28 research outputs found

    An Empirical Evaluation of Deep Learning on Highway Driving

    Full text link
    Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.Comment: Added a video for lane detectio

    Visualizing Road Appearance Properties in Driving Video

    Get PDF
    With the increasing videos taken from driving recorders on thousands of cars, it is a challenging task to retrieve these videos and search for important information. The goal of this work is to mine certain critical road properties in a large scale driving video data set for traffic accident analysis, sensing algorithm development, and testing benchmark. Our aim is to condense video data to compact road profiles, which contain visual features of the road environment. By visualizing road edge and lane marks in the feature space with the reduced dimension, we will further explore the road edge models influenced by road and off-road materials, weather, lighting condition, etc

    Vehicle detection using background subtraction and clustering algorithms

    Get PDF
    Traffic congestion has raised worldwide as a result of growing motorization, urbanization, and population. In fact, congestion reduces the efficiency of transportation infrastructure usage and increases travel time, air pollutions as well as fuel consumption. Then, Intelligent Transportation System (ITS) comes as a solution of this problem by implementing information technology and communications networks. One classical option of Intelligent Transportation Systems is video camera technology. Particularly, the video system has been applied to collect traffic data including vehicle detection and analysis. However, this application still has limitation when it has to deal with a complex traffic and environmental condition. Thus, the research proposes OTSU, FCM and K-means methods and their comparison in video image processing. OTSU is a classical algorithm used in image segmentation, which is able to cluster pixels into foreground and background. However, only FCM (Fuzzy C-Means) and K-means algorithms have been successfully applied to cluster pixels without supervision. Therefore, these methods seem to be more potential to generate the MSE values for defining a clearer threshold for background subtraction on a moving object with varying environmental conditions. Comparison of these methods is assessed from MSE and PSNR values. The best MSE result is demonstrated from K-means and a good PSNR is obtained from FCM. Thus, the application of the clustering algorithms in detection of moving objects in various condition is more promising

    Application of neural network method for road crack detection

    Get PDF
    The study presents a road pavement crack detection system by extracting picture features then classifying them based on image features. The applied feature extraction method is the gray level co-occurrence matrices (GLCM). This method employs two order measurements. The first order utilizes statistical calculations based on the pixel value of the original image alone, such as variance, and does not pay attention to the neighboring pixel relationship. In the second order, the relationship between the two pixel-pairs of the original image is taken into account. Inspired by the recent success in implementing Supervised Learning in computer vision, the applied method for classification is artificial neural network (ANN). Datasets, which are used for evaluation are collected from low-cost smart phones. The results show that feature extraction using GLCM can provide good accuracy that is equal to 90%

    Vehicle pose estimation for vehicle detection and tracking based on road direction

    Get PDF
    Vehicle has several types and each of them has different color, size, and shape. The appearance of vehicle also changes if viewed from different viewpoint of traffic surveillance camera. This situation can create many possibilities of vehicle poses. However, the one in common, vehicle pose usually follows road direction. Therefore, this research proposes a method to estimate the pose of vehicle for vehicle detection and tracking based on road direction. Vehicle training data are generated from 3D vehicle models in four-pair orientation categories. Histogram of Oriented Gradients (HOG) and Linear-Support Vector Machine (Linear-SVM) are used to build vehicle detectors from the data. Road area is extracted from traffic surveillance image to localize the detection area. The pose of vehicle which estimated based on road direction will be used to select a suitable vehicle detector for vehicle detection process. To obtain the final vehicle object, vehicle line checking method is applied to the vehicle detection result. Finally, vehicle tracking is performed to give label on each vehicle. The test conducted on various viewpoints of traffic surveillance camera shows that the method effectively detects and tracks vehicle by estimating the pose of vehicle. Performance evaluation of the proposed method shows 0.9170 of accuracy and 0.9161 of balance accuracy (BAC)

    Vehicle pose estimation for vehicle detection and tracking based on road direction

    Get PDF
    Vehicle has several types and each of them has different color, size, and shape. The appearance of vehicle also changes if viewed from different viewpoint of traffic surveillance camera. This situation can create many possibilities of vehicle poses. However, the one in common, vehicle pose usually follows road direction. Therefore, this research proposes a method to estimate the pose of vehicle for vehicle detection and tracking based on road direction. Vehicle training data are generated from 3D vehicle models in four-pair orientation categories. Histogram of Oriented Gradients (HOG) and Linear-Support Vector Machine (Linear-SVM) are used to build vehicle detectors from the data. Road area is extracted from traffic surveillance image to localize the detection area. The pose of vehicle which estimated based on road direction will be used to select a suitable vehicle detector for vehicle detection process. To obtain the final vehicle object, vehicle line checking method is applied to the vehicle detection result. Finally, vehicle tracking is performed to give label on each vehicle. The test conducted on various viewpoints of traffic surveillance camera shows that the method effectively detects and tracks vehicle by estimating the pose of vehicle. Performance evaluation of the proposed method shows 0.9170 of accuracy and 0.9161 of balance accuracy (BAC)

    Robust Stabilised Visual Tracker for Vehicle Tracking

    Get PDF
    Visual tracking is performed in a stabilised video. If the input video to the tracker algorithm is itself destabilised, incorrect motion vectors will cause a serious drift in tracking. Therefore video stabilisation is must before tracking. A novel algorithm is developed which simultaneously takes care of video stabilisation and target tracking. Target templates in just previous frame are stored in positive and negative repositories followed by Affine mapping. Then optimised affine parameters are used to stabilise the video. Target of interest in the next frame is approximated using linear combinations of previous target templates. Proposed modified L1 minimisation method is used to solve sparse representation of target in the target template subspace. Occlusion problem is minimised using the inherent energy of coefficients. Accurate tracking results have been obtained in destabilised videos

    Comparison of Forward Vehicle Detection Using Haar-like features and Histograms of Oriented Gradients (HOG) Technique for Feature Extraction in Cascade Classifier

    Get PDF
    This paper present an algorithm development of vehicle detection system using image processing technique and comparison of the detection performance between two features extractor. The main focus is to implement the vehicle detection system using the on-board camera installed on host vehicle that records the moving road environment instead of using a static camera fixed in certain locations. In this paper, Cascade classifier is trained with image dataset of positive images and negative images. The positive images consist of rear area of the vehicle and negative image consist of road scene background. Two features extractor, Haar-like features and histograms of oriented gradients (HOG) are used for comparison in this system. The image dataset for training in both feature extractions are fixed in dimension. In comparison, the accuracy and execution time are studied based on its detection performance. Both features performed well in detection accuracy, whilst the results indicate that the Haar-like features execution time is 26% faster than by using HOG feature

    Predictive and Multi-rate Sensor-Based Planning under Uncertainty

    Get PDF
    Email Print Request Permissions In this paper, a general formulation of a predictive and multirate (MR) reactive planning method for intelligent vehicles (IVs) is introduced. The method handles path planning and trajectory planning for IVs in dynamic environments with uncertainty, in which the kinodynamic vehicle constraints are also taken into account. It is based on the potential field projection method (PFP), which combines the classical potential field (PF) method with the MR Kalman filter estimation. PFP takes into account the future object trajectories and their associated uncertainties, which makes it different from other look-ahead approaches. Here, a new PF is included in the Lagrange-Euler formulation in a natural way, accounting for the vehicle dynamics. The resulting accelerations are translated into control inputs that are considered in the estimation process. This leads to the generation of a local trajectory in real time (RT) that fully meets the constraints imposed by the kinematic and dynamic models of the IV. The properties of the method are demonstrated by simulation with MATLAB and C++ applications. Very good performance and execution times are achieved, even in challenging situations. In a scenario with 100 obstacles, a local trajectory is obtained in less than 1 s, which is suitable for RT applications
    corecore