16,378 research outputs found

    An internet of laboratory things

    Get PDF
    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade equipment, as well as large-class sets of off-the-shelf work stations and bespoke teaching apparatus. Distance to the student is no object and the facilities are open all hours. This approach is essential for STEM qualifications requiring development of practical skills, with higher efficiency and greater accessibility than achievable in a solely residential programme

    Virtual laboratories for education in science, technology, and engineering: A review

    Get PDF
    Within education, concepts such as distance learning, and open universities, are now becoming more widely used for teaching and learning. However, due to the nature of the subject domain, the teaching of Science, Technology, and Engineering are still relatively behind when using new technological approaches (particularly for online distance learning). The reason for this discrepancy lies in the fact that these fields often require laboratory exercises to provide effective skill acquisition and hands-on experience. Often it is difficult to make these laboratories accessible for online access. Either the real lab needs to be enabled for remote access or it needs to be replicated as a fully software-based virtual lab. We argue for the latter concept since it offers some advantages over remotely controlled real labs, which will be elaborated further in this paper. We are now seeing new emerging technologies that can overcome some of the potential difficulties in this area. These include: computer graphics, augmented reality, computational dynamics, and virtual worlds. This paper summarizes the state of the art in virtual laboratories and virtual worlds in the fields of science, technology, and engineering. The main research activity in these fields is discussed but special emphasis is put on the field of robotics due to the maturity of this area within the virtual-education community. This is not a coincidence; starting from its widely multidisciplinary character, robotics is a perfect example where all the other fields of engineering and physics can contribute. Thus, the use of virtual labs for other scientific and non-robotic engineering uses can be seen to share many of the same learning processes. This can include supporting the introduction of new concepts as part of learning about science and technology, and introducing more general engineering knowledge, through to supporting more constructive (and collaborative) education and training activities in a more complex engineering topic such as robotics. The objective of this paper is to outline this problem space in more detail and to create a valuable source of information that can help to define the starting position for future research

    Open and Low-Cost Virtual and Remote Labs on Control Engineering

    Get PDF
    This paper presents an open course in the University Network of Interactive Laboratories, which offers several virtual and remote laboratories on automatic control, accessible to anyone. All the details on one of these labs (a two electric coupled drives system that allows performing control practices in a 2 × 2 MIMO system with industrial applications) and the activities that can be performed with it are given. We use a low-cost solution for developing the virtual and remote labs shared in this open course, based on the use of a free authoring tool Easy Java/Javascript Simulations (EJsS) for building the laboratories' user interfaces and a cheap development platform board (BeagleBone Black). The virtual and remote labs are deployed into a free Learning Management System (Moodle) Web environment that facilitates their management and maintenance

    A Review to Weigh the Pros and Cons of Online, Remote, and Distance Science Laboratory Experiences

    Get PDF
    The effectiveness of traditional face to face labs versus non-traditional online, remote, or distance labs is difficult to assess due to the lack of continuity in the literature between terminology, standard evaluation metrics, and the use of a wide variety non-traditional laboratory experience for online courses. This narrative review presents a representative view of the existing literature in order to identify the strengths and weaknesses of non-traditional laboratories and to highlight the areas of opportunity for research. Non-traditional labs are increasingly utilized in higher education. The research indicates that these non-traditional approaches to a science laboratory experience are as effective at achieving the learning outcomes as traditional labs. While this is an important parameter, this review outlines further important considerations such as operating and maintenance cost, growth potential, and safety. This comparison identifies several weaknesses in the existing literature. While it is clear that traditional labs aid in the development of practical and procedural skills, there is a lack of research exploring if non-traditional laboratory experiments hinder student success in subsequent traditional labs. Additionally, remote lab kits blur the lines between modality by bringing experiences that are more tactile to students outside of the traditional laboratory environment. Though novel work on non-traditional labs continues to be published, investigations are still needed regarding cost differences, acquisition of procedural skills, preparation for advanced work, and instructor contact time between traditional and non-traditional laboratories

    EL LABORATORIO DE CIENCIAS DE LA FUTURA ESCUELA. TECNOLOGÍAS Y CONTENIDOS EMERGENTES

    Get PDF
    Este artigo investiga as tendências atuais na transformação de laboratórios STEM na era da digitalização devido à integração de tecnologias digitais e ao reconhecimento da importância do desenvolvimento de habilidades metacognitivas. O artigo examina o papel da metacognição e seu impacto no processo de aprendizagem, bem como o uso de tecnologias digitais, como laboratórios remotos, laboratórios virtuais, realidade aumentada, realidade virtual e dispositivos móveis na educação STEM. Os resultados desta pesquisa sugerem que o uso dessas tecnologias digitais pode ser benéfico para a aprendizagem de ciências no ensino superior e secundário. Além disso, essas tecnologias podem ser usadas para promover o engajamento, a colaboração e o acesso dos alunos ao conhecimento científico. Além disso, a metacognição é uma habilidade importante para professores e alunos, e pode ser desenvolvida através do uso da pirâmide do conhecimento, pirâmide de inteligência emocional, pirâmide metacognitiva e modelos de pirâmide de superdotação.This paper investigates the current trends in the transformation of STEM laboratories in the age of digitization due to the integration of digital technologies and the recognition of the importance of developing metacognitive skills. The paper examines the role of metacognition and its impact on the learning process, as well as the use of digital technologies such as remote labs, virtual labs, augmented reality, virtual reality, and mobile devices in STEM education. Results from this research suggest that the use of these digital technologies can be beneficial for science learning in both higher and secondary education. Additionally, these technologies can be used to promote student engagement, collaboration, and access to scientific knowledge. Furthermore, metacognition is an important skill for both teachers and students, and can be developed through the use of the knowledge pyramid, emotional intelligence pyramid, metacognitive pyramid, and giftedness pyramid models.Este artículo investiga las tendencias actuales en la transformación de los laboratorios STEM en la era de la digitalización debido a la integración de tecnologías digitales y al reconocimiento de la importancia del desarrollo de habilidades metacognitivas. El documento examina el papel de la metacognición y su impacto en el proceso de aprendizaje, así como el uso de tecnologías digitales como laboratorios remotos, laboratorios virtuales, realidad aumentada, realidad virtual y dispositivos móviles en la educación STEM. Los resultados de esta investigación sugieren que el uso de estas tecnologías digitales puede ser beneficioso para el aprendizaje de las ciencias tanto en la educación superior como en la secundaria. Además, estas tecnologías pueden utilizarse para promover la participación, colaboración y acceso al conocimiento científico por parte de los estudiantes. Además, la metacognición es una habilidad importante tanto para profesores como para estudiantes y puede desarrollarse mediante el uso de los modelos de pirámide del conocimiento, pirámide de inteligencia emocional, pirámide metacognitiva y pirámide de talento.Este artigo investiga as tendências atuais na transformação de laboratórios STEM na era da digitalização devido à integração de tecnologias digitais e ao reconhecimento da importância do desenvolvimento de habilidades metacognitivas. O artigo examina o papel da metacognição e seu impacto no processo de aprendizagem, bem como o uso de tecnologias digitais, como laboratórios remotos, laboratórios virtuais, realidade aumentada, realidade virtual e dispositivos móveis na educação STEM. Os resultados desta pesquisa sugerem que o uso dessas tecnologias digitais pode ser benéfico para a aprendizagem de ciências no ensino superior e secundário. Além disso, essas tecnologias podem ser usadas para promover o engajamento, a colaboração e o acesso dos alunos ao conhecimento científico. Além disso, a metacognição é uma habilidade importante para professores e alunos, e pode ser desenvolvida através do uso da pirâmide do conhecimento, pirâmide de inteligência emocional, pirâmide metacognitiva e modelos de pirâmide de superdotação

    About the Efficacy of Virtual and Remote Laboratories in STEM Education in Secondary School: A Second-Order Systematic Review

    Get PDF
    Online laboratories brought new opportunities for instruction. In this work, a secondorder systematic review about the efficacy of virtual and remote labs on learning in high school STEM education is presented. Nine systematic review and a meta-analysis were included. A descriptive summary (qualitative and quantitative) of their findings is provided. On average, online laboratories support learning to an extent comparable to that observed in real labs; their effect is even more positive when they are integrated into more traditional teaching practice (e.g., as pre-lab practice sessions before the hands-on experiments) and when they are supported by adequate teacher feedback. Content knowledge is the learning outcome most often assessed; while practical and inquiry skills related to scientific reasoning are investigated less frequently. The results are promising for instructional design and for the future research, despite the data variability and some methodological limitations of individual studies (lack of relevant quantitative data, such as effect sizes and moderator analysis). Further experimental research is required to estimate the effect of online labs on different learning outcomes and to better understand the moderating role of some variables related to interventions and students

    Comparison of Student Achievement among Two Science Laboratory Types: Traditional and Virtual

    Get PDF
    Technology has changed almost every aspect of our daily lives. It is not surprising then that technology has made its way into the classroom. More and more educators are utilizing technological resources in creative ways with the intent to enhance learning, including using virtual laboratories in the sciences in place of the “traditional” science laboratories. This has generated much discussion as to the influence on student achievement when online learning replaces the face-toace contact between instructor and student. The purpose of this study was to discern differences in achievement of two laboratory instruction types: virtual laboratory and a traditional laboratory. Results of this study indicate statistical significant differences in student achievement defined by averages on quiz scores in virtual labs compared with traditional face-toace laboratories and traditional laboratories result in greater student learning gains than virtual labs. Lecture exam averages were also greater for students enrolled in the traditional laboratories compared to students enrolled in the virtual laboratories. To account for possible differences in ability among students, a potential extraneous variable, GPA and ACT scores were used as covariates

    The VISIR+ Project – Helping Contextualize Math in an Engineering Course

    Get PDF
    The long-term goal of engineering education is to prepare students to work as engineers. Being a practical profession, laboratories play a crucial role in illustrating concepts and principles as well as improving technical skills. In the last decades the use of online resources (simulators and remote labs) has been growing, either as a complementary and/or as an alternative way of developing experimental competences. In the scope of the VISIR+ Project, this work presents the first results of a didactical implementation using simultaneously the remote laboratory VISIR (Virtual Instrument Systems in Reality), simulation and calculus in a Math Course at the Federal University of Santa Catarina (UFSC). The preliminary results indicate that the use of several resources increases students’ performance, boosting their learning and competence development.info:eu-repo/semantics/publishedVersio
    corecore