2,988 research outputs found

    Tangent functional connectomes uncover more unique phenotypic traits

    Get PDF
    Functional connectomes (FCs) contain pairwise estimations of functional couplings based on pairs of brain regions activity. FCs are commonly represented as correlation matrices that are symmetric positive definite (SPD) lying on or inside the SPD manifold. Since the geometry on the SPD manifold is non-Euclidean, the inter-related entries of FCs undermine the use of Euclidean-based distances. By projecting FCs into a tangent space, we can obtain tangent functional connectomes (tangent-FCs). Tangent-FCs have shown a higher predictive power of behavior and cognition, but no studies have evaluated the effect of such projections with respect to fingerprinting. We hypothesize that tangent-FCs have a higher fingerprint than regular FCs. Fingerprinting was measured by identification rates (ID rates) on test-retest FCs as well as on monozygotic and dizygotic twins. Our results showed that identification rates are systematically higher when using tangent-FCs. Specifically, we found: (i) Riemann and log-Euclidean matrix references systematically led to higher ID rates. (ii) In tangent-FCs, Main-diagonal regularization prior to tangent space projection was critical for ID rate when using Euclidean distance, whereas barely affected ID rates when using correlation distance. (iii) ID rates were dependent on condition and fMRI scan length. (iv) Parcellation granularity was key for ID rates in FCs, as well as in tangent-FCs with fixed regularization, whereas optimal regularization of tangent-FCs mostly removed this effect. (v) Correlation distance in tangent-FCs outperformed any other configuration of distance on FCs or on tangent-FCs across the fingerprint gradient (here sampled by assessing test-retest, Monozygotic and Dizygotic twins). (vi)ID rates tended to be higher in task scans compared to resting-state scans when accounting for fMRI scan length.Comment: 29 pages, 10 figures, 2 table

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Improvement of fingerprint retrieval by a statistical classifier

    Get PDF
    The topics of fingerprint classification, indexing, and retrieval have been studied extensively in the past decades. One problem faced by researchers is that in all publicly available fingerprint databases, only a few fingerprint samples from each individual are available for training and testing, making it inappropriate to use sophisticated statistical methods for recognition. Hence most of the previous works resorted to simple kk-nearest neighbor (kk-NN) classification. However, the kk-NN classifier has the drawbacks of being comparatively slow and less accurate. In this paper, we tackle this problem by first artificially expanding the set of training samples using our previously proposed spatial modeling technique. With the expanded training set, we are then able to employ a more sophisticated classifier such as the Bayes classifier for recognition. We apply the proposed method to the problem of one-to-NN fingerprint identification and retrieval. The accuracy and speed are evaluated using the benchmarking FVC 2000, FVC 2002, and NIST-4 databases, and satisfactory retrieval performance is achieved. © 2010 IEEE.published_or_final_versio

    Development of Lecture Attendance System for Staff Performance Rating in a Tertiary Institution using Fingerprint Technology

    Get PDF
    Managing time attendance of staff in organizations has proven to be a challenging endeavor. Manual methods have been proposed in capturing employees’ attendance but there are inadequacies in measuring the performance of employees. This paper aims at promoting staff efficiency at work by developing a secure attendance management system for use in tertiary institutions via two subsystems; Fingerprint biometrics as a method of identification and authentication and Question-Answering module for staff performance rating. The system uses staff fingerprints stored in the database upon registration for carrying out the process of attendance and validate staff lectures’ requirements. It is accentuated by creating a question-answering module that allows students to answer some questions on each available and registered staff, hence, giving a more concentrated content about staff’s activities within the school. The evaluation was carried out based on the matching efficiency and attendance accuracy of the proposed system. The proposed system performed excellently with 98.51% attendance accuracy based on the high successful staff identification recorded. Hence, staff performance rating was generated, thereby creating an avenue for determining promotion grounds

    A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification

    Get PDF
    This paper represents the first survey on the application of AI techniques for the analysis of biomedical images with forensic human identification purposes. Human identification is of great relevance in today’s society and, in particular, in medico-legal contexts. As consequence, all technological advances that are introduced in this field can contribute to the increasing necessity for accurate and robust tools that allow for establishing and verifying human identity. We first describe the importance and applicability of forensic anthropology in many identification scenarios. Later, we present the main trends related to the application of computer vision, machine learning and soft computing techniques to the estimation of the biological profile, the identification through comparative radiography and craniofacial superimposition, traumatism and pathology analysis, as well as facial reconstruction. The potentialities and limitations of the employed approaches are described, and we conclude with a discussion about methodological issues and future research.Spanish Ministry of Science, Innovation and UniversitiesEuropean Union (EU) PGC2018-101216-B-I00Regional Government of Andalusia under grant EXAISFI P18-FR-4262Instituto de Salud Carlos IIIEuropean Union (EU) DTS18/00136European Commission H2020-MSCA-IF-2016 through the Skeleton-ID Marie Curie Individual Fellowship 746592Spanish Ministry of Science, Innovation and Universities-CDTI, Neotec program 2019 EXP-00122609/SNEO-20191236European Union (EU)Xunta de Galicia ED431G 2019/01European Union (EU) RTI2018-095894-B-I0

    Impact of minutiae errors in latent fingerprint identification: assessment and prediction

    Full text link
    We study the impact of minutiae errors in the performance of latent fingerprint identification systems. We perform several experiments in which we remove ground-truth minutiae from latent fingerprints and evaluate the effects on matching score and rank-n identification using two different matchers and the popular NIST SD27 dataset. We observe how missing even one minutia from a fingerprint can have a significant negative impact on the identification performance. Our experimental results show that a fingerprint which has a top rank can be demoted to a bottom rank when two or more minutiae are missed. From our experimental results, we have noticed that some minutiae are more critical than others to correctly identify a latent fingerprint. Based on this finding, we have created a dataset to train several machine learning models trying to predict the impact of each minutia in the matching score of a fingerprint identification system. Finally, our best-trained model can successfully predict if a minutia will increase or decrease the matching score of a latent fingerprintThis research was partly supported by the National Council of Science and Technology of Mexico under the scholarship grants 717345 and 005438. Authors J.F. and A.M. are funded by project BIBECA (RTI2018-101248-B-I00 MINECO/FEDER) and TRESPASS-ETN (MSCA-ITN-2019-860813

    Facilitating sensor interoperability and incorporating quality in fingerprint matching systems

    Get PDF
    This thesis addresses the issues of sensor interoperability and quality in the context of fingerprints and makes a three-fold contribution. The first contribution is a method to facilitate fingerprint sensor interoperability that involves the comparison of fingerprint images originating from multiple sensors. The proposed technique models the relationship between images acquired by two different sensors using a Thin Plate Spline (TPS) function. Such a calibration model is observed to enhance the inter-sensor matching performance on the MSU dataset containing images from optical and capacitive sensors. Experiments indicate that the proposed calibration scheme improves the inter-sensor Genuine Accept Rate (GAR) by 35% to 40% at a False Accept Rate (FAR) of 0.01%. The second contribution is a technique to incorporate the local image quality information in the fingerprint matching process. Experiments on the FVC 2002 and 2004 databases suggest the potential of this scheme to improve the matching performance of a generic fingerprint recognition system. The final contribution of this thesis is a method for classifying fingerprint images into 3 categories: good, dry and smudged. Such a categorization would assist in invoking different image processing or matching schemes based on the nature of the input fingerprint image. A classification rate of 97.45% is obtained on a subset of the FVC 2004 DB1 database

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Architecture for Multi-Technology Real-Time Location Systems

    Get PDF
    [Abstract]The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.[Resumen]El aumento de la popularidad de servicios localización-basados ha llevado a una investigación considerable en el campo de los sistemas de localización en interiores. Ya no hay solo tecnología para soportar estos sistemas, es necesario considerar la fusión de la información proveniente de sensores heterogéneos. Este papel presenta una arquitectura de software diseñada para un sistema de localización de híbridos donde nosotros podemos combinar información de múltiples tecnologías de sensor. La arquitectura fue diseñada para ser utilizada por diferentes tipos de actores independientemente y con transparencia mutua: los administradores de hardware, los desarrolladores de algoritmo y aplicaciones de usuario. El documento presenta el diseño de arquitectura, flujo de trabajo, ejemplos de estudios de caso y algunos resultados para mostrar cómo las diferentes tecnologías pueden explotarse para obtener una buena estimación de la posición de destinoMinisterio de Industria, Turismo y Comercio; IPT-020000-2010-35Ministerio de Educación y Ciencia; TEC2010-19545-C04-01Ministerio de Educación y Ciencia; CSD2008-0001
    corecore