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Tangent functional connectomes
uncover more unique phenotypic traits

Kausar Abbas,1,2,12 Mintao Liu,1,2,12 Michael Wang,1,2 Duy Duong-Tran,3,4 Uttara Tipnis,5 Enrico Amico,6,7

Alan D. Kaplan,5 Mario Dzemidzic,8 David Kareken,8 Beau M. Ances,9 Jaroslaw Harezlak,10

and Joaquı́n Goñi1,2,11,13,*

SUMMARY

Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of
brain regions are commonly represented by correlationmatrices. As symmetric positive definitematrices,
FCs can be transformed via tangent space projections, resulting into tangent-FCs. Tangent-FCs have led
to more accurate models predicting brain conditions or aging. Motivated by the fact that tangent-FCs
seem to be better biomarkers than FCs, we hypothesized that tangent-FCs have also a higher fingerprint.
We explored the effects of six factors: fMRI condition, scan length, parcellation granularity, reference ma-
trix, main-diagonal regularization, and distance metric. Our results showed that identification rates are
systematically higher when using tangent-FCs across the ‘‘fingerprint gradient’’ (here including test-re-
test, monozygotic and dizygotic twins). Highest identification rates were achieved when minimally
(0.01) regularizing FCswhile performing tangent space projection using Riemann referencematrix and us-
ing correlation distance to compare the resulting tangent-FCs. Such configuration was validated in a sec-
ond dataset (resting-state).

INTRODUCTION

Using fMRI data, functional connectivity between two brain regions is usually estimated as the Pearson’s correlation coefficient between their

blood-oxygen-level-dependent (BOLD) time series. Subsequently, whole-brain functional connectivity patterns can be summarized in the

form of a symmetric correlation matrix referred to as the functional connectome (FC).1,2 One of the most crucial steps in brain connectomics

is the comparison of FCs across participants,3–9 fMRI conditions,10,11 mental states, or disease progression.12–14 Canonically, such compari-

sons first vectorize the FC matrices and then compute Pearson’s correlation-based dissimilarity (or similarity),6,8 or less frequently, Euclidean

distance15 between the vectorized FCs. From an algebraic standpoint, this implicitly assumes that FCs are Euclidean objects that lie in a linear

high-dimensional space, where each element of the FC represents a dimension. However, in fact, FCs lie on or inside a high-dimensional non-

linear curved manifold (or surface), called the symmetric positive definite (SPD) manifold (Figure 1).5,8

Until recently, this important fact that FCs lie on or inside a non-linear manifold has been scarcely considered by the neuroscientific com-

munity.5,8,16–22 As a result, most analyses and frameworks did not take a full advantage of functional connectivity data to uncover their finger-

printing and/or biomarker capacity. Thismay have also limited the capacity of FC to predict cognitive outcomes or serve as reliable and robust

clinical biomarkers of brain disorders. The use of Riemannian geometry may mitigate such limitations and enable comparing FCs with basic

algebraic operations on the manifold when the underlying non-linear geometry of the correlation-based FCs is incorporated. In comparison

to ‘‘regular’’ FCs,16,23 tangent-FCs have been proven to providemore accurate predictions of disease19,21,24,25 and aging.26 Also, Riemannian

geometry-based approaches applied to functional connectivity have been recently used for harmonization of multi-site data,27 as well as for

brain connectivity interface.28–30 These findings pose a question about why tangent-FCs seem to be better biomarkers. We hypothesize that
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unsupervised transformations of FC data previously shown to improve associations related to cognition, behavior, and other biomarkers will

have better fingerprinting. Our study fills that gap among tangent-FCs, biomarkers, and the role of fingerprinting.

To some extent, FCs possess a recurrent and reproducible individual fingerprint31–33 that can identify an individual from a population of

FCs.5–7,34 This process is referred to as ‘‘fingerprinting’’ or subject identification. Using Pearson correlation coefficient as a similarity measure,

individual fingerprints have been shown to exist in many different fMRI conditions (including resting state). Interestingly, aside from the

resting-state fMRI data, identification rates were moderate to low in all other conditions.6 Recently, Venkatesh et al.8 argued that this is

due to not accounting for the underlying geometry of FCs when they are compared. These authors proposed that the distance between

FCs is better measured along the geodesic distance of the SPDmanifold. They showed that by using geodesic distance instead of Pearson’s

correlation-based dissimilarity metrics, identification rates6 increased robustly across a range of fMRI conditions. We recently extended this

approach by showing the existence of an optimal amount of main-diagonal regularization of FCs to maximize fingerprinting.5 When such

optimal regularization is applied to the FCs, it yields even higher identification rates for all available fMRI conditions in the Young-Adult

Human Connectome Project (HCP) Dataset.35

One limitation of the geodesic and optimally regularized geodesic distance is that they only provide a single numeric distance es-

timate between FCs, hence precluding element-wise (or edge-wise) analyses of FCs (i.e., focusing on a particular brain region or a spe-

cific functional coupling between two brain regions). Moreover, since FCs lie on or inside the SPD manifold, their individual elements

(i.e., functional edges) are bound by the SPD criterion; that is, their entries are inter-related measurements.20 As mentioned earlier, most

functional connectivity frameworks do not incorporate this property and, instead, implicitly treat functional edges as independent or

unrelated features. Many classifier algorithms are unstable in the face of inter-related features; i.e., small perturbations of the training

data can alter the relative weighting of the features.36 This may limit the generalizability of the classifiers and affect performance of

machine learning algorithms. Furthermore, it makes the identification of significantly discriminative brain connections (from the classifier

weights) non-trivial.37

This limitation can be addressed by using a Riemannian geometry tool. Briefly, this tool transforms a correlation matrix (which does not

conform to Euclidean distances) and creates a new matrix (the tangent space projection of the original FC matrix) whose entries can be

analyzed with Euclidean methods. That is, the projection of FCs from the SPD manifold onto a tangent space (Figure 1) is used, which is

Euclidean and permits the applications of Euclidean geometry methods.38,39 It is noteworthy that a tangent space projection of a correlation

matrix representing an FC, produces as outcome a tangent-FC. These tangent-projected values form a tangent-FCmatrix of the same size as

the input FC but with dimensionless connectivity units (see Figure 1 right for examples on tangent-FCs) that constitute the new dependent

variables to be analyzed. In a tangent-FC, elements (i.e., functional edges) are no longer bounded by the SPD criterion and edges can be

treated individually as they become unrelated features.20

To date, no study has assessed the impact of FC fingerprinting when tangent space projections leading to unbounded edges are used. In

this study, we explore the effects of tangent space projections of FCs from a fingerprinting standpoint. To do so, we assess how identification

rates are affected by tangent space projections of FCs for (i) fMRI conditions, (ii) parcellation granularities, (iii) magnitudes of main-diagonal

regularizations, (iv) reference matrices used to project FCs, (v) distance used in a tangent space projection, and (vi) fMRI scan length. Furthe-

more, we build on the concept of fingerprinting gradient by including monozygotic (MZ) and dizygotic (DZ) twins under the conditions listed

earlier. Finally, we tested the optimal settings found on an additional validation set (resting state).

Figure 1. Illustration of a Tangent Space Projection of FCs

A sample of FCs is used to compute a reference matrix, Cref , which is used as the point of the SPD manifold upon which the tangent space is created. Using Cref

and the analytical formula for the tangent space projection, all FCs (being correlation matrices) can then be projected to a tangent space.
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RESULTS

In this work, we explored the effects of tangent space projection of FCs on the individual and twin fingerprinting. Identification (ID) rate6 was

used to quantify individual and twin fingerprints. For individual fingerprint, computation of ID rate required identifying an individual’s FC from

a population of FCs, given another FC of that individual. ID rate was simply the fraction of accurately identified individuals. When extending

this concept to twin fingerprint, the process is analogous. That is, we try to identify a twin’s FC from a population of FCs, given an FC of the

corresponding twin. See STAR methods quantification of fingerprinting for details.

In particular, we investigated how ID rates are affected by the following factors: (i) choice of the reference matrix Cref , (ii) main-diagonal

regularization (i.e., weighted main-diagonal regularization5), (iii) different fMRI conditions (resting state and seven fMRI tasks), (iv) parcellation

granularities from 100 to 900 brain regions (plus subcortical), (v) distance metrics (specifically, we used correlation and Euclidean distances to

compare FCs as well as tangent-FCs), and (vi) fMRI Scan length on resting state and when comparing task-based and resting-state

fingerprinting.

As an exploratory analysis, we first evaluated a simple scenario of a tangent space projection and its effect on ID rates of different fMRI

conditions (Figure 2). Here we fixed the parcellation granularity to Schaefer 100 regions since this is the only granularity for which FCs for

all fMRI conditions are full rank and thus do not require any regularization before projection (see STAR methods types of main-diagonal reg-

ularization for details). For FCs, correlation distance (or correlation directly used as a similarity measurement) was the canonical metric.6,7 As

for tangent-FCs, we used the Euclidean distance between themon the tangent space that approximated the geodesic distance on SPDmani-

fold,40 as a geometry-aware, more principled way of comparing FCs.5,8 Thus, initially, we compared the ID rates of FCs using correlation dis-

tance (IDcorrðorigÞ), with those of the tangent-FCs using Euclidean distance (IDEudðtanÞ) (Figure 2). For comparison purposes, we also added the

ID rates for FCs using Euclidean distance (IDEudðorigÞ). This exploratory analysis showed that tangent-FCs provided higher identification rates

than both Euclidean and correlation distance FCs for all MRI conditions, with an increase in ID rates of 0.25–0.35. While this promising result

cannot be extrapolated to other parcellations, it motivated further exploration of the effects of tangent space projections.

As the next step, we investigated higher parcellation granularities, where FCs for most of the conditions are rank deficient (non-invertible)

and hence cannot be projected as is. A fixed regularization magnitude of t = 1 was previously used to achieve full-rank invertible matrices.8

Results with t = 1 regularization (which ensures full-rank FCs for any granularity and any scan length) are shown in Figure 3. When using cor-

relation distance and Euclidean distance on FCs, by increasing parcellation granularity (here evaluated up to Schaefer 900) we achieved higher

ID rates for all fMRI conditions (Figure 3; Left panel). It is also worth noting that there are important differences in ID rates for the different

conditions possibly due to the nature of the task and/or fMRI scan length (see analyses in the following to dissect the effect of the latter).

Overall, ID rates obtained with correlation distance were higher or equal than those obtained for Euclidean distance across conditions

and parcellations. Based on these results, from here onwards, we hence focused on the ID rates corresponding to the correlation distance

for FCs, i.e., IDcorrðorigÞ.

Figure 2. Preliminary analysis on the effect of tangent space projection on the ID rates using 426 unrelated participants

Results are shown for all eight fMRI conditions (using entire scan length for each condition and session), Schaefer 100 parcellation granularity, and Riemann

reference for Cref . From left to right, the conditions are presented in descending order of scan length, as inscribed below the condition labels (in number of

time points). Since FCs for all conditions are full rank at 100 parcellation granularity, FCs were not regularized before projection onto the tangent space, i.e.,

t = 0. Legend indicates different scenarios: Light-gray circles represent ID rates using correlation distance ðIDcorrðorigÞ), while hollow triangles represent

Euclidean distance ID rates (IDEudðorigÞ). Black squares represent ID rates when Euclidean distance is used to compare tangent-FCs ðIDEudðtanÞ). (Of note, the

error bars reflecting the standard error of the mean across cross-validation resamples are small enough to be hidden by the symbols).
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When assessing tangent-FCs with a fixed regularization of t = 1, the IDEudðtanÞ curves are concave with respect to parcellation granularity,

unlike IDcorrðorigÞ and IDEudðorigÞ that monotonically increase (Figure 3; right panel). While IDEudðtanÞ > IDcorrðorigÞ for 100–300 parcellation gran-

ularity for all fMRI conditions, they decrease exponentially with increasing granularity, ultimately yielding low (below 30%) identification rates

for all but resting-state fMRI conditions at the 900 parcellation granularity (Figure 3; right panel). The results across fMRI conditions and par-

cellation granularities on tangent-FCs are qualitatively similar for all six Cref matrices.

Using a fixed regularization (t = 1) led to low ID rates at higher granularities in the tangent space. Hence, as explained in STAR methods

quantification of fingerprinting, an optimal magnitude of regularization (t�) that maximizes ID rate5 was found for each fMRI condition and

parcellation granularity. This procedure was originally proposed for original FCs when using geodesic distance.5 Instead, here we estimated

an optimal t� using Euclidean distance on tangent-FCs, t�EudðtanÞ. This process was repeated for all fMRI conditions and parcellation granu-

larities, allowing for different optimal t� across configurations. As already noted, regularization has no effect on the resulting ID rates for

FCs when using correlation distance (see STAR methods types of main-diagonal regularization for details). Results for tangent-FCs using

Euclidean distance showed that ID rates systematically increased for all conditions and parcellation granularities when using optimal regu-

larization (Figure 4; right panel). Importantly, IDEudðtanÞ > IDcorrðorigÞ if optimal regularization t�EudðtanÞ was applied, for all conditions and parcel-

lation granularities. ID rates increased with increasing parcellation granularity, regardless of the reference matrix (Cref ). For resting state,

IDEudðtanÞ rates reached 100% accuracy for granularities of 400 and above. For all other conditions, IDEudðtanÞ rates went above 80% at the par-

cellation granularity of 900, regardless of the reference matrix. This is in stark contrast to IDcorrðorigÞ. For instance, the highest IDcorrðorigÞ rate
achieved for ‘‘emotion’’ condition was below 50%. Although the results are relatively consistent across differentCref matrices for tangent-FCs,

the identity reference provided lower ID rates for lower granularities (100–200).

Since correlation distance performed better than Euclidean distance in original FCs, we explored the ID rate performance when using cor-

relation distance with tangent-FCs, i.e., IDcorrðtanÞ. Just as we estimated t�EudðtanÞ for each condition and granularity, analogously we estimated

t�corrðtanÞ, i.e., the optimal regularization magnitude when correlation distance is used to compare tangent-FCs. Figure 5 shows the results for

IDcorrðtanÞ when FCs are regularized by t�corrðtanÞ just prior to performing the tangent projection based on a reference matrix (Cref ). When

compared to IDEudðtanÞ, IDcorrðtanÞ rates were systematically higher for all conditions and granularities when the Riemann reference was

used (see Figure 5). Remarkably, IDcorrðtanÞ reached 100% for granularities above 300 for all conditions. IDcorrðtanÞ rates for Riemann reference

are closely followed by the IDcorrðtanÞ rates with log-Euclidean and harmonic references, whereas identity and Kullback references perform

comparably to IDEudðtanÞ (Figures 4 and 5).

Together with assessing which distance, granularity, and condition maximize ID rate, it is important to quantify the corresponding optimal

levels of regularization required to reach such performance. Figure 6A summarizes the optimal regularization values that maximized ID rates

Figure 3. Effect of tangent space projection on ID rates using 426 unrelated participants when FCs are regularized (t = 1 for all cases) and Euclidean

distance is used to compare tangent-FCs

Results are shown for all eight fMRI conditions (utilizing maximum available TRs for each condition) and increasing granularity of Schaefer parcellations (100–900).

Left panel shows ID rates for FCs using correlation and Euclidean distance metrics to compare FCs (IDcorrðorigÞ and IDEudðorigÞ, respectively). Right panel shows ID
rates for tangent-FCs when applying different reference matrices (Cref ). For tangent-FCs, Euclidean distance is used to compare FCs (IDEudðtanÞÞ. (Of note, the

error bars reflecting the standard error of the mean across cross-validation resamples are small enough to be hidden by the symbols).
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for Euclidean distance (t�EudðtanÞ) and for correlation distance (t�corrðtanÞ) as corresponding to the Riemann reference. It can be noted that t�EudðtanÞ
is highly dependent on the condition and granularity, and for each condition, t�EudðtanÞ magnitudes increase with greater granularity. In

contrast, t�corrðtanÞ magnitudes are almost universally equal to the smallest non-zero regularization used, i.e., 0.01, except for resting state

at granularity of 200 and 400–900, for which it is 0. A two-way ANOVAwas performed to compare the effect of task and parcellation granularity

on optimal regularization for both Euclidean and correlation distance. Results showed a significant (p < 0.01) task effect and parcelation gran-

ularity effect on the optimal regularization associated to Euclidean distances and no significant associations for correlation distance. Note that

we did not include resting state for this analysis because the optimal results obtained (t�corrðtanÞ = 0) are not possible for any other tasks for all

parcellation granularities (see STAR methods types of main-diagonal regularization).

Based on optimal regularization values t�EudðtanÞ and t�corrðtanÞ, the corresponding ID rates are shown in Figure 6B (top left and bottom right,

for Euclidean distance and correlation distance respectively). To explore how IDcorrðtanÞ and IDEudðtanÞ are sensitive to suboptimal regulariza-

tion, we obtained both ID rates when using the optimal regularization of each other. Specifically, we obtained ID rates of tangent-FCs regu-

larized by t�corrðtanÞ when using Euclidean distance (Figure 6B top right), as well as FCs regularized by t�EudðtanÞ when using correlation distance

(Figure 6B bottom left). It is noteworthy that IDEudðtanÞ are severely affected by t�corrðtanÞ, with most rates dropping below 10%. On the other

hand, IDcorrðtanÞ remained nearly invariant to t�EudðtanÞ, reaching an almost perfect 100% identification rate for most of the configurations. To

show these contrasting behaviors with respect to regularization, the ID rate differences (ID rate gain) between optimal and suboptimal reg-

ularization are shown in Figure 6C.

Based on the results shown in Figures 2, 3, 4, 5, and 6, we can summarize a few key findings: (1) tangent-FCs have higher ID rates than FCs;

(2) Riemann reference is the best choice for a reference matrix yielding the highest ID rates; (3) for both FCs and tangent-FCs, correlation

distance provides higher ID rates than Euclidean; (4) tangent-FCs require a minimal and almost universal (across conditions and granularities)

regularization to achieve maximal ID rates; and (5) when using Euclidean distance, ID rates are very sensitive to regularization, but when using

correlation distance ID rates are barely affected.

Figure 4. Optimal Regularization (t�EudðtanÞ) and Euclidean Distance—Effect of tangent space projection on ID rateswhen FCs are regularized by optimal

magnitude (t�EudðtanÞ) and Euclidean distance is used to compare tangent-FCs

Results are shown for all eight fMRI conditions (using entire fMRI scan length) and increasing granularity of Schaefer parcellations (100–900). For each fMRI

condition and parcellation granularity, an optimal regularization magnitude was determined by the procedure in Table Optimal Regularization, and then the

corresponding FCs were regularized by that magnitude. Left panel shows ID rates for FCs when correlation distance is used to compare FCs (IDcorrðorigÞ).
Right panel shows the ID rates for tangent-FCs which are obtained by tangent space projection of FCs using six different reference matrices (Cref ). For

tangent-FCs, only Euclidean distance is used to compare FCs for this figure. (Of note, the error bars reflecting the standard error of the mean across cross-

validation resamples are small enough to be hidden by the symbols).
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In order to take a step further beyond test-retest in fingerprinting analysis of functional connectivity and in assessing the impact of the

Riemannian operations shown earlier, we extended our analyses to MZ and DZ twin fingerprinting (see STAR methods tangent space projec-

tion of FCs). This builds and expands on a former study looking at tangent-FCs inter-subject variability on twins and siblings.22 Here we hy-

pothesized an increasing fingerprint in the FCs and tangent-FCs as follows: IDtest� retest > IDMZ > IDDZ . This ‘‘fingerprint gradient’’ reflects the

genetic and shared environment gradients. Based on the fingerprinting results obtained for test-retest, we focused on the Riemann reference

matrix while exploring all conditions and granularities.

Figure 7 shows results for IDTR ;IDMZ , and IDDZ when using correlation distance on FCs (Figure 7, top row), Euclidean distance on tangent-

FCs (Figure 7, middle row), and correlation distance on tangent-FCs (Figure 7, bottom row).We capped each cohort to 63 pairs, matching the

smallest cohort size (DZ). The fingerprint gradient is present in both FCs and tangent-FCs. Across all fMRI conditions, parcellation granular-

ities, and the three cohorts, ID rates were systematically higher for tangent-FCs than for FCs. Furthermore, for tangent-FCs, IDcorrðtanÞ [
IDEudðtanÞ across all scenarios, except for DZ twins at Schaefer 100 granularity where relational and emotion conditions had comparable ID

rates. Results along parcellation granularity showedhigh variability in IDcorrðtanÞ for DZ, with parcellations 400 to 600 showing large fluctuations.

We also assessed the effects of fMRI scan length (number of TRs [repetition times]) on ID rates for the resting statewith andwithout tangent

space projections, and an intermediate granularity (Schaefer-400; Figure 8). Note that other granularities produce similar results (not shown).

Overall, ID rates increase with increasing number of TRs for all three cohorts, and for FCs and tangent-FCs. This is consistent with previous

findings of higher ID rates associated with longer fMRI scan lengths.5–8 Also, analogously to the results observed in Figures 4 and 5, we noted

that IDcorrðtanÞ > IDcorrðorigÞ and IDcorrðtanÞ > IDEudðtanÞ. In addition, IDcorrðtanÞ reached maximal values using far fewer TRs than IDcorrðorigÞ
or IDEudðtanÞ.

Results in Figure 8 highlight the important effect of fMRI scan length in ID rates on resting-state functional connectivity. Figure 9 compares

task and resting-state ID rates when accounting for different scan lengths across fMRI conditions. For all given scenarios, whenmatching fMRI

Figure 5. Optimal Regularization (t�corrðtanÞ) and correlation Distance—Effect of tangent space projection on ID rates when FCs are regularized by

optimal magnitude (t�corrðtanÞ) and correlation distance is used to compare tangent-FCs

Results are shown for all eight fMRI conditions (utilizing maximum available TRs for each condition) and increasing granularity of Schaefer parcellations (100–900).

For each fMRI condition and parcellation granularity, an optimal regularization magnitude was determined by the procedure detailed in Table optimal

regularization, and then the corresponding FCs were regularized by that magnitude. Left panel shows ID rates for FCs when correlation distance is used to

compare FCs, i.e., IDcorrðorigÞ. Right panel shows the ID rates for tangent-FCs which are obtained by tangent space projection of FCs using different reference

matrices (Cref ). For tangent-FCs, only correlation distance is used to compare FCs for this figure, i.e., IDcorrðtanÞ. (Of note, the error bars reflecting the

standard error of the mean across cross-validation resamples are small enough to be hidden by the symbols).
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scan length of rest to each task, task conditions had higher ID rates than resting state (except when perfect ID rate is reached by both). This is

consistent with previous findings where geodesic distance was used to compare FCs.8 In addition, this trend is observable not only in test-

retest of unrelated participants but also across the entire fingerprint gradient which includes MZ and DZ participants (Figure 9, middle and

right).

All results are thus far derived from the HCP young-adult dataset. To validate the identifiability of tangent-FCs using correlation distance,

we compared IDcorrðtanÞ and IDcorrðorigÞ for a separate dataset (181 healthy participants) collected at a different site (see dataset details in STAR

methods validation dataset). Figure 10 shows that in this cohort, IDcorrðtanÞ achieves 100% across all parcellation granularities (Schaefer 100–

1000) while IDcorrðorigÞ rises gradually from below 60% to above 90%. Notice that HCP young-adult dataset and validation dataset are not only

acquired with different fMRI sequences but also treated with different preprocessing pipelines. Despite these differences, tangent-FCs under

a configuration learned on the HCP young-adult outperform original FCs in terms of identifiability when correlation distance is used and,

again, provide results invariant to parcellation granularity.

DISCUSSION

Our starting point was that FCs, as correlation matrices, are part of the SPDmanifold and hence distances between FCs are better measured

along the geodesics on the manifold. Using geodesic distance has been proven to lead to higher identification rates.5,8 While geodesic dis-

tance provides a more principled distance criterion for FC comparisons, it does not truly transform the FCs for further analysis. In other words,

any further analysis on functional edges of FCs will remain bounded by the SPD criterion. This is why tangent space projections are relevant.

First, the geodesic distance between original FCs on the manifold can be approximated by the Euclidean distance between tangent-FCs.

Second, elements in tangent-FCs are not inter-related anymore and can be analyzed as independent features. Lastly, tangent-FCs have

been proven to be better predictors of diseases and aging compared to the original FCs.19,21,24–26 With the aforementioned advantages,

Figure 6. Effect of optimal regularization on ID rates

Only results corresponding to the Riemann reference are presented.

(A) Optimal regularization magnitudes for all the fMRI conditions and parcellation granularities when Euclidean (t�EudðtanÞ; left) and correlation (t�corrðtanÞ; right)
distance is used to compare tangent-FCs (left).

(B) ID rates corresponding to the optimal regularization magnitudes shown in (A). The subscript in each title indicates the distance metric used to compare the

FCs: Eud(tan) for Euclidean and corr(tan) for correlation distance on tangent-FCs. The superscript indicates the type of optimal regularization that was used to

regularize FCs.

(C) ID rate gains when optimizing regularization for each distance: element-wise difference in the ID rates shown in (B) within Euclidean and correlation distance.

The title at the top of each matrix shows this difference in an equation form.
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no study has assessed the impact of tangent-FCs in fingerprinting. To fill such gap, we hypothesized that tangent-FCs have better finger-

printing than original FCs and this hypothesis is proved in this manuscript.

Specifically, we explored how the tangent space projection of FCs using Riemannian geometry affects individual and twin fingerprint in

FCs. In particular, we exhaustively explored how ID rates are affected by six factors. We found the following results. (i) Riemann as well as

log-Euclidean were the matrix references that systematically lead to higher ID rates for all configurations assessed. (ii) In tangent-FCs,

main-diagonal regularization prior to tangent space projection was critical for ID rate when using Euclidean distance, whereas regularization

barely affected ID rates when using correlation distance. (iii) When evaluating different fMRI conditions, it was found that ID rates were depen-

dent on condition and fMRI scan length. (iv) Parcellation granularities were key for ID rates in FCs, as well as in tangent-FCs with fixed reg-

ularization. Optimal regularization of tangent-FCs when using either Euclidean distance or correlation distance mostly removed such effects.

(v) Correlation distance in tangent-FCs outperformed any other distance metrics on FCs or on tangent-FCs across the entire fingerprint

gradient. (vi) ID rates tended to be higher in tasks relative to resting state when accounting for fMRI scan length.

Figure 7. Effect of tangent space projection and distance metric (correlation, Euclidean) on the Fingerprint Gradient

Results are shown for all eight fMRI conditions (using maximum available TRs for each condition) and increasing granularity of Schaefer parcellations (100–900).

Top row shows ID rates for FCs when correlation distance is used to compare FCs, i.e., IDcorrðorigÞ. The ID rates for tangent-FCs using the Riemann reference are

shownwhen using Euclidean distance (middle row) and correlation distance (bottom row). The corresponding optimal regularization values ensure thatmaximum

available ID rates are presented for each given scenario. Sample sizes across the three cohorts (Test/Retest, MZ, and DZ twins; sample size = 63 pairs) were

matched before computation of ID rates to enable meaningful comparisons. (Of note, the error bars reflecting the standard error of the mean across cross-

validation resamples are small enough to be hidden by the symbols).
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In the next subsections we further discuss these results, together with limitations and further work.

Effect of reference matrix (Cref ) in fingerprinting on tangent-FCs

A potentially important factor to consider when performing tangent space projections of FCs is the choice of Cref .
23 Our results indicate that

different choices (see table reference matrix for different Cref evaluated) led to very similar ID rates when using Euclidean Distance with fixed

regularization (Figure 3). Analogously, when using Euclidean distance with optimal regularization, very similar ID rates were achieved across

different Cref (see Figure 4). However, when using correlation distance, we showed that Riemann reference led to the highest IDcorrðtanÞ rates,
followed closely by log-Euclidean, and harmonic (Figure 5). Overall, Riemann, as well as log-Euclidean, references seem to be robust choices

regardless of fMRI condition, parcellation granularity, distance used, and regularization.

Effect of weighted main-diagonal regularization in fingerprinting on tangent-FCs

In tangent-FCs, main-diagonal regularization was critical for ID rate when using Euclidean distance, whereas ID rates were barely affected

when using correlation distance (see Figure 6). In other words, ID rates based on correlation distance seemed to be invariant to regularization,

whereas ID rates based on Euclidean distance were highly sensitive to it. Hence, when using correlation distance, minimal regularization (such

as 0.01) appears robust and ensures the invertibility of FCs while minimally changing the original matrix. Our results indicate that this is the

case for any fMRI condition and parcellation granularity. Note that such a finding also avoids the computational time required to find an

optimal regularization for each condition and/or granularity on each dataset.

Effect of different distance metrics in fingerprinting

Euclidean and correlation distance were used to compare FCs as well as tangent-FCs. For FCs, correlation distance contributes to a small

improvement in ID rates compared to Euclidean distance. However, for tangent-FCs, using correlation distance systematically improved

ID rates across fMRI conditions, parcellation granularities, and the fingerprint gradient. In addition, tangent-FCs comparisons using correla-

tion distance required a small fraction (around 150 resting-state volumes for unrelated test-retest participants, 250 volumes for MZ, and 600

volumes for DZ) of the fMRI scan length to achieve maximal reliability across the fingerprint. Such result was not achieved when using

Euclidean distance.

Figure 8. Effect of resting-state fMRI scan length (number of TRs) on the Fingerprint Gradient, and interaction with tangent space projections and the

distance metrics (correlation, Euclidean)

Results are shown for parcellation granularity of 400, and Riemann reference for projecting FCs into a tangent space. Left panel shows the ID rates for FCs and

tangent-FCs for unrelated participants when the fMRI scan length increases (x axis shows the number of TRs used to construct FCs). Middle and right panels show

results for the MZ and the DZ twins, respectively. The corresponding optimal regularization values are used to ensure that maximum available ID rates are

presented for each given scenario. (Of note, the error bars reflecting the standard error of the mean across cross-validation resamples are small enough to

be hidden by the symbols).

ll
OPEN ACCESS

iScience 26, 107624, September 15, 2023 9

iScience
Article



Euclidean distance in tangent-FCs is supportedmathematically as it approximates the underlying geodesic distance in the SPDmanifold.38

However, there is a lack of literature on using correlation distance in tangent space projections of correlation or covariance matrices. The im-

provements in fingerprinting observed here with correlation distance as compared to Euclidean distance in tangent-FCs could be related to

the ‘‘curse of dimensionality’’ phenomenon.41 Future work posed on this finding would better characterize the origin of these differences.

Effect of parcellation granularities in fingerprinting

More fine-grained parcellations resulted in higher ID rates for FCs as well as for tangent-FCs when using Euclidean distance and optimal reg-

ularization.When assessing tangent-FCswith optimal regularization and correlation distance, the contribution of parcellation granularity to ID

rates was very small since perfect ID rates were achieved as low as 200–300 parcels inmost cases. This trend was less apparent for twins, where

more fine-grained parcellations did not contribute greatly to ID rates and indeed some fluctuations are observed.

Higher granularity for parcellation in a prediction algorithm increases prediction accuracy, but at the cost of poorer featureweight reliability.37

Based on the observation above, we argue that by using the right distance metric (i.e., correlation distance) and a suitable tangent space (Rie-

mann reference with minimal regularization), the best of both worlds (high prediction accuracy, high feature weight reliability) is possible.

Figure 9. Effect of the fMRI scan length on the Fingerprint Gradient for resting state vs. task conditions

Blue curve shows the ID rates for resting-state data with the fMRI scan length trimmed to shorter and longer than the task conditions (50–1190 TRs in steps of 50).

Results are shown only for the parcellation granularity of 400, and when Riemann reference is used to project FCs into the tangent space. Left, middle, and the

right columns show results for the unrelated test-retest participants, MZ twins, and the DZ twins, respectively. Top row shows results for the FCs when correlation

distance is used (IDcorrðorigÞ), and bottom rows show the results for tangent-FCs when Euclidean (IDEudðtanÞ; second row) and correlation (IDcorrðtanÞ; third row) are

used. Sample size (number of FCs) was matched across the three groups according to the smallest sample size (63 pairs). For tangent-FCs, when Euclidean

distance was used, FCs were regularized by optimal magnitude t�EudðtanÞ , whereas when correlation distance was used, FCs were regularized by t�corrðtanÞ. This
ensured maximum available ID rates for each given scenario. (Of note, the error bars reflecting the standard error of the mean across cross-validation

resamples are small enough to be hidden by the symbols).
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Tangent-FCs are more reliable phenotypes than FCs

FCs are correlation matrices that lie on or inside the SPD manifold. Since the geometry in the SPD manifold is non-Euclidean,38 using either

Euclidean distance or correlation distance to compare FCs is suboptimal.5,8 Importantly, entries in tangent-FCs are not inter-related19,42 and

hence can be vectorized and compared using Euclidean distance and correlation distance. So, we hypothesized that tangent-FCs would lead

to an enhanced reliability as compared to FCs.

Overall, we showed that tangent-FCs have higher ID rates than FCs (Figures 2, 3, 4, 5, and 6). When no regularization is required to project

FCs onto the tangent space, ID rates are much higher than those obtained for FCs (Figure 2). When regularization is necessary, an optimal

amount of regularization combined with tangent projection led to considerably higher ID rates than FCs (Figures 4, 5, and 6).

The only situation where tangent space projections led to lower ID rates was when a fixed amount of regularization and Euclidean distance

was used (Figure 3). For instance, this is the case when using fixed regularization of t = 1 and Euclidean distance with tangent-FCs, which has

been the canonical choice so far.5,40,43 Our results indicate that this choice may lead to systematically lower ID rates. This considerable reduc-

tion in reliability in tangent-FCs would in turn affect the performance of any classification, prediction, or inference algorithm that uses tangent-

FCs as inputs. This is especially true for higher parcellation granularities (Figure 3).

As reliable connectivity objects that show high fingerprinting, tangent-FCs have great potential applications to fingerprinting and assess-

ment of disease progression. For fingerprinting, here we simply computed pairwise distances betweenmatrices (based on Euclidean distance

and correlation distance) and measured identification rates relying on a relatively simple nearest neighbor approach. In scenarios where the

only purpose is to maximize fingerprinting, supervised mapping methods like support vector machines or linear discriminant analysis might

outperform the fingerprinting results presented in this work when using tangent-FCs (specially for DZ twins or for short scanning length). How-

ever, this does not undermine the significance of tangent-FCs carrying a much higher fingerprint than FCs, regardless of the classifier nature.

When studying disease progression, the entries of tangent-FCs are not inter-related and can be examined individually.17,19 In fact, tangent-

FCs have been successfully applied to cognition and in predictions of disease progression.19,21,24,25 Our results of tangent-FCs being more

reliable phenotypes than regular FCs lay the groundwork for those applications, illustrate why tangent-FCs seem to be better predictors than

FCs, and motivate future work of tangent-FC applications to developing disease biomarkers. This should include assessing functional con-

nectivity in other species and possibly in other than fMRI modalities.

Optimal recipe for fingerprinting using tangent-FCs

Despite the expected heterogeneity in ID rates across different datasets, some of our results seem generalizable. We aimed to find a set of

optimal parameters that would uncover fingerprints by finding the best projection of the FCs onto the tangent space where inter-individual

Figure 10. Validation dataset. Effect of parcellation granularity and tangent space projection on ID rates on a cohort of 181 healthy controls

Results are shown for resting-state condition and increasing granularity of Schaefer parcellations (100–1000). ID rates for FCs and tangent-FCs are shown when

correlation distance is used to compare FCs, i.e., IDcorrðorigÞ and IDcorrðtanÞ. For each parcellation granularity, a fixed regularization magnitude 0.01 and Riemann

reference are used in tangent space projection of FCs. This configuration is based on the results obtained for the HCP young-adult. (Of note, the error bars

reflecting the standard error of the mean across cross-validation resamples are small enough to be hidden by the symbols).
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differentiability is maximized. Based on our data, we recommend regularizing FCs by a small non-zero magnitude (say 0.01), doing tangent

space projection of FCs using Riemann reference matrix and then comparing tangent-FCs with correlation distance.Note that we tested this

recipe in a separate validation dataset where both fMRI acquisition sequence and preprocessing pipeline were different from the HCP young-

adult dataset. The ID rates achieved 100% across all parcellation granularities. Following the optimal recipe, these tangent-FCs, as a pheno-

type, are potentially highly reliable, which makes them useful translationally in the monitoring and/or subsequent treatment of cognitive and

behavioral disorders.

Correlation distance in tangent-FCs was practically invariant to regularization, although it does not follow that future predictors or bio-

markers would also be invariant to regularization. The relationship between predictable and reliable FCs has been recently debated3,44

and presented as a possible dichotomy.44 Our results do not support such a dichotomy. Instead, the results indicate that tangent space

projections, previously reported as better predictors of disease, cognition, and behavior than regular FCs,19,21–23 yield FCs with higher finger-

printing not only in the test-retest samples but also along the fingerprint gradient. It does so for all parcellation granularities and fMRI con-

ditions evaluated.

As we outlined, tangent-FCs result in higher fingerprint and are better predictors because their functional edges are not bounded by the

SPD criterion and are therefore a set of independent measurements. Many classifier algorithms benefit from avoiding inter-related features,

and our results show that identification rates benefit as well. Inter-related features limit not only the performance but, more importantly,

generalizability of machine learning algorithms, resulting in a lack of reliable and robust clinical biomarkers for brain disorders using brain

connectomic data. This limitation can be addressed by projecting FCs from the SPD manifold onto an ‘‘ideal’’ tangent space (tangent-

FCs), which is Euclidean and hence allows the use of Euclidean algebra and calculus.

Effect of fMRI scan length and fMRI conditions in fingerprinting

Scan length also affected ID rates in resting-state connectivity. Tangent-FCs with correlation distance clearly outperformed tangent-FCs with

Euclidean distance and FCs with correlation distance. ID rates reached for test-retest, MZ, andDZ for tangent-FCs with correlation distance at

250 scan volumeswere unachievable for the other two configurations evenwhen using the entire scan (1,190 volumes). The only exceptionwas

tangent-FCs with Euclidean distance for test-retest, which achieved the same ID rate after 900 volumes. Overall, the gain in ID rates from

tangent-FCs with correlation distance cannot be compensated by simply extending the fMRI scan length, which is also not practical in clinical

populations.

When evaluating different fMRI conditions, ID rates tended to be higher in tasks with respect to resting-state connectivity after accounting

for the fMRI scan length for test-retest MZ and DZ (Figure 9). For instance, we showed that when matching fMRI scan length, language, work-

ing-memory, social and emotion conditions havemuch higher ID rates across the fingerprint gradient, consistent with previous findingswhere

geodesic distancewas used to compare FCs. The only exception happenedwhen tasks and rest achieve perfect ID rate (specifically test-retest

and MZ cohorts when using correlation distance on tangent-FCs).

Fingerprint gradient: A more comprehensive metric of phenotypic reliability

The ID ratemetric6 is used as a measure of the amount of fingerprint in a dataset. In turn, a higher fingerprint is reflective of higher phenotypic

reliability. Previously, fingerprinting has been estimated using test-retest reliability.5–8,45 In this work, we extended that concept to include

twin fingerprints (MZ and DZ) and proposed the ‘‘fingerprint gradient’’ as a more comprehensive measure of phenotypic reliability. Such

gradient relies on expected identifiability based on shared characteristics, with the same person measured twice being thought of having

highest chance of sameness (followed by MZ and then MZ twins). We hypothesized that a phenotype with a higher test-retest fingerprint

would also have a higher twin fingerprint. This hypothesis was based on the framework of shared genetics and environment: test-retest

FCs of an individual should be the most similar as they obviously share 100% of genetics and environment; MZ twins should follow as they

share the same genetics, but the shared environment is likely to be high but not complete. Finally, DZ twins should be the least similar to

each other as they share �50% of the genetics, and the shared environment is <100%, like MZ twins. This hypothesis was shown to

be true when evaluated in the HCP dataset, as tangent-FCs have higher fingerprints than FCs across the fingerprint gradient (Figure 7, 8,

and 9). Thus, in the future, when a new framework or a phenotype is to be tested in the connectomics, we recommend the use of the finger-

print gradient as a metric whenever possible, instead of mere test-retest fingerprint.

Interestingly, the ID rate pattern along scan length on tangent-FCswith Euclidean distance for test-retest is very similar to tangent-FCs with

correlation distance for MZ. Analogously, the ID rate pattern along scan length on tangent-FCs with Euclidean distance for MZ is very similar

to tangent-FCs with correlation distance for DZ. Overall, replacing Euclidean distance by correlation distance practically ‘‘moves up’’ one step

in the fingerprint gradient in terms of ID rates.

Additionally, as shown in Figure 8, ID rates from Euclidean on tangent-FCs outperform ID rates from correlation on FCs for test-retest and

MZ, but not for DZ. This may suggest that Euclidean distance on tangent-FCs is not able to uncover additional fingerprints (with respect to

FCs) when genetics are not the same.

Limitations of the study

Our study has several limitations. From a theoretical standpoint, we lack a mathematical demonstration of why correlation distance sys-

tematically outperformed Euclidean distance. Our empirical results suggest further exploration of the geometric role of correlation dis-

tance in tangent space projections, for which we could not find former applications. Experimentally, the smallest non-zero regularization
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magnitude we tested was 0.01, which was also the optimal regularization for some conditions and granularities. Even though tangent-FCs

together with correlation distance seemed robust to large deviations from optimal magnitudes of regularization, a more exhaustive explo-

ration of regularization on ID rates is needed, in order to make a more comprehensive and generalizable conclusion. In addition, when

accounting for fMRI scan length, different intervals of resting state for the same duration should be evaluated, not just the first number

of scan volumes.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Joaquı́n Goñi (jgonicor@

purdue.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The Human Connectome Project data can be acquired from https://www.humanconnectome.org/.

d The scripts used for regularization and tangent space projections are available at the CONNplexity lab website https://engineering.

purdue.edu/ConnplexityLab/publications.

d For any additional information required you may reach the lead contact.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

HCP young-adult dataset

In this work, we used data from the HCP 1,200 participants release35 and extracted three different subsets. The first consists of 426 unrelated

participants (223 women, mean age: 28.67 years old, range: 22–36) selected so that no two participants have a shared parent, while the re-

maining subsets include 63 pairs of Monozygotic (MZ) twins and 63 pairs of Dizygotic (DZ) twins. To minimize shared environment differences

in theMZ andDZ cohorts,46 only DZ twins of the same sexwere included. This HCP dataset hasmore than 63MZpairs but wematched it to the

DZ cohort size to make fingerprinting results easier to compare. fMRI data included both resting state (RS) and tasks: emotion processing

(EM), gambling (GAM), language (LAN), motor (MOT), relational processing (REL), social cognition (SOC), and working memory (WM). For

simplicity, we refer to resting state and the tasks as fMRI conditions, or simply conditions.

For each condition, participants underwent two sessions corresponding to two different acquisitions (left-to-right or LR, and right-to-left or

RL). The resting-state scans were acquired on two different days for a total of four sessions (‘‘REST1’’ and ‘‘REST2’’). Only the two sessions from

REST1 were utilized in this work. The HCP scanning protocol was approved by the institutional review board at Washington University in St.

Louis. Full details on the HCP dataset have been published previously.

Validation dataset

A cohort consisting of 181 participants was used to validate the effect of tangent space projection on ID rates (86 women, mean age: 34.59

years old, range: 19–89). The participants were healthy controls who enrolled in other thanHCP studies between 2006 and 2020 atWashington

University. For each participant, a structural T1-weighted scan and two runs of 6 min resting-state fMRI scans were acquired using a 3T

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Time series and functional connectomes

of HCP dataset

This paper https://engineering.purdue.edu/

ConnplexityLab/publications

Functional connectomes of Validation dataset This paper https://engineering.purdue.edu/

ConnplexityLab/publications

Software and algorithms

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

Freesurfer Laboratory for Computational Neuroimaging

at the Athinoula A. Martinos Center for

Biomedical Imaging

https://surfer.nmr.mgh.harvard.edu/

AFNI National Institute of Health https://afni.nimh.nih.gov/

FSL Analysis Group, FMRIB, Oxford, UK https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Siemens Tim-TrioMR scanner with a 12-channel head coil array. The T1-weighted scan was a high-resolution, 3D, sagittal, magnetization-pre-

pared rapid gradient echo scan (MP-RAGE; repetition time (TR) = 2400 ms; echo time (TE) = 3.16 ms; flip angle = 8�; voxel size = 1 3 1 3

1 mm3; 256 3 2563176 acquisition matrix). Two resting-state fMRI runs were collected back-to-back using an echo planar sequence (voxel

size = 4 mm3; repetition time = 2200ms; Flip Angle = 90�).

METHOD DETAILS

Brain parcellations

In this work, we have used a collection of functional brain atlases of the cortex, known as the Schaefer parcellation.47 The Schaefer parcellation

is based on resting-state fMRI data from 1,489 participants which were registered using surface alignment. To derive the Schaefer parcella-

tion, a gradient-weightedMarkov random field was employed which integrates local gradient and global similarity approaches. The Schaefer

parcellation is available at ten granularity levels: 100–1000 in steps of 100. The Schaefer parcellations are available both in volumetric and

grayordinate space. Since the grayordinate versions of the parcellations are in the same surface space as the HCP fMRI data, it is rather

straightforward to map the parcellations onto the fMRI data. Furthermore, the alignment between the fMRI data and the Schaefer parcella-

tions is much better when surface-mapping is used, as compared to the volumetric mapping. Hence, we used the surface-based mapping to

map the 100–900 granularity Schaefer parcellations onto the fMRI data. At the time of the data processing for this study, we could notmap the

1,000 Schaefer parcellation successfully for the HCP Young Adult dataset. For completeness, 14 subcortical regions were added to each par-

cellation, as provided by the HCP release (filename Atlas_ROI2.nii.gz). To do so, this file was converted from NIFTI to CIFTI format using the

HCP workbench software (www.humanconnectome.org/software/connectome-workbench.html, wb_command -cifti-create-label).48,49 This

resulted in, for example, a total 114 brain regions for the Schaefer-100 parcellation.

Preprocessing of HCP dataset

A ‘‘minimal’’ preprocessing pipeline from the HCP was employed,50 comprising artifact removal, motion correction, and registration to stan-

dard template. Full details can be found in earlier publications.50,51

We added the following steps to the ‘‘minimal’’ pipeline. For resting-state fMRI datawe: (i) regressed out the global graymatter signal from

the voxel time courses,52 (ii) applied a first-order Butterworth bandpass filter in the forward and the reverse directions [0.001–0.08Hz52;

MATLAB functions butter and filtfilt], and (iii) z-scored and averaged, per brain regions, the voxel time courses, excluding any outlier time

points falling outside three standard deviation from the mean (workbench software, wb_command -cifti-parcellate). For task-fMRI, we per-

formed the same steps, but applied amore liberal frequency range was adopted for the bandpass filter (0.001–0.250),53 since the relationship

between different tasks and optimal frequency ranges is still unclear.54

Preprocessing of validation dataset

This validation dataset was processed using an in-house pipeline based on AFNI,55,56 FSL,57 and MATLAB using state-of-the-art guidelines.

The same cortical parcellation scheme (Schaefer parcellation47) was used aswe introduced in STARmethods brain parcellations, while subcor-

tical regions were from scale I Tian parcellation.58

Structural T1 images were first denoised to improve the signal-to-noise ratio (ANTs toolbox59 DenoiseImage), bias-field corrected

(fsl_anat), and then processed with the FreeSurfer (version 6) cortical reconstruction process (recon-all) to extract white matter, gray mat-

ter, and cerebrospinal fluid (CSF) tissue masks. For the cortical surface, the surface of the Schaefer parcellations were mapped from

the template space to the native T1 surface space (mri_surf2surf) and then mapped onto a volume (mri_aparc2aseg). The mask for

subcortical regions was obtained by running FIRST toolbox60 to where Tian parcellations58 were mapped using AFNI command

(auto_warp.py).

To process the resting-state fMRI data, wemodified the standard preprocessing pipeline from the ‘‘afni_proc.py’’ AFNI script. These steps

included: removal of the first 4 TRs (3dTcat), computing outlier fraction for each volume (3dToutcount), removing spikes (3dDespike), perform-

ing slice timing correction (3dTshift), the registration of each volume to the base volume (3dvolreg), computing anatomical alignment trans-

formation to EPI registration base (align_epi_anat.py), applyingDiCER61 (a novelmethod used to estimate a regressor as a correctmeasure of

the GSR), blurring (3dmerge, 4.0mm Full Width at Half Maximum), and scaling (3dcalc). Regressors included six estimated head motion pa-

rameters and their derivatives, bandpass filtering (0.01–0.1 Hz, 1dBport), tissue signals (3 principal components from ventricles and 5

from white matter), and DiCER.61 All these nuisance regressors, along with censoring of volumes, were used to denoise the rs-fMRI data

(3dDeconvolve and 3dTproject).

Estimation of whole-brain functional connectomes

Pearson’s correlation coefficient (MATLAB command corr) was used to estimate the functional connectivity between all pairs of brain regions,

resulting in a symmetric correlation matrix of size m3 m, where m is the number of brain regions for a given parcellation. We refer to this

object as an FC. For each participant, we computed a whole-brain FC for each of the two sessions (also referred to as test-retest), each

fMRI condition (resting state and all tasks), and each parcellation granularity (100–900).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of fingerprinting

For two paired samples of FCs (test-retest) of unrelated participants, Fingerprinting is the process of identifying an individual’s FC from one

session, given the FC of that individual from a second session. All conditions (resting state and seven tasks) in our dataset contain two runs (LR

and RL acquisition). To minimize any acquisition orientation-based bias, each participant’s sessions were randomly assigned to either test or

retest. This process was repeated for each condition separately.

For each FC from the test sample, themost similar FC from the retest sample is identified.We then predict that the FC from the test sample

must belong to the same participant than the most similar one from the retest sample (equivalent to a nearest neighbor classifier based on a

specific similarity measure). The relative frequency of successful identifications is called ‘‘identification rate’’, and is obtained as:

Identification ðIDÞ Rate =
Number of correctly labelled participants

Total number of participants

Note that, in addition, this processmust be done reversing the roles of test and retest sessions, as introduced by Finn and colleagues.6 The

final identification rate was obtained by averaging the two identification rate values (from test to retest and vice versa).Wewill also refer to this

measure as ‘‘individual-fingerprinting’’.

For a sample of FCs of twin’s data (MZ or DZ), the procedure was slightly different. Instead of selecting out of two sessions from the same

individual, we take one session from one twin (twin1) and one session from the other twin (twin2). For each condition, each twin from a given

pair has two runs (LR and RL). Once again to minimize biases due to the acquisition orientation, for each twin from a pair, a session was

randomly selected and assigned to either twin1 or twin2 session. This process was repeated for each condition separately.

An FC from the twin2 session was labeled with the corresponding twin’s identity in the twin1 data that was the closest to it in the twin1

session. We repeated this process for all the FCs in the twin2 session and ID rate in this case is defined as:

Identification ðIDÞ Rate =
Number of correctly labelled twins

Total number of twin pairs

Analogously to the test-retest protocol, this process was repeated by reversing the roles of the twin1 and twin2 sessions, and the

final identification rate was obtained by averaging the two values. Note that we will also refer to it as ‘‘twin-fingerprinting’’, or ‘‘MZ/DZ-

fingerprinting’’.

To assess variability of ID rates due to differences in samples, we used sampling without replacement. For every run, we randomly selected

80% of the participants and performed the fingerprinting process. This procedure was repeated 100 times and then the mean ID rate and

standard error of the mean ID rate was computed. This ‘‘sampling without replacement’’ process also served as a proxy exploration of the

generalizability of results obtained for other datasets acquired with the same or similar parameters.

Tangent space projection of functional connectomes

Functional connectomes (or FCs) are correlation matrices and hence lie on or inside the so-called Symmetric Positive Definite (SPD) manifold

where the geometry is non-Euclidean.38 The SPD cone of the correlationmatrices is a Riemannianmanifold. As mentioned in the introduction

section, vectorizing these correlationmatrices directly and using these vectors as features is not ideal as the features are not independent due

to the SPD constraint. Moreover, the canonical method of using Euclidean or correlation distance to compare vectorized correlationmatrices

is also sub-optimal because these matrices lie on an SPD cone. Therefore, a metric was introduced which accounts for the underlying non-

Euclidean geometry of correlation matrices, called Affine-Invariance Riemannian Metric (AIRM),39 or simply geodesic distance. This geodesic

distance between FCs on the SPD manifold can be approximated by computing the Euclidean distance between tangent-FCs (FCs after

tangent space projection).

Tangent space projection is a mapping technique that projects correlationmatrices onto a tangent space that is Euclidean. The procedure

is as follows. Correlation matrices are projected onto the tangent space relative to a selected reference point (Cref ) on the SPD cone. Such a

reference point can be chosen in different ways23 as detailed below (see table referencematrix). Once a reference point, matrixCref , has been

chosen, a correlation matrix, Q, on the SPD manifold, can be projected using the following analytical formula:

Q
!

= logm

�
C� 1=2

ref QC� 1=2
ref

�
(Equation 1)

where,

Q
!

is the projected matrix on the tangent space as produced by Cref

Q is the SPD matrix on the manifold

Cref is the reference point/matrix on the manifold

logm is the matrix logarithm function.
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Edges (matrix entries) in the tangent-spacematrices are not inter-related, and thus no longer constrained by the SPD criterion. Hence, they

can be vectorized. Furthermore, it has been shown40 that the Euclidean distance in tangent space projections of any two correlation matrices

approximates the underlaying Geodesic distance in the SPD manifold.

An important consideration for the tangent space projection of correlationmatrices is that the projection requires a reference point on the

manifold that should be close to all the correlation matrices.23 This is the only point where the SPD manifold touches the tangent space. It

should be noted that using a different reference point for each correlation matrix would result in each correlation matrix getting projected

to a different tangent space. The referencematrix (Cref ) can be estimated in a number of different ways, most commonly by estimating a sam-

plemean (or centroid) of the data, as shown in table referencematrix. Alternatively, a centroid can be estimated by using the identitymatrix of

the same dimension as the reference matrix.

Table reference matrix

Equations for the estimation of five reference matrices (Cref ).Qi represents the ith correlation matrix in a set of correlationmatrices (here func-

tional connectomes).

As discussed above, for a given sample of FCs, computing their tangent-space projections requires two simple steps. First, one estimates a

reference matrix (Cref ) from the sample FCs and then applies Equation 1 to project each FC onto the tangent space to obtain a tangent-FC.

To minimize biasing the ID rates of tangent-FCs, only one session of the FCs was used to estimate the Cref from a given sample. For

example, for the test-retest dataset, only the test sessions were used to estimateCref and subsequently project both test and retest FCs. Anal-

ogously, given a sample of MZ twins or of DZ twins, only one of the twins FCs was used to estimate Cref .

Distance metrics to compare functional connectomes

The most commonly used estimates of similarity/dissimilarity between FCs6,7 have been performed using Pearson’s correlation coefficient,

while other related approaches, such as Euclidean distance between the vectorized matrices,15 and the Manhattan (L1) distance,62 have

also been applied. However, these metrics are defined for vectors, not matrices so FCs and tangent-FCs need to be vectorized. Since FCs

and tangent-FCs are symmetric matrices, vectorizing is applied to the upper triangular part of these matrices.

In this study, we used Pearson’s correlation distance and Euclidean distance to compare vectorized FCs and vectorized tangent-FCs. We

focused on correlation distance because Pearson’s correlation (or equivalently correlation distance) is the most commonly used metric in the

field of connectome fingerprinting.6,63 As mentioned before, the Euclidean distance between tangent-FCs approximates Geodesic distance

between the corresponding FCs on the SPD manifold and was therefore included as well.

LetQ1 andQ2 be two (square, symmetric) FC matrices of sizem3m, and q1 = vecðQ1Þ and q2 = vecðQ2Þ are the corresponding vector-

ized versions of sizem0 = mðm � 1Þ=2. The mathematical formulae for correlation and Euclidean distance between these two matrices are

described below.

Pearson’s correlation distance

Pearson’s correlation between two vectors q1 and q2 is computed as:

r =

Pm0
i = 1

�
q1ðiÞ � q1

��
q2ðiÞ � q2

�
s1s2

where

r is the Pearson’s correlation coefficient.

q1ðiÞ and q2ðiÞ are the ith elements of q1 and q2, respectively.

q1 and q2 are the sample means of q1 and q2, respectively.

s1 and s2 are the standard deviations of q1 and q2, respectively.

Reference Matrix (Cref ) Equation

Euclidean
Qe =

1

N

X
i

Qi

Harmonic
Qh =

�
1

N

X
i

Q� 1
i

!� 1

Log-Euclidean
Qle = Eaxp

�
1

N

X
i

LogðQiÞ
!

Riemann
Qr = argmin

�P
i
dGðQeQiÞ2

�

Kullback Qk = Q1=2
e ðQ� 1=2

e QhQ
� 1=2
e ÞaQ1=2

e
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Finally, Pearson’s correlation distance is simply defined as:

dr = 1 � r

Euclidean distance

The Euclidean distance between two vectors q1 and q2 is computed as:

dE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q1ð1Þ � q2ð1Þ

�2
+
�
q1ð2Þ � q2ð2Þ

�2
+.+

�
q1ðm0Þ � q2ðm0Þ�2q

Types of main-diagonal regularization

The mathematical formulation of most of the reference matrices and tangent-space projection requires FCs to be invertible or full-rank (note

the need to compute the inverse in Equation 1).When this is not the case, we can regularize these FCs by adding a scaled identitymatrix, t3 I,

which increases the value of their eigenvalues by t, ensuring that the matrices are invertible.5,8

Canonically, a fixed regularization magnitude of t = 1 is used to achieve full-rank invertible matrices.8 Alternatively, it has been recently

shown that, for a given fMRI condition and granularity of parcellation, an optimal amount of regularization (t�) can be estimated from a sample

of FCs, by maximizing the test-retest ID rates based on geodesic distances.5

Here, for tangent-FCs, we underwent the following steps to figure out the optimal amount of regularization that maximizes ID rates. For

any given fMRI condition and parcellation granularity, the ID rates here were computed for a wide range of magnitudes for the regularization

parameter, t. In particular:

t =

	 ½0 0:01� and 

0:5 to 30; in steps of 0:5

�
when all FCs are invertible

½0:01� and 

0:5 to 30; in steps of 0:5

�
otherwise

An optimal regularizationmagnitude for a given fMRI condition and parcellation granularity can be computed using the steps described in

table optimal regularization.

Table optimal regularization

A step-by-step outline of how to estimate and apply an optimal regularizationmagnitude (t�) to an FC dataset, such that individual fingerprint

is maximized. This is a modified version of Table 4 of Abbas et al.5 for tangent-FCs.

Since we are using Euclidean and correlation distances to compare tangent-FCs, we can estimate two different optimal t� for each given

condition, granularity, and reference matrix:

(1) t�EudðtanÞ: optimal regularization when Euclidean distance is used to compare tangent-FCs

(2) t�corrðtanÞ: optimal regularization when correlation distance is used to compare tangent-FCs

Step 1 Estimate test and retest FCs per participant

from the fMRI data

Step 2 For a wide range of regularization magnitude

(t):

a. Obtain a random sample of the FC dataset
without replacement*

b. Regularize FCs by that regularization
magnitude (t)

c. Project regularized FCs onto the tangent
space using a specific reference matrix

d. Compute pairwise distances between
tangent-FCs and obtain the identifiability
matrix.

e. Estimate the ID rate from the identifiability
matrix

*Random sampling without replacement
is performed to estimate the mean and
standard error of the ID rate with respect
to the regularization parameters

Step 3 Identify the optimal regularization magnitude

(t*), such that (mean) ID rate is maximized
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When comparing original FCs, only the upper triangular values of the matrices are used. Hence, main diagonal regularization would have

no impact on the distances between FCs, whether using correlation or Euclidean distance. Geodesic distances between FCs would obviously

be affected since the whole matrices are used to compute these distances. As for tangent-FCs, even though only the upper triangular values

of matrices are used to compare them (using correlation or Euclidean distance), the whole matrices are used to projects FCs onto the tangent

space (see Equation 1). Hence, distances between tangent-FCs are affected by the regularization introduced into the FCs.
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