4.3.2.2 I will describe the properties of networks connected by

inhibitory synapses, and in section 4.3.2.3 I will discuss the effect of delayed connections.

4.3.2.1 Networks of excitatory neurons

Mirollo and Strogatz (1990) used an oscillator model to show that networks of IF
neurons coupled by purely excitatory infinitesimally short pulses with no time delays
will synchronise from almost any starting configuration. Interestingly, this mathemat¬
ical result applies to many other biological systems, providing an explanation for the

synchronisation of firefly flashes and the synchronisation of the mensuration period in

groups of women.
The results can be extended to networks connected by arbitrarily-wide pulses and

excitatory, normalised weights with time delays (Gerstner, 1996). Here the network is

guaranteed to converge on a phase-locked (though not necessarily synchronous) state.
Hopfield and Herz (1995) considered models of pulse-coupled IF neurons with tonic

input that differed in two respects to the model of Mirollo and Strogatz. Firstly, the
network comprised a lattice of neurons with each neuron connected to its four nearest

neighbours. Secondly, the rules for update during synchronous spikes were different.
Since the coupling between neurons is by delta function currents, when one neuron

fires it leads to a step increase in membrane potential in other neurons connected to

it, and may cause these neurons to fire at the same time. This is a idealisation of the
behaviour of real neurons as one neuron cannot force another neuron to fire simultane¬

ously. Hopfield and Herz attempted to make this situation more realistic by assuming
that if a neuron i had caused a neuron j to fire at the same time, then i should receive
a spike back from j and would have its membrane potential increased. Furthermore, in
one variant of their model, they assumed that synaptic currents were long compared to
the action potential, and that some of the current invoked in j by i would persist after
the action potential, and therefore that j's membrane potential should not be reset to

zero. In contrast, Mirollo and Strogatz assumed that the membrane potential is set to

zero regardless of whether other neurons were firing at the same time.

Both models studied by Hopfield and Herz converge on (approximately) periodic
solutions with synchronised clusters of neurons that occur at fixed phases in the cycle.
The model in which current persists during an action potential eventually converges on

a global solution. The other model does not converge to a globally synchronised state.

Hopfield and Herz also studied non-leaky IF models and a model, based on earthquake
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Partial synchrony for short
PSC. time constant;
antisynchrony for longer time
constants

Partial synchrony for short
PSC. time constant;
antisynchrony for longer time
constants

Antisynchrony.

Synchrony for all PSC time
constant; additionally
antisynchrony for faster time
constants.

Synchrony for long PSC time
constant; multi-cluster
synchrony for shorter time
constants; in the limit
antisynchrony.
Synchrony.

Partially asynchronous state
stable for all delays; above a
critical delay, a completely
synchronous state is also
stable.

Yes, depending on weights.

Table 4.1: Summary of synchrony results. The column headed J shows whether the
weights were excitatory (E) or inhibitory (I) or global (g) or local (1). The column
headed by A shows whether the delays were zero (0) or finite (+). The column headed 7
shows whether the PSC was a delta (d), decaying exponential (e) or alpha (a) function.
The column headed N shows the size of the network, with 00 referring to a large
network.
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models, which has synaptic responses that are proportional to the membrane potential
of the presynaptic neuron (see also Herz and Hopfield, 1995).

Tsodyks et al. (1993) analysed a network of tonically-excited IF neurons con¬

nected uniformly by pulse connections and exponentially-decaying PSCs. In the stable,

synchronously-firing, periodic state they could write a mean field expression for the
current. By substituting this into the equation for the voltage, they found various

types of behaviour of the system. For small values of input current there are stable,

periodic solutions, with the phase of the firing decreasing with increasing input. Above
a critical input current, there is no stable firing; neurons will advance faster than the
below-critical current time period. Thus if the current applied to neurons is inhomoge-

neous, with some neurons receiving more than the critical amount and others receiving

less, the population will split into two groups: the below-critical current one firing pe¬

riodically and the ones with current above the critical value firing more rapidly and not

phase-locked.

The next stage of complexity is to use neurons connected with alpha-function PSCs.
Van Vreeswijk et al. (1994) studied pairs of IF neurons so connected and showed that
excitatory connections could induce anti-synchrony depending on the time constant

of the alpha function. Van Vreeswijk (1996) extended these results to infinitely-large
networks of IF neurons. With excitatory connections, the network fires completely

asynchronously with long enough time constants, and below a critical time constant it
starts to fire increasingly synchronously as the time constant decreases.

4.3.2.2 Networks of inhibitory neurons

For purely inhibitory, infinitesimally short pulse coupling a pair of IF neurons fire in

anti-synchrony (Smith et al., 1994). Van Vreeswijk et al. (1994) studied a similar
network but with alpha function PSCs. They showed that the synchronous state was

stable for all PSC time constants, though with shorter time constants the network could
also fire stably in antiphase.

Van Vreeswijk (1996) found that this result generalised to a large network. Slow
connections completely synchronised the network. Below a critical time constant, the
neurons break into two or more synchronised clusters, tending to complete asynchrony
as the time constant tends towards zero.
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4.3.2.3 The effect of delays

All the analysis summarised so far had no time delays. Smith et al. (1994) studied
a pair of IF neurons coupled by delta-pulse postsynaptic potentials with and without

coupling delays. In contrast with the zero-delay network, non-zero delays produced a

finite basin of attraction for synchronous firing.
Gerstner and van Hemrnen (1993) showed in a network of SRM neurons with ef¬

fectively exponential PSCs (alpha function PSPs) that complete synchrony was locally
stable with long enough delays. However, a partially asynchronous state with oscillat¬

ing network activity was also possible for all delays. The level of noise in the network
determined how asynchronous the state was.

4.3.3 A unified framework for spike-based synchrony

The SRM model has proved the basis for a general theory of synchrony in networks of
spiking neurons. Gerstner and van Hemmen (1993) investigated purely asynchronous
(incoherent) and synchronous network states of homogeneously-connected networks of
SRM connected by arbitrary PSP functions.

In noiseless networks asynchronous states are very rarely purely asynchronous, of¬
ten being susceptible to oscillations in the overall activity (figure 4.4). Gerstner et al.
(1993a) looked at a perturbation of the asynchronous state and derived general condi¬
tions for the stability of the perturbation. Gerstner (1995) applied this condition to a

homogeneously-connected network with an alpha function PSP (decaying exponential
PSC). He found that in a noiseless network the asynchronous state was often unstable
to oscillations in the overall activity. Noise served to stabilise the asynchronous states.

Under certain conditions purely synchronous states can exist. Gerstner et al.

(1996b) generalised earlier results (Gerstner et al., 1993a; Gerstner, 1995) to prove

the locking theorem'.

Theorem 4.1 In a spatially homogeneous network of spiking neurons with standard
dynamics, a necessary and, in the limit of a large number n of presynaptic neurons

(n —* oo), also sufficient condition for a coherent oscillation to be asymptotically stable
is that firing occurs when the postsynaptic potential arising from all previous spikes is

increasing in time.

(Standard dynamics means that the refractory potential 77(f) is always rising.)
The left-hand graph in figure 4.5 shows the conditions for synchrony. The synaptic

potential from all other neurons in the network (solid line) and the neuron's own re-
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Figure 4.4: Differing levels of synchrony in the network activity. The six spike rasters
show the spiking activity of networks with refractory functions and delays of the left
and right graphs of figure 4.5 with increasing amounts of noise (/? = 1000,15,8). Syn¬
chronous parameters: A = 20ms, 770 = 10. Asynchronous parameters: A = 2.5 ms,
770 = I- Other parameters: F = 1, N = 100, r = 2ms, J — 1/N, rabs = 4ms. See
equation (2.22) for meaning of rabs and 770
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Figure 4.5: The conditions for synchrony and asynchrony in the network. The graphs
show the synaptic potential (solid line) and refractory potential plus threshold that a
neuron experiences after firing at time 0. As the text explains, the situation in the left
hand graph will tend to lead to complete synchronisation.

fractory potential (dashed line) are depicted. Under normal circumstances, the neuron

will fire when the refractory potential meets the synaptic potential, in this case about
22 ms after the neuron last fired. Suppose now the neuron fires a little later than nor¬

mal on one cycle. Presuming that all other neurons have fired normally, the synaptic

potential the neuron sees will be the same. However, as it has fired later, its refractory

potential will be shifted to the right. Thus it will fire a little later than all the other
neurons, but, due to the slope of the refractory function and the synaptic potential, the
delay relative to the other neurons will be less than on the previous cycle. Hence small
perturbations in firing times should be corrected for. By contrast, in the situation on

the right any small perturbations will be accentuated due to the relative slopes of the
synaptic potential and the refractory potential. The difference between the two cases is
that in the first, the synaptic potential is rising when the neuron is due to fire, whereas
in the second, it is falling when the neuron is due to fire.

In chapter 8 I will use a generalised version of this theorem to find conditions for

synchrony in inhomogeneous networks.

4.4 Summary
The purpose of this chapter has been to introduce some of the experimental evidence

for, function of and mechanisms underlying synchronous activity in the nervous system.

Synchrony in neural systems is roughly defined as different neurons firing within
a few milliseconds of each other. It can be detected over a period of time using the
cross-correlation. Synchronous firing is possible when activity is oscillating, but does

\
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\
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not require oscillations. Oscillations are possible when there is not complete synchrony,
for example in the case of two groups of neurons that fire synchronously within groups,

but where the activity oscillates between the groups.

In the auditory nerve, spikes are locked to the phase of the stimuli. Synchrony
has been proposed as a way of encoding whether neurons with different receptive fields
are responding to the same object (the binding problem). Evidence consistent with
this hypothesis comes from the visual modalities. Here the synchrony often occurs in

conjunction with mass activity oscillations in the gamma frequency range. Synchronous
oscillations also seem to play a role in the locust olfactory system, where it has been
shown that when 20 Hz oscillations are abolished, fine scale odour discrimination is

impaired.
There is an extensive literature on the dynamics of synchrony. The models vary

in abstraction and biological realism. Basic units range from compartmental models,

through spiking neurons to relaxation oscillators based on the Wilson-Cowan model that
represent cortical columns containing inhibitory and excitatory populations. The SRM
has been used to show that the condition for synchrony of a homogeneous population is
that each neuron's synaptic potential should be rising as it fires. This allows synchrony
with both purely excitatory and purely inhibitory connections.

Although the binding by synchrony theory is disputed, it is clear that synchrony
and synchronous oscillations are important, and studying their mechanisms is still in¬

teresting.



Chapter 5

Simulating networks of threshold-fire
neurons

Models of spiking neurons have featured as mathematical tools in this thesis already.
Later on, I will use them as the units for simulations of large networks of neurons. It
is clearly desirable to make the simulations as efficient as possible. This chapter deals
with the methodological problem of simulating networks of threshold-fire neurons such
as integrate-and-fire (IF) and spike response model (SRM) neurons efficiently.

To simulate networks of IF neurons directly, differential equations coupled by cur¬

rent pulses must be integrated numerically using an algorithm such as the Runge-Kutta
algorithm (Press et al., 1992). An important question when integrating differential
equations is how large the time step can be before the accuracy of the integration be¬
comes unacceptable. By contrast, no integration is required to simulate networks of
SRM neurons. We might therefore expect the time step to be much less important,

though, as we will see below, this is not the case.

Hansel et al. (1998) investigated the question of how the size of the time step in a

network affects accuracy in a network of IF neurons. The network's synchronisation

properties were particularly sensitive to the time step. Despite this sensitivity, it was

possible to find the spiking times of the network to arbitrary accuracy using an "exact
method" that incorporated the Newton-Raphson algorithm. Hansel et al. found that
with both the simple Euler and Runge-Kutta integration methods a very small time
step was required to reproduce the synchronisation properties discovered using the exact

method. This was because the discrete simulation time step meant the firing times were
also discrete, which lead to a considerable reduction in the accuracy. The accuracy for a
given time step could be improved by removing the discreteness by linearly interpolating
the membrane potential between time steps to find the firing time. For second order
Runge-Kutta integration (RI<2) the simulation time step could be increased by a factor
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of ten without impairing performance.
As shown in chapter 2, SRM neurons with the appropriate PSP and refractory

functions are integrated IF neurons. Therefore simulating a network of such SRM
neurons is equivalent to simulating a network of IF neurons with a "perfect" integration
method. However, the time step will still be important since it makes the possible

firing times discrete. How much better is the accuracy with SRM neurons than with
IF neurons integrated with RK2? Can the interpolation method of Hansel et al. (1998)
be applied to SRM neurons, and if so, how does it change the performance? I address
these questions in section 5.1.

Hansel et al. (1998) suggested that their work could be extended by investigating
the effect of noise on the simulation. In section 5.2 I develop an interpolation method
for SRM neurons with noisy thresholds.

Finally, in section 5.3, I state the conclusions arising from this chapter.

5.1 Deterministic simulation using SRM neurons

In section 5.1.1 I will describe the network model used by Hansel et al. (1998), the
measures used to assess the simulation performance and the simulation method itself.
The results, presented in section 5.1.2, show that the simple SRM is more accurate for
a given time step than the IF model, though not by much. Finally, in section 5.1.3, I
summarise the performance in terms of CPU cycles, and discuss whether the extended
SRM could do any better.

5.1.1 Method

The benchmark network comprises N = 128 completely connected excitatory neurons.

Hansel et al. (1998) simulated each neuron as an IF neuron whose membrane potential
evolves according to (2.11) with constants1 rm = 10 ms and R = lOkfh The threshold
and external current are the same for all neurons; $ = 20mV and Ifxt = 2.30/rA. The
weights have the units of charge (nC) and are uniformly set to J%j = Jsyn/N. The
EPSC function2 is given by

7(f) = —-— fe~n - , (5.1)
i~l - t2 V /

'Some of these units should be intensive instead of extensive since we are dealing with areas of
membrane. For example, mVcm-1 instead of mV. However to simplify things I will imagine we have a
unit area of membrane and deal with the extensive units.

2 In the limit T2 —> ti this double exponential function approximates the alpha function
t/n exp(—f/n).
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with synaptic time constants t\ = 3 ms and T2 = 1 ms .

The starting conditions of the IF neurons are

^(0) — RIext ( 1 — exp ( —c"~/y~~^T ) ) ' (5'2)
where

T=-rm In (i- Rjext) (5.3)
is the firing period of an isolated neuron receiving only constant external input 7ext
and where the coefficient 0 < c < 1 controls the initial degree of synchrony. If c — 0
the neurons all fire at the same time; if c = 1 uncoupled neurons would fire uniformly

throughout the first period T.
To convert the IF formulation into the simple SRM formulation we need to integrate

the synaptic current according to (2.16). This yields the EPSP kernel

u\ R ( ri — r2 — , rm(Ti - Ti)e{t) = en en + — — e-m . (5.4)
T\ - t2 \Ti - Tm r2 - Tm (ri - rm)(r2 - rm) )

The starting conditions present something of a problem to the SRM since we cannot

integrate it from a particular membrane potential. Instead we must fix the external
voltage Fext(i) so that the membrane potential passes through the prescribed values
at t — 0. As the current is constant we should be able to use the solution of (2.18),
appropriately shifted by c{i — 1 )T/N:

VTW-W-( l-exp(—±-ci^9) . (5.5,
The refractory potential is given by (2.17). As the SRM is of the simple variety, all
spikes of a neuron could contribute to its refractory potential.

One important measure of the performance of the network is how well it matches the

synchronisation of the "exactly" solved network. To compare the synchrony we need a

measure of synchrony. Hansel et al. (1998) compared the time-averaged variance of the
population activity

, " p /T~« \2
- hvEy.(') I5 6)

2=1 / y 2=1 J
with the population average of time-averaged variance of single cell activity

N

^E((^W)2-(KW)2) (5-7)
to create a synchrony measure

E = p.£&iKw)2-(^s:£.K(o)2
izli, (<K(0)2 - (V(e))'
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When the activity of the network is completely asynchronous, the numerator (5.6)
of this expression is equal to zero, since the population activity at every time step is the
same. In the completely synchronous state V)(t) = V(t) and both the numerator (5.6)
and denominator (5.7) are equal, so £ = 1. In fact there are size effects, so the measure

£ is not exact even with 128 neurons (Hansel et ah, 1998). Fortunately this is not

important as we only need the measure to compare between simulations. To distinguish
between the synchrony of the exactly solved network and the simulated networks, £ is
taken to be the "exact" synchrony measure and £ refers to the synchrony of one of the
simulations with varying time steps. In all of the simulations, £ and £ were found by

sampling every 1 ms from 5-10 s.

The fractional error in the synchronisation is defined

£ - £
(5.9)

and gives a measure of how well the simulations match the exact solution. Another
useful measure is the error on the population firing rate,

Er =

where

(5.10)

N

r = J2ri(t) ' (5'n)
2= 1

and where the time average is over the time period 5-10 s of the exact solution and r
is defined by analogy with £.

I have replicated the "exact" integration method of Hansel et al. (1998) using the
SRM equations implemented in a C++ program. The procedure is to find the first
threshold crossing times of all neurons using the Newton-Raphson technique (Press
et ah, 1992). The neuron with the earliest spike time has a spike added to its set of
spikes at that time, and then the procedure is repeated from the time of the latest

spike. In practice, the neurons always fire spikes in numerical order, so we only need
to find the spike time of the next neuron in the sequence when a neuron spikes.

I have implemented the SRM version of the simulated network in a C++ program.

The program to solve the network by Newton-Raphson was based on this code. The
same code was also used as a base for an interpolated version of the simulation. In
this version, the membrane potential of each neuron hi(t) is remembered at each time
step. When the membrane potentials are next calculated, At later, any firing times are
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d

Figure 5.1: The interpolation method.

found by interpolation:

ha) = t- At- 'd — h(t) -At . (5.12)h(t — At) — h{t)

Figure 5.1 shows the interpolation method graphically.
As with the exact solution the firing order should be the same as the numerical

order of the neuron labels. Hence there is no need to check that no other neurons have

fired between t and t + At before adding a spike to a neuron's spike set. In a more

realistic simulation the delays would be longer than the interval At and so there would
be no need to update neurons synchronously.

5.1.2 Results

Figure 5.2 shows the synchronisation of the network as function of coupling strength
Jsyn as determined by (a) an uninterpolated simulation with varying time steps At and
(b) the exact method. The results agree3 with those of Hansel et al. (1998) in that the
coherence decreases with increasing coupling strength, with a transition point around
jsyn _ g we wouici expect, the approximation gets much better with smaller time
steps.

Figure 5.3 shows the synchronisation of the network as function of coupling strength
Jsyn as determined by (a) an interpolating simulation with varying time steps At and
(b) the exact method. Also shown are the corresponding results of Hansel et al. (1998)
for an interpolating network solved by RK2. The results agree4 with those of Hansel
et al. (1998) in that the coherence decreases with increasing coupling strength, with a

3My units seem to be a factor 10 out compared to those of Hansel et al.. I have not been able to
determine whether the fault is mine or theirs.

4Hansel et al. (1998) show similar results for the uninterpolated (standard) Euler algorithm but do
not show the equivalent results for standard RK2. As I want to present reasonably fair comparisons, I
only show the results of Hansel et al. (1998) that used RK2.
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jSyn

Figure 5.2: Coherence E as a function of the coupling strength Jsyn for the standard
SRM algorithm. Solid line: exact integration; dashed line: At = 1 ms; dotted line:
At = 0.1 ms; dash-dotted line: At = 0.01 ms.

transition point around Jsyn = 8. As we would expect, the approximation gets much
better with smaller time steps.

Figure 5.4 shows the relative error on the firing rate ET as a function of the time

step for both the SRM and IF models. The curves for the SRM model are not as

smooth as those for the IF model. This is because of quantisation at very low errors.

The average firing rate with Jsyn = 6 is about 70 Hz. Since the sampling time is 5 s, the
total number of spikes fired by the population is 70 x 5 x 128 = 44800. The smallest

possible absolute error is one spike, so the minimum non-zero fractional error should
therefore be 1/44800 « 2 x 10-5, which corresponds to the plateau in figure 5.4. It
is not clear how Hansel et al. (1998) achieve a minimum fractional error of 10~10 as

the scale of their figure implies they did. This would require simulations that were 105
times longer.

Although I have not fitted curves, from the logarithmic graph it looks as though
the power dependence for the standard SRM is about 1.0 and the power dependence
for the steeply falling part of the interpolated curve is about 2.0. This seems to agree

with the IF results. It means that with the standard SRM network the error depends

approximately linearly on the time step, whereas with the interpolated SRM network,
the error has a quadratic dependence on the time step.

Figure 5.5 shows the relative error on the firing rate Er as a function of the time

step for both the SRM and IF models. Here there is no inherent quantisation, so we

might expect both curves to decrease continuously as the time step decreases. This
is indeed the general trend, though there are bumps in both curves. My curve does
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Figure 5.3: Left. Coherence E as a function of the coupling strength Jsyn for the
interpolated SRM algorithm. Solid line: exact integration; dashed line: At = 1 ms;
dotted line: At = 0.1ms; dash-dotted line: At = 0.01ms. Left inset: Detail of the
curves to show detail of At — 0.1ms, At = 0.01ms and exact curves. Right. The
same curves for the interpolated IF network solved with RK2 (taken from Hansel et al.,
1998, figure 7). Solid line: exact integration; dashed line: At = 0.25 ms; dotted line:
At = 0.1 ms.

10 10"

At [ms]
10"° 10"2

dt(ms)

Figure 5.4: Left. Relative error on the firing rate Er as a function of the time step
for the standard (solid line) and interpolated (dashed line) SRM algorithms. Jsyn = 6.
Other parameters same as in figure 5.2. The dashed line disappears when the error
is 0 due to the logarithmic scale. The line is level around At = 10~2 because of
the quantisation inherent in the spike count. See text for more details. Right. The
equivalent measure for IF neurons solved with various algorithms (Hansel et ah, 1998).
Solid line: standard Euler; dotted line: Euler with interpolation; dashed line: standard
RK2; dash-dotted line: RK2 with interpolation. It is not clear why this curve does not
show the quantisation effect my curves do.
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Figure 5.5: Left. Relative error on the coherence E-% as a function of the time step
for the standard (solid line) and interpolated (dashed line) SRM algorithms. Jsyn = 6.
Other parameters same as in figure 5.2. Right. The equivalent measure for IF neurons
solved with various algorithms (Hansel et ah, 1998). Solid line: standard Euler; dotted
line: Euler with interpolation; dashed line: standard RK2; dash-dotted line: RK2 with
interpolation.

Method At [ms] for 10% on E At [ms] for 1% on E
IF Standard Euler 0.031 0.0020

IF Interpolated Euler 0.061 0.0010

IF Standard RK2 0.062 0.0039

IF Interpolated RK2 0.25 0.063

SRM Standard 0.14 0.014

SRM Interpolated 0.67 0.26

Table 5.1: Minimum time step allowed for the different methods. The Euler and RK2
values are from Hansel et al. (1998).

not extend to such small time intervals as does that of Hansel et al. (1998), though
the error is generally less than theirs in the region I investigated. Table 5.1 shows
the minimum time steps required for 10% and 1% accuracies found by interpolating
between data points in figure 5.5. Both the standard and interpolated SRM methods do
better than their IF/RK2 counterparts on both measures. The factor of improvement
ranges between 2.3 for the standard 10% case and 4.1 for the interpolated 1% case.

5.1.3 Discussion

I have shown that using the SRM to simulate the activity of a network of all-to-all
connected spiking neurons is more accurate for a given time step than integration of
the IF model by either the Euler or second order Runge-Kutta integration methods.
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Method CPU per Time step [s]
SRM Standard
SRM Interpolated

9.6 x 10~3
9.7 x KT3

Table 5.2: CPU time per time step for the SRM integration scheme with Jsyn = 6 and
At = 0.01 ms.

The factor of the speed-up ranges between about two and four. This is less than the

approximately order of magnitude improvement gained by using interpolation rather
than uninterpolated SRM or RK2 simulation.

The CPU time per time step for Jsyn = 6 and At = 0.01 ms on a Sun Ultra 5
MODEL 333 is shown in table 5.2. There is no significant time difference between the

interpolated and standard cases. It appears to be about two orders of magnitude greater
than the CPU time per time step found by Hansel et al. (1998) on a HP9000 (MODEL
819.K200). The SPECfp95 benchmark5 suggests that the Sun is about twice as fast
as the HP machine (18 versus 8.85). Thus the discrepancy could be due to a systematic
difference in the algorithms or programming differences or programming errors.

Running the program through a profiling program showed that the vast bulk of the
time was spent calculating exponential functions. However this can only account for a

factor of two in the difference of execution speed, as the following considerations show.
Suppose that in each method, we only look at spikes produced in the last rint seconds.
At each time step with the IF method we need to calculate the currents caused by all

spikes in the last rmt, which, at a firing rate of r, comes to 2Nrrmt exponentials, since
the EPSC function 7(f) contains two exponentials. For the simple SRM we need to
calculate 3Nrrmt exponentials to find the EPSPs e{t) for all neurons, and additionally
the program must calculate Nrrmt exponentials for the refractory functions r]{t). So
in theory the simple SRM method should take twice as long for a time step. This
reduces the computational advantage over the RK2/IF method, though there is still
some advantage.

Could the extended SRM do any better? Another way of writing the equation for
the kernel k(s, t) is

The solution of either integral is a weighted sum of three exponentials, like (5.4). Since
only one integral needs to be evaluated, the number of exponentials required per time

(5.13)

Jhttp://www.specbench.org/osg/cpu95/results/cfp95.html
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step comes down to 3Nrrmt, a factor of 1.5 greater than the IF/RK2 method.
One potential algorithmic difference between my simulations and those of Hansel

et al. (1998) is that they could have calculated PSPs by solving differential equations
rather than using exponential functions. This approach was used by Destexhe et al.

(1994) with synaptic conductances, where it had the advantages of requiring only two
state variables per synapse and the calculation of a single exponential per time step.

The computational requirements of the method for the network described in this chapter
would be similar, and considerably smaller than remembering the times of all spikes
within the time window rint and computing three exponentials per spike. This could
account for the differences in speed between the two algorithms.

5.2 Stochastic simulation using SRM neurons

Can we extend the interpolation simulation method to noisy neurons? Section 5.2.1
shows that we can in the case of threshold noise. I have not been able to find a

benchmark task, so there is no way to compare the performance of the interpolated

noisy simulation with an uninterpolated one. I discuss alternative ways of testing the
method in section 5.2.2.

5.2.1 Method

The interpolation method can be extended to deal with noise caused by exponential

escape rate (2.29). The problem is to find a random time of firing t+At^ and the value
of the membrane potential at t and t + At. To do this, we need to find the cumulative

probability of a spike from t onwards, that is 1 — S(t'\t), where S(t'\t) is the survivor
function introduced in section 2.4.5.3. If we can compute the inverse of this function,
we can give this function a random number chosen uniformly from [0,1] to produce a

random time of firing.
The interpolated membrane potential function is

h{t') = h(t) + (t' — t)h{t) , (5-14)

where

h(t)= + " (5.15)

is the gradient of the membrane potential around t. Substituting this into (2.32), the
definition of the survivor function, gives

S(At^ + t, t) = exp t-1 (^h(t) + {t! — t)h(t))dt,S^J . (5.16)



5.2. Stochastic simulation using SRM neurons 99

Integrating (5.16) with the escape rate (2.29) substituted in yields

S(Af(1) +t,t) = exp ^ exp(f3h(t) - ■&) (e^t)AtW - l)^ . (5.17)
Although the cumulative probability is 1 — S(At^' +t, t), since the random number

is to be chosen randomly from [0,1], we can find A^1) as a function of the random
number S. After some rearrangement, we arrive at

At(1) = In (l - TQ(3h{t)e^-h{t)) In 5) . (5.18)
This equation forms the basis for implementing noisy interpolation. However, it needs
modification as there are some values of h{t) and h(t) for which it has no solution as the
argument of the outer logarithm is negative. For h(t) > 0 this cannot happen as In S is
always negative. Physically, if the membrane potential is rising, the neuron must fire
at some point in the future, so there must be a solution. For h{t) < 0 there may not
be a solution, depending on the value of S and h(t). This is because if the membrane
potential is decreasing there is a finite chance it will never fire and so there can be
no solution. The implementation deals with this by calculating the argument of the
outer logarithm first. The probability of the neuron not firing is just the probability
of the argument being negative, so if the argument is negative no spike is produced. If
the argument is positive it is passed to the outer logarithm and a spike time is found
as normal. Finally, in the case h(t) = 0 the formula is not valid, and (5.17) must be
reintegrated for constant h(t). This yields

At*1* = - In Se^~h) (5.19)

and is bound to have a solution.

5.2.2 Discussion

I have implemented the above algorithm in C++, though I have not evaluated its

performance against the standard noisy method. To do this I need to find a suitable
benchmark task. Although the benchmark task used by Hansel et al. (1998) and by
me in this chapter might be suitable, it would be better to have a task for which an

analytical solution is known. This is because the integration method would not work
in a stochastic model. An alternative would be to compare the performance of the

interpolated and standard method with the standard method at very small time steps.

I have not done this due to the simulation time that would be required.
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Although I have no firm evidence that this is the case, I would guess that we can

extrapolate from the deterministic case to the stochastic case, and use time steps two
to four times longer than we would do in the uninterpolated simulations. There are two

arguments in favour of this position. Firstly Hansel et al. (1998) suggested that noise
might effectively smooth out the discontinuities caused by discrete time steps. Secondly,
noise tends to desynchronise networks anyway (see section 4.3.3), so any synchronisation
will probably not be as sensitive as the synchronisation in the benchmark network used
in this chapter.

5.3 Conclusions

One advantage of simulating the IF model over more complex models (for example, com-
partmental models) is that it is faster. However, with a standard integration method,
the speed of simulation may be deceptive, as discrete spike times introduce errors. As
Hansel et al. (1998) have shown, this can be largely alleviated by linearly interpolating
the membrane potential between time steps to calculate firing times.

In this chapter I first investigated whether deterministic SRM neurons are more

efficient in simulation than deterministic IF neurons. I summarise the conclusions of

this investigation below.

• For deterministic simulations without interpolation, the SRM method can achieve
the same accuracy as the IF/RK2 method with time steps that are between two
and three and a half times longer.

• The interpolation method can be applied to the SRM model.

• For deterministic simulations with interpolation, the SRM can achieve the same

accuracy as the interpolated IF/RK2 method with time steps that are between
two and a half and four times longer.

• However, this advantage is reduced by the additional calculation of exponential
functions required in the SRM model.

• The extended SRM would require fewer exponentials in simulation, and would
retain the advantages of the simple SRM over integration of IF neurons.

• I have shown how the interpolation method can be extended to noisy SRM neurons

with an exponential escape rate, although I have not evaluated the algorithm.
This must remain the subject of further work.
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5.4 Summary
Threshold firing models, such as the IF model and the SRM, should require a smaller
simulation time step than Hodgkin-Huxley type models since the subthreshold dynam¬
ics are much slower than the spiking dynamics. However, Hansel et al. (1998) have
shown that the level of synchronisation of a group of homogeneously-connected neu¬

rons requires a very small time step to simulate accurately using IF neurons and Euler

integration and RK2. The problem arises because neurons can only fire at multiples
of the simulation time step, which disturbs the delicate synchronisation properties. By
interpolating the membrane potential between time steps to find the firing times, the
time step can be reduced by an order of magnitude without affecting the accuracy.

I tested the idea that SRM neurons would not need such small time steps as IF
neurons solved using RK2 both with and without interpolation. In order to do this I

programmed a SRM simulator that included interpolated and uninterpolated simulation
methods. The results were indeed better than using IF neurons with RK2, but only by a

factor of two to four. The simulation times were also much longer than expected, though
this could have been due to computing PSP functions using exponential functions rather
than by differential equation methods, which would probably have been faster.

Finally, I extended the interpolation simulation method to noisy SRM neurons with
an exponential escape rate. Although I have not evaluated the algorithm, I believe that
it could be used safely with time steps two to four times longer than conventional noisy
SRM simulation would require.



Chapter 6

Sequences: recall speed of supervised
synfire chains

In this chapter I will concentrate on one aspect of the dynamics and biological plausi¬

bility of synfire chains.
As explained in chapter 3, spatiotemporal patterns or synfire chains may be learned

in the presence of a suitable temporal learning rule by activating each node or group

of neurons in turn. This is a form of supervised learning where the supervisor is
other groups of neurons, possibly directly activated by sensory neurons. Such a system

might be found in the interplay between the neocortex and hippocampus (McClelland
et ah, 1995), or when learning motor patterns. An important parameter of the training
protocol is the training speed, the speed at which nodes are activated.

Also as explained in chapter 3, the speed of propagation of a spatiotemporal se¬

quence or synfire chain will depend on the strength of weights in the chain, the threshold
and the excitatory postsynaptic potential (EPSP) function. The refractory properties
of neurons are important in ensuring that nodes do not re-excite. This threshold-speed

relationship has been previously investigated in simulation (Arnoldi and Brauer, 1996)
and by treating neural tissue as a continuum of spike response model (SRM) (Wennekers
and Palm, 1996) and integrate-and-fire (IF) model (Ermentrout, 1998) neurons with
connections corresponding to idealised temporal learning rules.

In this chapter, I will address the same question, though with differences from the

previous treatments. The first difference is that I consider the weight matrix of the

synfire chain to have been created by a supervised training protocol with a certain

training speed. The second difference is that I first analyse a network comprising
discrete neurons rather than starting with a continuum approximation. The continuum

approximation is only valid when the time between adjacent patterns being recalled is
small compared to the EPSP time constant. The third difference is that I check for
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the stability of threshold-speed pairs. The final difference is that I apply the results of
the analysis to a realistic temporal learning rule derived from the experimental spike
timing dependent synaptic plasticity (STDSP) results presented in chapter 2 as well as
the Gaussian learning rule used previously.

In section 6.1 I present an analysis of a network of discrete SRM neurons and con¬

firm that under appropriate conditions it can be approximated by continuous equations
similar to those derived in the continuum case (Wennekers and Palm, 1996). In sec¬

tion 6.2 application of both analyses to a temporal learning rule suggested by recent

experimental work (Zhang et ah, 1998) confirms that the discrete analysis is important
at low speeds and that recall may occur faster than training. I discuss the implications
of these results for learning synfire chains, suggest possible criticisms and propose how

they might be resolved in section 6.3.
This chapter has been published in the proceedings of the ICANN99 conference

(Sterratt, 1999).

To derive the speed of propagation for a given threshold I assume an infinitely large net¬

work of noiseless neurons in which an infinitely long synfire chain with non-overlapping
nodes is to be learned. The network is trained by activating the neurons correspond¬

ing to each node in turn at regular intervals l/i>t, where i>t is the training speed of
propagation. The neuron model I use is the simple SRM (section 2.4.5.1).

I assume that the network learns noiselessly according to (2.35), so that: there is
no variance in the trained connection strength between a pair of nodes; all neurons are

at the same resting potential immediately before firing; and the refractory potential
ensures neurons fire only once. The refractory potential can therefore be ignored in the

following derivations. For the above reasons, each neuron in a node experiences the same

membrane potential, so a node can be treated as a single neuron (with appropriately
scaled weights). Consequently, from now on I refer to nodes as though they were

neurons. At the end of the training protocol the weight from node j to node i will be:

Note that I have omitted the dependency on the current weight from (2.35), so there
are no weight saturation effects.

Although the weights determine the order of recall of nodes, the magnitude of the
threshold determines whether and how fast the nodes may be recalled for a given set of

6.1 Analysis

(6.1)
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weights. If it is too high no units will ever fire; if it is too low the units will be firing at

the maximum frequency allowed by their refractory period. For values between these
extremes, the threshold has the effect of controlling the speed of propagation since
each unit fires when the membrane potential crosses the threshold while rising. The
membrane potential will cross a lower threshold sooner, causing activity to propagate
faster.

Whilst physically the threshold determines the recall speed, mathematically we can

calculate the threshold as an explicit function of speed. In the following analysis I
consider one node and assume that all previous nodes have fired regularly at speed v,

either because of synfire recall, or maybe caused by some forcing mechanism. Thus
the recall firing times are fj — i/v, which we can denote as a function comprising delta
functions (see also section 2.3.2):

Si(t) — S(t - i/vt) ■ (6.2)

Without loss of generality we consider the membrane potential of node 0, which
should fire at time 0. If at t = 0 all the nodes have fired at the correct times ti/v there
are two conditions that must be fulfilled for propagation to carry on at the same speed.

Firstly, the membrane potential of node 0 should be equal to the threshold,

h0(0-,v) = i9(v) . (6.3)

I refer to this as the self-consistency or threshold condition (see also section 8.1). Sec¬
ondly, the membrane potential must be rising:

/io(0; v) > 0 . (6.4)

I refer to this as the rising potential condition (again, see section 8.1). I have explicitly
included the recall speed v is a parameter of the membrane potential and threshold.

As long as the membrane potential is rising, the first condition ensures that the
neuron fires at time t — 0, that the next node in the chain will see the same pattern of

firing and that activity will continue to propagate stably along the chain. If the mem¬

brane potential is falling the node must have fired already, since as long as the threshold
is greater than the resting membrane potential and the EPSP function is continuous,
the membrane potential will already have risen through the threshold and caused the
neuron to fire. If the node has already fired, then at the next node the condition that
all previous nodes have fired regularly no longer holds, and that particular speed is not
stable.



106 6. Sequences: recall speed of supervised synfire chains

time /ms

Figure 6.1: The predicted membrane potential and refractory potential. The solid line
shows the predicted synaptic potential and the dashed line shows the weights connecting
a neuron due to fire at t = 0 with neurons due to fire at other times. The vertical spikes
indicate the predicted recall firing times that give rise to the synaptic potential. The
dash-dotted line is the "threshold minus refractory function" of a neuron that fires at
t = 0. The synaptic potential touches this line just once, at t = 0.

We can write down the membrane potential of an arbitrary node i at time t by

substituting the recall firing times in (2.20) to give

OO

hi(t;v)= Y2 - A** - j/v) ■ (6.5)
j=—OO

Figure 6.1 gives an example of a predicted membrane potential and a refractory poten¬

tial that means it only fires once. The membrane potential of node 0 at time 0, and
hence the threshold is obtained from (6.5). We can also substitute in the alpha function
EPSP

e(t) = —e1_f0(f) (6-6)
r

to obtain:

q( \ b (C\ 1 L Vs J T l-f-Aax-f/*> /fi 7x0(v) = h0(0;v) = J0j e - , (6.7)
j=— OO

where the notation [mj denotes the highest integer less than x. The upper limit on
the sum in (6.7) is due to the Heaviside function part of the EPSP function. Its
physical significance is that during recall, at time 0, neuron 0 will have "seen" all
neurons which have fired before t = —Aax. If the inter-neuron time interval 1/v is
less than the axonal delay Aax then the firing of at least one neuron will be ignored.
To be precise, neuron 0 will see 'wAaxJ, [—uAaxJ — 1, |_—vAaxJ — 2... fire at times

|_—uA^J/v, ([—uAaxJ - l)/u,(|_—wA^J — 2)/v...
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We can also write down the derivative of the membrane potential for the 0th node
at time 0 by differentiating equation (6.5) and setting i = 0 and t = 0:

OO

ho(0)= ]T Joji(—Aax — j/v) . (6.8)
j—-oo

With the alpha function (6.6), the derivative of the EPSP function is1

— ^1 — —^ e1-^0(t) . (6-9)
We can approximate the discrete equations above by continuous ones in the case

where the reciprocal of the speed is much less than the EPSP time constant, that is

1/t) « r, and the reciprocal of the training speed is much less than the a characteristic
time constant rp of the potentiation function that is l/wt ^p- This is because in this
case the exponential and linear terms in equations (6.7) and (6.8) are being numerically
integrated with step sizes 1 /(vt) and l/(vtTp). In the neocortex the velocity of prop¬
agation has been estimated by Ermentrout (1998) as 100 units s-1 from experimental
data. With t = 1ms = 1 x 10~3 s the first condition is not fulfilled. Although this
means that the continuous analysis is not strictly applicable, it still gives a rough idea
of the behaviour we can expect from the system.

In the continuous case the membrane potential is given by the integration over space

rather than summation over neurons:

/OO ftJ(x,x') / £(t')S(x', t — t' — Aax)dt'dx' , (6.10)
-oo Jt—T

where, by analogy with (6.2), S(x,t) describes the activity of a continuous node at
position x and time t. The continuous equivalent of the assumption (6.2) that the
firing time of the neuron is proportional to its position in the chain is

S(x, t) = S ^ . (6-11)
We replace the discrete weights Jij by a continuous weight function defined between

positions x and x\ J(x,x'). In fact this will depend only on the displacement between
positions, x — x'. Applying the learning rule (2.35) leads to the equivalent of (6.1),

J{x, x') = J{x - x') = f r(t - + Adend)<5 dt
= r - Aax + Adend^ . (6.12)

1 Since the derivative of a Heaviside function is a delta function and the product rule of differentiation
gives a term (t/r)e1_t/'T(5(^) which is uniformly zero.
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In the limit when T —> oo, and when we substitute (6.11) into (6.10), we obtain

/OO J{x — x')e (t — Aax — x /v) dx (6.13)
-OO

which is the continuous equivalent of (6.5). Substitution of (x, t) = (0,0) and the EPSP
function (6.6) into (6.13) yields

MO,0) = ra~J(-x, (6.14)
J—oo T

which is the continuous equivalent of equation (6.7). To complete the correspondence
between continuous and discrete analysis, there is also an equivalent of (6.8), found by
differentiating (6.13):

/OO J(—x')i(—Aax—x'/v)dx' . (6.15)
-OO

These equations are essentially the same as those found previously (Wennekers and
Palm, 1996). They yield analytic solutions for some EPSP and potentiation functions,
in which case we can find an expression for the threshold-speed relationship.

6.2 Application to realistic potentiation function
The experimentally-based potentiation function (Zhang et ah, 1998) displayed in fig¬
ure 6.2 plots percentage change in the strength of excitatory synapses against time delay
between pre- and postsynaptic spikes. To treat this function as an absolute synaptic

weight and substitute it into (6.1) I assume that each connection initially comprises bal¬
anced inhibitory and excitatory components. Training the excitatory connections with
the potentiation function results in effectively excitatory and inhibitory connections

according to its potentiating and depressing parts.

The experimental function comprises potentiating and depressing exponential sec¬

tions with a time constant of rp = 20 ms joined by a linear portion. The constants used
in this chapter are roughly the same as the curves fitted in Zhang et al. (1998), although
the linear section is not very well defined. The maximum potentiation ku = 52 occurs

at a delay of iu = 4ms and the maximum depression ka = —38 occurs at a delay of

td = —6 ms.

For clarity, I initially consider a simpler version of the experimental function where
tu = td = 0 ms, and ku — 1 and ka — —1. There is therefore a discontinuity at t — 0 ms.
In this case the analytical calculation reveals that for v/vt > (Aax — Adend)/Aax,

( 1—Aax | -1L-1 )-Adend )
kuvre\ \vt ) )

ti(v) = -2 (6.16)
(-- + 1)\Vt Tp J

d =
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Figure 6.2: The potentiation function derived from experiment. See section 6.2 for
explanation of constants.

This restriction ensures that only the potentiating part of the curve is included in the
weights that cause the node to fire. For the rest of this chapter, I assume the training

speed is vt = 0.1 x 103s-1 and the delays are Aax = Adend = 1ms, thus making the
restriction v/vt > 0.

Figure 6.3 shows the discrete and continuous threshold-speed relationships deter¬
mined by substituting the potentiation function in (6.5), (6.8), (6.13) and (6.15) and
solving the resulting equations for a training speed vt = 0.1 x 103s-1. The different

analyses are in good agreement at higher speeds, though both the speed and stabil¬

ity for a given threshold are markedly different for lower speeds, where the condition
rr <c 1 breaks down. The cusps in the discrete curve occur when v = j/Aax, where j
is an integer, and are due to the effect of a node being able to see the activity of an
extra node at these points.

As expected, propagation is only possible for a limited range of thresholds and for

higher speeds the speed always increases as the threshold decreases. We might not
have expected the speed to increase as the threshold is increased at lower speeds as it
does in the continuous analysis. At lower speeds, the synaptic potential reaches the
threshold almost at its peak whereas at higher speed solutions for the same threshold
the synaptic potential continues to rise well after the node has fired.

A lower bound to the speed in the discrete case is l/(Aax + r), because if the last

and

(6.17)
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Figure 6.3: Speed-threshold relationship in a simple case where tu — = 0 ms, ku =
fed = 1 and vt = 0.1 x 103s_1. Discrete analysis: solid part of curve shows stable
solutions and dashed part unstable ones. Continuous analysis: dash-dotted curve shows
stable solutions; there are no unstable ones.

node has fired longer than Aax -i- t ago all it sees is the summed tails of several EPSPs.
In fact, even if all other nodes have been forced to fire at a speed less than this limit,
a node allowed to fire freely will fire on the rising part of the EPSPs, sooner than it

"ought" to. This causes the next node to fire after a shorter time interval, and the speed
of recall will gradually converge on the stable value for that threshold. By contrast,
in the continuous case the neuron will be seeing EPSPs from neurons that have fired

only r ago, and consequently the rising parts of the EPSP functions will balance out

the tails that it also sees. We can also see this in equation (6.17) where it is impossible
for the derivative to be less than zero.

One of unstable speeds is the training speed itself. Consequently a chain whose
connections were learned at vt will be recalled at much higher speed.

There are some values of the threshold (in the approximate region [0.6,0.65] for the
discrete analysis in figure 6.3) which allow two propagation speeds. Figure 6.2 shows
two possible time courses of membrane potential for the same threshold for a discrete
calculation and in a continuous analysis.

From (6.16) we can see that it is not just the ratio of v to vt that determines the
threshold as one might have initially thought, but that the speed scales the threshold.
We can also see that we must consider v and rp separately in contrast to previous work
Ermentrout (1998), where the speed scales with the space constant of the weights to a

given unit, and therefore with the time constant of the potentiation function. This is
because we have used an asymmetric learning function rather than a symmetric one as
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Figure 6.4: Time course of membrane potential for a neuron in the discrete case which
fires at t = 0 showing how the stable propagation can occur at two speeds for the same
threshold ($ = 0.6728). Solid curve v = 1.2 x 103 s-1; dashed curve v — 1.4237 x 103 s-1.

considered previously.
I have solved the analytic threshold and stability equations for the potentiation

function with experimentally-determined constants, though presenting the solutions
would not be particularly illuminating. The solutions are shown graphically, along
with the discrete speed-threshold relationship in figure 6.5. It is broadly similar to the
simpler case, although there are some values of d for which the continuous case would
be unstable.

6.3 Discussion

In this chapter I have derived equations for the threshold-speed relationship of a gen¬

eralised synfire chain comprising discrete units trained by a temporal learning rule,
derived a continuous approximation to it and applied both analyses to a realistic po¬

tentiation function.

The discrete analysis is important as it corresponds better to physical reality than
does the continuous approximation to it. On the basis of the continuous approximation
alone, the instability of activity at lower speeds would not be predicted. Inclusion of
the training speed as an explicit parameter does not simply lead to a scaled version of
the previous continuous analysis (Wennekers and Palm, 1996; Ermentrout, 1998) and
leads to the surprising conclusion that for low training speeds (less than (Aax + r)_1)
the recall speed of chains will be higher than the speed at which they were trained.
This result raises the possibility that temporal sequences may be trained more slowly
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Figure 6.5: Plot of v against i? for r = Aax = /\dend _ ^ ancj Vt — o.l x 103s_1
where the weights have been learned with the potentiation function shown in figure 6.2.
Discrete analysis: solid part of curve shows stable solutions and dashed part unstable
ones. Continuous analysis: dash-dotted curve shows stable solutions and dotted part
unstable ones.

than they can be recalled. This possibility could be of significance in learning motor

sequences, where if nodes represent actions a slow sequence of movements could be
learned and then speeded up (see also Wennekers and Palm, 1996). The effective
threshold could be modified dynamically by an external signal that modifies neuronal

background activity, thereby causing chains to speed up or slow down and possibly

allowing two chains to synchronise their activities, as suggested in some theories of
synfire processing (Bienenstock, 1995).

The principle differences between the biologically realistic potentiation function

(Zhang et al., 1998) considered in this chapter and the others (for example Gaussian,
rectangular) considered previously (Wennekers and Palm, 1996; Ermentrout, 1998) are
(a) the longer time constant (20 ms as opposed to 1 ms) and (b) the depression occurring
when presynaptic spikes follow postsynaptic ones. The shape of the speed threshold
curve remains virtually the same as with a Gaussian curve, though the precise crossover

point of the potentiation function affects it. The time course of the membrane potential
is similar, though with inhibition after a node has fired. This will tend to turn off a node
more quickly than it would had it been trained on a Gaussian learning function, and
therefore affects the likelihood of a node re-exciting after firing. Due to the asymmetric

learning function the speed does not scale with the time constant of the potentiation

function, as in previous work (Ermentrout, 1998).
I am aware of two possible criticisms of this work. The first (pointed out to me be
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T. Wennekers) is that I have not taken account of weight saturation effects, as suggested
by the experimental evidence (Bi and Poo, 1998). It might be that weight saturation
effects combined with repeated activity would lead to an effectively square coupling

kernel, as used by Wennekers and Palm (1996). This is true, but it might also be that
weight decay effects would tend to weaken distant connections between nodes. In any

case, the general discrete analysis will still hold for any potentiation function.
The second criticism is that the assumption of uniform weights and uniform starting

potentials is unrealistic. If the training is quite slow, so that only connections between

adjacent nodes are potentiated, I expect that this analysis will hold up in most situ¬
ations where synfire chains are stable (see section 3.4). Nevertheless, it would be in¬
teresting to integrate this analysis with the stability analyses mentioned in section 3.4.

My preliminary investigations have shown that extending the temporal coherence re¬

sult (Herrmann et al., 1995; Abeles, 1991) should be quite straightforward. However,
extending the previous capacity results (Herrmann et al., 1995; Hertz, 1999; the "asyn¬
chronous background instability" and "chain death due to fluctuating potentials" in

chapter 3) will not be so easy, since the results are only valid for "pure" synfire chains,
that is, synfire chains that only have connections between adjacent nodes. My intuition
is that the effect of connections between nonadjacent nodes will be to decrease the

stability significantly, since it will result in more connections being potentiated, and
therefore more interference between patterns.

Another interesting extension to the work would be to investigate whether the more

realistic temporal learning rule allows more successful unsupervised learning of synfire
chains than has been achieved previously (Hertz and Prugel-Bennett, 1996).

6.4 Summary

Spatiotemporal patterns or synfire chains may be learned in the presence of a suitable
temporal learning rule by activating each node or group of neurons in turn. This is a

form of supervised learning where the supervisor is other groups of neurons, possibly
directly activated by sensory neurons. Such a system might be found in the interplay
between the neocortex and hippocampus, or when learning motor patterns. An impor¬
tant parameter of the training protocol is the training speed, the speed at which nodes
are activated. The temporal supervised learning protocol and training speed makes
more explicit the assumptions behind previous work.

Previous work on the propagation speed has assumed that the time between pattern
recall is small compared to the EPSP time constant, allowing a continuous approxima-
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tion to the location of neurons. By contrast, the first analysis presented here uses

discrete neurons, and is valid for all recall speeds. The temporal learning rule and the

training speed jointly determine the weights between nodes. The threshold controls
the speed of propagation through the chain during recall, and can be calculated as

a function of recall speed. Some of the slower recall speeds may not be stable as a

neuron's membrane potential would be falling as it spiked, which is impossible. There

may be thresholds for which two recall speeds are stable. For a realistic learning rule
and realistic EPSP functions both effects occur.

In the limit of fast recall the discrete forms of the equations converge on the

previously-studied continuous forms. It turns out that the continuous equations do
not show the same instabilities at low recall speeds. Thus the discrete analysis corre¬

sponds better to physical reality than its continuous approximation.
One implication of this work is that for low training speeds the recall speed of chains

will be higher than the speed at which they were trained. This could be significant in
the implicit learning of motor sequences where one part of the nervous system (for
example the cortex) may be training another part (for example the cerebellum). There
is also evidence that the hippocampus "trains" the neocortex; this result might also

apply there. The realistic temporal learning rule means that nodes are less likely to fire
after their first firing, making the sequences more robust as synfire chains. Due to the

asymmetric learning function the speed does not scale with the time constant of the

potentiation function, as in previous work.
The major criticisms of this work are that I have not taken account of weight

saturation effects or overlapping patterns.



Chapter 7

Synchrony, sequences and
Schistocerca's sense of smell

The motivation for this chapter is to test out the theoretical ideas of synchrony and
sequences in a model of a real biological system. Recent work on the antennal lobe
of the locust indicates that it is a suitable system to model. The antennal lobe is
the second stage of olfactory processing in the locust and it appears that odours are

represented by both synchrony and sequences in it. Although there is a wealth of
experimental evidence showing how the codes change under various conditions, the

synaptic structure and dynamical mechanisms underlying the dual code are not well
understood. Furthermore, the antennal lobe itself is very small, comprising only 830

excitatory and 300 inhibitory neurons. This makes it a more attractive for modelling,
as it should be possible, with reasonably simple neuron models, to model the neurons

on a one-to-one basis.

We may note that research on locust olfaction has considerable practical applica¬
tions. Despite advances over the past forty years, locusts are still a major pest in parts
of sub-Saharan Africa and South America. They may live for many years in a solitary
state, being relatively undestructive (Waloff and Green, 1975). In this state their ol¬
factory systems are used to detect food and mates. However, but when the conditions
are right — for example sufficient, well-timed rainfall — they swarm together. If the
progeny of the swarms remain in swarms a plague is said to be in progress (Waloff and
Green, 1975). The locusts are said to be in a gregarious phase, and locusts born to

gregarious parents are morphologically different from solitary locusts (Bennett, 1975).
Special aggregation pheromones are a crucial part of the swarming mechanism, and are

therefore an active area of research.

As there is a great deal of similarity of the olfactory systems of both vertebrate and
invertebrate species (Hildebrand and Shepherd, 1997), in section 7.1 I will start this

115
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chapter by giving an overview of the anatomy, physiology, coding, learning, memory
and plasticity of the first two stages of insect and vertebrate olfactory systems. I will
also present some computational models of olfactory systems. In section 7.2 I will

provide a detailed review of work on the input odours, the anatomy, physiology and
coding in the locust antennal lobe (AL). In section 7.3 I distill from the mass of data
the relevant questions that a model should answer. The problem breaks down into

explaining the mechanism of the fast oscillations and explaining the mechanism of the
slow temporal patterns. Although there are enough constraints to build a general model
of the antennal lobe, there are still many undetermined parameters and hypotheses.
It may be that two types of model have to be developed and then merged. I take
the approach that the simplest model consistent with the data should be constructed
before trying out some of the hypotheses. Section 7.4 describes how I build this model.
In the course of building the model, I find that although the anatomy determines
the connectivity, it does not determine the weights. Rather than spend a long time

guessing appropriate weights I decide to attempt to use the constraints provided by
the oscillations to calculate a first approximation to the weights. This enterprise turns

out to be a small project in itself, and therefore forms a chapter of its own, chapter 8.
After this intermission, I will go on to describe the results from the locust model in

chapter 9.

7.1 The early olfactory system

There are strong similarities between the early olfactory system in vertebrates and
invertebrates (Hildebrand and Shepherd, 1997). Therefore, in this short review of the
early olfactory system, I will discuss the vertebrate and invertebrate olfactory systems

together.

I will start this review by considering odours, in particular their temporal charac¬
teristics as viewed by a flying insect (section 7.1.1). In section 7.1.2 I will present the
anatomy of the first two stages of the vertebrate and insect olfactory systems. The
related issues of physiology and how the olfactory system encodes odours are consid¬
ered in section 7.1.3. The topic of section 7.1.4 is learning and memory in the early
olfactory system. Finally, in section 7.1.5, I present some existing models of vertebrate
and insect olfactory systems.
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7.1.1 The nature of olfactory stimuli

Odours comprise mixtures of different molecules. Odour molecules are small volatile

compounds with a molecular weight between around 26 and 300 (Mori et ah, 1998).
Odours occur both singly and in mixtures.

The wind carries the odour molecules from their source, forming an odour plume.
Diffusion and turbulence lead to the odour plume having a complex spatiotemporal
structure that depends on factors such as wind speed, source size and the landscape

(Murlis et ah, 1992). This means that an animal sensing an odour plume will encounter
odour molecules only intermittently.

In insects the olfactory system has a short sampling time, so the intermittent odour
structure is important. Vickers et al. (2001) investigated the spatiotemporal properties
of an odour plume 150 cm downstream of an odour source using an electroantenno-

gram measured from an excised antenna. This showed that the intensity and temporal
structure of the plume varied significantly over distances of 5 cm from the centre of the
plume. The wind speed also changed the structure of the plume: at low wind speeds
the electroantennogram measured frequent, high amplitude bursts at the centre of the
plume and little activity 5 cm away from it; at higher wind speeds the central activity
was smaller, and the peripheral activity greater. The bursts were of the order of tens
of milliseconds long.

The number of odour molecules encountered depends on the speed of the animal as
well as the odour concentration in the plume. There is therefore no clean concentration

gradient to assist the animal in locating a source. Suggested strategies for locating
odour sources typically involve moving upwind when in the odour plume, and zig¬

zagging when the plume is lost. However, strategies that utilise the structure of the

plume alone have not been ruled out (Murlis et al., 1992).

7.1.2 Anatomy

Olfactory receptor neurons (RNs) are generally located in the antennae of insects or

in the sensory epithelium (located within the nasal cavity) of vertebrates (Hildebrand
and Shepherd, 1997). In insects, RNs are associated with small hairs (sensilla) on the
antennae. The outside surface of a sensillum is waxy so as to absorb odours. Small
pores in the surface allow odour molecules to enter and diffuse through the lymph
towards the cilia of the RNs. In vertebrates, the mucus of the sensory epithelium plays
an analogous role to the lymph. (Hildebrand and Shepherd, 1997)

The RNs project (via the olfactory tract) to a structure called the antennal lobe
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Figure 7.1: Neuronal circuit of the mammalian olfactory bulb. From Mori et al. (1998).
Excitatory synapses are represented by open triangles or arrows. Inhibitory synapses
are represented by filled arrows.

(AL) in insects or the olfactory bulb (OB) in vertebrates. Besides input fibres from the
RNs, the AL or OB comprises various types of projection and intrinsic neurons.

The vertebrate OB is arranged in a number of layers (Shepherd, 1998) located on a

segment of sphere or ellipsoid. Figure 7.1 shows the arrangement and connectivity of the
OB. The outermost layer contains roughly spherical regions of neuropil called glomeruli.
They contain preterminal axons and synaptic boutons of RNs, dendritic arborisations
from the primary dendrites of mitral and tufted cells (the main projection neurons of
the OB) and dendritic arborisations and axons from periglomerular cells. The somata of
periglomerular cells surround the glomeruli. The dendritic trees of periglomerular cells
arborise in one or possibly two glomeruli and make reciprocal synapses with mitral cell
dendrites, while their axons innervate local glomeruli. RNs make type 1 (excitatory)
synapses on both mitral and tufted cells and periglomerular cells. Mitral/tufted cells
make dendrodendritic type 1 synapses onto periglomerular cells and receive type 2

(inhibitory) inputs from the periglomerular cells (Shepherd, 1998). The next layer
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down, the external plexiform layer, contains the secondary dendrites of mitral and tufted
cells and the dendritic arborisations of granule cells. There are reciprocal synapses
between the granule cell and mitral cell dendrites. The mitral to granule contacts

are type 1 (excitatory) whereas the granule to mitral contacts appear to be type 2

(inhibitory). The bodies of the mitral and tufted cells are to be found in the next layer,
the mitral cell layer. The mitral/tufted cells send out axons down through the next

layer, the granule cell layer, with the axons bunching to form the lateral olfactory tract,
which projects to various areas of the olfactory cortex. Also in the granule cell layer are
the cell bodies and dendrites of the granule cells and centrifugal afferents from various
brain centres.

The organisation of the insect AL (figure 7.2 shows the locust AL) is generally
similar to that of the vertebrate OB. There are projection neurons (PNs) that, like
mitral and tufted cells, project out of the AL. The intrinsic local neurons (LNs) are

analogous to periglomerular and granule cells. Almost all synapses in the AL are located
in glomeruli on the periphery of the deutocerebrum.

In contrast with the vertebrate OB, there do not appear to be two types of projection
neuron. There also does not appear to be the same geometrical arrangement as in the
vertebrate OB. LNs may innervate several glomeruli (unlike periglomerular cells; Galizia
and Menzel, 2000a) and do not generally make synapses on PNs outside glomeruli
(unlike granule cells). Some insects do not even have a glomerular organisation (Masson
and Mustaparta, 1990).

In the locust, the axons of the PNs form a coarse fibre bundle that runs ventro-

dorsally through the neuropil of the AL, emerging as the antennoglomerular tract (AGT,
also known as the tractus olfactorio glomerulus). The AGT runs to the lateral proto-
cerebral lobe (LPL), with branches to the calyces of the mushroom body (MB). Here
the PN axons synapse onto about 50000 excitatory Kenyon cells (KCs) (Laurent, 1996).
The KC axons run dorsoventrally, terminating in the a and (3 lobes of the MB. The
MB has been implicated in multimodal associative memory (Strausfeld et ah, 1998).

From immunogold histochemical studies of the AL of Schistocerca americana, there

appear to be connections from RNs to PNs and LNs and reciprocally within and between
the PNs and LNs. RNs and PNs are excitatory neurons, whereas LNs are inhibitory

(Leitch and Laurent, 1996). Figure 7.3 is a schematic diagram of the network.

Insects have between 2000 and 350000 RNs (Hildebrand and Shepherd, 1997). Typ¬
ical numbers of RNs are 100000 in locusts (Laurent, 1996), 120000 in worker honeybees
(Galizia and Menzel, 2000a), 195000 in the male cockroach Periplaneta americana and
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Figure 7.2: Semi-diagrammatic fronto-horizontal view of the right half of the brain of
the migratory locust Locusta migratoria (from Ernst et al., 1977). a.c. and p.c. corp.
ped. anterior and posterior calyx of the corpus pedunculatum; ant. n. antennal nerve;
cent. b. central body; D deutocerebrum; glom. glomeruli; L. gl. lobus glomeratus
of the tritocerebrum; LPL lateral protocerebral lobe; NL. gl. neurons of the lobus
glomeratus; NTOG I neurons of type I of the tractus olfactorio-globularis; TOG tractus
olfactorio-globularis (referred to as the antennoglomerular tract in this thesis); aL a-
lobus; PL /3-lobus.
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Figure 7.3: Schematic diagram of the first stages of the locust olfactory system. Open
arrowheads indicate excitatory connections and closed arrowheads indicate inhibitory
connections. See text for abbreviations.

300000 in the moth Manduca Sexta. In vertebrates the figure may be an order of
magnitude higher, for example 50 x 106 in rabbits (Mori et ah, 1998).

The number of glomeruli varies from species to species. In vertebrates it is typically
between 1000 and 5000 (Hildebrand and Shepherd, 1997); for the rabbit it is 6300
(Mori et al., 1998). In insects, most species have between around 50 and 200 glomeruli,
though a few (locusts and wasps) contain about 1000 (Masson and Mustaparta, 1990).
The species with fewer glomeruli are described as macroglomerular whereas those with
many glomeruli (for example locusts and wasps) are said to have a microglomerular
organisation (Laurent et ah, 2001). This is because the glomeruli are larger in species
with fewer glomeruli.

The males of some species of insects also have a enlarged glomerular structure re¬

ferred to as the macroglomerulus (in the case of the P. americana) or the macroglomeru¬
lar complex (MGC; in the case of M. sexta). This structure is used for pheremone
detection (Hildebrand and Shepherd, 1997). In vertebrates there is an anatomically
distinct area of the OB called the accessory olfactory bulb, which is also responsible for
pheremone detection (Mori et ah, 1998).

In insects, the number of glomeruli a RN projects into depends on the species.
For example, in the bee, ant and cockroach, projections are uniglomerular (Masson and
Mustaparta, 1990). By contrast in the locust (a microglomerular species) RNs typically
project into more that one glomerulus (Ernst et ah, 1977; Masson and Mustaparta,
1990). In vertebrates, RN axons do not branch on their way to the glomeruli (Shepherd,
1998), making the projection uniglomerular. The ratio of convergence from RNs to
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glomeruli in mammals is typically around 10000:1 whereas in insects it is typically an

order of magnitude lower at 1000:1 (Hildebrand and Shepherd, 1997).
In vertebrates it is common for each mitral or tufted cell to innervate only one

glomerulus. This pattern is followed in macroglomerular insect species, where the
innervation is uniglomerular, but in microglomerular species such as the locust, PNs
can innervate more than one glomerulus (Laurent et ah, 2001; Ernst et ah, 1977). In
the rabbit, there are about 1.3 x 105 tufted cells and 6 x 104 mitral cells, giving a

glomeruli to projection neuron divergence ratio of about 1:30. In insects, the number
of projection neurons is much smaller, for example 260 in P. americana, 300 in M. sexta

(Hildebrand and Shepherd, 1997), 1000 in the honeybee (Faber et al., 1999), and 830
in the locust (Laurent, 1996). In macroglomerular species this gives a typical glomeruli
to projection neuron divergence ratio of about 1:2. In a microglomerular species such
as the locust, this figure is estimated to be about 1:10.

7.1.3 Physiology and Coding
I will first deal with the physiology and coding of receptor neurons in section 7.1.3.1.
In section 7.1.3.2 I will primarily deal with the physiology of the neurons of the AL or

OB. It seems convenient to split the discussion of coding in the AL/OB into its spatial
features (section 7.1.3.3) and temporal features (section 7.1.3.4).

7.1.3.1 Receptor neurons

The cilia of the RNs contain receptor proteins that are sensitive to odour molecules

(Hildebrand and Shepherd, 1997). When the receptors are activated by odour molecules
they cause channels to open via a second messenger pathway. In vertebrates, the chan¬
nels are sensitive to a number of ions, and generally cause a depolarising inward current

to flow. This causes the RNs to increase their firing rate above a spontaneous back¬

ground level. There is more than one type of second messenger pathway. It is not clear
if different odours activate different pathways, and therefore cause different membrane
currents to flow. RNs generally reduce their firing rate during a prolonged stimulus.
This adaptation is also mediated by second-messenger systems. In invertebrates, the
RNs may respond to odours with hyperpolarising as well as depolarising receptor po¬

tentials. This leads to decreases as well as increases in the spontaneous firing rates

(Hildebrand and Shepherd, 1997).
RNs can be sensitive to a range of odour molecules (generalist) or only one type

of odour molecule (specialist). In insects, generalist cells tend to respond to food
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odours, whereas the specialist cells respond to pheremone components (Hildebrand and
Shepherd, 1997). Studies in vertebrates have shown that molecules with the similar
functional groups and chain length tend to activate the same generalist cells (Mori
et ah, 1998).

In vertebrates, a family of odourant receptor genes of about 1000 members encodes
the receptors (Mori et ah, 1998). The hypothesis that each receptor cell expresses
only one type of receptor molecule has yet to be disproved. An individual odourant

receptor can bind to molecules with similar structure and chain length. The odour

sensitivity range in generalist cells is therefore due to the unspecific nature of the
receptor molecules (Mori et al., 1998). In invertebrates, a family of 60 Drosophila
odourant receptors have been discovered (Gao et ah, 2000). Drosophila RNs appear to

express only one or a few of these receptors. The narrow tuning of RNs in male moth
antennae to components of sex pheromones indicates that these cells express only one

type of receptor molecule (Hildebrand and Shepherd, 1997).
In invertebrates, there appears to be no temporal patterning of the RN activity

other than that inherent in the stimulus (see section 7.1.1). In mammals, the sniff
cycle causes a roughly linear rise in firing frequency of receptor cells during inhalation
followed by sharp decline as the animal exhales (Li and Hopfield, 1989)

7.1.3.2 AL/OB neurons

In vertebrates, mitral cells are conventional spiking neurons whereas granule cells do not

produce action potentials (Shepherd, 1998). When mitral cells fire, the action potential
backpropagates through the dendrites, activating excitatory synapses onto spines of

granule cells. The resulting EPSP in the granule cell spine causes the inhibitory synapse

from the granule cell to the mitral cell to be activated, producing a long-lasting IPSP in
the mitral cell. The synaptic interactions within glomeruli are less well characterised,
as periglomerular cells are hard to record from (Shepherd, 1998).

In locusts, the PNs are conventionally spiking neurons, whereas the LNs are axon-

less neurons that produce graded action potentials (Laurent, 1996). Little is known
about the electrophysiology of single cells or the synaptic interactions between cells.

7.1.3.3 Spatial features of activation across the AL/OB

In vertebrates, studies measuring 2-deoxyglucose uptake in glomeruli indicate that each
odour causes synaptic activation in a particular set of glomeruli, thus forming an "odour

image" or "odourtopic map" in the glomerular layer (Shepherd, 1998). The amplitude
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of EEG signals from electrodes implanted over the rabbit OB shows a similar map

(Freeman and Skarda, 1985). Single unit recordings show that mitral and tufted cells
are activated by a limited range of molecules with similar molecular structure (Mori
et ah, 1998). The distinct odourtopic map can be accounted for by the one receptor-
one glomerulus hypothesis (Mori et ah, 1998). The specificity of the mitral cells follows
from the specific activation of glomeruli and the fact that any mitral cell sends its

primary dendrite into a single glomerulus. The one receptor-one glomerulus hypothesis
is grounded in the finding in mice and rats that receptor cells expressing the same

odourant receptor project their axons to two (or more) glomeruli in the OB. Given
that there about 1000 odourant receptor genes and about 1800 glomeruli in mice, it
seems reasonable to suppose that all the RNs converging on a glomerulus express the
same receptor.

A limited range of molecules may decrease mitral cell firing rate below baseline

(Mori et ah, 1998). These molecules may differ from molecules that excite the cells
by having a hydrocarbon chain only one carbon longer. When the granule cell to mi¬
tral cell synapses are blocked pharmacologically, the odour-evoked inhibitory responses

are greatly reduced. This indicates that they are partly caused by lateral inhibition
mediated via the granule cells from mitral cells belonging to neighbouring glomeruli.

In invertebrates, calcium imaging can be used to visualise which glomeruli are active

(Galizia and Menzel, 2000a). The activity across a sample of glomeruli correlates with
the odour presented. Consistent with the vertebrate results, glomeruli tend to respond
to similar molecules. Furthermore, the patterns of activation appear to be largely

preserved between different individuals of the same species (Galizia et ah, 1999; Galizia
and Menzel, 2000a). Recent evidence from Drosophila suggests that this glomerular
specificity is a result of RNs expressing only one receptor and all RNs expressing the
same receptor projecting to the same glomeruli (Gao et ah, 2000).

Glomeruli with similar response profiles tend to be neighbours. This suggests a

lateral inhibition scheme similar to vertebrates, as in order to sharpen response profiles

maximally, glomeruli responding to similar stimuli should inhibit each other laterally.
This is appealing in the vertebrate OB, because of the local nature of the granule cells
and mitral cell secondary dendrites. However in the insect AL, LNs innervate several

glomeruli and their dendrites do not travel from glomerulus to glomerulus, instead

converging on the central neuropil (Galizia and Menzel, 2000a). Furthermore, not all
neighbouring glomeruli have similar response profiles.
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7.1.3.4 Temporal features of activation across the AL/OB

In vertebrates, odour presentation causes high-amplitude bulbar oscillatory activity as

measured by EEG electrodes (Freeman and Skarda, 1985). When there is no odour the
fast (35-90 Hz) oscillations disappear, though a slow background wave phase locked to
the respiratory wave remains.

Laurent and co-workers have investigated responses of the locust AL to approxi¬

mately second-long pulses of odour (see Laurent, 1996, for a review). PNs appear to

represent odours by a spatiotemporal code. This code comprises three main elements

(Laurent et al., 1996).

Slow spatiotemporal activity: PN spike trains trial averaged with a time bin of the
order of 100ms have distinct temporal patterns for different odours (figure 7.6).
The pattern for a given odour varies between different neurons (Laurent et al.,
1996).

Fast global oscillations: The population averaged activities (on a time scale of 1ms)
of PNs and LNs show oscillations with a frequency of about 20 Hz (Laurent and
Davidowitz, 1994; Laurent et al., 1996). The excitatory PNs lead the inhibitory
LNs by one quarter of a cycle (Laurent and Davidowitz, 1994). This frequency
and phase seem to be fairly independent of the concentration of the odour. Fur¬

thermore, it appears that there is usually only one spike per PN per cycle (Laurent
and Naraghi, 1994). Oscillations seem to occur in response to odours that have
been presented in the last 10 minutes, and are thus a form of short term memory

(Laurent et al., 2001; Anton and Hansson, 1996). See figure 7.8.

Transient synchronisation of active neurons: During the odour presentation, sets
of PNs sometimes synchronise their activity precisely at the 20 Hz frequency and
sometimes do not. Hence at each point in time neurons fall into three classes:

inactive; active and unsynchronised to the global oscillation; and active and syn¬

chronised to the global oscillation (Laurent and Davidowitz, 1994; Wehr and Lau¬
rent, 1996; Laurent et al., 1996). See figure 7.9.

When ionotropic GABA receptors are antagonised, the first property remains, but
the second two disappear (MacLeod and Laurent, 1996). The behavioural implications
of this are to disrupt discrimination of very similar odours (Stopfer et al., 1997).

Recently, an alternative role for synchrony without oscillations has been proposed.
Christensen et al. (2000) have made extracellular multi-unit recordings from cells in the
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macroglomerular complex of Manduca sexta in response to short (100 ms) odour pulses
reminiscent of naturalistic pheremone signals (Murlis et al., 1992; section 7.1.1). They
found a variety of spatial and response profiles and temporal patterns of firing, even

within the same glomerulus. They also found that synchronisation between neurons in a

10 ms window could encode whether two components of a pheremone blend were present

simultaneously at certain concentrations. This can be seen as support for temporal

binding hypothesis (section 4.2.3), but it is context-dependent in that binding may only
occur at certain odour concentrations. There was no rhythmic discharge of neurons,
in contrast to the findings of Laurent and coworkers (see, for example Laurent, 1996).
This raises the question of whether oscillations are simply an epiphenomenon caused

by presenting unnaturally-prolonged stimuli and the dynamics of the AL. However, the

macroglomerulus could be optimised to perform very fast computations in response to

pulses of pheremone; the generalist olfactory system could perform a different, slower,
computation involving oscillations (Galizia and Menzel, 2000b). This evidence suggests
a dual code in which space indicates odour identity and synchronous timing indicates
other features, such as concentration.

7.1.4 Learning, memory and plasticity

Honeybees can be trained to respond to an odour with the proboscis extension reflex;
this reflex is directly related to successful learning (Galizia and Menzel, 2000a). We
can measure odour discrimination by reinforcing one odour with sugar-water reward
and not rewarding another. If the bee can discriminate between the two odours, it will

respond only to the positively-reinforced stimulus. Individual components of odours
may be presented or a combination of components may be presented when training a

honeybee.

Honeybees are able to distinguish mixtures where each component is part of a

rewarded and non-rewarded mixture (e.g. AB and CD from BC and AD). Honeybees
can generalise from single odours to mixtures of odours as long as the odours are not
too similar. For example, when trained with single odour A, the honeybee will respond
to AB, unless A and B are very similar. Previously learning a single odour may "block"

learning from a mixture. In "blocking" experiments, an odour A is positively reinforced,
and then an odour containing A (AB) is also reinforced. If the response to odour B
after training is reduced compared to animals trained only on AB, then B is said to

be blocked. Blocking has not yet been confirmed in honeybees, although preliminary
evidence suggests that it may when odours are similar.
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Although glomerular representations of odours are genetically determined (Galizia
et ah, 1999), associative learning modifies these representations (Faber et al., 1999).
After behavioural training using the proboscis-extension task, activity for the rewarded
odours increases, activity for the control odor increases to a lesser extent, and activity
for unrewarded odours may decrease. It appears that the representations of the re¬

warded and unrewarded stimuli are decorrelated. The mechanism responsible for this

plasticity is not yet known. However, a likely candidate for mediating the reward signal
is the VUMmxl neuron. This neuron increases its firing rate in response to a positively
reinforced stimulus and innervates the AL glomeruli and the MB (Hammer, 1993). It
thus may provide a signal for learning. Whether the modification occurs by associative

presynaptic facilitation or by Hebbian associative plasticity (Kandel et ah, 2000) is not
known.

The antennal lobe also exhibits short term memory. Stopfer and Laurent (1999)
presented sequences of 10 0.25-2 s-long pulses of novel odour separated by intervals

ranging from 2.5-20 s to one antenna of a locust. The intracellularly-recorded PN
responses to the first odour pulse in a sequence were strong but did not contain any

periodic component. In response to later pulses in the sequence, the PN responses

were weaker (that is, contained fewer spikes), but became increasingly locked to the
20±5 Hz oscillations in the LFP measured in the MB. Intracellular recordings from LNs
revealed no dominant frequency in response to the first pulse, and increasing power in
the frequency spectrum around 20±5 Hz to subsequent pulses. Thus it appears that as a

stimulus becomes more familiar, PN spikes become more synchronised with each other.
This behaviour also happened in response to sequences of pulses with random duration
and interstimulus interval, as motivated by odour plume dynamics (section 7.1.1; Murlis
et ah, 1992). If an odour has not been presented for around 10 minutes, the response

to it is no longer oscillatory. Learning generalises to chemically similar odours but
not to dissimilar ones: an odour may generate an oscillatory response on the first

presentation if a similar odour has been presented within 10 minutes before. The
learning does not seem to arise from adaptation of RNs since activating unadapted RNs
once responses are oscillatory still leads to oscillatory responses. Thus the mechanism
of plasticity is probably local to the AL and could involve descending inputs from the
MB. Its function is also unclear, though Stopfer and Laurent (1999) showed that the
PN spike intensity was a more reliable indicator of odour identity when taken from
later, oscillatory responses than from the first response.
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7.1.5 Previous models of olfaction

I will deal with models of the invertebrate olfactory system in section 7.1.5.1 and of the
vertebrate olfactory system in section 7.1.5.2.

7.1.5.1 Invertebrate olfactory system

Linster et al. (1993) modelled the insect macroglomerulus using a network with sparse

random connectivity comprising receptor, excitatory and inhibitory neurons. The neu¬

ron model is a leaky integrating neuron but without membrane potential reset after

firing. Spikes are generated stochastically according to a sigmoidal probability function
of the membrane potential. EPSCs are modelled by (delta) pulses but the randomly-
chosen transmission delays are shorter for excitatory neurons than for inhibitory ones,

to reflect faster EPSCs compared to more persistent IPSCs. Receptor neurons are se¬

lective to one of two odours. In response to a single odour pulse, neurons respond
with a variety of different responses (such as tonic excitation or inhibition or phasic

bursts). Which of these is present depends on the proportion of inhibitory neurons

and the sparseness of connectivity of the network. Some neurons are selective for one
of the two odours whereas others respond to both. The concentration of the odour
and its temporal profile is reflected in the amplitude and latency of the response. This
is significant as the stimulus profile could depend on distance from an odour (Murlis
et al., 1992; section 7.1.1). The network cannot respond to pulsed stimulation above a

certain frequency, because of the membrane time constants.

Linster and Masson (1996) modelled the antennal lobe of the honeybee in order
to explore the hypothesis that the antennal lobe is used to reduce noise in the signal
before sending it to the mushroom bodies to compare with stored odours. The model
includes 15 of the 165 glomeruli present in a worker honeybee. Most of the local in-
terneurons in the honeybee AL branch densely in one particular glomerulus (rather than
diffusely), rather like periglomerular cells in the vertebrate olfactory system. Based on

evidence from the cockroach, they postulated that some of the localised interneurons
are excitatory. Feedback excitation from these glomerular-local excitatory cells com¬

bined with lateral inhibitory connections between neighbouring glomeruli is responsible
for implementing a competitive mechanism that results in glomerular activation either

saturating or being silent when presented with an odour. By modulating the lateral
inhibition they show how the AL could implement a short term memory. This would

present the mushroom bodies with a distinct pattern for a longer period of time. They
use the same basic neuron model as Linster et al. (1993) but with firing probability as
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a piecewise linear rather than sigmoid function of membrane potential.

Linster and Smith (1997) used the same neuron formalism as Linster and Masson
(1996), though with no local excitatory elements. The firing thresholds on the ex¬

citatory projection neurons are set so that they fire spontaneously unless inhibited.

Receptor neurons synapse onto the inhibitory interneurons. When an receptor neuron
is active, it inhibits cells in its own glomerulus, which send inhibition to neighbouring

glomeruli. In the resulting competition, the inhibitory neurons activated by the recep¬

tor neuron "win", thus leading the projection neurons in neighbouring glomeruli to be
released from inhibition (in contrast to the model of Linster and Masson, 1996). A
modulatory neuron based on the experimentally-observed VUMmxl neuron (Hammer,
1993) receives input from projection neurons and a sucrose reinforcement signal and
sends back synapses to the inhibitory local neurons. The connections from the exci¬

tatory projection neurons are modifiable according to a Hebbian learning rule. When
sucrose reinforcement is paired with particular odours, the synapses from the excitatory
neurons onto the VUMmxl neuron are potentiated, thus causing the VUMmxl neuron
to fire when the odour is presented without reinforcement. The model exhibits the

psychophysical phenomenon of overshadowing: when the network is conditioned to re¬

spond to an odour mixture, and then are presented with one component of the mixture,
its response is less than if it had been trained on the pure odour. If the synapses from
the VUMmxl neuron to the inhibitory interneurons are also modifiable, the model also
exhibits blocking (see section 7.1.4).

Kerszberg and Masson (1995) modelled the honeybee AL in order to determine
whether the oscillations observed have cognitive significance. The dendrites of local and
projection neurons are modelled as passive compartments and are connected by a mix¬
ture of randomly-distributed conductance-based reciprocal and unidirectional synapses.
The channels open stochastically as a function of the presynaptic membrane potential
and close with an exponentially-decaying function. The spontaneous activity has peaks
in the spectrum of the simulated LFP at 100 Hz and 20 Hz. The high-frequency peaks
are only present with deterministic thresholds. Activity is quenched with higher thresh¬
olds, but the peaks in the spectra remain in the same places. Presenting randomly-
distributed inputs to the network with high thresholds leads to the inputs moving
the network from a quiescent state to an active one. The network appears to exhibit
attractor states. The response frequency is not related to the input frequency.
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7.1.5.2 Vertebrate olfactory system

Li and Hopfield (1989) modelled the mitral and tufted cells and granule cells of the
OB using rate-based neurons with nonlinear output functions. These were connected

together on a ID ring with each mitral cell receiving inputs from neighbouring granule
cells and vice versa. There were reciprocal connections of uniform strength between

neighbouring mitral and granule cells, and there were no granule to granule or mitral
to mitral connections. The inputs were modelled by a spatial pattern modulated by a

temporal envelope corresponding to the sniff cycle. The result is that different odours
activate a different set of mitral cells and the activity of these cells oscillates during the
active part of the sniff cycle. Mathematical analysis of the system lead to the following

predictions. Mitral cells should lead granule cell by quarter of one cycle. The oscillator

frequency should be the same everywhere on the bulb. There may be a phase gradient
across the bulb. Oscillation activity will rise during inhale and fall during exhale and
rides on slow activity which is background baseline shift locked with the sniff cycle.
The connection structure determines the type of patterns that the system will oscillate
in response to. The initial resting point of the system could be set by descending inputs
so that only motivated animals have oscillations.

Li (1990, 1994) incorporated descending control from higher olfactory centres such
as the piriform cortex into the model of Li and Hopfield (1989). This input acts to cancel
out the oscillations in the OB, thus leading to the adaptation of the OB response. The
model was able to account for a number of psychophysical findings concerning odour

adaptation and mixing. Li and Hertz (2000) extended the model of Li (1990) by learning
odour identity in connections between cortical pyramidal cells and the connections from

pyramidal cells onto inhibitory cells. This provides a more principled way of feeding
back to cancel the signal.

A different approach of modelling the piriform cortex was taken by Wilson and
Bower (1988, 1992). Their model comprised 100 compartmental neurons with realis¬
tic channels. Pyramidal cells and feedforward and feedback inhibition were included.

They presented the model with bursts of activity in a randomly-chosen subset of the

inputs, assumed to have been created by the olfactory bulb. The model exhibited 40 Hz
oscillations in response to the inputs. When a number of the synapses were modified

according to a Hebbian plasticity rule during exposure to stimuli, the network was able
to recall the stimuli when presented with partial stimuli.

Linster and Hasselmo (1997) modelled the OB and descending modulation of it by
noradrenergic and cholinergic input from higher olfactory centres using stochastically-
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firing leaky integrators (as used by Linster et al., 1993, see previous section). A modu¬
latory cell takes the average of mitral cell activity and feeds it back into periglomerular
cells as well as modulating the connection from granule cells to mitral cells. The results
show that the modulation make the representation of different odours less overlapping.

7.2 Detailed description of the locust antennal lobe
Various aspects of the anatomy and physiology of the olfactory system of the migratory
locust Locusta migratoria and the desert locusts Schistocerca americana and Schisto-
cerca gregaria in the order Orthoptera have been studied in each species, though not all

aspects have been studied in one species. Although I have not found a specific reference

stating this, people seem to assume that the species are close enough to compare. In
this thesis, I assume that the olfactory systems of L. Migratoria, S. gregaria and S.
americana have the same anatomical and physiological characteristics, and I refer to
them all as "locusts".

In this section I will review in more detail the anatomy (section 7.2.1), physiology
(section 7.2.2) and coding (section 7.2.3) in the AL. Unfortunately there is not very
much known about the learning and development of representations in the AL; I present
what little is known in section 7.2.4.

7.2.1 Anatomy
I will divide up the anatomy of the antenna and AL into its constituent neurons, the
RNs, PNs and LNs, and then go onto discuss how they are connected and where they

project to after the AL.

7.2.1.1 Receptor neurons

RNs are found in one part of each antenna (the flagellum) (Ernst et al., 1977). They
are contained in olfactory organs (sensilla), which come in a number of varieties. In the
locust there are three types: sensilla trichodea (long hairs); sensilla basiconica (short
hairs); and sensilla coeloconica (pit peg) (Masson and Mustaparta, 1990). The sensilla
trichodea contain the dendrites of 3 RNs, the sensilla basiconica contain 30-40 RNs
and the sensilla coeloconica contain 1-4 RNs (Hansson et al., 1996).

Most RN axons project to the ipsilateral deutocerebrum (that is the AL), but some
project to the ipsilateral lobus dorsalis. The axons are found in bundles from adjacent
sections of antenna, and go to circumscribed regions. Individual axons can have up to
six branches and innervate up to 3 glomeruli of the AL (Ernst et al., 1977).
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7.2.1.2 Projection neurons

The ALs of the deutocerebrum of Locusta migratoria are dome-shaped with a diameter
of 0.5 mm. They comprise the axons from the RNs of the ipsilateral antenna, and
the somata and processes of PNs and LNs. The PNs have bigger (20-25 fim) somata
located dorsally at the front of the AL, whereas the LNs have smaller (10-12.5/um)
somata situated ventrally at the front of the AL (Ernst et al., 1977).

From the PNs a coarse fibre bundle runs into the neuropil of the AL. Not more
than one branch runs from each process at right angles, and then describes a ring-like

path around the fibre bundle. From this ring branches arborise at varying depths, and
with diameters between 20 and 40 /im (Ernst et al., 1977). Estimates of the number of
branches from each ring are 10-25 (Anton and Hansson, 1996) and 10-20 (Leitch and
Laurent, 1996). The main process continues out of the AL towards the LPL. Processes
of the PNs prefer to innervate glomeruli distant from one another — never adjacent
ones (Ernst et al., 1977). Ffom the number of axons in the antennoglomerular tract
(AGT), Leitch and Laurent (1996) estimate there are 830 PNs.

7.2.1.3 Local neurons

Processes from the LNs branch several times in the neuropil, with the diameter de¬

creasing at each branch. They "penetrate large sections of the neuropil" (Ernst et al.,
1977), perhaps around 25% (my estimate from figures) or may even "occupy the entire
neuropil" (MacLeod and Laurent, 1996).

7.2.1.4 Glomeruli and connectivity

The glomeruli are numerous (about 1000) and small (25/rm diameter) compared to
other insects (Masson and Mustaparta, 1990). Terminals of the neurons with bigger
somata appear to fill the glomeruli, and terminals often overlap (Ernst et al., 1977). Im-
munogold histochemical studies of the AL of S. americana bred in crowded conditions

(and therefore presumably in the gregarious phase) indicate that there are synapses from
non-GABAergic to non-GABAergic profiles, from non-GABAergic to GABAergic pro¬

files, from GABAergic to non-GABAergic profiles and from GABAergic to GABAergic

profiles (Leitch and Laurent, 1996). In addition, some of these synapses are reciprocal.
With additional information about the size of the processes, Leitch and Laurent

conclude that all combinations of LNs and PNs are connected. RNs synapse on to PNs
and probably onto LNs, but it is not clear whether LNs synapse onto RNs. There are

therefore two pathways from the RNs to PNs: a direct one and a multisynaptic one,
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via one or more LNs. There is no quantitative information about the synapses of the
glomeruli. All glomeruli have about equal numbers of axons (Ernst et al., 1977). In
Locusta migratoria it is not clear that fibre bundles from the antennae can be assigned
groups of glomeruli, as in the cockroach Periplaneta americana and ants and honeybees

(Ernst et al., 1977).

7.2.1.5 Beyond the antennal lobe

The AGT runs from the AL to the LPL behind the /3-lobe and the central body. In
the protocerebral neuropil it joins with the tritocerebral bundles and the joint tract is
called the tractus olfactorio globularis (TOG) and has about 1200 fibres. There are

branches into calyces of corpora pedunculata.

7.2.2 Physiology
I will discuss what is known of the physiology of the RNs, PNs and LNs. The coding
issues will be left to the next section.

7.2.2.1 Receptor neurons

Boeckh (1967) recorded the responses of RNs in the sensilla coeloconica of Locusta
Migratoria to compounds present in plant odours and Kafka (1970) extended this work
to around 370 compounds.

RNs fire spontaneously at 0.01-5 Hz with no odour stimulation. When stimulated
with odour, they might: (a) not respond at all; (b) fire more frequently (excitation)
(c) fire less frequently (inhibition). The excitatory response was a regular but adapting
spike train (Kafka, 1970). Figure 7.4 shows excitatory and inhibitory RN spike trains.

The firing rate of excited neurons depends sigmoidally on the logarithm of the odour
concentration (Boeckh, 1967; Kafka, 1970). The tuning curves (figure 7.5) are different
for different odours in the same neurons and different for the same odour in different

neurons. The differences in tuning curve sets could be described by shifts of the whole
set of tuning curves between neurons and variance of the thresholds of the curves with
respect to a mean for each odour (Kafka, 1970). Thus two different cells could have
inverted sensitivity to two odours. Kafka also found an earlier onset of spiking for
higher stimulus intensities, as well as frequency dependence.

Hansson et al. (1996) investigated responses of RNs extracellularly in the sensilla of
the antennae of S. gregaria to pheremone components, other locust-produced odours,
and food odours. The large number of action potentials in the trichoid and basiconic
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Figure 7.4: Response of two RNs to two odours (from Kafka, 1970). The thick bar
indicates the duration of the odour presentations (600 ms). The near-horizontal lines in
each trace are the "slow voltage" recorded from the cuticle of the sensilla coeloconica
and represent the odour concentration. The large and small spikes on each trace belong
to different neurons. Top trace (2-Hexanal): the "small" neuron is excited and the
"large" neuron is inhibited. Bottom trace (butyric acid): the "small" neuron is excited
more strongly than in the top trace and the "large" neuron is inhibited less strongly.

Figure 7.5: Tuning curves of two RNs from different sensilla coeloconica (from Kafka,
1970). Abscissa: estimate of number of molecules arriving at sensilla. Ordinate: average
firing frequency during stimulation, a. trans-2-hexanal; b. trans-2-hexenoic acid; c.

butyric acid; d. propenoic acid e. trans-2, trans-4-hexadiene acid.
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sensilla prevented unambiguous identification of spiking neurons, so the activity of the
whole sensillium was measured. Spontaneous rates ranged between 10-30 Hz, which

equates to single unit rates of about 1-3 Hz. Eighty-seven out of 142 RNs responded to
at least one of the 12 odours tested. Of the 78 of the 87 responses evaluated, 45 were

to one or more components of the pheremone blend, 10 were tuned to the plant odour,
and 11 were "generalist" responses. Some sensilla were more narrowly tuned than
others. The firing rate of 11 sensilla responding to mixtures of pheremone components
increased linearly with log of the concentration of the odours at smaller intensities,

though sometimes decreased at higher intensities.
It was possible to deduce single-unit activity from recordings from the coeloconic

sensilla. There was no response to any of the odours at the same concentrations as

used to screen the basiconic and trichoid sensilla, but there were responses when the
concentration was increased by a decade. The RNs were either excited by food odours,
inhibited by pheremone components, or excited by food odours and inhibited by pher¬
emone components.

It seems from this study that the coeloconic sensilla are specialised for sensing

specific food odours at relatively high concentrations, whereas the trichoid and basiconic
sensilla primarily signal pheremones and food odours at lower concentrations.

7.2.2.2 Projection neurons

PNs are spiking neurons. Apart from this, very little seems to be known about the

precise physiology of the PNs. For example, I am aware of no current injection exper¬

iments performed on them. However, a good deal is known about their behaviour in
the network (see section 7.2.3).

7.2.2.3 Local neurons

LNs produce graded-response "spikelets" (Laurent and Davidowitz, 1994) . When ob¬
serving their influence on hyperpolarised PNs, it looks as though the effective rise time
of the IPSPs they produce is about 15 ms.

7.2.3 Coding
As the experimental evidence suggests that, to a first approximation at least, the three
components of the code outlined in section 7.1.3.4 can be treated separately, I will
discuss the slow spatiotemporal activity, the fast oscillation and the transient synchro¬
nisation separately.
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Figure 7.6: The temporal patterning of responses (from Laurent et al., 1996). Simul¬
taneous intracellular recordings of three PNs and the LFP from the ipsilateral MB.
Each column corresponds to presentation of a different odour. Top trace: LFP record¬
ings from the ipsilateral MB . Traces 2-f (from top): raw recordings from each of the
PNs. Traces 5-7: cleaned versions of the raw data. Trace 8-10: post-stimulus-time
histograms created from n recordings (n given in bottom trace). Trace 11: odour pulse
and its quality. Each odour pulse lasts 1 s.

7.2.3.1 Slow spatiotemporal activity

About 100 of the 830 PNs respond to any odour tested (over 2 log units of concentra¬
tion) (Laurent, 1996). Responses by individual PNs to specific odours are reliable over

repeated presentations on a timescale of about 10 ms. Responses by individual PNs
to different odours are different, and involve periods of firing and/or inhibition (Anton
and Hansson, 1996; Laurent et al., 1996). The response to blends of odours cannot be
predicted from the response to single odours (Laurent and Davidowitz, 1994).

MacLeod and Laurent (1996) found that antagonising ionotropic GABA receptors
with picrotoxin1 does not destroy these slow spatiotemporal patterns, although the
shorter time scale activity does change (see later). MacLeod and Laurent suggest
that slow inhibitory mechanisms or temporal structuring of the response of olfactory
receptors or a combination of both could be responsible for this. As there seems to

be little temporal structuring of input from the RNs (Wehr and Laurent, 1999), the
1Picrotoxin also antagonises vertebrate GABAa receptors.
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Figure 7.7: Picrotoxin abolishes fast oscillations but spares the slow spatiotemporal
patterns of PN activity. The two columns show responses from different PNs to the
same odour, i. The LFP from the MB and the recording from a single PN in the control
case. ii. The same responses when picrotoxin was applied to the AL. Hi. Post-stimulus
time histograms in the control case. iv. Post-stimulus time histograms in the picrotoxin
case. From MacLeod and Laurent (1996).

inhibitory mechanisms seem to be the best explanation for the slow spatiotemporal

patterns. Candidate inhibitory mechanisms include histamine, metabotropic GABA

receptors and nitric oxide.

7.2.3.2 Fast oscillations

Several pieces of evidence point towards LN and PN population oscillations.

Firstly, the membrane potential of PNs and LNs oscillate at about 20 Hz on presen¬

tation of odour (Laurent and Davidowitz, 1994). However, Anton and Hansson (1996)
did not obtain the same result in S. gregaria. Anton and Hansson suggest that either
the different types of stimuli presented (pheremones or complex food odours) or the
presentation regime (single or repeated) could account for this. M. Stopfer (personal
communication to Anton and Hansson, 1996) and G. Laurent (personal communica¬
tion) state that membrane oscillations appear much more clearly after multiple presen¬

tations. This might account for the differences in the results. MacLeod and Laurent

(1996) found that PNs lead LNs by about a quarter period (96° ± 53°).
Secondly, auto-correlations of PN show oscillations at 20 Hz (Wehr and Laurent,

1996). Ablation of the MB calyx does not alter the oscillatory patterns in the AL
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Figure 7.8: Evidence for oscillations, a. Simultaneous intracellular recording from a
PN and an LN as well as the LFP from the MB during a response to cherry odour. The
PN leads the LN by about one quarter of a cycle. From MacLeod and Laurent (1996).
b. MB LFP and post-stimulus time histograms of activity of two PNs in response to an
odour. From Wehr and Laurent (1996). c. Cross-correlation of neurons in b. showing
that the neurons are synchronised with each other for a variety of odours. From Wehr
and Laurent (1996).
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neurons, indicating that the oscillations are endogenous to the AL (Laurent, 1996)
and the inputs from the RNs are not oscillatory (Wehr and Laurent, 1999), so the
oscillations are a result of AL connectivity.

In addition to the single unit recordings in the AL, the local field potential (LFP)
of the MB often oscillates strongly at 20 Hz when an odour is puffed past the antennae.

When pure air is presented there is a small peak at 20 Hz in the LFP power spectrum.
The LFP of the AL does not oscillate, but this could be because the glomerular structure
of the AL precludes measurement of the coordinated activity of groups of neurons

extracellularly. There were some odours which did not cause the MB LFP to oscillate
when they were first presented, even at high concentrations. Repeated presentations
at (1.5-10 s intervals) did cause oscillations, fitting in with the results from single unit
recordings.

Laurent and Davidowitz (1994) found that the LFP recorded from the MB is syn¬

chronised both with the PN membrane potential and the PN spikes and LN spikelets.
The phase of the spikes does not vary between odours, indicating that it does not code
for odour or intensity, as Hopfield (1995) has suggested. The PN spikes occur during
the leading phase (—70° ± 52°) of the MB LFP and the onsets of LN spikelets occur at
the peak (16° ± 26°) of the LFP.

Antagonising ionotropic GABA receptors with picrotoxin results in a loss of syn¬
chronisation as evidenced by the power spectrum of the MB LFP, the autocorrelation of
PNs, and the cross-correlation of PNs and the MB LFP (MacLeod and Laurent, 1996).

7.2.3.3 Transient synchronisation of active neurons

Although there are oscillations in population activity, not all active PNs are synchro¬
nised with each other and the MB LFP all of the time. Figure 7.9 shows that PNs
can be active and phase-locked to the MB LFP or active and not phase-locked. The

pattern of phase-locking evolves with time and can be thought of as an additional part
of the spatiotemporal code (Laurent et ah, 1996).

Further evidence for transient synchronisation comes from cross-correlation analysis
with a sliding time window (Laurent and Davidowitz, 1994). In this method a small
time window (in this case 200 ms) is placed over two membrane potential (or LFP)
traces at a particular point in time. Cross-correlation analysis is then performed on the
two sections of trace, producing a 2D curve. The time window is then moved along a

small amount (in this case about 20 ms) and the procedure is repeated. Finally all of
the 2D cross-correlation plots are "stacked" to make a 3D plot which shows how the
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Figure 7.9: The time-course of the phase of PNs (from Laurent et ah, 1996). Four
different PNs (PN 1-4) were recorded from four different animals. For each neuron,
each of the large boxes labelled 1-12 corresponds to one "epoch" (that is somewhere
between 1/12 and 1/4 seconds) of firing in response to a one second odour pulse.
Within each large box each of the upper boxes corresponds to one trial. A vertical line
in these boxes corresponds to a PN spike and its horizontal positions reflect the phase
of that spike with respect to the MB LFP. The bottom box of each large box contains
a histogram with bin size 27t/36 of the spikes in the boxes above.
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synchronisation of the recordings changes over time.

Sliding time cross-correlations show distinct, reliable patterns between LN and the
LFP recordings from different parts of the MB during an odour presentation (Laurent
and Davidowitz, 1994). The same technique also shows transient correlations between
the spike trains of PNs, though the cross-correlations must be averaged over several
trials to show this structure.

Antagonising ionotropic GABA receptors with picrotoxin destroys the transient

synchronisation of PNs with the MB LFP (MacLeod and Laurent, 1996).

7.2.3.4 The code?

Laurent et al. (1996) propose that the evidence can be summarised as a spatiotemporal
code. In this code, neurons can be in one of three states: active and not synchronised
with the network activity; active and synchronised; and not active. The membership
of the groups of neurons in each of these states changes over time. Thus the code is a

spatiotemporal one.

7.2.3.5 Behavioural relevance of the code

Stopfer et al. (1997) investigated the honeybee olfactory system to see what the be¬
havioural significance of the synchronisation part of the code is. The reason for using
honeybees was that it is easier to train them to do a behavioural task than locusts and
their olfactory systems have similar coding properties. Odour puffs lead to a 0.5-1 s

long 30 Hz oscillation of the LFP in the MB. AL neurons responded selectively to cer¬

tain odours and their membrane potentials were phase locked to the LFP in the MB.
As with the locust, applying picrotoxin to the whole brain abolished the oscillations,

though the slower temporal pattern of projection neurons activity persisted.

Stopfer et al. trained honeybees to discriminate between different odours in a

proboscis-extension conditioning task. In this task, control animals are conditioned
to extend their proboscises by rewarding a target odour with nectar. The response

generalised somewhat so that after conditioning odours similar in molecular structure
to the rewarded one also caused proboscis extension, but the spectrum of odours that
caused a response was quite narrow. In the test group of animals, picrotoxin was ap¬

plied 10-45 minutes before conditioning. The discrimination was significantly worse

than in the control case. The test honeybees could not distinguish between odours
which were similar to the training odour, though still discriminable by the controls.

Stopfer et al. concluded that the 20 Hz synchronisation helps to separate odours with
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similar representations in the AL so that higher systems can learn from more distinct

representations.

7.2.4 Learning properties of the network

As mentioned in section 7.1.4, oscillations appear to be a product of short term memory,

with the number of spikes per cycle drops as an odour is presented repeatedly (Stopfer
and Laurent, 1999). To start off with, PNs may fire more than one spike per cycle,
though after training, the number of spikes is usually less than one per cycle. There
has been no investigation of the longer-term synaptic plasticity of the locust AL, as

there has in honeybees (Faber et al., 1999).

7.3 Why a model?

Models of biological neural networks are useful for a number of reasons. Firstly, they
force us to make explicit the assumptions that can be implicit in verbal explanations
and show whether explanations are possible. Secondly, we can study many more aspects
of a model than we can of the corresponding real system. For example we can "record"
from every neuron in a neural network. Finally, models may have surprising behaviour
that might inspire new hypotheses.

Nevertheless, there is necessarily a gap between model and reality, and one should
therefore justify why a formal model is better than the biological model, in this chapter
the one provided by the locust AL itself. Another criteria for developing a theoretical
model is that it is novel. None of the models presented in section 7.1.5 dealt with the

spatiotemporal patterns or transient synchronisation present in the locust AL. I believe
that the synchronisation of PNs with each other demands a model that uses spiking
neurons rather than rate oscillators (Li and Hopfield, 1989) and models the EPSPs and
IPSPs realistically (in contrast to current models of the invertebrate olfactory system

(for example Linster et al., 1993; Linster and Masson, 1996). I hope in the section to
show that a model incorporating more realistic spiking and membrane dynamics could
be useful in answering a top-level question, that of the mechanism that underlies the
slow spatiotemporal patterns and the fast oscillations.

We can approach this question from the bottom-up or from the top-down. In sec¬

tion 7.3.1 I approach from the top-down and explore possible hypotheses. I take the

bottom-up approach in section 7.3.2. Both approaches have advantages and disadvan¬

tages. In section 7.3.3 I suggest a synthesis of both approaches as a way forward.
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7.3.1 Top-down approach

If we take the top-down approach, we can choose to split the question up logically.
If we are not careful, we end up writing a computer program that does exactly what
our intuitions and the discussion section of papers say, and therefore does not tell us

anything new.

That said, from the evidence presented so far, it looks as though the question can

be split into three sub-questions:

1. What is the mechanism of the oscillations?

2. What is the mechanism of the slow temporal patterns?

3. What is the mechanism of the transient synchronisation?

Another reason for splitting the question in this way is that the oscillations are much
faster than the slow patterns indicates that the timescales could be separated in an

analysis. I suspect that the first two sub-questions need to be answered before the
third can be answered.

7.3.1.1 The mechanism of the oscillations

Prom the experimental evidence, the mechanism of the oscillations appears to depend
on relatively fast inhibitory GABA channels. It could be argued that we already under¬
stand the mechanisms of coupled groups of excitatory and inhibitory neurons through
the Wilson-Cowan oscillator (see section 4.3.1). Therefore we might conclude that the
mechanism is obvious and does not need modelling.

However, there are reasons, some of which will become apparent during the bottom-

up modelling exercise, for modelling the oscillations. The Wilson-Cowan model does
not tell us how to get oscillations of a certain frequency and phase difference between
the groups. Furthermore, we are dealing with a relatively small number of spiking
neurons.

While there are models and analysis of synchrony in systems of spiking with purely
excitatory or inhibitory connections (see section 4.3.2), there does not seem to have been
analysis of networks of spiking neurons with both inhibitory and excitatory connections.

7.3.1.2 The mechanism of the slow spatiotemporal patterns

Two possible explanations for the slow spatiotemporal patterns have been put forward
already, namely slow, non-GABAergic inhibition and the connectivity structure between
PNs.
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Since antagonising the LNs seems to leave the spatiotemporal patterns the same with
when the LNs are functioning normally, the LNs do not seem to be an important factor
in determining the spatiotemporal patterns. That leaves the connectivity between PNs
to do the work of producing the spatiotemporal patterns. However the activity of a
network with purely excitatory connections is liable to run away. Therefore as yet

undiscovered slow inhibitory connections could be used to regulate activity (Laurent
and Naraghi, 1994).

There are at least two more possible contributory mechanisms to the slow patterns.

Firstly, intrinsic adaption of the PNs could mean that PNs gradually fatigue and have
to recover for a period of time. Secondly, synaptic depression (section 2.4.3; Tsodyks
and Markram, 1997) would result in synapses fatiguing after being strongly activated.

A third mechanism might be synfire chains since they are offered as an explanation
for the fact that activity does not run away in networks with fast excitation and slow
inhibition (Abeles, 1991). Could synfire chains be an explanation for the slow temporal
patterns?

At first sight, the sequences resemble synfire chains in that there is almost syn¬

chronous firing of groups of excitatory units. However, the system differs from synfire
chains in two main respects. Firstly, groups that fire at neighbouring time steps over¬

lap strongly, whereas in synfire chains, there is low overlap of neighbouring patterns.

Indeed, excessive overlap leads to the breakdown of synfire propagation. The second
difference is the timescale. In the locust AL, the time between stages of the synfire chain

firing (about 50 ms) is much longer than the rising phase of EPSPs (about 10 ms). In
synfire chains, the synchronisation is maintained because the neurons in one node are

activated by the rising edge of EPSPs from the previous node. These reasons indicate
that synfire chains are not a good description of the slow temporal patterns.

Could then a modified version of synfire chains provide the mechanism? Changing
the threshold and refractory function so that neurons can fire multiple times when a

node is reached (Gerstner et ah, 1993b) would allow the network to produce sequences

where the neurons fire more than once on each cycle with the same connectivity pat¬

terns. The two other mechanisms above might also contribute to spatiotemporal pat¬
terns with synfire-type connectivity.

7.3.2 Bottom-up approach

In the bottom-up approach, we can try to model the system as faithfully as possible

making as few assumptions as possible. We then see whether the model responds
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similarly to the real one. If not, we try out the next most plausible assumption, and
iterate until the model is a perfect replication of the real system. Despite the fact that
this method is potentially time-consuming, there is merit in the bottom-up approach.
Models constructed using it may constitute a "null hypothesis", a standard model

against which other models can be compared.

7.3.3 A synthesis

I shall start by taking a bottom-up approach. The next section will describe a "null

hypothesis" model that is fairly well constrained by the anatomy and physiology, yet
still has some unknown parameters. Besides being a benchmark model, this will provide
the basis for testing the hypotheses mentioned in the previous section. There is still
considerable freedom in parameters to explore to see if the possible mechanisms could
work.

The model might make some predictions about the behaviour of the system, for

example:

• how the representations of different odours are related to each other;

• how the network responds to different concentrations of odour; and

• what sort of learning mechanism could refine the oscillation coherence.

In fact, it will turn out that to fit the bottom-up model to the data, some top-down
mathematical modelling comes in useful.

7.4 Model Description
In this section I start the work of building a bottom-up model in earnest. I start by

coming up with a simplified way of representing different odours in section 7.4.1. In
section 7.4.2 I tackle the anatomy of the model and in section 7.4.3 the physiology.

7.4.1 Odours

Different odours comprise different ratios of molecules. The work of Kafka (1970) shows
that molecules can excite or inhibit RNs. Therefore, we would expect presentation of
odours to cause a pattern of excitation and inhibition across the RNs. As figure 7.5

shows, the tuning curves to individual molecules are sigmoidal and different RNs can

have inverted sensitivity to two different odours. Thus the direction of a firing vector

may be quite different for the same odour at different concentrations.
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In this modelling study it seems fair to bypass modelling odours directly and con¬

centrate on the inputs to RNs. It also seems fair to ignore the problem of different
concentrations and work with different odours at the same concentration. I will as¬

sume there is some significance in firing patterns that are similar. This is because we

would expect that similar odours (at similar concentrations) produce similar patterns
of activity across RNs.

To generate an input pattern to the RNs corresponding to an odour we can generate

a random binary vector with 10% ones. To generate an odour uncorrelated with this
one we can generate a vector by the same method. To make a correlated odour, we

can flip 10% of the bits of the original vector. I model the onset and offset of an odour
with a ramp of 50 ms, as do Linster et al. (1993).

7.4.2 Anatomy

The basic units of the model are N neurons, made up of Np RNs, Np PNs and Np
LNs. The neurons are connected together by weighted synapses in Nq glomeruli. In
section 7.2.1 I reviewed the known connection statistics for the AL. In section 7.4.2.1

I will use this data to constrain a randomised connection structure. This does not

however determine the weights, which I discuss in section 7.4.2.2. I finish discussing
the anatomy by estimating the delays in section 7.4.2.3.

7.4.2.1 Connectivity

In order to describe how to fix the connection strengths, we need clear notation. I
will label neurons with their class and a number within that class. Hence there are

three series Ri, Pi and Li where i ranges over 1,..., Np, 1,..., Np and 1,..., Nl- To

preserve some degree of generality I will use X and Y to refer to one of R, P or L.
The biological data allows for three types of randomness in the connections:

1. the innervation of neurons into glomeruli;

2. the connectivity between neurons projecting into a glomerulus; and

3. the strength of the connections in glomeruli.

I will discuss each in turn.

Innervation of glomeruli Experimental evidence from the locust (see section 7.2.1)
constrains the first source of randomness by telling us roughly how many glomeruli each

RN, PN and LN innervates. To model this, we first allocate each neuron Xi to a number
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NR 5000

NP 830

Nh 300

Ng 1000

min(NgR) 1

max^Ngp) 3

min(Argp) 10

max(Ngp) 20

min(NgL) 200

max(Ngi,) 300

Table 7.1: Anatomical parameters.

Figure 7.10: Connectivity of neurons via glomeruli.

Ngx,Xi of randomly-chosen glomeruli. We draw Ngx,Xi from a uniform distribution
appropriate for that class of neuron. The numbers min(Ngx) and max(Ngx) specify
the limits of the distribution and I shall denote its mean by (Ngx,i)• (Table 7.1 shows
the default values for these and other anatomical parameters.)

It is useful to describe the allocation of a group of neurons to glomeruli by a matrix

Gx- In general, the matrix Gx defines the projection of XNs into glomeruli. Its
elements are defined

J = 1 with probability Ngfi'Xi (7 1 xGx-x'\ = 0 otherwise " ' <")
If we assume that all neurons projecting into a glomerulus are fully connected, the

binary expression

Gx,gXiGy,gYj (7-2)
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tells us whether neuron Xi synapses onto Yj via glomerulus g (see figure 7.10). Since
we are assuming that all possible connections exist, it also tells us whether Yj synapses
onto Xi, and that the neurons are therefore symmetrically connected. Summing over

all the possible glomeruli, the total number of connections from Xi to Yj (and vice

versa) is
Ng

Y^GX)gXiGY,gYj ■ (7.3)
9= 1

This expression shows that it is possible for a pair of neurons to have zero, one or more

connections.

Within-glomerulus connectivity The second type of randomness, implies that the fact
that two neurons innervate a common glomerulus does not mean that they synapse on

one another. There is no quantitative data from the locust on the level of connectivity
within glomeruli. However, we can estimate it by finding the density of connections
in the glomeruli of another insect, making the assumption there is the same density in
locust glomeruli, and then multiplying by the volume of the average locust glomerulus.

If we consider connections from LNs to LNs and PNs, from PNs to PNs and LNs
and from RNs to LNs and PNs, then were there full connectivity, the expected number
of connections in a glomerulus would be:

AT (NgL,i) ¥ {Ngp,i)\2 (NgRti) f {NgLti) (Ngpti)Nl-nT+n'—W)+ \Nl~nT +Np^~
300-^1 4- 830-A) 1- 50000—-— (300-^- + 830-t^-)1000 loooy 1000 V 1000 loooy

= 7647 + 8745 = 16392 .

On the basis of morphological work by Gascuel and Masson (1991), Kerszberg and
Masson (1995) estimate that there are 40000 synapses in a glomerulus in the AL of a
worker honeybee. Given that the average volume of a bee glomerulus is about 15 x

103 /im3 (Masson and Mustaparta, 1990), this gives a synaptic density of about 3 /rm~3.
If we assume that the synaptic density in the glomeruli of locusts is the same, there
will be about 25000 synapses in the average locust glomerulus (given a diameter of
25 fim Ernst et ah, 1977). Since this number is greater than the number of connections
calculated above, it seems quite plausible that the neurons afferent on a glomerulus are

fully connected.

Alternatively we could just assume that there is full connectivity of within the

glomeruli. Certainly the connections within the glomerulus appear to be very dense
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(Leitch and Laurent, 1996). I will therefore ignore random connectivity within glomeruli
for now.

Random connection strength The final type of randomness is modelled by multiplying
each element of the connectivity matrix by a random variable. Each element is then

multiplied by a number JxiYj chosen from a Gaussian distribution with mean (JxiYj)
and a variance of 10%. (Section 7.4.2.2 deals with how to find (JxiYj)•) The coupling
of a Xi to Yj is now

Gx,gXiGY,gYjJxiYj ■ (7-4)

Each connection between a pair of neurons via a different glomerulus can have a

different delay. This means there can be up to Ng connections between each pair of
neurons, depending on how many glomeruli they project into. To reduce the computa¬
tional demands of the model I combine the connections to make one connection with

one delay and a weight:

Ng

JxiYi = y^.Gx,gXjGY,gYjJxiYi • (7-5)
9=1

7.4.2.2 Weights

For the "null hypothesis" model I decided to draw the weight for each connection from
a Gaussian distribution with variance about 10% of the mean. Unfortunately there is
not enough anatomical data to constrain the means for each type of connection (PNs
to LNs, PNs to PNs and so on).

However, we do know that the PNs and LNs ought to fire alternately with a certain
time period T = 50 ms and phase lag ip — 0.25. The mean weights for each type of
connection will control whether PNs and LNs can fire alternately, and, if they can, the
time period and phase that they will fire at for a given level of input.

It might be possible to indulge in some top-down modelling and use this information
to constrain the weights. It turns out that with some mathematical analysis this is

possible. Since the analysis is more generally applicable, I cover it in chapter 8 and
leave setting the weights for now.

7.4.2.3 Delays

A rough calculation indicates that the axonal/dendritic delays should be small (order of
2 ms). In mammalian unmyelinated nerves the velocity of action potential conduction
in metres per second is about two times the axonal width in micrometres (Kandel et al.,



150 7. Synchrony, sequences and Schistocerca's sense of smell

1991). As the diameter of a PN neurite is around 1/um (Leitch and Laurent, 1996), its
conduction velocity is therefore about 2 ms . Since the diameter of the AL is ~ 0.5 mm

(Ernst et al., 1977), the approximate time of travel through a PN axon will be about
0.25 ms. The diameter of GABAergic neurites in the AL varies between 0.3/rm and
3 fim, so taking an average value gives a conduction velocity of about 4ms_1 through
the LN neurites, and a delay of about 0.125 ms. However passive conduction is slower,
so these figures are underestimates. A factor of five slower would give a delay of 1.5 ms
for PN to PN connections, about 1 ms for PN to LN connections and similar values
for the other connections. Allowing for synaptic delays of the order of 0.5 ms (Kandel
et al., 1991) and variability in path length, 2±lms seems a reasonable estimate for all
delays.

7.4.3 Physiology

This section describes how to translate the dynamics of the RNs, PNs and LNs into
SRM neurons.

7.4.3.1 Receptor neurons

There are three main features of the RNs I believe are important to model. Firstly
the firing frequency should depend roughly sigmoidally on the logarithm of the odour
concentration and should have a maximum somewhere between 150 and 200 Hz (see
figure 7.5). Secondly, there should be background firing rate in range 0-5 Hz, consistent
with the evidence discussed earlier. Finally, some noise in the firing may help break
down any accidental synchrony.

To model this, I use simple SRM neurons with the rectangular hyperbolic refractory
function (2.22). Figure 7.11 shows the gain function of this type of neuron as a function
of external input and for differing noise levels. We can take this input to be proportional
to odour or molecule concentrations. Under this assumption, the curve produced by

(3 = 8 with no adaptation (F = 1) seems a good qualitative fit to the experimental
data (see figure 7.5).

To achieve the variable spontaneous firing rate we can set the threshold so that
the spontaneous firing rate lies between 0 Hz and 5 Hz. The range 0.6-1 gives a suitable

range of firing rates with no input. Table 7.2 summarises the parameters eventually
settled on.
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hext

Figure 7.11: RN external input versus firing frequency for different noise levels and
i9 = 0. Solid line: P = 8; dashed line: /? = 15; dotted line: P = 1000. All other
parameters as in table 7.2.

0.6-1 mV 3mV 3mV

Fr 1 FP 1 Fh 1

Pr 8 Pp 20 Pl 20

tr 10 ms Tp 10 ms th 15 ms

"Tabs - R 5 ms

vr lmV

Table 7.2: RN, PN and LN parameters.
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7.4.3.2 Projection neurons

Inspired by the work of Kistler et al. (1997) in reducing the Hodgkin-Huxley equations
to SRM neurons, I have attempted to model the PNs by fitting functions to their
membrane potential traces, taken from the literature. Although I thought that it
should be an easy matter to get the parameters from experimental traces of activity, it
has turned out to be harder than I anticipated. The next few paragraphs describe my

attempts to fix the parameters in this way.

The threshold i9p is 3mV as various traces from (Wehr and Laurent, 1999) and
(Anton and Hansson, 1996) give values close to this value. The form of the PN EPSPs
are difficult to find from the literature. However, figure 10a ofWehr and Laurent (1999)
shows a trace which contains a likely candidate for a pure PN EPSP, unmixed with
either an RN EPSP or an LN inhibitory postsynaptic potential (IPSP). The rise time
of this EPSP is 10 ms, and it appears to be roughly the shape of an alpha function with
time constant rp = 10 ms.

The refractory period of a PN looks to be 5 ms from Wehr and Laurent (1999) and
the value of refractory function is —7mV at 5 ms after spiking (Anton and Hansson,
1996, figure 2). The time the refractory potential takes to get back to OmV is about
100 ms (Anton and Hansson, 1996, figure 2). The most straightforward way of modelling
the refractory potential was to scan into a computer a suitably uncluttered trace (Wehr
and Laurent, 1999, figure 11a, third panel) and fit a curve to it. The following equation
seems to be a reasonable approximation:

Figure 7.12 shows the original trace and the approximation to it.

To add some noise to the firing patterns, the I set the parameter /3p = 20.

7.4.3.3 Local neurons

The LNs are less straightforward than the PNs, as they do not spike with conventional,
narrow action potentials. Rather, they produce so-called "graded action potentials"
which can be initiated at several sites on the dendritic tree. There are several options
for modelling the LNs:

• Model each LN as a single spiking neuron as do Rabinovich et al. (1998) with
Hodgkin-Huxley neurons.

(7.6)
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Figure 7.12: Part of the original trace from figure 11a, 3rd panel of Wehr and Laurent
(1999) and the curve fitted to it.

• Model each LN as several conventionally spiking neurons. One could assume

that there is one initiation site per glomerulus, in which case each LN would be
modelled by about 250 SRM neurons.

• Model all of the LNs as a global inhibitor, claiming that their function is to

regulate activity.

In the absence of any concrete information about exactly what the LNs are doing,
I propose to take the first of the options above. Each LN can be modelled as an SRM
neuron with the IPSP time constants and refractory functions inferred from experiment.

Laurent and Davidowitz (1994) show a recording of a PN membrane potential that
suggests that the IPSP could be fitted by the alpha function with a time constant tl

of about 15 ms. There appear to be no traces which indicate what form the refractory
function might take; for want of better evidence I use the PN refractory function (7.6).
I set the threshold to be 3mV for the same reason. As with the PNs, (3 = 20.

7.5 Summary
One system in which both sequences and synchrony appear to play a role is the second
stage of processing in the locust Schistocerca's olfactory system, the AL. The evidence
found by Laurent and co-workers suggests that the temporal pattern of activation of
the 830 excitatory PNs in the AL over a period of about 1 s encodes the identity of
odours presented to the system. At the same time, the mass activity of the excitatory
neurons and the 300 inhibitory LNs oscillates at 20 Hz, with the PNs leading by quarter
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of a cycle. These oscillations seem to be functionally significant as when they are

pharmacologically abolished honeybees find it harder to discriminate between similar
odours. Although there are strong similarities between the olfactory system of the
locust and other insects and vertebrates, the same types of spatiotemporal patterns do
not appear to have been observed in other species.

A model of the AL could help explain the mechanism of the oscillations, the mech¬
anism of the sequences and how the two interact. In this chapter I have constructed
a network model of the AL. The SRM is used as the basic unit of the model as it is

well suited to fitting the refractory properties of the neurons. The input is assumed to

come from different groups of stochastically-firing RNs. The anatomy (in the form of

connectivity) was chosen randomly within the known and estimated connectivity ratios.
Unfortunately the mean magnitude of the weights cannot be constrained directly.

One unused constraint is the oscillation characteristics of the system. The next

chapter will attempt to derive a constraint on the weights from the oscillation time

period and the phase lead of the PNs over the LNs.
The major criticisms of the model built so far are that the LNs are not conventional

spiking neurons and that it does not include the hypothesised slow inhibition. The
counter to the second argument is that the model should be seen more as a "null

hypothesis" to make sure that the observed temporal effects are not simply a product
of a random structure.



Chapter 8

Synchronising oscillations in
excitatory and inhibitory groups

As we have seen in chapter 4, the synchronisation properties of groups of spiking neu¬

rons connected by purely excitatory or purely inhibitory synapses have been extensively
studied (for example Mirollo and Strogatz, 1990; van Vreeswijk et ah, 1994; Smith et ah,
1994). We have also seen that the Wilson-Cowan oscillator (Wilson and Cowan, 1972)
has inspired a number of models of the dynamics of the mass activity of reciprocally
connected groups of inhibitory and excitatory neurons. However, the dynamics of re¬
ciprocally connected groups of excitatory and inhibitory spiking neurons do not appear
to have been studied, perhaps due to a lack of biological motivation.

As we saw in the previous chapter, the locust olfactory system provides the motiva¬
tion for studying such a system. The main question it raised was how to set the mean

weight for each type of connection in a network of excitatory and inhibitory neurons.

A second question it raised is how the time period and phase of oscillation depend on

the input strength to the system.

Thus the main problem is more general case of the problem addressed by the lock¬
ing theorem of Gerstner et al. (1996a) introduced in chapter 4. There the problem
was to find the conditions under which a single group of homogeneous neurons fire

synchronously. Here the problem is to find the conditions under which two groups of
homogeneous neurons fire regularly but with one group leading the other by a certain

phase. The completely general case is for multiple groups of neurons where each group

fires periodically and the different groups fire at different phases in the cycle.
In section 8.1, I give the mathematical form of the constraints for multiple groups

and confirm that the locking theorem can be extended. In section 8.2, I present the

implications of the constraints for the excitatory-inhibitory oscillator. In section 8.3, a
network simulation with one set of parameters is consistent with most of the analytical

155
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and numerical predictions but shows some differences, possibly due to the simulation
method. Finally, in section 8.4, I discuss the conclusions and suggest some further
work.

A version of this chapter is due to appear in the book originating from the "Emer¬

gent Neural Computational Architectures based on Neuroscience" workshop held in

Edinburgh in September 1999 (Sterratt, 2001).

8.1 Constraints on stable synchronous oscillations

Suppose we have a network comprising N neurons organised into M groups defined by
the connectivity, delays, thresholds, and PSP and refractory functions. 1 denote the set

of neurons in the Ith group by Qi. The connectivity is such that the total presynaptic
connection strength from each group is the same for all neurons in a group. We can

express this mathematically by

) [ Jij — Jim i (^*-0
j&Gm

where Jim denotes the total weight from the neurons of group m onto a neuron in

group I. We further demand that the PSP functions and the weights are the same

(£ij(s) = iim(s) and Ay = A;m) for all neurons i E Qi and j E Qm- Finally, we require
that the thresholds and refractory functions for neurons in a group be equal: = di
and rji(s) = fji(s) for i E Gi-

In a multi-group locked state the neurons of each group fire synchronously and

periodically with a time period T. We assume that group I fires at (k + ipi)T for integer
k where <pi is a phase variable in the range [0,1). It is convenient to arrange the phases
in ascending order and set = 0 so that 0 = <p\ < <p2 < ■ ■ ■ < y>M-

Now assume that the I — 1th group has fired and that we are waiting for the Ith

group to fire (or that the Mth group has fired and we are waiting for the first group
to fire). Although time is arbitrary, we will assume that we are in the first cycle after
t = 0, that is that <p/-i < t < ipi (or <pi < t < T if we are waiting for the first group).
For any neuron i E Qi the expected synaptic and refractory potentials are

m— 1 1—F M —F

^iynW = X) ilm(t - (k + <Pm)T) +^2 Jim £lrn(t - (fc + <pm)T) (8.2)
1=1 k=0 l=m k=—l

and
—F

hf(t)=Yvm(t-(k + <pi)T). (8.3)
k=-1
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Group I should next fire when the membrane potential reaches the threshold i?;.
If the threshold has been set correctly this will be at t — <piT, leading to the self-
consistency or threshold condition:

= hi{ipiT) . (8.4)

A more precise requirement for the existence of coherent solutions is that for all i £ Gi,

ipiT = inf(f > (ipi-i)T\hi(t) = fy) . (8.5)

As hi(t) reaches $i from below, this implies that a necessary condition for stability is

hi(<piT) > 0 . (8.6)

I refer to this as the rising potential condition (see also chapter 6).
Although these conditions show that synchronised solutions exist, they do not show

that they are stable. In order to show this, we have to show that a small perturbation
to the firing time of a neuron from the group firing in a cycle time will decrease in
the next cycle. This linear perturbation analysis applied to a homogeneous network
of neurons with standard dynamics yields the locking theorem (Gerstner et ah, 1996b)
mentioned in chapter 4. I will restate it here:

Theorem 8.1 In a spatially homogeneous network of spiking neurons with standard
dynamics, a necessary and, in the limit of a large number n of presynaptic neurons

(n —> oo), also sufficient condition for a coherent oscillation to be asymptotically stable
is that firing occurs when the postsynaptic potential arising from all previous spikes is

increasing in time.

In a system with standard dynamics this is a stricter condition than the rising potential
condition since the positive refractory derivative contributes to making the derivative
of the membrane potential positive.

This result does not apply to more than one group of simultaneously firing neurons.

However, it is straightforward to extend the proof to prove part of the the infinite-limit
extended locking theorem:

Theorem 8.2 In a network of spiking neurons with standard dynamics with M ho¬
mogeneous groups of neurons such that all neurons in group I receive the same total

postsynaptic weight from a large number of presynaptic neurons Nm in each group m

a necessary and sufficient condition for constant phase, periodic, coherent oscillation
to be asymptotically stable is that firing occurs when the postsynaptic potential arising
from all previous spikes is increasing in time.
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Appendix A. 2 contains the proof. The mathematical expression of the extended locking
theorem is that

/i-yn(</?;T) >0 for i e Qi . (8.7)

8.2 Applying the constraints to excitatory and
inhibitory groups

It is now a straightforward task to apply the extended locking theorem to one excitatory
and one inhibitory group of neurons, a system that approximates the AL.

To abstract away from the locust AL, I will refer to the excitatory group as E and
the inhibitory one as I. Later it will be convenient to work with positive weights, so

I refer to the group connection weights which should be called Jee, Je\ and so on as

JeEj — <^EI> ^IE and —Jn- (I drop the tildes from here on as there is no further need to
refer to the weights between individual neurons.) I take the delays to be uniformly A.
I assume that PSP functions do not depend on the postsynaptic neurons and denote
the EPSP function by £e(£) and the IPSP function by £i(f). I will assume that they
are zero until t — A, rise monotonically to a maximum at time t = te or t = t\ and
then fall monotonically back to zero. The refractory functions, denoted t7e(£) and
both have positive derivatives so the network has standard dynamics.

To simplify the analysis I will assume that neurons only remember their last firing

times, that is F = 1. This is reasonable if the membrane potential due to a second

spike is much smaller than the membrane potential due to the first, which is true

when the time period is long compared to the PSP time constant. In any case, it is

straightforward to generalise to longer spike memories. I will also assume that the

refractory function complies with the formal version of the threshold condition (8.5).
This means the absolute refractory period is less than the desired period T and that it

prevents multiple firing during a cycle.

Since with the standard dynamics the stability condition is stronger than the rising

potential condition, we can ignore the rising potential condition. Of the two remaining

conditions, the stability condition is the more fundamental, since it constrains only the

weights, whereas the threshold condition also constrains the input levels. I therefore
explore the consequences of the stability condition first, in section 8.2.1, before moving
onto the consequences of the threshold condition in section 8.2.2.
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8.2.1 Consequences of the stability constraint
In the alternating state, network activity oscillates with a time period of T and the

excitatory group leads the inhibitory group by tpT, where <p is a phase variable with
the range [0,1). Applying the stability constraint (8.7) yields

Jee£E{T) - Jei^I ((1 - f)T) > 0 (8.8)

for the excitatory group and

Jie£E(<PT) - Jnei(T) > 0 . (8.9)

for the inhibitory group.

The consequence of these inequalities is that there are combinations of time periods
and phase for which there can be no stable firing, regardless of the size of the weights.
This is because either inequality is not satisfied when the excitatory derivative is less
than or equal to zero and the inhibitory derivative is greater than or equal to zero. For
the condition on the excitatory group (8.8) this happens when T < A or T > + A
and 0 < (1 — p)T < t\ + A. The condition on the inhibitory group (8.9) is violated
when T < T{ +A and ipT > te +A or pT < A. As it is enough for one group to become
unstable to plunge the whole system into instability, the forbidden combinations of T
and p are given by the union of the regions defined by the above inequalities. They
can be displayed in a plot of <p versus T (referred to as T-<p space from now on) as in
figure 8.1.

The second consequence of the inequalities (8.8) and (8.9) is that for those com¬

binations of T and p for which activity is not inherently unstable, stability depends
on appropriate weights. Thus for any possible pair of T and <p there will be a region
of the four-dimensional weight space that allows stable firing. We can make a major

simplification by noting that the inequalities concern the ratios Jee := Jee/Jei and
JlE Jie/Jii and finding the regions of a two-dimensional weight-ratio space that
allow stable firing. Since the weights are by definition positive, the weight ratios are

always greater than or equal to zero.

The stability condition (8.8) imposes different constraints on T, p and the weight
ratio Jee depending on the sign of £e(T), and hence on the size of T compared to A
and 7~e T A.

1. For T < A or T — te + A, £e(T) = 0 and from (8.8) we can deduce that

ei((l - V>)T) = 0 , (8.10)
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Figure 8.1: Forbidden regions of the T-tp plane for two sets of parameters. The light
regions are unstable due to the excitatory group becoming unstable, medium-grey areas
unstable due to the inhibitory group and the darkest areas unstable due to both groups.
Dashed lines pertain to the excitatory group, dotted lines to the inhibitory group and
dash-dotted lines to both. Plus signs indicate where condition (8.10) and its inhibitory
counterpart become true. Crosses indicate zeros in the denominators and circles zeros
in the numerators of equations (8.11) and (8.12) and their inhibitory counterparts. Left:
A = 2 ms, "pe = 20 ms and -q = 10 ms. Right: A = 2 ms, rg = 10 ms and tj = 15 ms
(estimated locust parameters).

so that stability condition is not satisfied. This is the region T < A where both
conditions are violated (see figure 8.1).

2. If A < T < rg + A, £e(T) > 0 and

^EE >
D((l -<P)T)

<hs(T) (8.11)

When £i((l — <p)T) < 0 (for (1 — ip)T < 0 or T > t\ + A) this equation is satisfied
for any weight ratio Jee (and thus any weights Jee and Jei) since weight ratios
are always positive.

3. When T > te + A, £e{T) < 0 and equation (8.11) does not hold, since we have
to reverse the sign of the inequality when rearranging (8.8). Instead,

Jee <
D((l -<P)T)

£e(t) (8.12)

When £\ > 0 (for 0 < (1 — ip)T < rj + A) the inequality cannot be satisfied for
positive weight ratios. This corresponds to the forbidden region where T > te+A.

We can derive similar inequalities for the inhibitory group from (8.9).
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The third consequence of the inequalities (8.8) and (8.9) complements the second.
Any pair of weight ratios limits the stable combinations of T and p> even more than
the inherent stability. This follows from setting Jee in the inequalities (8.10), (8.11)
and (8.12) and solving for T and (p. By contrast to the inherently unstable areas, the
solution does depend on the exact form of the PSP functions; we cannot simply consider
the signs of the PSP gradients.

With alpha function PSPs (defined in section 2.4.3) there appears to be no analytical
solution to the inequalities (8.10), (8.11) and (8.12) and their inhibitory counterparts.
We must solve both sets of inequalities numerically to find the regions each allow. The
intersection of these regions is the allowable region. Figure 8.2 shows contour plots of
the right hand sides of both sets of inequalities as a function of T and p. Solving the
inequalities is equivalent to slicing these functions at different heights and looking at
the regions above or below the cut, depending on the sign of the denominator of the

inequality. Thus the contours in figure 8.2 show the potential boundaries of regions of

instability.

Figure 8.3 shows the regions of stability and instability for a particular pair of weight
ratios. We can see how boundaries follow some of the contours shown in figure 8.2.

8.2.2 Consequences of the threshold constraint

The threshold condition (8.4) means that

= Jee£E(T)- JEieittl-vm+rmW + h^ (8.13)

holds for the excitatory group and that

i?i = JTE£E(<pT)-Juei(T) + rn(T) + hf* (8.14)

holds for the inhibitory group.

These equations tell us directly how much activation is required to sustain activity
in a stable region of T-tp space. Figure 8.4 shows the mapping of a grid in T-ip space

into hgxt-hjxt space for two sets of parameters. There are a few points to notice here.

1. As the excitatory or inhibitory external potential is increased, the time period
decreases. It seems intuitive that more excitatory input should speed up the
oscillations, but not that more inhibitory input should. The reason is this happens
is that more excitatory input makes the inhibitory neurons fire earlier, which in
turn release the excitatory neurons from their inhibition earlier.
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Figure 8.2: The right hand sides of the inequalities derived from the instability condi¬
tion. The top panel shows a contour plot of the function defined by the right hand side
of (8.10), (8.11) and (8.12) and the bottom panel shows the same plot for the inhibitory
versions of (8.10), (8.11) and (8.12). Lighter contours indicate higher values and darker
ones indicate lower ones. Dashed lines marked by crosses indicates asymptotes caused
by the denominator going to zero. Dashed lines marked by circles indicate where the
functions are zero. Dashed lines marked by plus signs indicate the boundaries of where
the function is undefined because the argument of the denominator is negative.
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Figure 8.3: Unstable regions of T-tp space and mapping from /igxt-Ajxt space onto
T-ip space for a pair of weight ratios. The shaded regions are unstable, with the
shade representing the groups whose stability conditions are violated: the light region
corresponds to the excitatory group, the intermediate region to the inhibitory group,
and the darkest region to both groups. The unshaded regions with lines plotted in them
are stable given the correct input. The lines represent the levels of external excitation
required to produce the values of T and p. Lighter shaded lines correspond to higher
values. The solid lines represent constant and the dashed lines represent constant
hfxt. The circles represent simulation values obtained by setting the input levels to
those of the lines. They agree well with the theoretical results, although they appear
in the theoretically unstable area too. Parameters: te =10 ms, 77 =15ms, A = 2 ms,
Jee = 0.5, Jei = 0.5, Jie = 1, J\\ = 1 and F = 3. Refractory function given by (7.6).
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Figure 8.4: The mapping from T-<p space into h|xt-/ijxt space for two sets of parameters.
Solid lines correspond to constant T and dashed lines to constant <p; numbers between
0 and 1 label some of the constant-T lines with the phase and multiples of 10 label some
of the constant-^ lines. Left: 7E =10 ms, t\ =15 ms, A = 2 ms, Jee = 0.5, Jei = 0.5,
JlE = 1, Jn = 1, F — 3. Right: te =20 ms, r\ =10 ms, A = 3 ms, Jee = 1, Jei = 0-5,
JlE = 1, ^11 = 0.5, F = 3.

2. More input to the excitatory neurons means they increase their lead over the in¬

hibitory neurons. We would expect more excitatory input to make the excitatory
neurons fire earlier, but without doing calculations we would not know whether it

brings forward the inhibitory neurons' firing by more or less. By contrast, more

input to the inhibitory neurons reduces the excitatory neurons' lead.

3. The input to both groups can be above or below threshold. It is somewhat

surprising that the excitatory group can have below-threshold input as it requires
above-threshold external input to start firing. However, once it is firing the self-
excitation is sufficient to keep it firing and the external input can be reduced. So
below-threshold input to the excitatory group is a hysteresis state.

To find the amount of external input required to obtain a particular time period
and phase we must solve (8.13) and (8.14) numerically. The lines in figure 8.3 show
a grid in /i|xt-/ijxt space mapped into allowed regions of T-<p space. We can see that
changes to either hgxt or hfxt change both T and <p.

8.3 Simulations

To test whether the analysis is correct, I simulated a network with 100 excitatory and
100 inhibitory neurons and the parameters in the caption of figure 8.3 for varying values
of external input. I analysed the results to find whether there was stable firing, and if

so, the time period and phase of oscillations. In order to make sure that the network did
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(solid line) and inhibitory (dashed line) groups. Each neuron fires when its membrane
potential crosses the effective threshold. Lower axes: The corresponding spike raster
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J\\ = 1, F = 3, (3 = 20, i9 = 0, = 0.3 and hfxt = —0.6. The resulting time period
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section 8.2.
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not stay in a stable state by chance, I added some noise to the firing times by making
the firing probabilistic (Gerstner and van Hemmen, 1992). The simulation results are

shown in figure 8.3, along with the theoretical results.
In the allowed regions they fit well with the theoretical predictions. However, the

network appears to fire stably even when it should not according to the theory. It is not
clear why this happens, though it is possible that the noise may stabilise the network
in these areas.

Figure 8.5 shows an example of the time course of the excitatory and inhibitory

synaptic potentials and the effective threshold, that is $ — hext — hrei(t). Although both
groups fire as their membrane potentials rise, as demanded by the stability condition,
when the excitatory group fires it does so on the falling phase of both PSPs that
contribute to it. To see this, note that at the time the excitatory group fires both

spikes contributing to its membrane potential have been released longer ago than the
their rise times, that is (1 — ip)T — A > i\ and T — A > te. Similarly, the inhibitory
group in figure 8.5 is firing on the falling phase of the EPSP and IPSP since ipT—A > te

and T — A > t\.

8.4 Discussion

This chapter started with a problem set by modelling the first stage of olfactory process¬

ing in the locust, the AL. This modelling work raised the problem of choosing weights
in a network of excitatory and inhibitory spiking neurons that produce the right time

period and phase of oscillation. In order to do this I had to extend the locking theo¬
rem (Gerstner et ah, 1996b) slightly. By applying the extended locking theorem to a

network comprising excitatory and inhibitory homogeneous groups I showed:

• that the excitatory and inhibitory neurons can only fire synchronously and alter¬

nately for certain time periods and phases of oscillation;

• how to find weights that produce a certain, allowed, time period and phase of

oscillation;

• that oscillations are possible for below-threshold input to inhibitory neurons and,
when the network is in a hysteresis state, for below-threshold input to excitatory

neurons; and

• how the time period and phase depend on the input and vice versa.
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Simulations confirm most of these results, but, puzzlingly, seem to be stable when the
theory predicts they should not. This may be due to the symmetry-breaking noise
included in the simulations.

I am not aware of the problem of the time period and phase of networks of spiking

excitatory and inhibitory spiking neurons having been posed or analysed before. Al¬
though there is a sizeable literature on the dynamics of networks of spiking neurons,

none of them appear to deal with networks comprising excitatory and inhibitory neu¬

rons (Mirolio and Strogatz, 1990; van Vreeswijk et al., 1994). While there has been
much work on excitatory and inhibitory oscillators based on the population model of
Wilson and Cowan (1972), this does not relate to spiking neurons, which allow different
dynamics to continuous-valued population models (Gerstner, 2000). By contrast, my
extension to the locking theorem is trivial — indeed it has been hinted at (Gerstner
et ah, 1996b). Nevertheless, I believe that it has been a worthwhile accomplishment to
have put it on a firmer footing.

Perhaps the most surprising result is the forbidden values of time period and phase,

independent of the values of the weights. These regions possibly act to limit the time

periods at which neural systems can work, and so are perhaps responsible for the
time periods observed in the locust. The results also indicate that it should be rather
difficult for the locust to maintain the experimentally-observed constant oscillation time

period, even if the excitatory and inhibitory inputs are proportional to each other. This
implies that either the input is relatively constant or that the oscillation time period
does actually change in the locust, perhaps as a function of odour concentration. It may
be possible that there are parameter regimes that do give the desired characteristics,
however. It may also be possible that a more complex neuron model with active channels
is required to achieve a fairly constant oscillation time period.

In deriving the results I have assumed that the refractory potential is strong enough
to prevent PNs firing before they are inhibited. If this is not true, firing may not be
"correct" as neurons may fire more than once on each cycle. Another, more limiting

assumption is that of the homogeneity of the groups, a condition unlikely to be found
in the nervous system. Less homogeneous groups will introduce differences in the firing
times of units of a group, thus making the locking less precise. However, an extension
of the one-group locking theorem to noisy neurons suggests that moderate amounts of
noise still allow reasonably precise, stable locking and there are arguments as to why

noisy neurons might be equivalent to inhomogeneous connections (Gerstner, 2000).
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Several questions remain. In particular the effect of noise and inhomogeneity on the

locking is not well understood. There may be ways of setting parameters to make large
stable regions or to minimise the dependence of the time period on the inputs. The
behaviour as the external inputs are increased in proportion to each other is relevant
to the locust and should be studied.

In conclusion, this simple model of excitatory and inhibitory spiking neurons is a

useful tool in predicting and understanding the activity of real neural systems without

going to complex simulations. It may have application beyond the locust in some of
the many excitatory-inhibitory subnetworks of nervous systems that show oscillatory
activity.

8.5 Summary
The locking theorem of Gerstner et al. (1996b) states that a necessary and sufficient
condition for the synchronous, periodic firing of infinitely-large groups of homogeneously
connected neurons is that the total synaptic input of every neuron is rising at the time
that it fires. A generalised version of this problem is that of synchronising groups

of neurons that are connected homogeneously within themselves but heterogeneously
between each other. I have extended the locking theorem slightly to cover the general

case, showing that the necessary and sufficient condition on each neuron is exactly the
same as in the single-group version.

The problem of the previous chapter is the two group version of the general locking

problem. From the extended locking theorem I have shown analytically that for a

general form of PSP function the excitatory and inhibitory neuronal populations cannot
fire alternately at certain time periods and phases, regardless of the size of the weights.

The equations derived from the locking theorem also allow us to find weights that
produce an allowed time period and phase of oscillation. A particular set of weights
will restrict the possible time periods and phases of oscillations; the restricted areas

can be found numerically. Numerical methods also allow us to predict the time period
and phase as a function of external input and vice versa.

I have shown that oscillations are possible with below-threshold input to the in¬

hibitory neurons and that oscillations are also possible with below-threshold input to
the excitatory neuron, but only if network is in a hysteresis state. A network simula¬
tion with one set of parameters shows is consistent with the analytical and numerical

predictions.



Chapter 9

Synchronising Schistocerca

In this chapter I describe how to apply the theory developed in chapter 8 to the null hy¬
pothesis model developed in chapter 7 and present simulation results from the resulting
model.

The theoretical results from the preceding chapter are given in terms of the total
weight from all members of one group of neurons onto a neuron in another group.

Therefore these values have to be scaled according to the average number of connections
from neurons of one group onto a neuron of another. Section 9.1 describes how to do
this.

In section 9.2 I carried out simulations where the PNs and LNs are stimulated

directly rather than by the RNs. This is to assess the effects of the random connectivity
matrix on the model. It seems that the effect is to alter the locked oscillations discovered

in the previous chapter.
In section 9.3 the results are discussed and suggestions for further work are made.
The simulations described in this chapter represent a small proportion of the number

that I have carried out. Many of these simulations were carried out with older versions
of the model, which I now believe to be less parsimonious than the one presented in

chapter 7. However, some of these models did appear to fit the oscillation data better
than the current one.

9.1 Setting the weights
To derive the average weight per connection, we must take into account the fact that
one neuron may synapse onto another via more than one glomerulus. To be precise, we
would expect neurons Xi and Yj to be connected by

Ng,Xi Ngyj
Ng ' Ng

169

• Ng (9.1)
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synapses on average. Therefore we must normalise the total weight from one type of
neuron onto another not only by the number of presynaptic neurons, but also by this
value. For example,

{Jpi,Rj) = • N N^r • (9.2)

9.2 Simulations with the randomised connectivity
matrix

A necessary condition for the full model to produce oscillations is for a cut-down version
of the model comprising only the PNs and LNs connected by the random connectivity
matrix to produce oscillations of the appropriate time period and frequency when fed
with the correct external input. Input from the RNs will induce fluctuations in the

inputs. I have run a number of simulations using values of the weights and external

inputs that should support oscillations at a time period of T = 50 ms and a phase of

ip — 0.25. However, I have not yet found a point in weight space that produces the
desired firing patterns. This section presents some of the simulation results in order to

give an insight into why the model is not working as expected.
The first set of weights are those from the previous chapter, Jpp = 0.5, Jpl = 1,

JLP = 0.5 and Jll = 1- With external inputs hpxt — Jp = 0.4 and = —0.5
the network with these (uniform) weight values should produce the correct behaviour.
In all the simulations presented in this chapter, F = 3.

Using the randomised connectivity matrix generated as described in chapter 7 and
from these mean weights generated as described in section 9.1 did not lead to the desired

firing patterns. Figure 9.1 shows the spike raster of a selection of PNs and LNs. We can

see that the PNs fire twice on each cycle before causing the LNs to spike, rather than

causing the LNs to spike directly. The reason for this behaviour should be evident from

representative PN and LN traces (figure 9.2) The problem is the PNs do not excite the
LNs quite enough the first time they fire in a cycle, presumably because the EPSPs are

not as synchronous as in the case with uniform connectivity studied in chapter 8 and
therefore do not summate as effectively.

Another simulation where the desired time period and phase is pushed further into
the stable area of T — space shows similar results. The only change in the parameters

were the weights: Jpp = 0.5, Jpl = 0.5, Jlp = 0.5, Jll = 2. The external inputs were

hf>xt _ _ o 35 ancj ^ext _ _ Q 40 Figure 9.4 shows the resulting spike raster.
The results are less like the desired results than the first set of parameters, with the
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Figure 9.1: Spike raster of network activity. Neurons 50-100 are PNs and neurons
101-150 are LNs. Parameters: rp =10ms, tl =15 ms, A = 2 ms, Jpp = 0.5, Jpl = 0.5,
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Figure 9.2: Upper axes: Synaptic potential (lower trace) and effective threshold (upper
trace) from a PN. Lower axes: The same quantities for an LN in the same simulation.
Parameters as in figure 9.1.
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Figure 9.3: Spike raster of activity. Parameters: Jpp = 0.5, Jpl = 0.5, Jlp =0.5,
Jll = 2. hp = 0.35+ i9p and hi, = 0.4+Jl- Otherwise parameters are the same as the
first simulation.

network degenerating into a fairly asynchronous state rather quickly. Figure 9.4 shows
the membrane potentials obtained in the network. The theoretical trace (figure 9.5)
shows that the weight values ought to work in a network with no weight variance.

Again, the problem seems to be that the membrane potential to the LNs from the PNs
is too variable.

This indicates weights from LNs onto PNs are rather variable. Figure 9.6 shows

histograms of the different weight strengths. It does appear that the weights from LNs
onto PNs are particularly variable.

Consideration of the inequalities in the previous chapter indicated that Jpp should
be small in the region of desired time period and phase and that Jlp could be very

small, since its value was immaterial in the desired region. If these ratios are small,
the weights from the inhibitory neurons will be much stronger than the weights from
the excitatory neurons. This should mean that the system will not be as sensitive to

the firing times of the excitatory neurons as before. It will also mean that the synaptic

potential is usually far below the effective threshold, apart from near firing times. This
will prevent spurious firing due to the noise in the neurons causing them to fire because
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Figure 9.4: Effective thresholds and synaptic potentials for the second set of parameters.
The top plot shows a typical PN and the lower plot shows a typical LN.

Figure 9.5: Predicted effective thresholds and synaptic potentials for the second set of
parameters.



9.2. Simulations with the randomised connectivity matrix 175

x105 x104

Figure 9.6: The connection statistics for the second set of parameters. Each histogram
describes the distribution of the weights indicated by the label on the abscissa.
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Figure 9.7: Spike raster of activity. Parameters: Jpp = 0.1, Jpl = 10, Jlp = 0.1,
Jll = 5. hp = 3.0 + i9p and hp = 4.0 + ■dp. Otherwise parameters are the same as the
first simulation.

they are near the threshold for long periods of time. I therefore decided to try a

simulation with Jpp = 0.1, Jpl = 10, Jlp = 0.1 and Jll = 5.

Figure 9.7 shows the resulting spike raster and figure 9.8 shows representative synap¬

tic potentials and the effective threshold. Again, the simulations did not compare well
with the results predicted by the theory. There does however seem to be periodic ac¬

tivity among the LNs, though not in the PNs. Again, the problem seems to be that the
LNs fail to fire, probably due to the weight variance. The theoretical firing membrane
potential and effective threshold (figure 9.9) show that LN firing ought to occur on a

fairly steeply rising part of the membrane potential and should therefore be stable.

Perhaps it could be that the noise in the firing is too large. In chapter 4 we saw that
noise levels could make the difference between asynchrony and synchrony in a network.

However, repeating the last experiment with /3p = (3p = 1000 produced similar results.
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Figure 9.9: Predicted effective thresholds and synaptic potentials for the third set of
parameters.
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9.3 Discussion

From the simulations from various parts of parameter space presented here, it seems

that the work of the last chapter in fixing the weights has not succeeded in producing a

model that can reproduce the basic oscillation results. Nor has the model spontaneously

produced spatiotemporal patterns, which indicates that other mechanisms besides fast
inhibition and excitation coupled by a random weight matrix are at work.

There are a number of possible reasons for the failure to produce patterns and some

possible ways forward. In section 9.3.1 I consider whether the results could be due to a

failing in the model. I consider the possibility that I was trying to simulate the wrong

data in section 9.3.2. If the model is a reasonably realistic approximation to reality
a more extensive exploration of the parameter space might locate suitable weights. I
consider method of doing this in section 9.3.3. It may be that other mechanisms need
to be built into the model; I discuss these in section 9.3.4.

9.3.1 The antennal Lobe model

It is possible that the model of the antennal lobe does not correspond well enough to

reality. In this section I will discuss elements of the model in turn.

I am fairly confident that the connectivity structure and delays in the model are
realistic. This is because the anatomical data is relatively unambiguous. However, it
could be that the assumption of random connectivity is false, and that a more ordered

connectivity would lead to less variance in the weights between groups, and would
therefore be more likely to support synchronous oscillations.

I am less sure of the physiological parameters, such as the PSP functions and the

refractory function. This is because there was not much data that I could use to fit
them to. As chapter 8 shows, these parameters could have a profound effect on whether

particular time periods and phases are stable or not.

Interestingly, previous simulations that were very similar to the current ones, apart
from in the form of the refractory function (which I considered to be over-fitted),
produced results that look more promising. Figure 9.10 shows a case where the older
model almost worked. The weights were derived using the above equations with T =

50 ms and <p = 90°. The PNs are firing before the LNs in each cycle, though some are

firing more than once (due to the refractory potential not being strong enough). The
average phase looks to be about 90°. This is a further indication that the behaviour is

very sensitive to the parameters of the model.
There is also a more fundamental concern about the neuron models. It could be
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that ungated spiking neuron models (such as the SRM) are too simple to describe the
dynamics of the locust AL. In particular, the LNs are extremely complex morpholog¬

ically, and are not proper spiking neurons in the first place. It is possible that the

dynamics would be easier to stabilise with conductance-based models that can incor¬

porate shunting inhibition. The problem with using more complex neuronal models is
that we do not know very much about the physiology of the PNs and LNs.

There is another reason why we might expect the neuronal model be inadequate.
From the work done in chapter 8, it would appear that the time period and phase of
oscillation will depend quite sensitively on the input. However, it seems that the time

period and phase of oscillation is fairly constant when odours are present. It would
thus appear that the simple voltage-based neurons may not be able to adapt.

9.3.2 Interpretation of the data

The data (for example, Laurent et al., 1996; figure 7.9) shows that the locking of the
PN responses to the LFP oscillation is not very tight: their spikes are typically spread
over quarter of a cycle. Perhaps, then, tight, synchronous locking is not the correct

data to be modelling or estimating parameters by? In this case, some of the results
obtained in this chapter, while not confirming that the analysis of chapter 8 extends
well to variable parameters, does at least give more realistic results. In future work,
the goal would be to reproduce more realistic distributions of PN spikes.

It may also be possible that the transient synchronisation of PNs is a more funda¬
mental mechanism than the oscillations. Transient synchronisation of PNs could lead
to the oscillitory activity observed. This would imply that the model should focus on

the mechanism of transient oscillations. If the hypothesis is correct, the oscillations
would emerge from the model. This is a possible direction for future research.

9.3.3 The parameter space

Although the work of the previous chapter tells us which regions of parameter space

will not allow stable firing, it still leaves a lot of parameter space to explore, much of
which is evidently unfriendly to synchronous oscillations. Assuming that the inputs are

fixed by the weights Jpp, Jpl, Jlp and Jll, the space is four-dimensional. Although I
have tried to explore part of it intelligently, I believe that it is possible that I may have
missed a suitable region of parameter space. Two possible ways of locating the point
in parameter space would be to improve the theory of chapter 8 or to use automated
parameter space search techniques.
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The theory developed in chapter 8 was not designed to deal with a large weight
variance, as is present in the current model (see figure 9.6). It is possible that a more

robust theory would narrow down the parameters still further, though it is also possible
that the variance in the weights is insurmountable with the types of neurons and PSPs
used in the model. One factor that was not considered in the theory was the relative

gradients of the synaptic potential and the refractory potential. We might expect larger

gradients in both potentials to lead to tighter locking. However, the theory is already
fairly complicated, and I consider it unlikely that it could be extended in a useful way.

It might be worth using other techniques, such as genetic algorithms to explore the
parameter space in more depth than I can. This would require a fitness function, which
could be provided on the basis of automatic evaluation of spike train statistics, such as

the cross- and auto-correlation functions. These should be relatively straightforward to

construct. They could also be applied to more realistic data (see previous section).

9.3.4 Other mechanisms

It could be that other, non-conductance-dependent mechanisms are at work in the
locust AL. For example, dynamic depressing synapses (Tsodyks and Markram, 1997)
could provide a mechanism to keep the time period and phase of oscillation constant.

Depressing synapses might also have a role to play in the slow spatiotemporal pat¬
terns. Other mechanisms that might play a part in the spatiotemporal patterns are:

more ordered, synfire-like connections between PNs; slow inhibition to regulate activity;
and slow excitation.

9.4 Summary
From the simulations results in this chapter, it seems that applying the theoretical
results of the previous chapter to the null hypothesis model of the locust AL developed
in chapter 7 does not give the desired oscillations at a period of 50 ms and a phase lead
of 0.25. Simulations from some areas of parameter space result in oscillations, but with

multiple firing of PNs. Simulations from other areas lead to asynchrony.
There are a number of possible reasons for the failure to produce oscillations of the

desired type. Firstly, the model could be intrinsically unable to oscillate in the desired
fashion. This could be due to failings in extracting parameters from experimental data,
mistaken assumptions, such as random connectivity, or, more fundamentally, due to

using the wrong type of neuron model. Secondly, I may have not found the correct part
of parameter space in which the model can produce oscillations. Possible ways around
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this would be to improve or extend the analysis of chapter 8 or to use a method such
as genetic algorithms to explore the parameter space more thoroughly. Finally, there
may be additional mechanisms that need to be incorporated into the model for it to
work. One candidate is depressing synapses and another is additional slow inhibitory
neurons.

Another possibility is that the results from this chapter are in fact more realistic
than tight locking would be anyway. In this case, the goal of future work should be to

reproduce more realistic firing patterns.



Chapter 10

Conclusions

To conclude the thesis, I will summarise the main results in section 10.1 and outline
ideas for further work in section 10.2. In section 10.3 I speculate about the future of

understanding temporal phenomena in the nervous system

10.1 Contribution of the thesis

The contributions of this thesis can be divided into three categories: methodological,
theoretical and modelling results.

10.1.1 Methodological results

The first methodological contribution was to simulate the network of Hansel et al.

(1998) with interpolated and uninterpolated SRM neurons and compare the synchrony
properties to the exact solution. This showed that a network of SRM neurons requires a

smaller time step than IF neurons solved using RK2 in both the interpolated and unin¬

terpolated cases. This is significant because it could allow faster simulation of networks
of spiking neurons, especially with arbitrary PSP and refractory kernels. There is, how¬
ever, a word of warning about this result. In practice, solving differential equations is
faster than computing exponential functions. Thus if the network can be described by
IF neurons with synaptic functions that are solutions of differential equations, this will
be faster.

The second methodological achievement was to show how to simulate networks
of noisy neurons with escape rate noise and interpolation. This should allow faster
simulation of networks of noisy neurons. The main criticism of this work is that I have
not evaluated it against a benchmark task, as I did with the deterministic network.

183
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10.1.2 Theoretical results

The first theoretical results were to do with sequence-learning.
I derived equations for the threshold-speed relationship of a generalised synfire chain

comprising discrete units that had been trained in a supervised fashion at a training

speed with a temporal learning rule. I then derived a continuous approximation to it
and applied both analyses to a realistic potentiation function. I showed that the discrete

analysis corresponds better to physical reality than the continuous approximation to it

previously studied. The novel part of this work was the idea of supervised training at a

training speed and the discrete analysis. The main deficiency in this work is that it is

only true in the case of perfectly uncorrelated patterns. Simulation results indicate that
even small correlations have a large effect on pattern retrieval. Also, I have not taken
account of weight saturation effects that would occur during the repeated presentation
of a pattern sequence.

I also investigated the dynamical stability of spatiotemporal sequences learned in
this way. In the discrete case the sequences are unstable at lower speeds. Thus, for low

training speeds, the recall speed of chains will be higher than the speed at which they
were trained. This could be of significance for (for example) motor sequences as they
could be learned slowly and then speeded up.

I have applied the learning speed result to the realistic temporal potentiation func¬
tion. Due to the asymmetric learning function the speed does not scale with the time
constant of the potentiation function, as in previous work.

The second theoretical result has to do with synchrony. I formally extended the

locking theorem of Gerstner et al. (1996b) to cover more than one group of neurons.
This allows the stability of locking of groups of homogeneously connected neurons to

be investigated.
I applied the extended locking theorem to neural networks comprising groups of

excitatory and inhibitory neurons showing:

• that the excitatory and inhibitory neurons can only fire synchronously and alter¬

nately for certain time periods and phases of oscillation;

• how to find weights that produce a certain, allowed, time period and phase of
oscillation;

• that oscillations are possible for below-threshold input to inhibitory neurons and,
when the network is in a hysteresis state, for below-threshold input to excitatory

neurons; and
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• how the time period and phase depend on the input and vice versa.

10.1.3 Modelling results
I set up an anatomically and physiologically realistic model of the locust AL using SRM
neurons. This is the first spiking neural network model of the locust AL, and should

provide a basis for understanding the interplay between sequences and oscillations. I
used the results from the excitatory and inhibitory groups of neurons to determine the

average weight strengths.
I have implemented this model using a C++ program. However, I have not been

able to get the model to reproduce some basic results from the locust olfactory system.
In order to do this, I suspect that the model will have to be changed. Nevertheless, I
believe that the formal description of the model may be useful to future modellers.

10.2 Further work

There are two main areas of work in this thesis that are unfinished.

The first is the learning of sequences. As the simulations showed, the theoretical
results of chapter 6 only apply to network with patterns with no or very little over¬

lap. The work that has been done on the capacity was with units with effectively
square PSPs rather than smoothly-rising PSPs like alpha functions. Also, this work
dealt with connections only between adjacent nodes in the synfire chain, whereas the

experimentally-discovered temporal learning rule implies there ought to be connections
between nodes further afield. I believe that extending the capacity calculations to more

realistic networks would be a worthwhile enterprise.
The second item of unfinished business is the model of the locust AL. I have not yet

succeeded in getting it to produce convincing oscillations or temporal patterns. I suspect
that a reevaluation of the model will be more useful than a concerted search through

parameter space to produce oscillations. More work should be done on investigating the
ideas mentioned in section 7.3.1.2 in order to model the slow spatiotemporal patterns.

10.3 Outlook

Will we crack the cortical code, and if so, when? Being of cautious disposition, I am
not about to hazard an answer to this question. However, I would be so bold to predict
that if the cortical code is cracked, it will be as much by dint of understanding the
dynamics of networks of neurons and learning in them as by postulating directly how
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neurons code for things. In any case, until the cortical code is cracked, the future is

bright for research into all things temporal in the nervous system.



Appendix A

Mathematical asides

A.I Why we should expect to see more triplets
We can see this from the following calculation. We want to know what the conditional
probability of finding a one unit (1-U), two unit (2-U) or three unit (3-U) triplet is,
given that we have already found a triplet. Equations of the form

give these conditional probabilities. In fact it is really the ratios of the conditional
probabilities, so since the denominator is the same in all cases, we can concentrate
on finding the numerators. The numerators are all products of the probability of
impaling one, two or three neurons and the probability of the impaled neuron or neurons

appearing enough times in the chain to produce a triplet, given that the chain is already
impaled. The probability of a neuron being impaled is relatively easy. If there are n

neurons in each node of a synfire chain with P nodes, in a network with N neurons

and we record from Nr neurons we expect to record from x = NruP/N neurons. The
Poisson formula gives the number of neurons impaled:

The probability of the neurons appearing often enough in the chain so that a triplet
is recorded is not so regular. When we have managed to record from three neurons

from the same chain, all the neurons by definition appear once in the chain, and so the
probability is 1 and When recording from one neuron we must find at least two other
neurons in the chain, so

P[record 1-U triplet|record triplet] =
P [record 1-U triplet] (A.l)P [record triplet]

xy
P[y neurons impaled] = e~x— . (A.2)

(A.3)
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When two neurons are impaled, at least one of them must appear more than once in
the chain, so

P [record 2-U triplet] = x 2 + (^pj + ...j . (A.4)
Finally, for a 1-U triplet, the same neuron must occur at least two more times in the
chain, so

P [record 1-U triplet] = ^ Nr£P x + (^) + • • • (A-5)
Dividing each equation by e~x(nP/N)3 and ignoring terms of order (nP/N), we find
the ratio of these probabilities to be

Nr Nl Nr
P[record 1-U triplet] : P[record 2-U triplet] : P[record 3-U triplet] = .

(A.6)
Since the total number of neurons N is much bigger than the number of neurons
recorded from Nr, it is clear that we should expect to see many more repeating triplets
from three different neurons than from two different neurons than from one different

neuron.

A.2 Proof of the Extended Locking Theorem
To show whether the group firing times are stable to small perturbations, we can

perform a linear stability analysis. Suppose that the firing times before ipiT are per¬

turbed by small times <§C Tmin; ipi. The firing times are now (k + <pi)T + 5^ for
(k)

k = 0, —1, —2,... for a neuron in group m < I and (k + (fi)T + <51 for k = —1, —2,...
for a neuron in group m > I.

The slight changes in firing times will change the membrane potential slightly. An
increase in membrane potential when it is near the threshold makes a neuron fire earlier.
The change in firing time is greater when the rate of change of the membrane potential
is small. Mathematically,

= (AJ)
hypiT)

where Shi(ipiT) is the change in membrane potential due to the perturbations in the
previous firing times.

We can linearise so that:

mbiT ~(k + ipt)T - 5\k]') « vi(-kT) - VI,kS^ (A.8)
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and

where

£im(<fiT ~(k + tpm)T - 5^) « £lm((ipi -ifm- k)T) - £lm,k4

Vl,k = Vl{-kT) and iim<k = -<pm- k)T) .

(k) (A.9)

To find the small change in membrane potential 8hi(ipiT), we substitute the per¬

turbed times for the unperturbed times in (8.2) and (8.3) and substitute the linearised
expressions for the refractory, synaptic and membrane potential terms. Substituting
the result in a rearranged version of (A.7) yields

Mw^)f =
—F l-l 1—F M -F

£ m**™ + £ £ Jij £ £im,kS\k) + £ £ Jtj £
k=— \ m=l jE-Qm k=0 m=l j(zGm k=—1

(A.10)

By the law of large numbers it is reasonable to assume that mean time shifts vanish,
it is (1/AOE^f « 0.

must further assume that

that is (l/N) Ei ~ 0- In order to simplify the problem to make it tractable we

?(*) 0 . (A.ll)
jeQm

Note that this is a stricter condition than (8.1) as it implies that the weights and
perturbations are uncorrelated and that the weights sample the perturbations fairly
well. For example, Jij = JoSij (where 8 is here the Dirac delta) satisfies (8.1) but does
not necessarily lead to (A.ll).

The assumption (A.ll) allows us to neglect the last two summations in (A.10) so

that the only delays influencing the 0th delay of neuron i £ Qi are the previous delays
of neuron i itself:

8j0) = £ A[k)8f} where A{k) = VI,k

k=-1 E -kLiVi,k + hsr{viT)
(A.12)

We can recast (A.12) in matrix form:

' ^0) ^ ( ^ )
* -t

1

— F; where F; = 0

I <rF)) {<TF))
V 0

A(-f) \
0

0

0 )

(k)The condition for stability is that as t —> oo, 8\ ' —> 0. In the matrix notation,
this is equivalent to limn_>oo F™(<5) = 0 for an arbitrary delay vector 8. A sufficient
condition for this to happen is that the eigenvalues of F; all lie within the unit circle.
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Gerstner et al. (1996b) use various matrix theorems to prove that J2k < 1 is a

necessary and sufficient condition for the modulus of the maximum eigenvalue to be
less than one. Substituting (A. 12) into this condition yields

r-v-F
2^fc=-1 Vi,k

ZkLimt+hr&iT)
< 1 . (A.13)

As, in the standard dynamics, 77/^ > 0, the second part of the denominator must be
positive, yielding the stability condition (8.7).
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