29 research outputs found

    Soil erosion assessment—Mind the gap

    Full text link
    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors—long studied and referred to as “geomorphic external variability”, and microscale effects, introduced as “geomorphic internal variability.” The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field‐catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.Key PointsSoil loss response to runoff is strongly controlled by “geomorphic internal variability”: microscale factors intrinsic to geomorphic systemPredictive skill of deterministic soil loss models at event scale is likely to remain poorErosion estimates must communicate uncertainty due to geomorphic external and internal types of variabilityPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136017/1/grl55374-sup-0001-Supplementary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136017/2/grl55374.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136017/3/grl55374_am.pd

    The Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields

    Get PDF
    Abandonment of agricultural land results in on- and off-site consequences on soil system and there is a need to evaluate the impact on soil erosion to understand the ecosystem's changes. The aim of this research is to assess the impact of abandonment in four Mediterranean crops (vineyards, almonds, citrus and olives) on soil and water losses. To achieve this goal, 105 rainfall simulation experiments were conducted in agriculture fields (vineyards in Málaga, almonds in Murcia, and citrus and olive in Valencia) and on the paired abandoned plots. After abandonment, soil detachment decreased drastically in the olive and citrus orchards, meanwhile vineyards did not show any difference and almonds registered higher erosion rates after the abandonment. Terraced orchards of citrus and olives recovered a dense vegetation cover after the abandonment, meanwhile the sloping terrain of almonds and vineyards enhanced the development of crusts and rills and a negligible plant cover that resulted in high erosion rates. The contrasted response of the abandonment is discussed

    Applying close range digital photogrammetry in soil erosion studies

    Get PDF
    Soil erosion due to rainfall and overland flow is a significant environmental problem. Studying the phenomenon requires accurate high-resolution measurements of soil surface topography and morphology. Close range digital photogrammetry with an oblique convergent configuration is proposed in this paper as a useful technique for such measurements, in the context of a flume-scale experimental study. The precision of the technique is assessed by comparing triangulation solutions and the resulting DEMs with varying tie point distributions and control point measurements, as well as by comparing DEMs extracted from different images of the same surface. Independent measurements were acquired using a terrestrial laser scanner for comparison with a DEM derived from photogrammetry. The results point to the need for a stronger geometric configuration to improve precision. They also suggest that the camera lens models were not fully adequate for the large object depths in this study. Nevertheless, the photogrammetric output can provide useful topographical information for soil erosion studies, provided limitations of the technique are duly considered

    Relationship Among Crop Systems, Soil Cover, and Water Erosion on a Typic Hapludox

    Get PDF
    Several soil conservation practices are used to reduce water erosion and ensure sustainable agriculture. An effective crop management practice is intercropping, in which two or more crops with different architectures and vegetative cycles are grown simultaneously in the same area. We hypothesized that intercropping of corn and jack-bean increases soil cover and reduce soil erosion by water in comparison to monocropping. The objective of this study was to evaluate the effects of different crop systems on soil cover and on soil erosion by water. Soil and water losses from a Typic Hapludox were measured under the following systems: corn cultivation (CO), jack-bean cultivation (JB), intercropping of corn and jack-bean (IC), and bare soil (BS), as a reference for maximum erosion rates. For each crop system, erosion plots with dimensions of 12 × 4 m were set up in the field on a 0.12 m m-1 slope gradient. The experiment was carried out under natural rainfall, over three crop seasons (November to March) from 2011 to 2014. The soil cover index of the systems was monitored during crop growth, and rainfall erosivity for the crop seasons was calculated according to the EI30 index to interpret soil and water losses. A set of linear mixed models was fitted to relate soil losses to rainfall erosivity, crop systems, and soil cover. The average rainfall erosivity in the study area was 6,132 MJ mm ha-1 h-1 per crop season. The results indicate that water losses are directly related to erosivity and are less influenced by soil cover and cultivation systems than the soil losses. A linear maximum value of the soil cover index was achieved 70 days after sowing. Intercropping exhibited greater soil cover than single crops. Total soil losses from the three seasons display the trend: BS > CO > JB > IC. The best fitted model of the linear mixed models indicates that soil loss responses are strongly correlated with rainfall erosivity and soil cover, which nullified the influence of the crop systems in the model

    Temporal- and spatial-scale and positional effects on rain erosivity derived from point-scale and contiguous rain data

    Get PDF
    Up until now, erosivity required for soil loss predictions has been mainly estimated from rain gauge data at point scale and then spatially interpolated to erosivity maps. Contiguous rain data from weather radar measurements, satellites, cellular communication networks and other sources are now available, but they differ in measurement method and temporal and spatial scale from data at point scale. We determined how the intensity threshold of erosive rains has to be modified and which scaling factors have to be applied to account for the differences in method and scales. Furthermore, a positional effect quantifies heterogeneity of erosivity within 1&thinsp;km2, which presently is the highest resolution of freely available gauge-adjusted radar rain data. These effects were analysed using several large data sets with a total of approximately 2×106 erosive events (e.g. records of 115 rain gauges for 16 years distributed across Germany and radar rain data for the same locations and events). With decreasing temporal resolution, peak intensities decreased and the intensity threshold was met less often. This became especially pronounced when time increments became larger than 30&thinsp;min. With decreasing spatial resolution, intensity peaks were also reduced because additionally large areas without erosive rain were included within one pixel. This was due to the steep spatial gradients in erosivity. Erosivity of single events could be zero or more than twice the mean annual sum within a distance of less than 1&thinsp;km. We conclude that the resulting large positional effect requires use of contiguous rain data, even over distances of less than 1&thinsp;km, but at the same time contiguously measured radar data cannot be resolved to point scale. The temporal scale is easier to consider, but with time increments larger than 30&thinsp;min the loss of information increases considerably. We provide functions to account for temporal scale (from 1 to 120&thinsp;min) and spatial scale (from rain gauge to pixels of 18&thinsp;km width) that can be applied to rain gauge data of low temporal resolution and to contiguous rain data.</p

    Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado

    Get PDF
    Farmland expansion in the Brazilian Cerrado, considered one of the largest agricultural frontiers in the world, has the potential to alter water fluxes on different spatial scales. Despite some large-scale studies being developed, there are still few investigations in experimental sites in this region. Here, we investigate the water balance components in experimental plots and the groundwater table fluctuation in different land covers: wooded Cerrado, sugarcane, pasture and bare soil. Furthermore, we identify possible water balance trade-offs due to the different land covers. This study was developed between 2012 and 2016 in the central region of the state of São Paulo in southern Brazil. Hydrometeorological variables, groundwater table, surface runoff and other water balance components were monitored inside experimental plots containing different land covers; the datasets were analyzed using statistical parameters; and the water balance components uncertainties were computed. Replacing wooded Cerrado by pastureland and sugarcane shifts the overland flow (up to 42&thinsp;mm&thinsp;yr−1) and the water balance residual (up to 504&thinsp;mm&thinsp;yr−1) and may affect groundwater table behavior. This fact suggests significant changes in the water partitioning in a transient land cover and land use (LCLU) system, as the evapotranspiration is lower (up to 719&thinsp;mm&thinsp;yr−1) in agricultural land covers than in the undisturbed Cerrado. We recommend long-term observations for continuing the evaluations initiated in this study, mainly because there are few basic studies on tropical environments at the hillslope scale and more assessments are needed for a better understanding of the real field conditions. Such efforts should be made to reduce uncertainties, validate the water balance hypothesis and catch the variability of hydrological processes.</p

    Actual geomorphological processes in sloping vineyards. A comparison between Ruwer-Mosel Valley (Trier, Germany) and Montes de Málaga (Málaga, Spain)

    Get PDF
    Los resultados de este trabajo demostraron que los viñedos en pendiente de los Montes de Málaga (España) y del valle Ruwer-Mosel (Alemania) con suelos desnudos pueden experimentar altas tasas de erosión, pero sin demostrar patrones claros a simple vista debido al impacto del ser humano. La distribución espacio-temporal de los procesos hidrológicos y geomorfológicos es desigual y está altamente condicionada por factores muy específicos, Fecha de lectura de Tesis: 5 de julio de 2018.Los viñedos muestran particularidades en el manejo agrícola y unas condiciones medioambientales identificables de suelo, clima y paisaje, con influencias directas en las uvas. Numerosos estudios han evidenciado procesos de degradación en estas áreas durante décadas, inducidas por la implementación en los usos tradicionales del suelo de maquinaria pesada (tractores, cosechadoras, etc.), de nuevos productos químicos (fertilizantes, herbicidas, etc.) y por la intensificación de la producción. Así, en la ciencia del suelo y, en especial, en la geografía están aumentando los estudios que pretenden detectar los flujos hídricos que activa la erosión y la transferencia de contaminantes en las laderas. Por lo tanto, los principales objetivos de este trabajo serán: i) medir la variación espacio-temporal de los procesos hidrológicos y geomorfológicos en dos parcelas experimentales en Almáchar (Montes de Málaga, Axarquía, España), y Waldrach (Valle del Ruwer-Mosela, Trier, Alemania), ambos bajo dos contextos climáticos y manejos del suelo distintos; y ii) desentrañar qué factores (naturales y antropogénicos) son los desencadenantes de los procesos erosivos tras las lluvias y las prácticas agrícolas. Para alcanzar los objetivos planteados en esta tesis, se pretende combinar a lo largo del estudio una serie de técnicas de análisis comunes para ambos lugares (análisis de suelos, simulaciones de lluvia o ensayos de permeabilidad) y, en otras ocasiones, se diseñarán métodos específicos (experimentos de escorrentía o mediciones de los tocones) adaptados a las condiciones de cada medio y los resultados previos obtenidos

    A review of the science and logic associated with approach used in the universal soil loss equation family of models

    Get PDF
    Soil erosion caused by rain is a major factor in degrading agricultural land, and agricultural practices that conserve soil should be used to maintain the long-term sustainability of agricultural land. The Universal Soil Loss Equation (USLE) was developed in the 1960s and 1970s to predict the long-term average annual soil loss from sheet and rill erosion on field-sized areas as an aid to making management decisions to conserve soil. The USLE uses six factors to take account of the effects of climate, soil, topography, crops, and crop management, and specific actions designed to conserve soil. Although initially developed as an empirical model based on data from more than 10,000 plot years of data collected in plot experiments in the USA, the selection of the independent factors used in the model was made taking account of scientific understanding of the drivers involved in rainfall erosion. In addition, assumptions and approximations were needed to make an operational model that met the needs of the decision makers at that time. Those needs have changed over time, leading to the development of the Revised USLE (RUSLE) and a second version of that, the Revised USLE, Version 2 (RUSLE2). While the original USLE model was not designed to predict short-term variations in erosion well, these developments have involved more use of conceptualization in order to deal with the time-variant impacts of the drivers involved in rainfall erosion. The USLE family of models is based on the concept that the &ldquo;unit&rdquo; plot, a bare fallow area 22.1 m long on a 9% slope gradient with cultivation up and down the slope, provides a physical situation where the effect of climate and soil on rainfall erosion can be determined without the need to consider the impact of the four other factors. The science and logic associated with this approach is reviewed. The manner by which the soil erodibility factor is determined from plot data ensures that the long-term average annual soil loss for the unit plot is predicted well, even when the assumption that event soil loss is directly related to the product of event rainfall energy, and the maximum 30-min intensity is not wholly appropriate. RUSLE2 has a capacity to use CLIGEN, the weather generator used in WEPP, and so can predict soil losses based on individual storms in a similar way to WEPP. Including a direct consideration of runoff in determining event erosivity enhances the ability to predict event soil losses when runoff is known or predicted well, but similar to more process-based models, this ability is offset by the difficulty in predicting runoff well
    corecore