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Abstract: Soil erosion caused by rain is a major factor in degrading agricultural land, and agricultural
practices that conserve soil should be used to maintain the long-term sustainability of agricultural
land. The Universal Soil Loss Equation (USLE) was developed in the 1960s and 1970s to predict the
long-term average annual soil loss from sheet and rill erosion on field-sized areas as an aid to making
management decisions to conserve soil. The USLE uses six factors to take account of the effects of
climate, soil, topography, crops, and crop management, and specific actions designed to conserve soil.
Although initially developed as an empirical model based on data from more than 10,000 plot years
of data collected in plot experiments in the USA, the selection of the independent factors used in the
model was made taking account of scientific understanding of the drivers involved in rainfall erosion.
In addition, assumptions and approximations were needed to make an operational model that met
the needs of the decision makers at that time. Those needs have changed over time, leading to the
development of the Revised USLE (RUSLE) and a second version of that, the Revised USLE, Version
2 (RUSLE2). While the original USLE model was not designed to predict short-term variations in
erosion well, these developments have involved more use of conceptualization in order to deal with
the time-variant impacts of the drivers involved in rainfall erosion. The USLE family of models is
based on the concept that the “unit” plot, a bare fallow area 22.1 m long on a 9% slope gradient with
cultivation up and down the slope, provides a physical situation where the effect of climate and
soil on rainfall erosion can be determined without the need to consider the impact of the four other
factors. The science and logic associated with this approach is reviewed. The manner by which the
soil erodibility factor is determined from plot data ensures that the long-term average annual soil loss
for the unit plot is predicted well, even when the assumption that event soil loss is directly related to
the product of event rainfall energy, and the maximum 30-min intensity is not wholly appropriate.
RUSLE2 has a capacity to use CLIGEN, the weather generator used in WEPP, and so can predict soil
losses based on individual storms in a similar way to WEPP. Including a direct consideration of runoff

in determining event erosivity enhances the ability to predict event soil losses when runoff is known
or predicted well, but similar to more process-based models, this ability is offset by the difficulty in
predicting runoff well.
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1. Introduction

Soil erosion caused by rain is a major factor in degrading agricultural land, and the agricultural
practices that conserve soil should be used to maintain the long-term sustainability of agricultural land.
The Universal Soil Loss Equation (USLE) [1,2] was developed to predict the long-term (~20 years)
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average annual soil loss (A, mass/unit area/year) from sheet and rill erosion on field-sized areas as an
aid to making management decisions to conserve soil. The USLE uses six factors:

A = R K L S C P (1)

where R is the climatic factor normally referred to as the rainfall “erosivity” factor, K is the soil
“erodibility” factor, L is the slope length factor, S is the slope gradient factor, C is the crop and crop
management factor, and P is the soil conservation practice factor. It is an empirically-based model that
was originally developed from runoff and soil loss experiments using field plots under natural rainfall
at 10 experiment stations set up after 1929 in the USA to demonstrate the effect of soil conservation
practices. The initial development of mathematical equations to estimate soil losses caused by rainfall
and the impact of alternate practices did not begin until the 1940s. The main work on developing
the USLE began in the mid 1950s, many years before the USLE model was fully described in USDA
Agricultural Handbook 282 published in 1965 [1]. The USLE was later revised (RUSLE) [3], in which
the mathematical operation of the model was retained, but the manner by which some of the factors
were determined was changed based on new research undertaken since the mid-1960s.

The USLE/RUSLE model is widely used to predict rainfall erosion throughout the world. Although
it is apparent from Equation (1) that the focus is the prediction of long-term average annual soil losses,
erosion varies in time and space in the short term, and the USLE approach needs to make provision
for this. Consequently, the factors in the Universal Soil Loss Equation family of models are not only
described, but the science and logic associated with them are also reviewed in this paper. In addition,
the performance of USLE-based technology is compared with the performance of WEPP [4], the more
physically-based model developed as an alterative to using the RUSLE in the USA.

2. The USLE/RUSLE Model Factors

Zingg [5] published the results of a comprehensive study on the effects of slope steepness and
slope length on erosion from runoff and soil loss plots in the USA. This was followed in 1941 by
Smith, who added cropping and support practice factors to Zingg’s function. By the late 1950s, over
10,000 plot years of data had been collected, and together with Smith, Wischmeier developed the
mathematical structure described in Equation (1).

As noted above, the runoff and soil loss plots that provided the data for the USLE were originally
set up to demonstrate the effect of soil conservation practices and consequently, the size used for many
of the plots was the size commonly used in agronomic experiments, 1/100th of an acre. As a result,
many plots were 6 feet (1.8 m) wide and 72.6 feet (22.1 m) long. Plots of other slope lengths did exist.
A common approach adopted in agronomy in the 1960s was to compare the effect of a treatment to the
results obtained for a “control” plot. Wischmeier and Smith chose the so-called “unit” plot, a bare
fallow area 72.6 feet (22.1 m) long cultivated up and down the slope when the slope gradient is 9% as
the basis for the USLE. As a consequence of this, the USLE/RUSLE model operates mathematically in
two steps. The first step is to predict soil loss from the unit plot (A1), where L, S, C, and P all have
values of 1.0:

A1 = R K (2)

The second step modifies that value to take account of the conditions that vary from the unit plot.

A = A1 L S C P (3)

The conditions set for the unit plot are somewhat arbitrary. The unit plot could have been longer
or shorter, or on a steeper or less steep slope. However, conceptually, the unit plot provides the physical
model on which the USLE is based, and Equation (2) is designed to account for the effect of geographic
variations in climate and soil on soil loss. Equation (3) is designed to account for local variations in
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slope length, gradient, and cropping practices once the effect of climate and soils has been established
at a location.

2.1. The R Factor

Equation (2) deals with the effect of geographic variations in soil and climate on erosion caused
by sheet and rill erosion. R is defined as the average annual value of the product storm kinetic energy
(E) multiplied by the maximum 30-min intensity (I30):

R =
N∑

n= 1

(EI30)n/γ (4)

where N is the number of valid rainfall events in Y years. Rain showers of less than 12.5 mm (0.5 in)
were omitted in the calculation of R unless at least 6.25 mm (0.25 in) of rain fell in 15 min. A period of
6 h with less than 1.27 mm (0.05 in) was used as a storm separator. A direct linear relationship between
event soil loss from bare fallow and EI30 for runoff producing events was demonstrated to exist at

Bethany, Missouri by Wischmeier and Smith [6].
E, storm rainfall energy, was not determined directly, but was usually calculated from rainfall

energy–intensity relationships based on the data on raindrop sizes obtained in Washington, DC, by
Laws and Parsons [7]. Initially, in the USLE, the energy per unit quantity of rain or unit kinetic energy
was determined from a logarithmic relationship with rainfall intensity, the metric version being:

em = 0.119 + 0.0873 log10 (im), im ≤ 76 mm h−1 (5a)

em = 0.283, im > 76 mm h−1 (5b)

where em has units of megajoule per hectare per millimeter of rainfall (MJ ha−1 mm−1). The limit of
76 mm h−1 applied to Equation (5a) resulted from observations that Equation (5a) overpredicted em

when the intensity exceeded that value. In RUSLE [3], Equation (5) was replaced by:

em = 0.29 (1 − 0.72 exp (−0.05 im)) (6)

where as, in RUSLE2 [8]:
em = 0.29 (1 − 0.72 exp (−0.082 im)) (7)

As shown by Nearing [9], Equation (7) produces higher em values than Equation (6) below im = 70 mm h−1

but both Equations (6) and (7) produce little variation in em values once im exceeds 80 mm h−1.
In reality, storm kinetic energies can vary greatly from the values predicted depending on the

synoptic conditions that produce the rainfall [10]. Although the original conceptual model is based on
the understanding that raindrop impact is an important factor in supplying the energy required to
cause erosion, in using Equations (5) or (6) or (7), the USLE/RUSLE model ignores the actual variations
in rainfall kinetic energy that occur in time and space. In effect, these equations emphasize the influence
of rain produced at high intensities in comparison to low-intensity rainfall. This emphasis is enhanced
further, because I30 is highly influenced by high intensities that are associated with the peak rainfall
rate that occurs during a rainstorm.

Although R is assumed not to vary with slope gradient, on low slopes, raindrop impacts tend to
be more buffered by water ponded on the surface than on steeper slopes. Consequently, the RUSLE
provides an adjustment factor to account for the reduction of R by ponded water on low slopes [3]. In
the USLE, storms showers of less than 12.5 mm (0.5 in) were omitted in the calculation of R unless at
least 6.25 mm (0.25 in) of rain fell in 15 min. In RUSLE, all storms were considered in the calculation of
R in the western regions of the USA. While it was argued that this had little effect on the value of R,
the reason why storms less than 12.5 mm were originally omitted was that storms less than 12.5 mm
were observed by Wischmeier and Smith to often not produce appreciable amounts of runoff and soil
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loss and, very importantly, the direct linear relationship between event soil loss from bare fallow and
EI30 that was demonstrated to exist at Bethany, Missouri by [6] was determined from only storms that
produced runoff and soil loss. In reality, the USLE/RUSLE model is based on:

A1.e = EI30 K, Qe > 0 (8)

where A1.e = event soil loss (mass/area) from the unit plot, and Qe (volume/area) is the runoff amount
for the event.

Determining EI30 values for individual storms using em values requires high-resolution data on the
rainfall intensities that occur during a storm. Mapping techniques have been widely used to estimate
R values between locations where such data are available [1–3,11,12]. However, it should be noted that
the amount of soil eroded varies during the year depending on how the erosive rainfall is distributed
in time at a location, and how the protective effect of vegetation varies over time. Consequently, in the
USLE, not only is R determined using Equation (4), but also the proportion of R that occurs during
various crop stages is determined in order to deal with the interaction between rain and vegetation on
soil loss. In the RUSLE, the proportion of R that occurs in each half month is used.

2.2. The K Factor

K is the average annual soil loss per unit of R. Originally, K values were determined from runoff

and soil loss plot data using:

K =

N∑
n=1

(Ae.1)n

N∑
n=1

(EI30)n

(9)

It follows from Equation (8) that K replaces the regression coefficient that usually associated a direct
linear relationship between event soil loss from the unit plot and EI30. However, Equation (9) ensures
that the total soil loss predicted for the set of events used to obtain K is the same as the total of the soil
loss observed for that set of events. That is not always the case when K is determined as the regression
coefficient in the relationship between event soil loss from the unit plot and EI30.

Given the expense and time necessary to operate appropriate runoff and soil loss plots, methods
to predict K from soil properties were developed later [13]. Wischmeier et al. [14] developed a soil
erodibility nomograph for determining K from soil properties. A mathematical approximation was
then developed [2] for those cases where the silt plus fine sand fraction does not exceed 70%:

K = [2.1 (10−4) (12 − OM) M1.14 + 3.25(s − 2) + 2.5(p − 3)]/100 (10)

where M is the percentage of silt (0.02–0.1 mm) multiplied by the quantity of 100% clay, OM is the
percentage of organic matter, s is the soil structure code in the US soil classification, and p is the profile
permeability class. Auerswald et al. [15] have developed a more precise equation to predict K from
soil properties.

Often, in the rainfall simulation experiments undertaken to determine K, artificial rainfall is
applied to a plot at about 64 mm hr−1 under natural antecedent soil–water conditions (dry run),
followed by a 30-min simulation 4 h later (wet run), and another 30-min simulation 30 min later (very
wet run). This approach results in K being calculated from:

K = (13 Kd + 4 Kw + 3 Kvw)/20 (11)

where Kd, Kw, and Kvw are the respective values for the soil erodibilities associated with the dry, wet,
and very wet runs [16]. The weighting used in Equation (11) reflects a storm frequency distribution for
central USA [17].
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In the development of the RUSLE, it was recognized that seasonal variations in soil properties and
runoff also resulted in seasonal variations in K. While the pattern for temporally varying erodibility
was well defined at some locations, it was not at others. Examination of the RUSLE temporal soil
erodibility equations showed that they worked poorly at 11 locations, and were not applicable in the
Western USA [8].

In RUSLE2 [8], a version of the RUSLE that uses a daily time step in the calculation of soil loss in
the USA, temporal variations in soil erodibility in the USA are calculated using monthly precipitation
and temperature as independent variables. In the Eastern USA:

Kj/Kn = 0.591 + 0.732 (Pj/Ps) − 0.324 (Tj/Ts), Tj ≥ 30 ◦F (12a)

Kj/Kn = (Ksj/Kn) exp (−0.2(30 − Tj)), Tj < 30 ◦F (12b)

where Kj is the average daily soil erodibility factor value for the jth day, Kn is the average soil erodibility
determined from soil properties, Tj is the average daily temperature for the jth day in Farenheit, Ts is
the average daily temperature for the RUSLE2 summer period, Pj is the average daily precipitation in
inches, Ps is the daily average precipitation for the summer period, and Ksj is the soil erodibility factor
calculated for the jth day using Equation (12). Figure 1 shows how K varies during the year when
Equation (12) is applied at Presque Isle, Maine (ME), and Bethany, Missouri (MO) in the USA.
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Figure 1. Average daily soil erodibility values for (A) Caribou gravely loam at Presque Isle, Maine
(ME), and (B) Shelby loam at Bethany, Missouri (MO) used in the Revised Universal Soil Loss Equation,
Version 2 (RUSLE2) (source: Kinnell [18]).

It is important to note that the approach results in the average annual value for soil erodibility
calculated from soil properties vary geographically with climate in the USA. However, Equation (12)
does not describe increased soil erodibility during or immediately after soil thawing, or work well in
the Western USA. In the Western USA, Ps and Ts values are set to the values at Columbia, Missouri
to give:

Kj/Kn = 0.591 + 0.732 (Pj/0.123) − 0.324 (Tj/62.8) (13a)

Kj/Kn = 2.0, Kj/Kn > 2.0 (13b)

Kj/Kn = 0.4, Kj/Kn < 0.4 (13c)

This equation estimates increased K values at locations where more precipitation or cooler summers
create wetter soil conditions with an increased likelihood of runoff occurring. The applicability of this
approach outside the USA is untested.

In many cases where the USLE/RUSLE model has been applied either in the USA or outside the
USA, soil erodibilty values are assumed to remain constant with time. Consequently, the USLE/RUSLE
model has been frequently applied either in the USA or outside the USA without recognizing that the
values of K generated by Equation (10) need to be adjusted for the climate at the location being considered
when that location is outside the central USA. However, other equations for calculating K from soil
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properties have been developed for places such as Hawaii [19], Australia [20], Sicily [21], and elsewhere.
Panagos et al. [22] applied Equation (10) with an adjustment for stone cover throughout Europe.

2.3. Alternatives to EI30

The USLE model was designed to predict long-term soil loss. However, given that the USLE is
based on Equation (8), it can be applied to predicting soil losses on a shorter time scale. Tiwari et al. [23]
observed that the RUSLE overpredicts small average annual soil losses and underpredicts high average
annual soil losses in the USA. Although event soil loss from bare fallow was shown to be directly
related with event EI30 at Bethany, Missouri by Wischmeier [6], that is not the case for all the geographic
locations in the USA. Foster et al. [24] observed that an event erosivity index that had a provision to
account for both raindrop and flow-driven erosion separately was better than the EI30 index. Earlier,
Williams [25] had proposed the Modified Universal Soil Loss Equation (MUSLE):

Re = 11.8 (Qve qpe)0.56 (14)

where Re is the event erosivity index, Qve is the volume of runoff for the event in m3, and qpe is the
peak flow rate for the event in m3 s−1. The focus of the MUSLE is sediment yield from watersheds,
where Williams et al. perceived flow-driven erosion to be dominant. It should be noted that the value
of 11.8 was empirically derived for the specific conditions used by Williams. It does not necessarily
apply to all areas where flow-driven erosion is dominant.

It seems that the MUSLE influenced Onstad and Foster [26] to propose an erosivity index which
included a provision to account for both raindrop and flow-driven erosion separately:

Re = αEI30 + βχQe1(qp)0.33 (15)

where Qe1 is the event runoff amount from the unit plot, and α and β are coefficients that add together
to make 1.0, and adjust for variations in the relative capacities of rain and runoff to cause erosion.
Assumptions have to be made about the relative effects raindrop-driven and flow-driven erosion in
order to set the values of α and β when predicting soil loss. Onstad and Foster [26] used α = β = 0.5
and adjusted the value of χ so that it resulted in the average annual average of the value produced by
Equation (15) being equal to value of R calculated using EI30 alone. Other indices such as:

Re = 1.586 (Qeqpe)0.56 DA0.12 (16a)

Re = 0.65 EI30 + 0.45 (Qeqpe)0.33 (16b)

Re = 2.5 (Qeqpe)0.5 (16c)

Re = 0.79 (Qeqpe)0.65 DA0.009 (16d)

Re = b5 Qe
b4 qpe

b5 DAb6 (16e)

where DA is drainage area expressed in ha, and b4–b6 are user-selected coefficients that are used as
alternatives to EI30 in APEX [27]. APEX expanded the number of the erosivity index options available
in EPIC [28]. Williams et al. [28] also developed an alternative equation to the one used in the USLE
to calculate K. When used to model soil loss, Equations (14), (15), (16a)–(16e) all use USLE/RUSLE K
values, even though K has units of soil loss per unit of EI30. Equation (15) is the only one that can use
USLE/RUSLE Ks legitimately, because χ is set so that the average annual average of the value produced
by Equation (15) was equal to the value of R calculated using EI30. USLE/RUSLE Ks have units of soil
loss per unit EI30, and that fact needs to be respected when they are used in soil loss prediction models.

Another index that can be considered as an alternative to EI30 is the QEA index. This index is
calculated by summing the product of the runoff rate (Q) and the rainfall kinetic energy flux (EA)
during a rainstorm. Runoff is an important factor in determining event soil loss, not just because of
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flow-driven erosion, but also because the soil loss from runoff and soil loss plots is directly related to
the product of runoff and sediment concentration, as well as the mass of soil per unit of runoff. The
QEA index is based on the concept that sediment concentration varies with the rainfall kinetic flux that
is applied when runoff occurs. Kinnell et al. [29] showed that the QEA index estimated event soil losses
from a bare fallow plot at Holly Springs, Mississippi (MS), better than EI30. They also showed that
the excess rainfall rate (Ix), which can be determined assuming that the infiltration rate of the soil is
constant during the rainstorm, could be used as a surrogate for Q. The coefficients of determination
(r2) for the two bare fallow plots at Holly Springs were 0.5173, 0.6429, and 0.6264 on plot C5, and
0.4613, 0.5758, and 0.5758 on plot C7 for EI30, QEA, and IxEA respectively. The lack of available data on
runoff rates and rain intensities during rainstorms at other locations prevented examination of the
applicability of QEA and IXEA indices at other locations in the USA.

As noted above, runoff is an important factor in determining event soil loss, because soil loss from
runoff and soil loss plots is directly related to the product of runoff and sediment concentration (the
mass of soil per unit of runoff). When the USLE/RUSLE model is considered in terms of the product
of runoff and sediment concentration, it can be seen that the model is based on assumption that the
sediment concentration associated with the unit plot varies inversely with runoff:

Ae.1 = Qe1 (K EI30 Qe1
−1) (17)

Kinnell and Risse [30] observed that for the bare fallow runoff and soil loss plots in the USLE
database, sediment concentration was better related to EI30 per unit quantity of rain than EI30 per unit
quantity of runoff. As a result, soil loss for the unit plot predicted by the USLE-M, the name given to
the model based on this result, is given by:

Ae.1 = QRe.1EI30 KUM. (18)

where QRe.1 is the runoff ratio for the event from the unit plot, and KUM is the soil erodibility for the
event, which has a different value from K, because the event erosivity index is equal to QR1EI30, not
to EI30. An example of the improvement in using Equation (18) in place of Equation (8) is shown in
Figure 2 when runoff amounts are known, and:

KUM =

N∑
n=1

(Ae.1)n

N∑
n=1

(QRe.1EI30)n
(19)

Obviously, the improvement is not as great when runoff is predicted rather than measured. However,
the lack of precision provided by runoff prediction methods will influence the ability of any model that
includes runoff as a factor in the prediction of soil loss. Physically-based rainfall erosion models such
as WEPP [4] use runoff as a factor in the prediction of soil loss from both rill and interrill areas.

Equation (18) can be rewritten as:

Ae.1 = EI30 (QRe.1 KUM) (20)

It follows from Equation (20) that the product of QRe.1 KUM provides runoff-influenced erodibility
values that can used as alternatives to the values of Kj that are normally used in RUSLE2. RUSLE2
has a facility to produce a series of representative storms with associated runoff amounts calculated
using the Curve Number (CN) method [32], with empirical equations that vary the values of CN in
association with both soil moisture and rainfall intensity [33]. Figure 3 shows how the two different
approaches to determining erodibilities for the representative storms compare with each other at four
locations in the USA.
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Figure 3. Storm RUSLE2 K and QR1 KUM values for unit plots at (A) Presque Isle, ME, Caribou gravelly
loam soil; (B) Bethany, MO, Shelby loam soil; (C) Macon, Georgia (GA), Tifton soil; and (D) Tampa,
Florida (FL), Leon fine sand (source: Kinnell [18]).

The assumption that Ae.1 is directly related to QR1EI30 is challenged by data collected from bare
fallow runoff and soil loss plots at the Sparacia site in Sicily, Italy. Bagarello et al. [34] observed that
event soil losses from the unit plot varied with QR1EI30 to a power of 1.61. Subsequent analysis
reduced the power to 1.47 [35] and, based on this result, they proposed the model that they called
the USLE-MM.

Ae.1 = KUMM (QREI30)b1 (21)

where b1 > 1 and KUMM is the soil erodibility factor when (QREI30)b1 is used in place of QREI30. For the
Masse site in Umbria, Italy, they observed the power to be 1.16 [36]. Bagarello et al. [36] provided no
substantiated physical reason why the power of the QR1EI30 index should be greater than 1.0 at these
two locations. For the USA data used by Kinnell and Risse [30], powers were mainly grouped within
the range of 0.73 to 1.05 [37]. The exceptions were plots 1–2 at Tifton, Georgia, where the power was
0.419. No physical explanation is available for these values.
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In the USLE-MM, KUMM is given by:

KUMM =

N∑
n=1

(Ae.1)n

N∑
n=1

(QR1EI30)
b1

n

(22)

Given the different values of b1, the units for the soil erodibility factor KUMM vary between the various
locations. However, Kinnell [37] showed that it is possible to separate the erodibility effect from the
effect of b1 on KUMM by using:

Ae.1 = KUM a1 (QREI30)b1 (23)

where:
a1 = KUMM KUM

−1 (24)

It follows from Equations (19), (22) and (24) that:

a1 =

N∑
n=1

(QRe.1EI30)n

N∑
n=1

(QRe.1EI30)
b1

n

(25)

The generalized form of Equation (23) is:

Ae.1 = KX a1 (X)b1 (26)

where X is an erosivity index, and:

KX =

N∑
n=1

(Ae.1)n

N∑
n=1

(X)n
(27)

Equation (27) ensures that the total sum of the predicted losses is equal to the total sum of the observed
losses for the set of events considered. Kinnell [37] observed that when X = QREI30:

a1 = 313.37 e −5.83b1 (28)

Bagarello et al. [38] suggested that the event erosivity factor could generally expressed as the
product of (QR)b3 and (EI30)b4, where b3 and b4 are empirical coefficients that may be different from
each other. The case where b3 , 1 and b4 = 1 was named USLE-MB. At the Sparacia site in South Italy,
they observed b3 = 1.45. Using this value of b3 together with site-specific equations for slope length
and gradient produced predictions with a Nash–Sutcliffe model efficiency index [39] of 0.73, which
was marginally better than the value of 0.72 produced by Di Stefano et al. [40] using the USLE-M.

The model proposed by Bagarello [38] ignored that the values of b3 varied from 1.43 to 1.76 as
slope length varied from 11 m to 44 m on the 14.9% slope at Sparacia. The approach adopted by
Bagarello et al. ([35,38]) ignores that the USLE-M is based on the concept that sediment discharge
from runoff and soil loss plots is given by the product of the amount of water discharged during a
rainstorm, and the bulk sediment concentration of the sediment in that water. The QREI30 index is in
fact the product of the runoff rate, the energy per unit quantity of rain during the storm, and I30. In
this scheme, the bulk sediment concentration of the sediment for the storm is empirically related to the
product of the energy per unit quantity of rain during the storm and I30. It can be argued that on the
14.9% slope at Sparacia, sediment concentrations varied with runoff rate to powers that varied from
0.43 to 0.76 as the slope length varied from 11 m to 44 m.
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It should also be noted the EI30 per unit quantity of rain during the storm is termed “erosivity
density” in RUSLE2 [8]. Consequently, the USLE-M equation for the soil loss produced by a storm on
the unit plot can be written as:

Ae.1 = Qe (εe KUM) (29)

where Qe is event runoff, and εe is the erosivity density for the storm. In this situation, the product of
the erosivity density, I30 and KUM, focuses on the effects of rain and soil on sediment concentration.
For the USLE-MB:

Ae.1 = Qe (εe KMB Qe
b3−1) (30)

where KMB is the relevant soil erodibility factor value [38].

2.4. The L Factor

Although the 22.1-m slope length was commonly used in the experiments upon which the USLE
was based, soil loss data were obtained for other lengths. As noted above, Zingg [5] published the
results of a comprehensive study on the effects of slope steepness and slope length on soil loss from
runoff and soil loss plots. Later, over 500 plot years of data for plots up to 190 m in length were
analyzed [6], leading to the equation:

L = (λ/22.1)m (31)

where λ is the distance in meters from the onset of runoff to a point where deposition occurs or runoff

enters a channel. In the USLE, m varies with slope gradient (s) [1,2]:

m = 0.5 s > 5% (32a)

m = 0.4 s = 3 to 5% (32b)

m= 0.3 s = 1 to 3% (32c)

m = 0.2 s < 1% (32d)

In the RUSLE, the variation in m is dependent on the degree of rilling that occurs on the eroding
surface:

m = β (1 + β)−1 (33)

where β is the ratio of rill to interrill erosion for the soil being eroding. For soils moderately susceptible
to both rill and interrill erosion [3]:

β = (sin θ (0.0896)−1) (3.0 (sin θ)0.8 + 0.56)−1 (34)

When a situation where the soil is highly susceptible to rilling occurs, the values of β applicable to
determining m are recommended to be twice those obtained using Equation (34), whereas for the
values of β for situations where rilling is slight, half the values obtained using Equation (34) should be
used [3]. Generally, Equation (31) should not be used when λ exceeds about 330 m [3].

In developing the USLE, it was assumed that the runoff amount (volume per unit area) from
runoff and soil loss plots was not affected by the slope length and gradient. As a consequence, the
product of λ and runoff amount gives the volume of runoff discharged per unit width of the plot, and
the slope length factor can be perceived to focus on the effect of volume of runoff increasing with
slope length. Given that stream power is directly related to flow discharge and slope gradient, and
stream power is the rate of energy dissipation against the surface over which the water flows, there is a
physical basis to the USLE/RUSLE slope length factor [41].



Soil Syst. 2019, 3, 62 11 of 33

An equation to estimate soil loss from a segment on a hillslope was developed by Foster and
Wischmeier [42]:

Ai = R KiCiPiSi
λi

m+1–λi−1
m+1

(λi − λi−1) 22.1
(35)

where the subscript i represents the ith segment from the top of the slope. This equation represents
the net result of calculating the difference in the mass of soil discharged from the two relevant slope
lengths, and then dividing that result by the product of the difference in the slope lengths and 22.1
to determine the soil loss for the segment. A slope length factor for grid cells that is consistent with
the concept that the slope length factor focuses on the flow of surface water through the cell and
Equation (35) was developed by Desmet and Govers [43]:

Li, j =
(χupslope. j, j+D2)

m+1
− χupslope.i, j

m+1

Dm+2 (22.1)m (36)

where χupslope.j,j is the area upslope of cell i,j that contributes to the surface water flowing though
the cell, and D is the size of the cell. In Equation (36), the effective slope length to the top of the
cell is given by dividing the upslope area that contributes to the flow into the cell by the width of
the boundary over which the surface water flows. Likewise, the effective slope length to the bottom
of the cell is given by dividing the upslope area that contributes to the flow out of the cell by the
width of the boundary over which the surface water flows. Given that Equation (31) should not be
applied when λ exceeds 330 m [3], that effective slope length should not exceed 330 m. This restriction
is frequently ignored in modeling erosion using USLE-based models with Geographic Information
Systems in catchments or watersheds. Regardless of the upslope area, the effective slope length should
be terminated when an area of concentrated flow is reached. Also, in the USLE and the RUSLE, the
effective slope length should be terminated when sediment deposition occurs, but RUSLE2 provides
routines that handle deposition

As noted above, there is a physical basis to the USLE/RUSLE slope length factor when the runoff

amount (volume per unit area) does not vary with slope length. There are cases where the runoff

amount increase with slope length [6] or decrease with slope length [44]. Arguably, the value of λ
should be adjusted to account for spatial variations in the generation of runoff. A possible approach
could be to use the ratio of the runoff amount produced on the bare fallow focus area (Q) to the runoff

amount associated with the unit plot (Q1) to give:

L = (λ Q/(22.1 Q1))m (37)

2.5. The S Factor

Although the L factor is considered to vary with slope gradient in both the USLE (Equation (32))
and the RUSLE (Equation (34)), the USLE/RUSLE model has a separate factor (S) to take account of the
effect of slope steepness alone on soil loss. In the USLE:

S = 65.5 sin2 θ + 4.56 sin θ + 0.0654 (38)

but Equation (38) was found to overpredict soil loss when slope gradients are high. Consequently, in
the RUSLE:

S = 10.8 sin θ + 0.03, slope < 9% (39a)

S = 16.8 sin θ − 0.5, slope ≥ 9% (39b)

applies to slopes >4.5 m in length [3]. As noted above, Moore and Burch [41] observed that when, as
assumed in the USLE, runoff is produced uniformly over the eroding area, the combination of L and S
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varied in ways that were correlated with the unit stream power of the flow. According to Moore and
Burch [41], the factor accounting for the topographic effect derived from the unit stream power (LSp) is:

LSp = Z (ξs/22.13)0.4 (sin θ/0.0896)1.3 (40)

where Z is a factor that accounts for the effect of rilling, and ξs is the specific catchment area (area per
unit width of flow). The change to the determination of S implemented in the RUSLE (Equation (39))
and consideration of sediment transport capacity led Moore and Wilson [45] to suggest that:

LS = (ξs/22.13)0.6 (sin θ/0.0896)1.3 (41)

provided a topographic index that was based on the transport capacity of the flow when runoff is
produced uniformly over the hillslope. However, no direct association with stream power actually
exists, as the effect of runoff-producing capacity on soil loss is not considered in Equation (41). Notably,
Equation (40) gives LSp = Z for the unit plot, whereas Equation (41) does not take into account the
susceptibility of the soil to rilling on the unit plot.

As noted above, Equation (39) applies to slopes >4.5 m in length [3]. Generally, rilling is less
prevalent when slopes are less than 4.5 m long, and both the RUSLE and RUSLE2 (www.ars.usda.gov/

ARSUserFiles/60600505/RUSLE/RUSLE2_Science_Doc.pdf) provide equations for S on short slopes
where rilling is unlikely.

2.6. The C Factor

Basically, the C factor is the ratio between the soil loss from a vegetated area and a bare fallow
area on the same soil, slope gradient, and slope length for the same set of rainfall events. Initially,
it was determined from long-term measurements of soil loss from cropped and bare fallow plots,
and consequently, considerable amounts of time were required to obtain average annual values for
the wide variety of crops and climates that existed in the USA. Recognition of the fact that average
annual values of C resulted from the interplay between the erosiveness of rainfall and the protective
effect of vegetative cover as they vary during the year led to a more versatile approach. Initially,
the approach was based on the periods associated with five crop stages and the ratios of the soil
losses from cropped plots to the corresponding losses from continuous fallow calculated to give the
effective C factor value for that stage for each particular crop [1]. Later, Mutchler et al. [46] used the
concept that the effect of cropping on soil loss could be associated with a number of subfactors. In the
RUSLE, half-monthly periods are used instead of crop stage periods with subfactors for prior land use,
crop canopy, surface cover, surface roughness, and soil moisture used to determine how crops and
crop management affect soil loss during the year in 140 different climate zones in the USA [3]. The
distribution of erosive stress during the year influences the average annual value of C, and each of the
140 climate zones has a different temporal distribution of erosive stress. The approach to determining
C for any given half-month involves multiplying the half-monthly proportion of the annual erosivity
by the half-monthly value of the soil loss ratio (SLR):

SLR = PLU CC SC SR SM (42)

where PLU is the prior land-use subfactor, CC is the canopy cover subfactor, SC is the surface cover
subfactor, SR is the soil roughness subfactor, and SM is the soil moisture subfactor. Renard et al. [3]
provided equations for determining each of these subfactors. Although the procedures described
by Renard et al. [3] stem from scientific research undertaken after the 1960s, some assumptions and
approximations had to be used to provide a working model to deal with these effects. In RUSLE2,
modeling is done on a daily rather than half-monthly basis [8] as a means of gaining more flexibility in
dealing with the manner in which crops are cultivated and grown. Extensive databases are required
to store the information needed to deal with the effects associated with the numerous agricultural

www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/RUSLE2_Science_Doc.pdf
www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/RUSLE2_Science_Doc.pdf
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practices that exist in the USA and elsewhere. Frequently, in modeling erosion using USLE-based
models with Geographic Information Systems in catchments or watersheds, the intra-annual variability
of soil cover conditions in arable land is neglected [47].

2.7. The P Factor

By definition, P, the support practice factor, is the ratio of the soil loss associated with a specific
support practice to the corresponding soil loss when cultivation is done up and down the slope [3].
The support practices considered are usually associated with modifying how surface runoff flows
over the soil surface. In the RUSLE, tillage on the contour, strip cropping, terracing, and subsurface
drainage are considered, but improved tillage practices such as no-till are considered in the C factor.
Factors such as the ridge height associated with tillage along the contour, storm severity, and slope
length are considered in determining the effectiveness of contour cultivation. Here again, the effects of
the support practices considered in the RUSLE result from research using runoff and soil loss plots and
small watersheds up to about 2 hectares in size. In addition, the CREAMS model [48] was used to
compute erosion and sediment yield on several hypothetical watersheds.

3. Accounting for Deposition through Changes in Slope Gradient and Vegetation

Originally, the USLE approach focused on planar hillslopes. However, on real hillslopes, there
are areas where soil is lost, and there are also areas where soil material is gained, because deposition
has occurred. As noted above, the slope length factor in the USLE/RUSLE model is defined as the
distance from the point where runoff begins to the point where deposition occurs or the runoff enters a
defined channel. In some watershed scale models, the soil material reaching a defined channel such as
a stream or river is determined by multiplying “gross” erosion, in which erosion is calculated using
the USLE/RUSLE model, ignoring the restriction of slope length associated with deposition, by a factor
called the sediment delivery ratio (SDR). The SDR is the ratio of sediment load measured in the stream
or river divided by the estimated “gross” erosion. Usually, the measurement of the sediment load in
the stream or river is restricted to the suspended load, whereas the USLE/RUSLE model estimates the
loss of both fine and coarse material. Consequently, SDR values vary with the amount of fine material
yielded to the transport systems that move the eroded soil from its source to the channel, as well as the
amount of soil material deposited on the hillslope. Generally, a decline in SDR is observed to occur
as watershed size increases, because the opportunity for deposition to occur increases as watershed
size increases [49]. Sediment delivery ratios vary greatly geographically and in time, and should be
considered as being what they are: correction factors for extending the USLE/RUSLE model beyond its
design criteria.

In RUSLE2, the concept of sediment deposition occurring when the sediment transport capacity
of the sediment transport system is exceeded by the amount of sediment that is presented to be
transported. This approach stems from the scheme developed by Meyer and Wischmeier [50], which is
presented in Figure 4. Generally, the transport capacity within a section that is uniform with respect to
vegetation and slope gradient is considered to exceed the sediment load generated by erosion, and
deposition occurs only when a change in the vegetation or slope gradient causes the transport capacity
to fall below the existing sediment load. In RUSLE2, the transport capacity is computed as a function
of runoff rate, slope steepness, and hydraulic resistance. RUSLE2 uses the 10-year, 24-h precipitation
amount and the NRCS curve number method to compute runoff for this purpose. RUSLE2 takes into
account the effects of hydraulic roughness from the soil surface roughness, live ground cover, ground
cover provided by crop residue and mulch, and vegetative retardance in determining the transport
capacity as it varies along the slope. Once the change in transport capacity causes deposition to occur
in a vegetated area, RUSLE2 deposits soil material over a length of slope. If that is shorter than the
vegetated area, erosion commences again downslope of the deposition area. The deposition of soil
material is dealt with in the same manner when the change in transport capacity is associated with
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a reduction of slope gradient. As with deposition associated with vegetation, erosion recommences
downslope of the deposition zone.
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by water.

The approach to modeling erosion and deposition adopted in RUSLE2 enhances the capacity
of the USLE/RUSLE model to deal with variations in topography and vegetation that occur on
one-dimensional hillslopes. The approach can be extended to watersheds [51]. Pandey et al. [52]
reviewed 50 soil and sediment yield models, many using the USLE/RUSLE model, to predict erosion,
and a variety of different methods have been used to determine the sediment transport capacity. Most
of the models developed for agricultural watersheds (catchments) required site-specific calibration
before application.

4. Dealing with the Effect of How Soil Loss Varies during the Year

The original objective of the USLE was to determine the long-term average annual soil loss and
the simplicity of Equation (1) can lead to the impression that the USLE family of models provides a
simple approach to soil loss prediction for management purposes. Equation (1) can also lead to the
view that the factors are determined in isolation from each other. In reality, to obtain appropriate
values for each factor is not simple, and there are interactions between the factors that have to be taken
into account. What was seen as a relatively simple empirical model has, over time, developed more
complexity in order to deal with the increasing demands to model the wide variety of agricultural
systems that exist today.

As noted above, it has always been recognized that climate and crop systems interact to determine
values of the C factor. It is common practice to collect rainfall data on a daily basis over a long period
of time such as 20 years, and aggregate it to give average annual values for periods such as a week, a
month, or a cropping period. In theory, data on the amount of EI30 and the availability of short-term
values of C during the five cropping periods enable soil loss to be predicted during each period in the
USLE. This approach was modified in the RUSLE to predict soil loss during 12 half-monthly periods.
In RUSLE2, the time step was set to one day, because this provided flexibility in dealing with the time
when various activities that influence soil loss occur [8]. In order to do this, daily values of factors such
as rainfall amount, EI30, K, C, and P are determined by disaggregating longer-term data. These daily
values are used to predict soil loss from bare fallow and cropped areas on a daily basis, so that the
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total of these daily losses predicts the average annual soil loss. Adding the daily soil loses together for
any shorter period provides an estimate of the soil lost during that period. The approach adopted by
RUSLE2 can be described by:

AT =
N∑

d=1

RdKdL S CdPd (43)

where AT is the total soil loss (mass per unit area) in a period of time, and N is the number of complete
days in that period. Since the daily values are influenced directly by any change that occurs on a
day-to-day basis, the model responds directly to temporal variations in the factors that affect soil
loss that are associated with crops and crop management. Cd values vary with time depending on
canopy cover and configuration, ground cover, surface roughness, ridge height from cultivation,
soil biomass, soil consolidation, and soil moisture (https://fargo.nserl.purdue.edu/rusle2_dataweb/

userguide/RUSLE2_User_Ref_Guide_2008.pdf).
Although the approach used in RUSLE2 was designed to determine soil losses between particular

activities undertaken during the year, it also provides the capacity to predict rainfall amount and soil
losses for a rainy day as being the sum of the daily soil losses calculated using Equation (43) since
the previous rainy day. Consequently, together with prediction of runoff using the curve number
method [32], the availability of data on a daily basis facilitates the prediction of runoff and soil loss
from bare fallow for a set of design storms at a location [33]. Figure 5 shows the storm soil losses for
the design storms predicted by RUSLE2 and the USLE-M at four locations in the USA. The respective
storm erodibilities for the RUSLE and USLE-M approaches for the four locations are shown in Figure 3.
Multiplying those soil losses by the values of C on the respective days provides an estimate of the soil
losses from the cropped area associated with the set of design storms at a location. It should be noted
that RUSLE2 predicts within-year average annual soil losses that are the same every year rather than
varying between wet and dry years.
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Figure 5. Storm soil losses predicted by RUSLE2 and the Universal Soil Loss Equation (USLE)-M at (A)
Presque Isle, ME, (B) Bethany, MO, (C) Macon, GA (D) Tampa, FL (source: Kinnell [18]).

RUSLE2 also has the capacity to predict soil losses when users enter EI30 data for specific days.
This enables predictions by RUSLE2 to be compared with losses observed for actual events that
occurred on runoff and soil loss plots such as those used to develop the USLE. Figure 6 shows the

https://fargo.nserl.purdue.edu/rusle2_dataweb/userguide/RUSLE2_User_Ref_Guide_2008.pdf
https://fargo.nserl.purdue.edu/rusle2_dataweb/userguide/RUSLE2_User_Ref_Guide_2008.pdf


Soil Syst. 2019, 3, 62 16 of 33

relationships between observed soil losses and losses predicted using the USLE, the USLE-M using
observed runoff, RUSLE2 with the user entering EI30 values, and the USLE-M with runoff predicted
using RUSLE2 for events observed on plots 1–3 at Presque Isle, ME. The Nash–Sutcliffe efficiency index
(NSE) [39] is often used to judge how effective a model is in predicting results. The index has a value
of 1.0 for the perfect model, and zero in the model prediction is no better than using the mean. When
the Nash–Sutcliffe efficiency index was applied to log transforms of the data (NSE(ln)):

NSE(ln) = 1 −

N∑
n=1

(lnγo–lnγm)
2

N∑
n=1

(lnγo– Mlno)
2

(44)

where Yo is the observed value, Ym is the modeled value, and Mlno is the mean of the log transforms of
Yo; the USLE-M approach using observed runoff predicted event soil losses the best. RUSLE2 using
user-entered EI30 values predicted event soil losses only marginally better than the USLE, and using
runoff predicted by RUSLE2 produces a poor prediction of event soil loss when the USLE-M was used.
Table 1 shows that the results shown for Presque Isle are mirrored at Holly Springs, MS, Zanesville,
Ohio (OH), and Tyler, Texas (TX).Soil Syst. 2019, 3, x FOR PEER REVIEW 17 of 34 
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Table 1. Nash–Sutcliffe efficiency index (NSE(ln)) values obtained soil loss predictions on the four bare
fallow plots in the USLE database using the USLE, RUSLE2, and the USLE-M. All the plots were 22.1 m
long (source: Kinnell [53]). OH: Ohio, TX: Texas.

NSE(ln)

Location Plot No Gradient % QR.rope
No of
Obs USLE RUSLE2

USLE-M
with Obs

Runoff

USLE-M with
RUSLE2
Runoff

Holly Springs, MS 3–7 5.0 0.64 166 0.528 0.563 0.703 0.376
Zanesville, OH 1–8 12.0 0.59 287 0.646 0.644 0.728 0.469

Tyler, TX 1–9 8.8 0.30 192 0.342 0.372 0.696 0.358
Presque Isle, ME 1–3 8.0 0.29 102 0.177 0.190 0.766 −0.442

As an alternative to RUSLE2, WEPP [4], a more physically-based model of rainfall erosion than
RUSLE2, predicts soil loss on an event basis using rainfall events that are generated stochastically over
many years by a model called CLIGEN [54]. Given that rainfall is not distributed evenly through time,
it can be argued that the event soil losses predicted by WEPP are more realistic than those predicted by
RUSLE2. However, the capacity to predict event soil losses for storms that do not occur at regular
intervals through user-entered storm data enables CLIGEN to be used as a climate generator for
RUSLE2. The relevant CLIGEN climate files can be obtained using WEPP for Windows. CLIGEN
does not calculate EI30 values, but these can be obtained using data provided by RUSLE2. RUSLE2
produces a table that contains daily “erosivity densities” during a calendar year at a location. As noted
above, erosivity density is the EI30 per unit quantity of rain [8]. The daily erosivity densities used in
RUSLE2 are disaggregated from monthly erosivity densities computed for many (>1500) locations in
the USA. These monthly erosivity densities were determined as ratios of the monthly sums of EI30

for rains where more than 12.5 mm fell to the monthly amounts of rain obtained from meteorological
data that included rains where less than 12.5 mm fell. This approach facilitates the use of generally
available meteorological data to predict erosivity rather than less available data for rainstorms where
amounts exceed 12.5 mm.

CLIGEN produces many daily rainfalls with low amounts. However, in determining R values for
RUSLE2, storms producing less than 12.5 mm of rain were omitted as in RUSLE2. Figure 7 shows the
relationship between average annual loss produced by CLIGEN rains >12.5 mm using the RUSLE2
EI30 values over 30 years, and the average annual soil losses predicted by the RUSLE2 representative
storms at the six locations listed in Table 2. Although rainfalls of less than 12.5 mm were not included
in the calculation of monthly erosivity, as noted above, the amounts of rainfall used to determine
daily erosivity density did include rainfalls of less than 12.5 mm, because the daily rainfall amounts
were disaggregated from standard meteorological data. Consequently, EI30 values for the CLIGEN
storms omitting 12.5-mm rainfalls were underestimated. This can be corrected by multiplying the
daily erosivity density values by the ratio between the average annual rainfall recorded in RUSLE2 for
the location and the average annual rainfall obtained by CLIGEN when rainfalls less than 12.5 mm
were omitted. Figure 8 shows that when this correction is applied, CLIGEN can be used to predict the
same average annual soil losses as the RUSLE2-generated storms. In contrast to the RUSLE2-generated
storms, the annual soil losses generated using CLIGEN varied between years. CLIGEN version 5.3
was used to generate the data in Figure 8. RUSLE2 erosivity density data may need to be updated
when newer versions of CLIGEN that include data on climate change since 2000 are used.
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Figure 7. Relationship between average annual soil loss produced by CLIGEN storms and average
annual soil loss produced by RUSLE2 storms at the nine locations when the standard RUSLE2 erosivity
density values were used to predict event erosivity and rainfalls of less than 12.5 mm were omitted
(source: Kinnell [55]).

Table 2. RUSLE2 R factor and soils at the locations with unit plots where CLIGEN was used as a weather
generator for RUSLE2. IA: Iowa, MI: Michigan, SD: South Dakota, OK: Oklahoma, NY: New York.

Location State County Soil RRUSLE2

Bethany MO Brooke Selby (sl) 3330
Castana IA Monona Monona (l) 2650

Holly Springs MI Marshall Providence (sil) 6360
Madison SD Lake Egan (sicl) 1330

Presque Isle ME Aroostook Caribou (Gr-l) 1230
Tifton GA Tilt Tifton (sl) 7110

Watkinsville GA Oconee Cecil (scl) 5050
Guthrie OK Logan Stephensville (fsl) 3800
Geneva NY Ontario Ontario (l) 1380Soil Syst. 2019, 3, x FOR PEER REVIEW 19 of 34 
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the USA. This overestimation could be due to the way that CLIGEN assumes that all the rainfall that 
falls on a day acts as single event, whereas in the USLE/RUSLE, EI30 values for a day are summations 
of multiple small events. The method generates adjusted EI30 values for all the CLIGEN-generated 
rainfalls at a location, and consequently, adjustment is required to model erosion omitting rains of 
less than 12.5 mm. This can be done by multiplying EI30 values by the ratio of R specified by RUSLE2 
for the location and the value of R obtained by CLIGEN when rainfalls of less than 12.5 mm were 
omitted. In RUSLE2, erosivity densities in the USA tend to show monthly variations that have a 
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Figure 8. Relationship between average annual soil loss produced by CLIGEN storms and average
annual soil loss produced by RUSLE2 storms at the nine locations when the revised erosivity density
values were used to predict event erosivity when rainfalls of less than 12.5 mm were omitted (source:
Kinnell [55]).
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In addition to obtaining EI30 values from the data in RUSLE2, EI30 values for CLIGEN-generated
rainfalls can be computed using a method developed by Yu [56]. Yu developed a numerical method that
was specifically designed to compute daily EI30 values from daily rainfall-related weather variables
generated by CLIGEN. Algorithms were developed to compute the R factor, its monthly distribution,
and the 10-year storm EI30 needed to apply the RUSLE. The primary theory used overestimated EI30

values, but an adjustment factor of 0.576 was found to be appropriate throughout the USA. This
overestimation could be due to the way that CLIGEN assumes that all the rainfall that falls on a day
acts as single event, whereas in the USLE/RUSLE, EI30 values for a day are summations of multiple
small events. The method generates adjusted EI30 values for all the CLIGEN-generated rainfalls at a
location, and consequently, adjustment is required to model erosion omitting rains of less than 12.5
mm. This can be done by multiplying EI30 values by the ratio of R specified by RUSLE2 for the location
and the value of R obtained by CLIGEN when rainfalls of less than 12.5 mm were omitted. In RUSLE2,
erosivity densities in the USA tend to show monthly variations that have a triangular profile with a
peak in midsummer, but this is not necessarily the case with the erosivity densities obtained using the
Yu method (Figure 9). When CLIGEN was applied to predict average annual soil losses from bare
fallow and cropped areas using both the Yu method and the RUSLE2 erosivity density method at
seven locations in the USA, both methods produced results that were comparable to those produced
by RUSLE2 operating in its standard mode (Table 3, Figure 10). The values of Rd generated by using
RUSLE2 erosivity densities produce short-term soil losses that are less variable than produced when
Rd values are generated by the Yu method (e.g., Figure 11), but those differences have little impact
on the prediction of the long-term average annual soil loss (Table 3). CLIGEN version 5.3 was used
here, and it should be noted that adjustment to match RUSLE2 R values does not necessarily allow for
possible climate change effects that may be incorporated in newer versions of CLIGEN.
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generated using the Yu method, and RUSLE2 erosivity densities for 100 years at four locations in the
USA. NB: long-term erosivity density for the month = sum EI30 for the month over 100 years divided
by the sum of rain > 12.5 mm for the month over 100 years (source: Kinnell and Yu (under review) [57]).
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Table 3. Annual soil loss from plots predicted by RUSLE2 and by using CLIGEN for 100 years with Rd values predicted by the Yu method and RUSLE2 erosivity
density values (source: Kinnell and Yu (under review) [57]).

Location RUSLE2 R Length Slope RUSLE2 K Treatment

Average Annual Soil Loss

std RUSLE2 EI30 by Yu EI30 by R2 ED

MJ mm/(ha hr yr) m % t hr/(MJ mm) t/ha/yr t/ha/yr t/ha/yr

Bethany 3330 22.3 7.0 0.085 continous bare fallow 201.4 201.6 204.5
112 bu corn 52.7 52.5 55.8

NT-corn soybeans NT-wheat 15.6 16.1 15.7
Castana 2650 22.1 14.0 0.030 continous bare fallow 132.2 132.9 134.1

112 bu corn 34.2 34.4 36.9
corn soybeans 19.4 19.7 20.6

Geneva 1380 22.1 7.7 0.042 continous bare fallow 39.8 40.5 40.3
112 bu corn 8.7 9.2 9.1

Winter Wheat 4.0 4.1 3.8
Guthrie 3800 22.1 8.0 0.011 continous bare fallow 76.4 76.8 76.9

112 bu corn 26.4 26.8 27.5
wheat soybeans 5.4 5.5 5.5

Holly Springs 6360 22.1 5.0 0.044 continous bare fallow 206.6 207.4 202.9
112 bu corn 50.5 50.0 52.2

cotton (fall chisel) 91.3 91.6 89.3
Madison 1670 22.1 5.6 0.071 continous bare fallow 55.5 54.0 55.3

112 bu corn 12.9 12.0 12.8
corn soybeans 6.6 6.4 6.5

Watkinsville 5050 22.1 7.0 0.027 continous bare fallow 103.1 101.4 102.8
112 bu corn 27.1 26.3 26.8
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(under review) [57]).

Soil Syst. 2019, 3, x FOR PEER REVIEW 21 of 34 

 

 

Figure 11. Monthly soil loss values for cotton at Holly Springs generated by CLIGEN (A) for EI30 
values generated from RUSLE2 erosivity densities, and (B) for EI30 values generated by the Yu 
method. 

Apart from using RUSLE2 erosivity densities and the Yu method, it is possible to predict 
long-term soil losses using other methods of generating EI30 values from event rainfall amounts. One 
approach is to predict daily EI30 as a power of daily rainfall [58]: 

EI30 = a rainc (45) 

where a and c are empirical coefficients. For the Yu method, c has a value of about 2.2 at Watkinsville 
(Figure 12). Using Equation (45) with c = 2.0 produces monthly erosivity densities, as shown in 
Figure 12C, in comparison with those produced by the Yu method and the assumption that EI30 
values are actually completely random. When the four methods of obtaining EI30 values for use with 
CLIGEN were applied on the bare and cropped soil loss plots at the seven locations in the USA, all 
the produced predictions were highly correlated with those predicted by RUSLE2 operating in its 
standard mode. The actual values of soil loss generated on a daily or monthly basis using CLIGEN 
have no physical meaning, but are generated to produce a set of values that lead to the prediction of 
the long-term average soil loss, as has been demonstrated by the data presented in Tables 3 and 4 
and Figure 10.

Figure 11. Monthly soil loss values for cotton at Holly Springs generated by CLIGEN (A) for EI30
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Apart from using RUSLE2 erosivity densities and the Yu method, it is possible to predict long-term
soil losses using other methods of generating EI30 values from event rainfall amounts. One approach
is to predict daily EI30 as a power of daily rainfall [58]:

EI30 = a rainc (45)

where a and c are empirical coefficients. For the Yu method, c has a value of about 2.2 at Watkinsville
(Figure 12). Using Equation (45) with c = 2.0 produces monthly erosivity densities, as shown in
Figure 12C, in comparison with those produced by the Yu method and the assumption that EI30 values
are actually completely random. When the four methods of obtaining EI30 values for use with CLIGEN
were applied on the bare and cropped soil loss plots at the seven locations in the USA, all the produced
predictions were highly correlated with those predicted by RUSLE2 operating in its standard mode.
The actual values of soil loss generated on a daily or monthly basis using CLIGEN have no physical
meaning, but are generated to produce a set of values that lead to the prediction of the long-term
average soil loss, as has been demonstrated by the data presented in Tables 3 and 4 and Figure 10.
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using (A) the Yu method and (B) random numbers, and (C) the monthly erosivity densities generated
from those EI30 values and when EI30 is related to the square of rainfall amount. (source: Kinnell and
Yu (under review) [57]).

Table 4. Regression analysis for the relationships between average annual soil loss predicted by RUSLE2
operating in its standard mode (ARUSLE) and average annual soil loss predicted by CLIGEN (ACLIGEN)
when Rd values are generated by different methods at the seven locations.

Model ARUSLE2 = b ACLIGEN

CLIGEN EI30 by b r2 Mean abs Error

Yu method 1.0005 0.9999 0.528
RUSLE2 ED 1.0023 0.9993 1.113

Rain2 1.014 0.9985 1.629
Random number 0.9928 0.9983 2.183

5. Accounting for the Effects of Rill Erosion

USLE-based models predict soil loss from areas subjected to sheet and rill erosion. In sheet erosion,
the area is subjected to raindrop-driven erosion. Raindrop-driven erosion occurs when detachment,
the liberation of soil materials from the surface of the soil matric where they are held by cohesion
and interparticle friction, results from raindrops impacting the soil surface directly or through a
layer of water sitting on the surface. Initially, when rain starts and no water flows over the surface,
raindrop-detached material moves over the surface by splash. As time progresses and runoff occurs,
there is a transition from transport by splash to transport by rain-impacted flow [59]. Whenever
flowing water occurs, fine material is transported by the flow in complete suspension. Above a
certain critical shear stress (τc(loose), Figure 13), flows have a capacity to transport coarse material
by flow-driven bed load transport (FDBT), namely flow-driven saltation and flow-driven rolling.
In rain-impacted flows, the coarse material is transported by raindrop-induced bedload transport
(RIBT), namely raindrop-induced saltation and raindrop-induced rolling, when the flow shear is below
the critical shear stress. With RIBT, coarse material is transported through an interaction between
the raindrop impacts and the flowing water. Once the flow acquires a shear stress that exceeds the
critical shear stress required for the flow to detach particles held by cohesion and interparticle friction
(τc(bound)), flow-driven erosion occurs. Once rilling commences, flows that originally moved in a
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“sheet” down along the surface are encouraged to flow toward the rills. This results in thin flows
occurring in the interrill areas where raindrop-driven erosion dominates, while flow-driven erosion
takes place in the rills. Detachment and transport within rills results in an increase in the rate soil loss
that occurs from that area. In the plot experiments providing the data on which the USLE was based,
the surfaces were cultivated between storms to eliminate rills. Conceptually, the erodibility of the soil
differs between storms that just cause sheet erosion and storms that produce rill erosion. However,
the extent and severity of rilling was not monitored, so a different approach was adopted. As noted
earlier, in the RUSLE, the variation in m in the slope length equation (Equation (31)) is dependent on
the degree of rilling that occurs on the eroding surface.

Soil Syst. 2019, 3, x FOR PEER REVIEW 24 of 34 

 

stress that exceeds the critical shear stress required for the flow to detach particles held by cohesion 
and interparticle friction (τc(bound)), flow-driven erosion occurs. Once rilling commences, flows that 
originally moved in a “sheet” down along the surface are encouraged to flow toward the rills. This 
results in thin flows occurring in the interrill areas where raindrop-driven erosion dominates, while 
flow-driven erosion takes place in the rills. Detachment and transport within rills results in an 
increase in the rate soil loss that occurs from that area. In the plot experiments providing the data on 
which the USLE was based, the surfaces were cultivated between storms to eliminate rills. 
Conceptually, the erodibility of the soil differs between storms that just cause sheet erosion and 
storms that produce rill erosion. However, the extent and severity of rilling was not monitored, so a 
different approach was adopted. As noted earlier, in the RUSLE, the variation in m in the slope 
length equation (Equation (31)) is dependent on the degree of rilling that occurs on the eroding 
surface.  

 

Figure 13. Schematic diagram of the detachment and transport systems that operate in rainfall 
erosion. RD = raindrop detachment, FD = flow detachment, ST = splash transport, RIBT = 
raindrop-induced bedload transport (raindrop-induced saltation, raindrop-induced rolling), FDBT = 
flow-driven bedload transport (flow-driven saltation, flow-driven rolling). 

In more physically-based models such as WEPP, raindrop-driven erosion and flow-driven 
erosion are modeled specifically. Foster et al. [24] proposed that using two erosivity indices, one 
focusing on raindrop-driven erosion and the other focusing on flow-driven erosion, might be useful 
in accounting for event erosivity (Re): 

Re = 0.5 EI30 + 0.5  qe(qp)0.333 (46) 

where α is a factor that causes the average annual value of Re produced by Equation (46) using qe and 
qp values obtained for the unit plot to equal the average annual value of Re when Re = EI30. Equation 
(46) focuses on the situation where the contributions for raindrop-driven erosion and flow-driven 
erosion are equal. Given that the QRe1EI30 index is actually derived from considering soil loss to be 
directly related to the product of event runoff and event sediment concentration (soil loss per unit 
runoff), the suggestion that flow-driven erosion is dependent on the product of a power of runoff 
and a power of peak runoff (Qp), when combined with Equation (29) could perhaps lead to a useful 
equation for soil loss from the unit plot being given by: 

Ae1 = Qe1 (a KUMe εe + b Kqe Qe1c Qpd) (47) 

where Qe1 is the event runoff from the unit plot, KUMe is the event erodibility associated with the 
QR1EI30 index, εe is the erosivity density (EI30 per unit quantity of rain), Kqe is the event erodibility 
associated with using the product of Qe1 and Qp as an erosivity index for erosion associated with 

Figure 13. Schematic diagram of the detachment and transport systems that operate in rainfall erosion.
RD = raindrop detachment, FD = flow detachment, ST = splash transport, RIBT = raindrop-induced
bedload transport (raindrop-induced saltation, raindrop-induced rolling), FDBT = flow-driven bedload
transport (flow-driven saltation, flow-driven rolling).

In more physically-based models such as WEPP, raindrop-driven erosion and flow-driven erosion
are modeled specifically. Foster et al. [24] proposed that using two erosivity indices, one focusing on
raindrop-driven erosion and the other focusing on flow-driven erosion, might be useful in accounting
for event erosivity (Re):

Re = 0.5 EI30 + 0.5α qe(qp)0.333 (46)

where α is a factor that causes the average annual value of Re produced by Equation (46) using qe and
qp values obtained for the unit plot to equal the average annual value of Re when Re = EI30. Equation
(46) focuses on the situation where the contributions for raindrop-driven erosion and flow-driven
erosion are equal. Given that the QRe1EI30 index is actually derived from considering soil loss to be
directly related to the product of event runoff and event sediment concentration (soil loss per unit
runoff), the suggestion that flow-driven erosion is dependent on the product of a power of runoff and a
power of peak runoff (Qp), when combined with Equation (29) could perhaps lead to a useful equation
for soil loss from the unit plot being given by:

Ae1 = Qe1 (a KUMe εe + b Kqe Qe1
c Qp

d) (47)

where Qe1 is the event runoff from the unit plot, KUMe is the event erodibility associated with the
QR1EI30 index, εe is the erosivity density (EI30 per unit quantity of rain), Kqe is the event erodibility
associated with using the product of Qe1 and Qp as an erosivity index for erosion associated with
rilling, c and d are empirically derived values, and a and b are coefficients that adjust for the variations
in contributions from raindrop-driven and flow-driven erosion [53].
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In WEPP, rill and interrill erosion are determined using dedicated soil erodibility factors with a
critical shear stress acting as the trigger for rill erosion to occur:

Df = Dc (1 − G/Tc) (48)

and:
Dc = Kr (τf − τc) (49)

where Df is the rill erosion rate (mass/area/time), Dc is the detachment capacity of the flow, G is the
sediment load, Tc is the sediment load at the transport capacity of the flow, Kr is the rill soil erodibility,
τf is the shear stress of the flow in the rill, and τc is the critical shear stress that needs to be exceeded
before detachment in rills occurs. However, even when the erodibility factors and the value of the
critical shear stress are calibrated so that WEPP predicts the total soil loss for the set of events involved,
it has been shown by Kinnell [53] that the USLE-M predicts event soil losses from bare fallow plots
in the USLE database better than WEPP (Table 5). Even though an empirical model based on the
conceptual approach presented in Equation (47) could initially appear useful in modeling erosion using
USLE-based modeling systems, the modeling of temporal variations in rilling successfully through
coefficients a and b may be extremely difficult to acheive. Increasing model complexity can lead to
increased model uncertainty ([60,61]).

Table 5. NSE(ln) values for WEPP and USLE-M for the prediction of observed event soil losses from
22-m long bare fallow plots in the USLE database when runoff for both models was predicted by WEPP.
NB: WEPP does not predict soil loss to occur for all the storms where soil loss was observed. Calibration
for runoff and soil loss was undertaken using storms where WEPP predicted soil loss did occur, and
this ensured that the total runoff and soil loss for both models matched the total runoff and soil losses
for the events involved (source: Kinnell (under review) [53]).

NSE(ln)

Location Plot No Gradient % Runoff WEPP
USLE-M

with WEPP
Runoff

Mode

Bethany, MO 1–9 7.0 0.123 −0.394 0.300 validation
0.153 −0.258 0.317 calibration

Holly Springs, MI C5 5.0 0.656 0.239 0.538 validation
0.689 0.375 0.605 calibration

Presque Isle, ME 1–3 8.0 −0.125 −0.440 0.214 validation
0.156 −0.115 0.296 calibration

Tifton, GA 1–2 3.0 0.319 −1.231 −0.283 validation
calibration

Watkinsville, GA 2–47 7.0 0.281 −0.888 0.280 validation
0.320 −0.797 0.362 calibration

6. The Unit Plot as the Physical Model

As noted above, conceptually, the unit plot provides the physical model on which the USLE is
based. In most of the locations where the bare fallow plots were installed in the USA, a unit plot did
not exist. Certainly, slope lengths of 22.1 m were common, but as indicated in Table 5, slope gradients
were usually different from 9%. In some cases, bare fallow plots of 22.1 m were also not installed.
Consequently, in order to determine the K values for those locations, the observed soil loss values
were adjusted to estimate the losses from the unit plot situation using the S and L factor equations.
Also, as noted above, the unit plot provides the situation where spatial variations in R and K can be
determined independently of all the effects that topography and vegetation have on soil loss. As such,
using the unit plot approach can be perceived as providing a sound foundation to the modeling of
rainfall erosion.
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It has been proposed that the best physical model of erosion from a plot is provided by a replicate
plot [62]. Replicates of bare fallow plots were installed at a number of locations in the USA, and
Figure 14 shows the predictions of observed event soil losses from observed soil losses from a replicate
at three locations. For 23 plots at 11 locations in the USA, NSE(ln) values ranged from 0.592 to 0.957
(Table 6). The NSE(ln) values shown in Table 6 were determined by the variation from the 1-to-1 dotted
line shown in Figure 14. These differences result from both the stochastic and systematic differences
between the observed and predicted values. Also shown in Figure 14 are data for regressions between
the observed and predicted values. Values of the regression coefficients close to 1.0 indicate that the
effect of systematic differences is minimal. In the case of the data presented in Table 6, the effect on
NSE(ln) values when systematic differences dominate is indicted by the dotted lines in Figure 15. Low
values of NSE(ln) when the regression coefficient is close to 1.0 indicate situations where stochastic
differences dominate. In addition to the NSE(ln) values for the observed—i.e., replicate—model, values
of NSE(ln) for the USLE and USLE-M using observed runoff are presented in Table 6, in which the
erodibility values were determined individually for the plots being considered. In many cases, the
USLE-M performed at a comparable level to the replicate model. Some improvement in the NSE(ln)
values could result from using Equation (23), particularly at Tifton, GA, where b1 = 0.419 (Figure 16).
However, even when the model used may show systematic errors, because the soil erodibility factor is
determined as the total soil loss for a number of events divided by the total value of the erosivity index
for those storms, the model focuses on predicting the total soil loss well irrespective of the erosivity
index used or whether the relationship between the index and soil loss is linear or non-linear.
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Table 6. NSE(ln) values when USLE, USLE-M, and replicate models were applied to bare fallow plots
in the USLE database (source: Kinnell [63]).

NSLE(ln)

Location Obs Principal Replicate REPLICATE USLE USLE-M

Presque Isle 82 plot 1–3 plot 1–8 0.592 0.091 0.693
Presque Isle 85 plot 1–8 plot 1–18 0.838 0.137 0.772
Marcellus 65 plot 1–2 plot 1–3 0.957 0.365 0.786
Marcellus 65 plot 1–3 plot 1–2 0.952 0.366 0.771

Morris 74 plot 1–5 plot 1–10 0.706 0.015 0.838
Morris 74 plot 1–10 plot 1–13 0.636 0.133 0.784
Morris 74 plot 1–13 plot 1–5 0.737 −0.078 0.758

Castana 116 Plot 1–3 plot 1–4 0.829 0.396 0.777
Castana 116 plot 1–4 plot 1–3 0.878 0.307 0.809
Bethnay 135 plot 1–9 plot 1–10 0.772 0.498 0.761
Bethnay 135 plot 1–10 plot 1–9 0.765 0.396 0.716

McCredie 124 plot 2–1 plot 2–18 0.763 0.332 0.842
McCredie 124 plot 2–18 plot 2–1 0.742 0.058 0.548
LaCrosse 97 plot 1–8 plot 1–9 0.828 0.566 0.854
LaCrosse 97 plot 1–9 plot 1–8 0.832 0.547 0.853

Holly Springs 187 plot 3–5 plot 3–7 0.826 0.520 0.645
Holly Springs 187 plot 3–7 plot 3–5 0.843 0.491 0.704
Watkinsville 111 plot 2–47 plot 2–64 0.722 0.443 0.594
Watkinsville 111 plot 2–64 plot 2–47 0.765 0.354 0.453

Madison 66 plot 1–5 plot 1–12 0.893 0.024 0.781
Madison 66 plot 1–12 plot 1–5 0.886 0.058 0.751

Tifton 103 plot 1–2 plot 2–4 0.820 0.263 −0.511
Tifton 103 plot 2–4 plot 1–2 0.838 0.157 −0.346Soil Syst. 2019, 3, x FOR PEER REVIEW 27 of 34 

 

 

Figure 15. The relationship between b when the equation-observed event soil loss = b (replicate event 
soil loss) and NSE(ln) when the event soil loss = 1.0 (replicate soil loss) (source: Kinnell [63]). 

 

Figure 16. Relationships between observed event soil loss and loss from a replicate; EI30 and QREI30 
values for storms on plots at Morris, MN and Tifton, GA (source Kinnell [63]). 

Table 6. NSE(ln) values when USLE, USLE-M, and replicate models were applied to bare fallow 
plots in the USLE database (source: Kinnell [63]). 

    NSLE(ln) 
Location Obs Principal Replicate REPLICATE USLE USLE-M 

Presque Isle 82 plot 1–3 plot 1–8 0.592 0.091 0.693 
Presque Isle 85 plot 1–8 plot 1–18 0.838 0.137 0.772 
Marcellus 65 plot 1–2 plot 1–3 0.957 0.365 0.786 
Marcellus 65 plot 1–3 plot 1–2 0.952 0.366 0.771 

Morris 74 plot 1–5 plot 1–10 0.706 0.015 0.838 
Morris 74 plot 1–10 plot 1–13 0.636 0.133 0.784 
Morris 74 plot 1–13 plot 1–5 0.737 –0.078 0.758 

Castana 116 Plot 1–3 plot 1–4 0.829 0.396 0.777 
Castana 116 plot 1–4 plot 1–3 0.878 0.307 0.809 
Bethnay 135 plot 1–9 plot 1–10 0.772 0.498 0.761 
Bethnay 135 plot 1–10 plot 1–9 0.765 0.396 0.716 

Figure 15. The relationship between b when the equation-observed event soil loss = b (replicate event
soil loss) and NSE(ln) when the event soil loss = 1.0 (replicate soil loss) (source: Kinnell [63]).



Soil Syst. 2019, 3, 62 27 of 33

Soil Syst. 2019, 3, x FOR PEER REVIEW 27 of 34 

 

 

Figure 15. The relationship between b when the equation-observed event soil loss = b (replicate event 
soil loss) and NSE(ln) when the event soil loss = 1.0 (replicate soil loss) (source: Kinnell [63]). 

 

Figure 16. Relationships between observed event soil loss and loss from a replicate; EI30 and QREI30 
values for storms on plots at Morris, MN and Tifton, GA (source Kinnell [63]). 

Table 6. NSE(ln) values when USLE, USLE-M, and replicate models were applied to bare fallow 
plots in the USLE database (source: Kinnell [63]). 

    NSLE(ln) 
Location Obs Principal Replicate REPLICATE USLE USLE-M 

Presque Isle 82 plot 1–3 plot 1–8 0.592 0.091 0.693 
Presque Isle 85 plot 1–8 plot 1–18 0.838 0.137 0.772 
Marcellus 65 plot 1–2 plot 1–3 0.957 0.365 0.786 
Marcellus 65 plot 1–3 plot 1–2 0.952 0.366 0.771 

Morris 74 plot 1–5 plot 1–10 0.706 0.015 0.838 
Morris 74 plot 1–10 plot 1–13 0.636 0.133 0.784 
Morris 74 plot 1–13 plot 1–5 0.737 –0.078 0.758 

Castana 116 Plot 1–3 plot 1–4 0.829 0.396 0.777 
Castana 116 plot 1–4 plot 1–3 0.878 0.307 0.809 
Bethnay 135 plot 1–9 plot 1–10 0.772 0.498 0.761 
Bethnay 135 plot 1–10 plot 1–9 0.765 0.396 0.716 

Figure 16. Relationships between observed event soil loss and loss from a replicate; EI30 and QREI30

values for storms on plots at Morris, MN and Tifton, GA (source Kinnell [63]).

In examining the ability of replicates to predict event soil loss from the primary plot, only storms
where both plots produced erosion were used, even though there were, at times, soil losses measured
on replicates when none was measured on the principal plot. In using the unit plot approach, it is
assumed that if soil loss occurs on the unit plot, it will also occur in the area of interest. Obviously, that
assumption does not necessarily hold true when considering soil losses on a storm-by-storm basis on
bare fallow plots, and consequently, the K values determined for replicated plots are usually for each
individual plot.

Although a replicate plot may be considered to provide the best physical model of erosion from
a plot, variations in the values of K occur within a set of replicates. The experimental study by
Wendt et al. [64] is often cited to illustrate the variability between replicates. In the experiment, 40
bare plots were cultivated, and in other ways treated identically. Wendt et al. observed that the spatial
variations in the total runoff and soil loss produced by 25 storms in 1981 were not readily related to
measured plot properties. They also concluded that the importance of plot differences did not persist
in runoff and soil loss data obtained before or after the 25 events. However, that conclusion was based
on data from a six-year experiment with seven conventional and six no-till corn plots prior to 1981,
and three storms on runoff and soil loss plots for fallow together with corn and soybeans using three
tillage methods in 1983, so that the comparison is hardly robust. For individual storms, Wendt et al.
observed coefficients of variation varying from 18% to 91%, in which the highest relative differences
were associated with small events. Wendt et al. did acknowledge that a portion of the variability
between plots that they observed could have been the result of spatial variations in erodibility. They
noted that tillage may have contributed to different microtopographies, but no quantitative evaluations
of flow patterns were made. Gomez et al. [65] also concluded that changes in the relative difference
in runoff between the plots used by Wendt et al. might be explained by modifications of the spatial
distribution of the saturated hydraulic conductivity and surface storage during cultivation. As a
general rule, replicates act as good physical models of plots when soil losses are high [62].

As noted above, in developing the USLE, the unit plot was specified as being a bare fallow area
that was 22.1-m long on a 9% slope where cultivation was done up and down the slope. It was also
noted that the lack of plots meeting this specification resulted in K being determined from non-unit
plots by using the L and S factors to adjust the observed soil losses to those expected to occur on unit
plots if they had existed. There are situations where the K factor values so calculated are appreciably
different from those that would have been obtained had the unit plots existed, because the rilling
situation on the unit plot would have been appreciably different than that on the non-unit plot. Given
that high slope gradients are used in China, the Chinese version of the USLE specifies the unit plot
to be a bare fallow 20-m long on a 15-degree (26.8%) slope with cultivation done up and down the
slope [66]. Plots meeting this specification exist in China.
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There is an expectation that the two-step mathematical approach used in the USLE applies in
modeling event erosion from cropped areas so that:

AeC = Ae1 Ke L S Ce Pe (50)

where AeC is the soil loss for an event on a cropped area. However, the two-step mathematical approach
does not necessarily work well with vegetative areas, because runoff may not necessarily occur on both
bare and cropped surfaces during a storm. Consequently, as indicated by Figure 17A, the two-step
model predicts event soil losses to occur on cropped areas when they do not. As an alternative, the
QREI30 index approach provides the means to predict event soil loss from vegetated areas by using the
runoff ratio for a cropped plot (QRC) rather than the runoff ratio for the unit plot (QR1):

AeC = QReC EI30 Ke,UM L S Ce.UM Pe.UM (51)

where Ke,UM, Ce.UM, and Pe.UM are the event values for soil erodibility, crop and crop management,
and soil conservation protection when QReCEI30 is used as the event erosivity index. Procedures do
not currently exist to estimate Ke,UM, Ce.UM, and Pe.UM, but they do exist to determine the long-term
average annual values of KUM, CUM, and PUM [30]. Figure 17B shows the relationship between the
observed and predicted event soil losses for the same plot with corn at Clarinda, Iowa (IA) as used in
Figure 17A when soil losses were predicted using:

AeC = QReC EI30 KUM L S CUM PUM (52)

Unlike the USLE/RUSLE approach, Equation (52) does not operate mathematically in two steps, despite
KUM and K both being determined for unit plot conditions. Consequently, the USLE-M approach
adopted in Equation (52) outperforms the two-step mathematical approach used by the USLE/RUSLE
model when the runoff from the cropped area is known [53].
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7. What Next?

The USLE originated as an empirical model based on more than 10,000 plot years of data obtained
in the USA during the middle of the 20th century. The unit plot concept was central to the establishment
of the mathematical model in that it provided a base condition in which only R and K were involved
in the prediction of soil loss. There is little evidence that an actual bare fallow “unit plot” 72.6 feet
(22.1 m) long on a 9% slope with cultivation up and down the slope ever existed [67]. The “unit plot”
exists as a reference condition. It could have been longer or shorter, on a steeper or less steep slope.
The specification of how K is determined from unit plot data (Equation (9)) is central to the ability of
the unit plot approach to predict long-term soil loss from bare fallow areas. It ensures that the total of
the product of EI30 and K for a set of runoff-producing storms is equal to the total observed soil loss
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for that set of storms even when, as shown in Figure 2A, a direct relationship between event soil loss
and EI30 does not exist. Using the QREI30 index in place of EI30 when event runoff is known reduces
systematic errors associated with assuming that a direct relationship exists between event soil loss
and EI30 at many locations when runoff is known or predicted well. It has always been known that
runoff influences soil loss, but event runoff is difficult to predict well. Including runoff as independent
variable in a prediction event of soil loss is an impediment to predicting event soil loss well when
runoff is not measured. Awareness of this was one of the reasons why runoff was not considered
directly as a factor in determining erosivity in the USLE [68]. This is true irrespective of whether the
model is empirically based, such as the USLE-M, or physically based, such as WEPP.

The Revised USLE (RUSLE) maintained the unit plot approach, but changed the way some of
the other factors were determined. In including conceptual-based approaches to the determination of
factors such as C, RUSLE moved USLE technology from an empirical model to a hybrid one. There
has always been a time element involved in the determination of C. RUSLE2 moved the time base
from half-monthly to daily in order to deal with the effects of short-term issues that influence soil loss
better. Other enhancements included in RUSLE2 were designed to accommodate the specific needs of
conservation planners to deal with situations not included in the original USLE database [69]. RUSLE2
is associated with an extensive database in the USA, but has been used in countries such as China [70],
Spain [71], Nigeria [72], and Iran [73].

At the end of 2016, notice was give of the intention of the Natural Resources
Conservation Service (NRCS) in the USA to implement the WEPP technology to replace
the use of the Revised Universal Soil Loss Equation, Version 2 (RUSLE2), where applicable
(https://www.federalregister.gov/documents/2016/11/17/2016-27633/notice-of-implementation-of-
the-water-erosion-prediction-project-wepp-technology-for-soil). The development of WEPP began
in the 1980s, and was driven by the shortcomings of the USLE that limited its applicability to
many problems [67]. According to Laflen and Flanagann [67], “It did a very poor job in estimating
short-term soil erosion”, and “It did not consider deposition.” The rainfall factor in the USLE expressed
detachment as a function of rainfall energy, which is a major weakness when erosion was due to
snowmelt or irrigation. The first prototype of WEPP was made public in 1989 and in 1995, the
complete and validated version was documented [4] and released. Some of the criticisms of the
USLE have been redressed over time in RUSLE2 and the USLE-M. Table 5 shows that the USLE-M
predicts event soil losses from runoff and soil loss plots better than WEPP when both models use
runoff predicted by WEPP and both models were calibrated to predict the total soil loss for the
erosion events involved. RUSLE2 does model deposition resulting from spatial variations in slope
gradient and vegetation. The USLE-M is a transport-limited model, and consequently does not need
an overriding sediment transport model to deal with deposition. In WEPP, event rainfall timing
and amounts are generated stochastically by CLIGEN. RUSLE2 has a capacity to use CLIGEN as a
rainfall generator [55]. In addition, the data requirements for so-called physically-based models such
as WEPP are immense, and the increase in model complexity tends to increase the uncertainty in
the predicted outcomes [74]. In a recent comparison between WEPP and RUSLE2, Srivastava (2017,
https://www.slideshare.net/SWCSevents/wepp-model-enhancements-for-nrcs-use) showed that for
various cropping systems on various soils at 21 locations in the USA, WEPP predicted on average less
average annual soil loss than RUSLE2, and there were often large differences between the predictions
by the two models for each crop-location situation. For example, when RUSLE2 predicted an average
annual loss of about 36 t ha−1 for a current practice at a location, WEPP predicted about 12.5 t ha−1.
When RUSLE2 predicted an average annual loss of 15 t ha−1, WEPP predicted 26 t ha−1. No data on
which model actually provided the best prediction of actual average annual soil losses were provided.

With WEPP replacing the use of RUSLE2 by NRCS, RUSLE2 will become a standalone model in
the USA, and any further development of USLE-based technology is unlikely to be a priority of the
USDA Agricultural Research Service in the future. When WEPP is calibrated to predict observed soil
losses, predictions are more sensitive to the calibration of rill soil erodibility and the critical shear stress

https://www.federalregister.gov/documents/2016/11/17/2016-27633/notice-of-implementation-of-the-water-erosion-prediction-project-wepp-technology-for-soil
https://www.federalregister.gov/documents/2016/11/17/2016-27633/notice-of-implementation-of-the-water-erosion-prediction-project-wepp-technology-for-soil
https://www.slideshare.net/SWCSevents/wepp-model-enhancements-for-nrcs-use


Soil Syst. 2019, 3, 62 30 of 33

for rilling to occur than the calibration of interrill soil erodibility [75]. WEPP has a default rill spacing
of 1 m. The field rainfall experiments that were undertaken to determine the interill erodibilities for
WEPP [76] were done on plots that focused on ridge tillage cultivated areas where that rill spacing is
most appropriate. The interrill erodibilities so determined were found not to be appropriate when flat
plots were used [77]. Flat plots were commonly used in producing the data used to develop the USLE.
Wendt et al. [64] noted that there was not real evidence of rilling in the 40 plots they studied. The
ability of WEPP to predict event erosion on the USA runoff and soil loss plots is open to question when
USLE based models such as the USLE-M can do the job better, even when WEPP has been calibrated
(Table 5).

Soil prediction models such as the USLE and WEPP have three primary uses in agriculture: (a)
to assist land managers to choose cropping systems and practices that conserve soil, (b) to make
broad-scale surveys to identify the scope of the erosion problem over an area and track changes
in erosion over time, and (c) regulate activities for the purpose of conservation compliance [74].
USLE-based technology has been used in all three roles for a long time in the USA, and assists land
managers with choosing cropping systems and practices that conserve soil and making broad-scale
surveys to identify the scope of the erosion problem over an area and track changes in erosion over
time elsewhere. While, for these purposes, there is not great need to predict exactly what soil loss will
occur in short term, the ability to predict short-term soil losses well is often seen as something that
instills confidence in the results obtained in the longer term. Rainfall erosion is a complex process, but
increasing the complexity of models in order to produce better short-term predictions may, as noted
by Nearing and Hairsine [61], lead to more uncertainty in the predicted outcomes. Although WEPP
may take the lead role in soil loss prediction the USA, USLE-based modeling of erosion is likely to
continue outside the USA.
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