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Abstract

Facilitating Sensor Interoperability and Incorporating Quality in Fingerprint Matching Systems

by

Rohan D. Nadgir
Master of Science in Electrical Engineering

West Virginia University

Arun Ross, Ph.D., Chair

This thesis addresses the issues of sensor interoperability and quality in the context of fin-
gerprints and makes a three-fold contribution. The first contribution is a method to facilitate
fingerprint sensor interoperability that involves the comparison of fingerprint images originating
from multiple sensors. The proposed technique models the relationship between images acquired
by two different sensors using a Thin Plate Spline (TPS) function. Such a calibration model
is observed to enhance the inter-sensor matching performance on the MSU dataset containing
images from optical and capacitive sensors. Experiments indicate that the proposed calibration
scheme improves the inter-sensor Genuine Accept Rate (GAR) by 35% to 40% at a False
Accept Rate (FAR) of 0.01%. The second contribution is a technique to incorporate the local
image quality information in the fingerprint matching process. Experiments on the FVC 2002
and 2004 databases suggest the potential of this scheme to improve the matching performance
of a generic fingerprint recognition system. The final contribution of this thesis is a method for
classifying fingerprint images into 3 categories: good, dry and smudged. Such a categorization
would assist in invoking different image processing or matching schemes based on the nature of
the input fingerprint image. A classification rate of 97.45% is obtained on a subset of the FVC
2004 DB1 database.



3

I dedicate my thesis to my family and friends



iii

Acknowledgments

I appreciate the opportunity provided to me by Dr. Ross to work with him as a graduate

student. It has been an honor to have him as my research advisor. His work ethics and attitude

have been a total inspiration. I have learned a lot from his determination, dedication and ability

to prioritize things. I would have not reached this phase of my life without his guidance and

constant motivation.

I would also like to thank Dr. Li and Dr. Hornak, my committee members, for their sugges-

tions and guidance. I would be forever grateful to Dr. Hornak and Dr. Ross for giving me the

opportunity to join West Virginia University and transfer from Drexel University.

I appreciate the financial support provided by Center for Identification Technology Research

(CITeR) for certain parts of my thesis. I would like to thank Dr. Anil Jain of Michigan State Uni-

versity for granting us access to the MSU Fingerprint Database. I am grateful to Dr. Stephanie

Schuckers and Dr. Sunil Kumar of Clarkson University for their discussions.

I would like to take this opportunity to thank my friends and lab-mates for the great times

I have experienced at the Biometric Systems Lab. I would like to express my gratitude to

Sarvesh Makthal for helping me in getting started with my research, Christopher Boyce for the

constructive criticism and pointers regarding my research as well as Kiran Tadaka for lending a

hand with the SDK’s of the commercial fingerprint systems. I will always remember Shigefumi

Yamada, Samir Shah, Simona Crihalmeanu, Kiran Tadaka, Jidnya Shah, Phani Ivatury, Rajiv

Mukherjee and Nikhil Burri for their co-operation, their feedback on my research and also for

the fun we had together.

I will be forever indebted to my parents and brother for their love and never-ending support.

I will always remember the sacrifices they have made on my behalf.



iv

Contents

Acknowledgments iii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Sensor Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Sensor Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Sensor Interoperability 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Fingerprint Sensing Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Optical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Piezoelectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Temperature Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.6 Touchless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.7 Multispectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.8 Distortions introduced in different sensing technologies . . . . . . . . . . . 17

2.3 Sensor Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Thin Plate Spline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Bending Energy of TPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Determining the average pixel deformation . . . . . . . . . . . . . . . . . . 23
2.4.3 Orientation computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Derivation of scaling parameters . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Role of scaling parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



CONTENTS v

3 Fingerprint Image Quality 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Quality Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Intensity-based Quality Estimation . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Filter-based Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Classifier-based scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Wavelet-based Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.5 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Gabor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Structure of 2D Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Advantages of Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Variations from the standard Gabor approach . . . . . . . . . . . . . . . . 46
3.3.4 Gabor-based Quality Classification . . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Incorporating estimated quality into a fingerprint recognition system . . . . . . . 58
3.4.1 Incorporating quality at different stages of the recognition system . . . . . 58
3.4.2 Proposed incorporation of extracted Feature Quality into Matching Score

Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Summary and Future Work 67
4.1 Sensor Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Appendices 69

A Roll versus Plain Prints: An Experimental Study 69
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Fingerprint Matchers - NIST and VeriFinger 79

C Ridge Feature-based matcher: Fingercode 80

References 82



vi

List of Figures

1.1 Fingerprint images with differing qualities and their corresponding extracted minu-
tiae (a) Good quality image, (b) Dry image, (c) Smudged image, (d) Partial print,
(e) Rotated image, (f) Image with scar/bruise. . . . . . . . . . . . . . . . . . . . . 4

1.2 Visual differences between impressions of the same finger acquired using five dif-
ferent sensors. Verifier 300, Hamster III and U.are.U 4000 are optical sensors.
Hamster III is based on SEIR (Surface Enhanced Irregular Reflection) technology,
while U.are.U 4000 and Verifier 300 use a FTIR (Frustrated Total Internal Reflec-
tion) technology. The USB 2500 is an electro-optical sensor and the 100AX is a
capacitive sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Four different methods for fingerprint acquisition. (a) Rolled print (from the
NIST Special Database 4), (b) Dab print (from the FVC 2002 DB1 Database),
(c) Swiped sensor print (from the FVC 2004 DB3 Database), (d) Latent print [1] . 11

2.2 Fingerprint images obtained by different acquisition methodologies. (a) Rolled
print (from the NIST Special Database 4), (b) Flat print (from the FVC 2002
DB1 Database), and (c) Slap print [2]. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Working principles of different sensing technologies . . . . . . . . . . . . . . . . . 13
2.4 Two different ways of facilitating interoperability. (a) Distortion compensation

model and (b) Inter-sensor distortion model. The numbers within circles denote
the sequence of steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Minutiae correspondence (manually selected) across representative image pairs,
serve as inputs to the TPS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Manually selected control points from representative image pairs are provided as
inputs to the TPS model. The affine and non-linear parameters derived from the
average deformation model are used for image and minutiae calibration during the
authentication stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Minutiae calibration: The inter-sensor distortion compensation block is introduced
in-between the minutiae extraction and matching modules to handle inter-sensor
distortions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Minutiae orientation is modified on basis of the transformed minutiae location
(after average deformation). P is the original minutiae point location while Q is
the corresponding ‘angle point’. P’ and Q’ are the corresponding locations of P
and Q after average deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Sample fingerprints from Digital Biometrics (DBI) and VERIDICOM (VERI) sen-
sors. (a) Image acquired from DBI. (b) Image acquired from VERI. . . . . . . . . 25



LIST OF FIGURES vii

2.10 Fingerprints in the first 2 columns are matched and the corresponding minutiae
matching results are shown in the third column. Highlighted minutiae represent
the minutiae that have been matched. The first row illustrates DBI vs DBI match-
ing, the second VERI vs VERI matching and the third VERI vs DBI matching. . 26

2.11 The histogram of minutiae points extracted from the DBI and VERI images. . . . 27
2.12 Demonstration of the calibration process using mesh-grid plots. (a) and (b) The

deformation of two VERI images with respect to their corresponding DBI images
as estimated by the TPS model. (c) A pre-calibrated VERI image. (d) The post-
calibrated VERI image based on the deformation of eight representative image
pairs. The dashed rectangle in (d) indicates the dimensions of the original VERI
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 (a) Original mesh-grid plot with minutiae (b) Mesh-grid plot with calibrated minu-
tiae (after minutiae calibration) (c) Mesh-grid plot with minutiae (after image
calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 (a) Original fingerprint image. (b) Image generated after applying non-linear
transformation leads to loss of information. . . . . . . . . . . . . . . . . . . . . . . 30

2.15 ROC curves indicating the improvement in inter-sensor performance on the MSU
database. (a) VeriFinger matcher. (b) BOZORTH3 matcher. . . . . . . . . . . . . 31

2.16 Improved inter-sensor minutiae matching after calibration. (a) indicates the match-
ing minutiae before calibration, (b) and (c) show the matching minutiae after
image and minutiae calibration, respectively. Matching minutiae pairs are high-
lighted for distinguishing them from the non-matching minutiae pairs. Match
scores as assessed by the VeriFinger matcher for (a), (b), (c) are 35, 193 and 202,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 Plot indicating the distribution of weights for the non-linear parameters (derived
using TPS) for each of the 8 representative images. (a) Weights computed in
the horizontal direction. (b) Weights computed in the vertical direction. The
x-axis corresponds to the representative image pair while the y-axis represents the
weights of the non-linear parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.18 ROC curves comparing the minutiae scaling performance with non-linear image
and minutiae calibration. (a) VeriFinger matcher. (b) BOZORTH3 matcher. . . . 33

3.1 (a) Original Fingerprint, (b) Segmented Fingerprint . . . . . . . . . . . . . . . . . 35
3.2 Gabor filters with the same orientation but different inter-ridge distances (fre-

quencies) (a) 6 pixels, (b) 7 pixels, (c) 8 pixels, (d) 9 pixels, (e) 10 pixels. . . . . . 48
3.3 Flowchart for gabor-based quality classification approach . . . . . . . . . . . . . . 49
3.4 Fingerprint foreground segmentation of (a) Good image (c) Dry image (e) Smudged

image and their corresponding segmented images (b), (d), (f), respectively. . . . . 50
3.5 Intermediate results for the gabor-based classification approach (a) Original image

(b) Segmented image (c) Maximum gabor response image (d) Histogram of gabor
pixel responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Pixel-based gabor response of good quality images shown in (a) good1 and (b)
good2. (c) and (d) show the corresponding maximum gabor response images.
Histogram of gabor pixel responses are shown in (e) and (f). . . . . . . . . . . . . 53

3.7 Pixel-based gabor response of dry quality images shown in (a) dry1 and (b) dry2.
(c) and (d) show the corresponding maximum gabor response images. Histogram
of gabor pixel responses are shown in (e) and (f). . . . . . . . . . . . . . . . . . . 54



LIST OF FIGURES viii

3.8 Pixel-based gabor response of smudged quality images shown in (a) smudged1

and (b) smudged2. (c) and (d) show the corresponding maximum gabor response
images. Histogram of gabor pixel responses are shown in (e) and (f). . . . . . . . 55

3.9 Classification of good, dry and smudged quality images using the {Xλ1 , Xλ1λ2 , Xλ2}
feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Flowchart of a minutiae-based matching algorithm. Modified flowchart for in-
corporating feature quality into the score formulation is indicated by the dotted
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Minutiae-based matcher: Improvement in performance can be observed by com-
paring the proposed feature quality-based score formulation with the standard
score formulation for multiple databases from FVC 2004 and 2002 . . . . . . . . . 62

3.12 Flowchart of the fingercode based matching algorithm - (a) Original (b) Modified
flowchart after incorporating feature quality into the score formulation . . . . . . 64

3.13 Ridge feature-based matcher: Improvement in performance can be observed by
comparing the proposed feature quality-based score formulation with the standard
score formulation for multiple databases from FVC 2004 and 2002 . . . . . . . . . 65

A.1 Fingerprint images obtained by different acquisition methodologies. (a) Rolled
print (from the NIST Special Database 4); (b) Dab print (from the FVC 2002
DB1 Database); and (c) Slap or Plain print [2]. . . . . . . . . . . . . . . . . . . . 70

A.2 Illustration of a fingerprint card available in the NIST Special Database 29 [3]. . . 72
A.3 Segmented images for right thumb, left thumb, and the four left plain impressions [3]. 72
A.4 Plain impressions are segmented into individual fingers [4]. . . . . . . . . . . . . . 73
A.5 Histograms illustrating the number of minutiae points for the roll and plain (slap)

prints corresponding to the ten fingers. (a) Right Thumb, (b) Left Thumb, (c)
Right Index finger, (d) Left Index finger, (e) Right Middle finger, (f) Left Middle
finger, (g) Right Ring finger, (h) Left Ring finger, (i) Right Little finger, (j) Left
Little finger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.6 The verification performance summarized using ROC curves for the SD29 database.
The NIST matcher was used to generate the genuine and impostor scores. Note
that the roll-versus-roll matching performance is significantly superior possibly
due to the large number of minutiae points available for matching. . . . . . . . . . 77

A.7 CMC curves on the SD29 database as assessed using the NIST matcher. In this
experiment, the roll-versus-plain identification accuracy is comparable to the other
two scenarios, viz., roll-versus-roll and plain-versus-plain. . . . . . . . . . . . . . . 78

C.1 Ridge feature-based matcher: Flowchart of fingerprint matching system (taken
from [5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



ix

List of Tables

2.1 Fingerprint Sensing Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 TPS scaling parameters for the representative images . . . . . . . . . . . . . . . . 30

3.1 Percentage of pixels defined by the thresholds λ1 and λ2, used for image quality
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Confusion Matrix based on Naive-Bayes classifier (ten-fold validation) . . . . . . . 57



1

Chapter 1

Introduction

1.1 Introduction

Biometrics refers to the use of distinctive physical (e.g., fingerprints, face, retina, iris, hand

geometry, palm) and behavioral (e.g., gait, signature, speech) characteristics for automatically

recognizing individuals [6]. Fingerprints have been extensively used in forensic applications for

identifying criminals and also in commercial applications for automatic authentication. Fin-

gerprints are considered to be reliable due to their uniqueness and permanence [7]. Fingerprint

recognition is being used in a variety of applications including the US-VISIT1 program instituted

by the Department of Homeland Security (DHS) and the IAFIS2 developed by the FBI.

Fingerprints are oriented texture patterns consisting of ridges and valleys present on the

surface of an individual’s finger. These texture patterns are created by ridges and valleys that

alternate and flow in a locally constant direction [8]. A fingerprint can be represented by features

that lend themselves to matching. These extracted features are matched using various different

methodologies and most of them can be coarsely classified into three families [6].

1. Correlation-based matching: Correlation between corresponding pixels of two different

superimposed fingerprint images is computed. Here, the fingerprint image pixels constitute

the feature set and contribute toward matching.

2. Minutiae-based matching: Each fingerprint is represented by a collection of extracted fea-

tures, namely minutiae points. Minutiae points are anomalies detected or observed in the

1United States Visitor and Immigration Status Indicator Technology
2Integrated Automated Fingerprint Identification System
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ridges - ridge endings and ridge bifurcations.

3. Ridge feature-based matching: Features extracted from the fingerprint ridge pattern (e.g.,

local orientation and frequency, ridge shape, texture information etc.) are used for match-

ing. Both, the correlation-based matcher and minutiae-based matcher can be considered

to be sub-families of ridge feature-based matching as the minutiae and pixel intensities are

actually a representation of the fingerprint ridge pattern.

1.2 Problem Statement

Fingerprint matching is the process in which the features extracted from two fingerprints are

compared by an algorithm and a degree of similarity or match score is returned. If multiple

instances of the same fingerprint are matched, also termed as genuine matching or intra-class

matching, then a high similarity score is expected as compared to the one observed across different

fingerprints, also referred to as imposter matching or inter-class matching. Many times, intra-

class matching results in a poor match score which can occur due to various reasons as listed

below [6]:

• Rotation and Translation - The same finger may be placed at different locations on the

platen across different captures, leading to a global translation effect across different cap-

tures. Also, across captures the same finger can be placed on the sensor at different angles,

introducing a rotation effect.

• Partial overlap - Due to translations and rotations across captures, different impressions

of the same finger could have only a small overlap between them. This is usually the

case with sensors having small capture areas. Due to the small overlap between different

impressions of the same finger, the genuine similarity score decreases while the probability

of an imposter matching a certain set of features increases.

• Non-linear distortion - Non-linear deformations are primarily introduced during fingerprint

acquisition, as the three-dimensional (3D) elastic surface of the finger is pushed against a

flat sensor surface. This 3D to 2D mapping leads to non-linear deformations [9]. Vary-

ing amounts of non-linear distortion could contribute towards the inability of fingerprint

matchers to match different impressions of the same finger successfully.
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• Pressure differences - Applying extra pressure might lead to smudged areas where as apply-

ing inadequate pressure might lead to dry areas within a fingerprint. Also, varying pressure

differences across the fingerprint can contribute towards pronounced non-linear distortions.

• Changing skin conditions - Depending on the fingerprint skin condition or the amount of

sweat present at the time of capture, a smudged or a dry effect within an image can be

observed. More sweat leads to smudged fingerprint images while less sweat leads to dry

fingerprint images.

• Feature extraction errors - The feature extraction algorithms are imperfect and often intro-

duce measurement errors. Errors could occur at different stages of the feature extraction

process, like segmentation of fingerprints, estimation of orientation etc. In a minutiae-based

algorithm, spurious minutiae could be detected or the orientations and locations of the de-

tected minutiae could be perturbed in the gray-scale images. Temporary or permanent

changes due to scars or bruises could lead to improper feature detection as well.

• Sensor conditions - Dirt or latent prints present on the platen of the sensor can lead to poor

quality prints. Also, the process of converting the scanned print into a digital image might

introduce noise, e.g., blocky artifacts are observed in capacitive scanners due to inter-plate

distances. The ergonomics of each sensor, like ease of use, alignment and positioning etc.,

can also affect the quality of the captured print [10].

• Sensor Interoperability - Variations are introduced in the images captured across different

sensors due to variations in sensing technology, resolutions, sensing areas etc. The inabil-

ity of the matcher to compensate for such inherent variations leads to a poor matching

performance.

In Fig. 1.1 (a-e), the variations introduced in the same fingerprint image due to changes in

pressure, dryness, position and rotation in comparison with a good quality fingerprint (Fig. 1.1

(a)) are shown. Alongside are the minutiae detected for each of those prints, and one can visually

distinguish the variations introduced across these detected minutiae patterns. It would be very

difficult for a fingerprint matcher to compensate for these variations. Fig. 1.1 (f) also shows an

image having cuts or bruises.

In this thesis, two of the most important problems observed in fingerprint matching are

addressed - sensor interoperability and quality.
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Fingerprint images with differing qualities and their corresponding extracted minu-
tiae (a) Good quality image, (b) Dry image, (c) Smudged image, (d) Partial print, (e) Rotated
image, (f) Image with scar/bruise.
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1.2.1 Sensor Interoperability

Historically, fingerprints have been acquired by smearing ink on the fingertip and creating

an inked impression of the finger on paper. Advances in sensor technology now permit the on-

line acquisition of fingerprints using scanners based on optical, capacitive, piezoelectric, thermal

or ultrasonic principles [6, 11]. The sensing area of these scanners can vary from a few square

millimeters to a few square inches. The resolution of the acquired image can vary between 250 dpi

(e.g., Authentec’s AF-S2 FingerLoc) and 512 dpi (e.g., Digital Persona’s U.are.U 4000); scanners

that acquire 1000 dpi images of the fingerprint (e.g., Aprilis’ HoloSensor) are also available in

the market. The fingerprint images acquired using different sensing technologies can exhibit

significant variations. This inherent variation in the acquired images is illustrated in Fig. 1.2,

where five different scanners are used to capture impressions of the same fingerprint.

Crossmatch Verifier 300
Ethenticator USB

2500

Digital Persona
U.are.U 4000

Precise
100AX

Secugen Hamster
III

Figure 1.2: Visual differences between impressions of the same finger acquired using five different
sensors. Verifier 300, Hamster III and U.are.U 4000 are optical sensors. Hamster III is based on
SEIR (Surface Enhanced Irregular Reflection) technology, while U.are.U 4000 and Verifier 300
use a FTIR (Frustrated Total Internal Reflection) technology. The USB 2500 is an electro-optical
sensor and the 100AX is a capacitive sensor.
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1.2.2 Quality

Fingerprint quality is usually defined as a measure of the clarity of the ridge and valley

structures, as well as the “extractability” of features (such as minutiae and singularity points)

[10]. Also, in good quality images ridges and valleys flow smoothly in a locally constant direction

[8]. If the ridge-valley pattern is prominent and clear then the fingerprint is said to be of

good quality, whereas, if the captured ridge-valley pattern is not clear (contains some noise or

irregularities) then the fingerprint is said to be of bad/poor quality.

Factors affecting the quality of fingerprints

There can be many factors which affect the quality of fingerprints.

(a) Excess or inadequate pressure

(b) Sweaty or dry fingers

(c) Temporary or permanent changes to the finger

(d) Sensor conditions

A poor quality fingerprint image captured by the sensor would lead to detection of false/spurious

minutiae, loss of genuine minutiae and error in the position and orientation of the detected minu-

tiae. Fig. 1.1 indicates the variations introduced in the extracted features due to images of poor

quality.

1.3 Motivation

1.3.1 Sensor Interoperability

The variations introduced in the acquired images due to differences in resolution, scanning

area, sensing technology, etc. impact the features extracted from the images (e.g., minutiae

points) and, consequently, the templates stored in the database. Most fingerprint matchers are

restricted in their ability to compare fingerprints originating from two different sensors resulting

in poor inter-sensor performance [11]. Inferior inter-sensor performance has been reported not

only in the fingerprint domain but in other domains such as speech, iris and face as well. Martin et

al. [12] report a significant drop in the matching performance of speech-based biometric systems

when the input device is switched from a carbon-button microphone to a electret microphone (and
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vice versa). Results of the iris recognition test conducted by the International Biometric Group

(IBG) [13] suggest that inter-sensor matching performance is lower than intra-sensor performance.

In the face domain, the variations introduced due to different cameras is expected to affect the

performance of face recognition algorithms as severely as variations introduced due to differing

illumination patterns [14]. A study conducted by Faltemier et. al. [15] reports a degradation in

the matching performance of inter-sensor 3D face recognition. Their study concludes that inter-

sensor 3D face matching may be facilitated under certain “limited” conditions by compensating

for variations in the sampling densities, resolution accuracies and noise characteristics.

In order to motivate the problem of fingerprint sensor interoperability, we consider the US-

VISIT program that obtains fingerprint (and face) information of certain travelers arriving at

the nation’s airports and seaports. A 500 dpi optical scanner with a sensing area of 1.2”×1.2” is

currently being used during the enrollment phase to procure fingerprint images. The introduction

of a different sensor during the verification stage might render the current data unusable. The cost

of re-enrolling individuals every time the sensor is changed will be tremendous. In applications

like these, the need for sensor interoperability is paramount and will significantly impact the

usability of the system.

1.3.2 Quality

Poor quality prints lead to improper feature detection. This would eventually lead to increas-

ing FRR and FAR during recognition, and increasing FTE during enrollment. Thus, we need

to assess fingerprint quality before storing the fingerprint template in the database. Also, the

individual steps of the fingerprint recognition system can be adjusted on basis of the estimated

quality [16].

The motivation for fingerprint quality estimation is derived from the increase in error rates

of the best fingerprint matchers in FVC 20043 in comparison with those of FVC 20024 and FVC

20005. The performance of FVC 2004 were found to be an order magnitude worse than that

reported in earlier competitions (FVC 2002 and 2000) in terms of error rates [17]. FVC 2004

databases were marked by maximizing differences in finger placement, varying pressures and

positions (vertical), along with exaggerated distortion and rotation effects. No efforts were made

3Fingerprint Verification Competition 2004 - http://bias.csr.unibo.it/fvc2004/default.asp
4Fingerprint Verification Competition 2002 - http://bias.csr.unibo.it/fvc2002/
5Fingerprint Verification Competition 2000 - http://bias.csr.unibo.it/fvc2000/
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to control image quality and the sensor platens were not systematically cleaned. Also, dry and

wet variations were introduced in the captured fingerprint images.

1.4 Contributions of this thesis

In this thesis, two different problems - sensor interoperability and quality are addressed. A

novel approach for fingerprint sensor interoperability is provided. In this work it is demonstrated

that a simple non-linear calibration scheme, based on Thin Plate Splines (TPS), is sufficient

to facilitate sensor interoperability in the context of fingerprints. In the proposed technique,

the variation between the images acquired using two different sensors is modeled using non-

linear distortions. The proposed calibration model is tested on the MSU dataset comprising of

fingerprint images obtained using two different sensor technologies: an optical Digital Biometrics

(DBI) sensor and a solid-state capacitive VERIDICOM (VERI) sensor. Experiments indicate

that the proposed calibration scheme improves the inter-sensor Genuine Accept Rate (GAR) by

∼ 35% to ∼ 40% at a False Accept Rate (FAR) of 0.01%.

In terms of fingerprint quality, the incorporation of quality associated with each extracted

feature into the match score formulation process is proposed. The feature quality is a measure

of reliability and features with higher reliability should contribute more significantly than the

less reliable features. The new quality-based score formulation is tested on two different kinds

of matchers - a minutiae based matcher and a ridge feature-based matcher. Improvement in

performance can be observed across multiple databases for both the matchers. With regards to

fingerprint image quality, a new technique is proposed which classifies good, dry and smudged

quality prints with a high degree of accuracy. The classification is based on features extracted

from the fingerprint image response observed after applying a gabor filterbank.

1.5 Organization

In chapter 2, the intersensor distortion model developed to compensate for the intersensor

variations is elaborated. The improved intersensor performance results are also presented. In

chapter 3, the new feature quality-based match score formulation is proposed and the gabor-based

fingerprint image quality classification is also described. Finally in chapter 4, the approaches

proposed for sensor interoperability and quality are summarized and the future work for each
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of the topics is presented. The Appendix comprises of a performance analysis of roll vs. plain

fingerprints along with a few details of the fingerprint matchers utilized in this work.
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Chapter 2

Sensor Interoperability

2.1 Introduction

Fingerprints can be acquired using different methodologies. Based on the acquisition method-

ology, the fingerprint impression acquired from a fingertip may be categorized as being a rolled,

dab, swipe or latent print (Fig. 2.1). Historically, the fingerprint impressions of an individual

were imaged by rolling the inked finger surface on paper (Fig. 2.1(a)). Recently, advances in

acquisition methodologies have led to the capture of dab (Fig. 2.1(b)) and swiped (Fig. 2.1(c))

fingerprints. Dab prints are obtained by simply pressing the finger against a flat surface (platen)

of an electronic sensor. Swipe prints are obtained by swiping the finger against the scanner

surface. Latent prints are prints which are lifted from crime scenes by a variety of techniques,

including the use of chemicals, lasers, powders and other physical means (Fig. 2.1(d)).

Besides changes in sensing technology, the fingerprint acquisition and matching methodology

may also vary across systems. Contact-based sensors can obtain rolled, flat, or slap prints of

a finger (Fig. 2.2). The ability to successfully compare rolled prints against, for instance,

the associated slap prints is indeed a challenging problem. This issue was highlighted in recent

tests [1] involving FBI’s IAFIS (that uses 10 rolled prints) and INS’ IDENT system1 (that uses

two flat prints). Interoperability between these types of prints may entail the adoption of new

matching algorithms and/or indexing schemes. In this work we primarily concern ourselves with

the interoperability between different sensing technologies (e.g., optical versus capacitive) and

not between the modes of acquisition (e.g., rolled versus flat). A study of different modes of

1This is the fingerprint matching system used by DHS
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(a) (b)

(c) (d)

Figure 2.1: Four different methods for fingerprint acquisition. (a) Rolled print (from the NIST
Special Database 4), (b) Dab print (from the FVC 2002 DB1 Database), (c) Swiped sensor print
(from the FVC 2004 DB3 Database), (d) Latent print [1]

(a) (b) (c)

Figure 2.2: Fingerprint images obtained by different acquisition methodologies. (a) Rolled print
(from the NIST Special Database 4), (b) Flat print (from the FVC 2002 DB1 Database), and
(c) Slap print [2].
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acquisition (rolled versus flat) is also conducted and a preliminary performance analysis report

is provided in Appendix A.

The problem of sensor interoperability, as defined in this work, cannot be solved by adopting

a common biometric data exchange format [18]. Such a format merely aids in the exchange of

feature sets between systems/vendors [19]. However, it does not provide a method to compare

feature sets obtained from different sensors. Similarly, the Electronic Fingerprint Transmission

Specification (EFTS) [20] defines requirements on fingerprint scanner systems and printers that

supply fingerprint data to the Integrated Automated Fingerprint Identification System (IAFIS).

The EFTS provides objective criteria for ensuring image quality whilst maintaining the geometric

and spatial integrity of the supplied fingerprint images. However, it does not define a method to

compare fingerprint images demonstrating significant differences in their physical dimensions.

In this work, we demonstrate that a simple non-linear calibration scheme is sufficient to

facilitate sensor interoperability. In the proposed framework, the difference between the images

acquired using two different sensors is modeled using non-linear distortions represented using

Thin Plate Splines (TPS). The use of a non-linear distortion model that accounts for local

warping is appropriate for the following reasons: (a) The physics of the sensing process can

introduce distortions unique to each sensor technology. Even a versatile matcher may fail to

account for such types of distortions. (b) The nature of the distortion may vary across the

sensor due to the arrangement of the sensing elements within the device; thus, a linear global

transformation may be unsuitable.

The remainder of the chapter is organized as follows. In Section 2.2 some of the commonly

encountered fingerprint sensing technologies are enumerated; Section 2.3 discusses two possible

approaches to reconcile images originating from multiple sensors; Section 2.4 presents the average

deformation model used in the proposed approach to model inter-sensor distortions; Section 2.5

discusses experimental results on the MSU database suggesting the efficacy and relevance of the

proposed scheme; Section 2.6 concludes this chapter with a discussion on the merits and demerits

of our approach.
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2.2 Fingerprint Sensing Technology

In this section, the working principle of different sensing technologies are described. The

sensing technologies have been categorized as optical (FTIR and SEIR), capacitive, piezoelectric,

temperature differential, ultrasound, touchless and multispectral (see Table 2.1).

2.2.1 Optical

Optical sensors based on Frustrated Total Internal Reflection (FTIR) consist of a glass prism,

a light source and a focusing lens along with a CMOS or a CCD camera. The light is directed

onto the surface of the prism, which acts as a platen for the finger to be placed, and the reflected

light is focused by the lens onto the camera which captures the fingerprint image (Fig. 2.3(a)).

Light rays are totally reflected from the valleys, giving them the lighter appearance, while light

rays are not reflected from the ridges and hence the ridges appear darker in the captured image.

The focal length of the lens is a deciding factor in the size of the sensor. If a lens having small

focal length is selected, optical distortion could be observed in the captured images. Hence, a

trade-off between the sensor size and optical distortion has to be obtained. The optical sensors

are normally bulky because of this set-up.

Ridge 

Valley 

Ridge 

Light 
Souce 

Glass Prism 

Focusing Lens 

CCD / CMOS 
camera 

Light Reflected 

Light not 
Reflected 

Ridge

Valley

Ridge

Pressure sensitive
elements

Actual Output

(a) Optical (c) Piezoelectric

Ridge 

Valley 

Ridge 

Air 
(Dielectric) 

Capacitive Plates 

Sender 

Receiver 

Acoustic 
Signal 

Echo 
Finger 

(b) Capacitive (d) Ultrasound

Figure 2.3: Working principles of different sensing technologies
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Table 2.1: Fingerprint Sensing Technologies.

No. Sensing Working Principle Products
Technology

1 Optical FTIR is based on total internal reflection. Digital Persona
(FTIR - Light is reflected from valleys and not from U.are.U 4000
Frustrated ridges. Lens focuses the reflected light
Total Internal rays onto the camera. Valleys appear
Reflection) bright while ridges appear dark. [11,21]

2 Optical SEIR is based on scattering principles. Secugen
(SEIR - Surface Light is reflected and scattered from ridges Hamster III
Enhanced and not from valleys. Most of the scattered
Irregular light is collected, hence ridges appear
Reflection) bright while valleys appear dark. [21]

3 Capacitive Air acts as dielectric medium. Capacitance Fujitsu MBF200
is a function of the distance of ridges and Precise 100AX
valleys from the capacitive plates. [11]

4 Piezoelectric Current is generated as a function of varying Fidelica
pressure applied by ridges and valleys Microsystems
on a dielectric material. [11] FIS 3002

5 Temperature Current is generated as a function of varying Atmel
Differential temperature differentials observed across AT77C101B

ridges and valleys. [11] Swipe sensor
6 Ultrasound Image generated on basis of the response Ultra-Scan

of the acoustic wave bounced off the UltraTouch
fingertip. No skin contact. [11] Model 203

7 Touchless 3-D image generated by integrating images TBS 3-D sensor.
captured by different cameras. Surround Imaging(tm)

technology
Light reflected by ridges is converted into TST group
electrical signals to generate a image. BiRDIIi
Contact-less.

8 Multispectral Multispectral data is collected under Lumidigm
different illumination angles and polarizing LightPrint
conditions as well as different wavelengths. Technology
Fingerprint information below the surface
of the skin is captured easily. [22]
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Some optical sensors use a Surface Enhanced Irregular Reflection (SEIR) technique to capture

fingerprints. SEIR is based on scattering principles in which light is scattered and reflected from

ridges and not from valleys. Most of the scattered light is collected, giving the ridges a brighter

appearance and the valleys a darker appearance.

2.2.2 Capacitive

This technique consists of a number of small capacitive plates placed under the sensor platen.

Air acts as the dielectric medium and the electric field strength is a function of the distance of

the fingerprint ridges and valleys from the capacitive plates (Fig. 2.3(b)). The electric field

drops off as the inverse of the distance [23]. To achieve a certain resolution, a compromise

between the capacitive plate size and the distance between capacitive plates needs to be obtained.

Capacitive sensors suffer from static discharge which could possibly damage the plates; hence

proper grounding is required.

2.2.3 Piezoelectric

The surface of the pressure sensitive sensors is made up of a dielectric material which generates

current proportionate to the applied pressure. Ridges touching the sensor surface apply more

pressure as compared to the valleys not touching the sensor surface [11]. This varying current

generated due to varying pressures aids in capturing the fingerprint image (Fig. 2.3(c)).

2.2.4 Temperature Differential

Sensors based on this technique use pyroelectric material which generates current proportional

to temperature differentials [11]. The fingerprint ridges in contact with the sensor generate a

temperature differential slightly different from the valleys not touching the platen. These sensors

are electrically heated to maintain a predetermined temperature. The working principle is same

as that of the piezoelectric device, only the pressure sensing elements are replaced by temperature

sensitive elements.
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2.2.5 Ultrasound

These sensors transmit small pulses of acoustic signals towards the finger and pick up the

reflected echo’s. The sensors are however bulky and expensive as they consist of a sender which

transmits the acoustic signal, and a receiver which detects the responses bouncing off the fingertip

[11]. Ultrasound sensors have a significant advantage over other sensors as they work on a non-

contact principle eliminating the distortion introduced due to surface contact (Fig. 2.3(d)).

2.2.6 Touchless

Recently a touchless fingerprint sensor was manufactured by TBS North America2. They

combine images captured using a touchless multi-sensor device to generate a 3-D model of the

fingerprint. During the acquisition process, the finger is illuminated by a sequence of green LED

array combinations, generating 20 images (4 images/camera x 5 cameras). The 20 images are

calibrated appropriately to construct a 3-D fingerprint image. To ensure compatibility with the

traditional databases and algorithms, the 3-D finger is virtually unrolled onto a plane to obtain

a rolled-equivalent fingerprint. This sensor helps in nullifying the distortions introduced during

the image acquisition process, due to interaction of elastic skin with a solid surface. Also, a

sensor developed by the TST group3 converts light reflected by ridges into electrical signals to

generate an image.

2.2.7 Multispectral

A recent sensing technology proposed by Lumidigm4, images sub-surface information from

fingerprints. The sub-surface information is believed to mimic the ridge-valley skin pattern [22].

The multispectral data is collected using different illumination angles, polarization conditions and

different wavelengths. The advantage of using multispectral imaging is that good quality prints

are acquired irrespective of differing skin conditions and environmental effects. Dry/smudged

fingers or fingers with scars are still captured properly as these effects do not affect the sub-

surface information.

2http://www.tbsinc.com/
3http://www.tst-ag.de/
4http://www.lumidgim.com/

http://www.tbsinc.com/�
http://www.tst-ag.de/�
http://www.lumidgim.com/�
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2.2.8 Distortions introduced in different sensing technologies

Each sensing technology introduces its own distortions. Thus, deformation in fingerprint

images is not only a consequence of the elastic skin interacting with a solid platen/surface during

the image acquisition process, but a characteristic of the sensor as well. Distortions can occur

in a fingerprint image when parts of the image are stretched, compressed or out of focus with

respect to the rest of the image. Blurred edges are sometimes observed in images captured

using optical scanners. This is due to the relatively larger size of the fingerprint area compared

to the first lens in the lens assembly, leading to non-parallel light paths toward the edge of the

image [21]. In some acquisition systems, the path lengths of reflected light differ across the length

and width of the fingertip. Differences in path lengths can cause part of the image to be wider

than the rest of the image - a principle known as Trapezoidal Distortion [21], [24], [25]. In Fig.

1.2, the image captured using Digital Persona’s U.are.U 4000 exhibits this type of distortion.

Varying path lengths also generate defocused areas within the captured image. The curvature

of the lens assembly can lead to curved or out of focus appearance along the outer edges of the

image. Capacitive sensors are prone to noisy artifacts, including noise from the 60 Hz power line

and electrical noise from within the sensor. The semiconductor-sensing chips are also sensitive

to electrostatic discharge, salt from sweat and other contaminants, as well as physical wear.

Grid artifacts are possible in capacitive sensors. Hence, intrinsic sensor properties introduce

distortions in the resulting images.

2.3 Sensor Interoperability

Biometric sensor interoperability refers to the ability of a system to compensate for the

variability introduced in the raw biometric data of an individual due to the deployment of

different sensors. In the context of fingerprints, interoperability may be addressed by two different

approaches as shown in Fig. 2.4.

(a) Distortion compensation model : In this approach, the goal would be to determine

and model the physics of the distortion process when a user places her finger on a particular

scanner. This distortion would be based on the sensing technology of a particular scanner as

well as the process employed to convert the sensed data into a raw image. As shown in Fig.

2.4(a), knowledge of the distortion process will permit computation of the original “undistorted”
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fingerprint (canonical image). The canonical image may then be used for matching purposes [26].

(b) Inter-sensor distortion model : In the second approach, the relative distortion between

images acquired using two different sensors can be computed (Fig. 2.4(b)). Modeling the inter-

sensor distortion may be viewed as a calibration problem, and can be accomplished by inheriting

the knowledge of corresponding points on the two sensors.

This is similar to the camera calibration problem in computer vision wherein the knowledge

of corresponding points on a chessboard plane is used for appropriately registering two different

cameras as well as computing the intrinsic parameters for the same camera [27], [28], [29], [30].

As multiple inexpensive cameras are used in several close-range 3-D and 2-D measurement ap-

plications, precise calibration of cameras is required [29]. Camera calibration in the context of

3-D machine vision is the process of determining the internal camera geometric and optical char-

acteristics (intrinsic parameters) and/or the 3-D position and orientation of the camera frame

relative to a certain world coordinate system (extrinsic parameters) [30]. Extrinsic parameters

are required to transform object coordinates to a camera-centered coordinate frame while the

intrinsic parameters include the effective focal length, scale factor and image center/principal

point [30].

The inter-sensor distortion model is similar to camera calibration and is a combination of

affine as well as elastic distortions.

In this work, the second approach described above is used to address interoperability. A

thin-plate spline (TPS) model is used to represent the inter-sensor distortion since such a model

can account for the affine as well as the non-linear aspects of the deformation. The parameters of

the inter-sensor distortion model rely on the evidence of control points present on the two sensors

and their correspondence. In the proposed approach, corresponding points (control points) are

obtained by manually locating minutiae points from a small set of representative fingerprint image

pairs (Fig. 2.5). The control points are selected manually to approximately cover the whole area

within the smaller fingerprint image in order to model the distortions occurring in different areas

of the representative image. These control points are then used to derive a deformation that

represents the relative distortion between the two images (Fig. 2.6).

Procrustes analysis of the control points assists in the computation (and subsequent re-

moval) of translation and rotational parameters relating the two representative images. Pro-

crustes analysis is a rigid shape analysis that uses isomorphic scaling, translation, and rotation
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Figure 2.4: Two different ways of facilitating interoperability. (a) Distortion compensation
model and (b) Inter-sensor distortion model. The numbers within circles denote the sequence of
steps.

Figure 2.5: Minutiae correspondence (manually selected) across representative image pairs, serve
as inputs to the TPS model.
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Figure 2.6: Manually selected control points from representative image pairs are provided as
inputs to the TPS model. The affine and non-linear parameters derived from the average defor-
mation model are used for image and minutiae calibration during the authentication stage.

to find the “best” fit between two landmarked shapes defined by the control points. In our

methodology, procrustes analysis is used to determine only the translation and rotation param-

eters. The translation parameters are obtained by aligning the centroids of both sets of control

points. If P = {(u1, v1), (u2, v2), · · · , (un, vn)} is the set of n control points in sensor 1 and

P ′ = {(u′1, v′1), (u′2, v′2), · · · , (u′n, v
′
n)} is the corresponding set of n control points in sensor 2, then

the centroids are given by ( ū =
∑n

i=1
ui

n
, v̄ =

∑n
i=1

vi

n
) and ( ū′ =

∑n
i=1

u′i
n

, v̄′ =
∑n

i=1
v′i
n

), re-

spectively. The control points are next zero-centered based on their centroids. The zero-centered

P and P ′ are symbolized as PM and P ′
M . The optimal rotation between the two point clouds is

computed by estimating the orthogonal matrix Q such that the expression m = ‖PM − QP ′
M‖

is minimized. In order to maximize the correlation between the two sets of landmark points,

the optimal Q is calculated by the singular value decomposition (SVD) of P T
MP ′

M , i.e., SVD

(P T
MP ′

M) → UDV T , and Q = V UT .

The rotation and translation factors are due to variation in finger placement across different

acquisitions and do not contribute toward the intersensor distortions. The TPS model, de-

scribed in the next section, is used to compute the affine and the non-linear parameters from
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the translation/rotation-corrected control points. By first compensating for the translation and

rotation parameters, the TPS deformation parameters can be computed independently of these

effects. The TPS parameters are estimated for several representative image pairs based on man-

ually established control points. Multiple sets of TPS parameters aid in generating an average

deformation model [31], which defines the perturbation at every pixel (point) on one sensor with

respect to the other.

The resulting average deformation model may be used for minutiae as well as image cali-

bration. Our proposed inter-sensor distortion model can be incorporated into a minutiae-based

matcher for successful comparison of templates originating from different sensors as shown in

Fig. 2.7. In image calibration, the original fingerprint image is subjected to the transformation

Inter-sensor
Distortion

Compensation

Image
Acquisition

Image
Enhancement

Minutiae
Extraction

Minutiae
Matching

Enrolled minutiae template

Figure 2.7: Minutiae calibration: The inter-sensor distortion compensation block is introduced
in-between the minutiae extraction and matching modules to handle inter-sensor distortions.

defined by the average deformation. Minutiae are then extracted from this calibrated image and

later utilized during the matching stage.

2.4 Thin Plate Spline model

For spatial rearrangement of points, the thin-plate spline succinctly expresses the dependence

of the physical bending energy of a thin metal plate on point constraints [32]. TPS has been

used in many 2D [33], [34], [35], [36] and 3D [34], [37], [35], [36] medical imaging applications for

appropriate registration. Recently, TPS has been used to model the non-linear deformations in

fingerprints [31], [9], [38], [39], [40], [41].

2.4.1 Bending Energy of TPS

Given a list of corresponding points, the TPS model interpolates the corresponding grid

points while maintaining smoothness as defined by the bending energy of the thin metal plate.
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The smoothness is maintained by minimizing the bending energy at a point ,

∫∫

R2

((
∂2Fk

∂x2

)2

+ 2

(
∂2Fk

∂x∂y

)2

+

(
∂2Fk

∂y2

)2
)

dxdy

where, Fk can be defined in the (x, y) plane (as an inplane interpolant) or even orthogonal to

the (x, y) plane.

The following derivation is based on Bookstein [32]. Let G1 = (u1, v1), G2 = (u2, v2), · · · ,
Gn = (un, vn) be the control points in sensor 1 and G′

1 = (u′1, v
′
1), G′

2 = (u′2, v
′
2), · · · , G′

n = (u′n, v
′
n)

be the corresponding control points in sensor 2. The basis function is given by U(rij) = r2
ijlog(r2

ij),

where rij = |Gi − Gj| and U(r) satisfies the equation for minimizing the bending energy at a

point. Then matrices K and P can be defined as,

K =




0 U(r12) · · · U(r1n)

U(r21) 0 · · · U(r2n)

· · · · · · · · · · · ·
U(rn1) U(rn2) · · · 0




n×n

;

and

P =




1 u1 v1

1 u2 v2

· · · · · · · · ·
1 un vn




n×3

.

Let T be the matrix transpose operator and O be a 3 × 3 matrix of zeros, then L is given as

L =


 K P

P T O




(n+3)×(n+3)

.

Define Y as

Y =

[
u′1 u′2 · · · u′n 0 0 0

v′1 v′2 · · · v′n 0 0 0

]

2×(n+3)

.

The affine and non-linear deformation parameters can be estimated as,

L−1Y T = (W |h)T

where,

W =

[
w1u w2u · · · wnu

w1v w2v · · · wnv

]

2×n

; h =

[
h1u h2u h2u

h1v h2v h2v

]

2×3

.
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h1’s, h2’s, h3’s are the parameters of the affine transformation while wi’s represent the weights

for the non-linear transformation.

If a list of corresponding points between the kth representative image pair is defined, the

TPS function, Fk, calculates the transformed co-ordinates (x′, y′) as a function of the original co-

ordinates (x, y). Here, the (x, y) points are in sensor 1 and the (x′, y′) points are the corresponding

transformed points in sensor 1. The function Fk is defined for each pixel (x, y) on sensor 1 and

can be written as

(x′, y′) = Fk(x, y) =

[
h1u

h1v

]
+

[
h2u

h2v

]
x +

[
h3u

h3v

]
y +

n∑
i=1

[
wiu

wiv

]
U(|Gi − (x, y)|), (2.1)

where , Gi, i = 1..n, are the control points corresponding to sensor 1. The affine parameters and

the non-linear weights can be derived in a closed form solution according to the bending energy

constraint which minimizes the curvature at every point in the grid.

2.4.2 Determining the average pixel deformation

If there are m representative image pairs, then the application of the procedure described

above will result in the generation of m TPS functions, F1, F2, . . . Fm. The average deformation

of an arbitrary pixel (x, y) on sensor 1, denoted by F (x, y), is computed from these m functions

as,

F (x, y) =
m∑

k=1

Fk(x, y)

m
. (2.2)

The function F (x, y) defines the new location of each point (x, y) in sensor 1.

2.4.3 Orientation computation

The orientation of each minutiae has to be modified after estimating the average deformation

(Fig. 2.8). This is accomplished by the procedure described below.

Let P (a, b) be the location of a minutia and θ its orientation. The“angle point” Q(c, d) can

then be computed at a distance r from P as,

c = a + rcosθ, d = b + rsinθ. (2.3)

Upon applying the average deformation model, the points P (a, b) and Q(c, d) are altered as

P ′(a′, b′) and Q′(c′, d′) respectively. The new orientation θ′ can now be computed as,

tan θ′ =
d′ − b′

c′ − a′
(2.4)
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P = (a,b) Q = (c,d)P’ = (a’,b’) Q’ = (c’,d’)r
Figure 2.8: Minutiae orientation is modified on basis of the transformed minutiae location (after
average deformation). P is the original minutiae point location while Q is the corresponding
‘angle point’. P’ and Q’ are the corresponding locations of P and Q after average deformation.

2.4.4 Derivation of scaling parameters

The linear terms obtained from TPS are collected in a matrix,

H =

[
h2u h3u

h2v h3v

]
. (2.5)

The h1u and h1v terms can be ignored as they are the translation parameters. Singular decom-

position of H results in H = O1DO2, where O1 and O2 are the rotation parameters and D is a

diagonal matrix of singular values that correspond to the scaling parameters in the horizontal

Su and vertical Sv directions. The optimal scaling parameters SU , SV are obtained by averaging

the scaling parameters across k different pairs of representative images (Eq. 2.6).

SU =
m∑

k=1

Suk

m
; SV =

m∑

k=1

Svk

m
(2.6)

2.5 Experimental Results

In order to test the efficacy of the proposed calibration model, the MSU dataset comprising of

fingerprint images obtained using two different sensor technologies, an optical Digital Biometrics

(DBI) sensor and a solid-state capacitive VERIDICOM (VERI) sensor [42], was used. The 500

dpi DBI sensor has a platen area of 1”× 1” and outputs images of size 480× 508. The 500 dpi

VERI sensor has a sensing area of 0.6” × 0.6” and outputs images of size 300 × 300. Sample

images from each sensor can be seen in Fig. 2.5. We observe that the two images, although
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(a) (b)

Figure 2.9: Sample fingerprints from Digital Biometrics (DBI) and VERIDICOM (VERI) sen-
sors. (a) Image acquired from DBI. (b) Image acquired from VERI.

obtained using sensors of similar resolution, have very different spatial characteristics.

The fingerprint data of 128 different non-habituated cooperative subjects was made available5.

All subjects provided 4 impressions each of 4 distinct fingers using both the sensors. Thus, 2,048

fingerprint impressions (4 impressions each of 512 different fingers) were available for each sensor.

Two different minutiae-based matchers - the BOZORTH3 matcher developed by NIST5 and the

VeriFinger matcher developed by Neurotechnologija6 - were used in our experiments (details

regarding matchers are provided in the Appendix B).

Pre-calibration minutiae matching results using the VeriFinger matcher are shown in Fig.

2.10. The matching minutiae points, as estimated by this matcher, are highlighted in this figure.

Fig. 2.11 illustrates the difference in the minutiae count between the partial prints from VERI

and the (almost) full prints from DBI. It can be observed that the DBI images contain more

minutiae compared to the VERI images. This can be further confirmed in Fig. 2.10(c) and 2.10(f)

where the number of overlapping minutiae is observed to be relatively more in the DBI image

pair. Further, note that during inter-sensor matching (Fig. 2.10(i)), the VeriFinger matcher is

unsuccessful in correctly detecting corresponding minutiae pairs.

The calibration model described in the previous section was applied at 2 different levels -

Feature level (minutiae) and Image level. The calibration model itself was computed using 8

different representative image pairs obtained from the two sensors. In our experiments, the

5Although data from more number of users was collected, only 128 of these users had data pertaining to both
the sensors. For the remaining users, corresponding images could not be determined.

5http://fingerprint.nist.gov/NFIS/
6http://www.neurotechnologija.com/
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(a) DBI Fingerprint 1 (b) DBI Fingerprint 2 (c) DBI vs DBI Matching

(d) VERI Fingerprint 1 (e) VERI Fingerprint 2 (f) VERI vs VERI Matching

(g) VERI Fingerprint 1 (h) DBI Fingerprint 2 (i) VERI vs DBI Matching

Figure 2.10: Fingerprints in the first 2 columns are matched and the corresponding minutiae
matching results are shown in the third column. Highlighted minutiae represent the minutiae
that have been matched. The first row illustrates DBI vs DBI matching, the second VERI vs
VERI matching and the third VERI vs DBI matching.
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Figure 2.11: The histogram of minutiae points extracted from the DBI and VERI images.

VERI sensor was calibrated with respect to the DBI sensor. An illustration of the calibration

process using mesh-grid plots can be seen in Fig. 2.12. Here, each mesh-grid represents the

spatial geometry of individual images.

Five different matching experiments were conducted using each of the two matchers in order

to demonstrate the benefit of the calibration model:

(a) DBI vs DBI : The genuine and impostor match scores were generated by comparing minutiae

sets within the DBI database.

(b) VERI vs VERI : The genuine and impostor match scores were generated by comparing

minutiae sets within the VERI database.

(c) VERI vs DBI (before calibration): The genuine and impostor match scores were generated

by comparing the VERI minutiae sets with the DBI minutiae sets.

(d) VERI vs DBI (after minutiae calibration): The minutiae sets extracted from the VERI

images were subjected to the average deformation computed using our calibration model before

matching them against the minutiae sets of the DBI images. An illustration of the original

minutiae set of a VERI image along with the calibrated minutiae is provided in Fig. 2.13(a and

b). In the current formulation, the location and the orientations of individual minutia points

are perturbed. The location is computed using the average deformation while the orientation is

manipulated as shown in Section 2.4.3.

(e) VERI vs DBI (after image calibration): The calibration model suggested here was also

used to calibrate the images acquired using the VERI scanner before extracting the minutiae

from them. However, the application of a non-linear transformation to individual image pixels

will generate sub-pixel information which can confound the minutiae detection process. In Fig.
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Figure 2.12: Demonstration of the calibration process using mesh-grid plots. (a) and (b) The
deformation of two VERI images with respect to their corresponding DBI images as estimated by
the TPS model. (c) A pre-calibrated VERI image. (d) The post-calibrated VERI image based
on the deformation of eight representative image pairs. The dashed rectangle in (d) indicates
the dimensions of the original VERI image.
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2.14, the original fingerprint image along with the image generated after applying the non-linear

transformation is shown. As seen in 2.14(b), some pixel information is lost due to the non-linear

transformation. In some cases there could be a substantial perturbation of ridge information,

leading to erroneous minutiae detection. One way to address this issue would be to subject the

image to a simple affine transformation (predominantly scaling along the X- and Y- directions)

before extracting minutiae points. These scaling factors were calculated as the average of the

corresponding affine parameters computed by the calibration model based on the 8 representative

image pairs (refer to Section 2.4.4). The mesh grid plot along with the minutiae obtained after

image calibration are shown in Fig. 2.13(c). As the minutiae are extracted from the images

obtained after calibration, the minutiae count might be altered.

A total of 3,072 genuine (512 *

(
4

2

)
) genuine scores and 523,264 (

(
512

1

)
∗

(
511

1

)
∗

(
4

1

)
/2)

imposter scores were generated for each of the five matching scenarios.

The Receiver Operating Characteristic (ROC) curves summarizing the performance of these

five experiments using both the matchers is shown in Fig. 2.15. It is observed that the proposed

calibration model results in improved inter-sensor matching performance. For example, in the

scenario involving VERI vs DBI (after minutiae calibration) the GAR (Genuine Accept Rate)

increases from ∼ 35% to ∼ 75% at a FAR (False Accept Rate) of 0.01% when the VeriFinger

matcher is used. Similarly, when the BOZORTH3 matcher is used, the GAR increases from

∼ 35% to ∼ 70% at the same FAR. Similar observations can be made in the case of image

calibration. Fig. 2.16 indicates the improved minutiae matching as a result of calibration.

Thus, we observe that a simple non-linear calibration scheme is sufficient to address the

problem of interoperability. This, however, does not undermine the development of sophisticated

matching algorithms that utilize information such as ridge counts between minutiae points when

comparing minutiae sets pertaining to multiple sensors. Such approaches have their own merits

since they would preclude the establishment of manual correspondences.

2.5.1 Role of scaling parameters

In the sensor pair considered in our experiments, the scaling parameters along the horizontal

(U) and vertical (V) directions are observed to be more prominent than the local deformations.

In Table 2.2, the scaling factors Su, Sv for all the 8 representative images are shown. Fig. 2.17

shows the contribution of the non-linear parameter weights, where it can be seen that most of
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Figure 2.13: (a) Original mesh-grid plot with minutiae (b) Mesh-grid plot with calibrated
minutiae (after minutiae calibration) (c) Mesh-grid plot with minutiae (after image calibration)
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Figure 2.14: (a) Original fingerprint image. (b) Image generated after applying non-linear
transformation leads to loss of information.

Table 2.2: TPS scaling parameters for the representative images

Su 1.2315 1.2638 1.1851 1.2146 1.2263 1.2054 1.1272 1.2011 SU = 1.2069
Sv 0.9949 0.9040 0.9907 0.9801 0.8965 1.0090 0.8245 0.8738 SV = 0.9342
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Figure 2.15: ROC curves indicating the improvement in inter-sensor performance on the MSU
database. (a) VeriFinger matcher. (b) BOZORTH3 matcher.

the weights are close to the zero value and, hence, are less significant. Thus, from Table 2.2

and Fig. 2.17 it can be concluded that for this specific database, the scaling factors are more

significant in comparison with the non-linear weights.

The prominence of scaling factors are observed for the current database, but for some other

databases the non-linear weights might be more significant. In such a scenario, the calibration

based on scaling factors approach will not work. Also in cases of non-linear distortion (like

trapezoidal distortion), the non-linear weights will not be close to zero.

For the current database, as the scaling factors are prominent over the non-linear parameters,

analysis of the effect on performance using the scaling factors for minutiae was conducted. For

the sake of this analysis, the location (u, v) and orientation (θ) values of the minutiae sets derived

before calibration were manipulated on basis of the scaling factors derived in Eq. 2.6. The new

(u′′, v′′) and orientation (θ′′) values are computed as shown in Eq. 2.7.

u′′ = uSU ; v′′ = vSH ; θ′′ = tan−1

{
SV

SU

tan(θ)

}
. (2.7)

The performance after modifying the original minutiae template from (u, v, θ) to (u′′, v′′, θ′′)

can be observed in Fig. 2.18 (VERI vs DBI - after calibration (minutiae scaling)). This VERI

vs DBI - after calibration (minutiae scaling) performance is almost comparable with VERI vs

DBI - after calibration (image as well as minutiae), for both the matchers. This validates our

observation of prominence of linear scaling factors across images, procured from both the sensors.

One must keep in mind that the linear calibration approach would only work in presence of
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(a) VERI vs DBI - (b) VERI vs DBI -
before calibration after calibration (Image)

(c) VERI vs DBI -

after calibration (Minutiae)

Figure 2.16: Improved inter-sensor minutiae matching after calibration. (a) indicates the match-
ing minutiae before calibration, (b) and (c) show the matching minutiae after image and minutiae
calibration, respectively. Matching minutiae pairs are highlighted for distinguishing them from
the non-matching minutiae pairs. Match scores as assessed by the VeriFinger matcher for (a),
(b), (c) are 35, 193 and 202, respectively.
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Figure 2.17: Plot indicating the distribution of weights for the non-linear parameters (derived
using TPS) for each of the 8 representative images. (a) Weights computed in the horizontal
direction. (b) Weights computed in the vertical direction. The x-axis corresponds to the repre-
sentative image pair while the y-axis represents the weights of the non-linear parameters.

prominent linear scaling factors. In cases of nonlinear distortion, e.g., trapezoidal distortion,

this particular approach of linear calibration would not suffice. The comparable performance of

minutiae and Image calibration as well as minutiae scaling, indicates the potential of this scheme

to work accurately even in the absence of scaling factors and prominence of non-linear weight

parameters.
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Figure 2.18: ROC curves comparing the minutiae scaling performance with non-linear image
and minutiae calibration. (a) VeriFinger matcher. (b) BOZORTH3 matcher.
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2.6 Summary and Future Work

In this work we have demonstrated that a simple non-linear calibration scheme based on the

thin-plate spline model is sufficient to handle variations in minutiae distributions across multiple

sensors. The parameters of the model (average deformation) are computed based on a small

representative set of image pairs containing control points (landmarks) whose correspondences

are manually established. The average deformation is used to distort the minutiae points of

images acquired using one sensor before comparing them with the minutiae points of images

corresponding to another sensor. A significant performance improvement is observed when the

proposed scheme is utilized to compare fingerprint images originating from two different sensors,

viz., optical and solid state capacitive sensors. Only a few representative image pairs are needed

for the successful implementation of the proposed method. In future, we plan to use more

sophisticated calibration grids (similar to camera calibration in computer vision) by imaging

rigid finger-like synthetic material with pre-established control points. This would avoid issues

related to the user-dependent elasticity of the skin.

An inherent limitation of our proposed scheme could be the inability to compensate for

variations introduced in fingerprint images acquired across sensors with significant differences in

resolution (e.g. 250 dpi fingerprint images matched against 1000 dpi fingerprint images). The

1000 dpi images reveal level III fingerprint features such as pores on the surface of the skin. It

is not possible for an image captured using a 250 dpi sensor to reveal these intricate details (i.e,

pores). Thus, a simple non-linear transformation will not register such disparate images.

A generic calibration model, based on automated control point selection from the represen-

tative image pairs, is essential to facilitate interoperability across a wide range of sensors. In the

formulation presented in this work, variations introduced in the images and their corresponding

features are compensated by defining the solution as a simple transformation function between

the extracted features. This approach needs to be evaluated across images acquired using differ-

ent sensors. To study the feasibility of the proposed approach across multiple sensors, currently

we are acquiring data from 3 different sensors (Crossmatch Verifier 300, Secugen Hamster III,

Precise 100 AX) in order to study the interoperability issues associated with them. We are also

developing alternate fingerprint matching schemes to address interoperability between minutiae

sets obtained from multiple sensors.
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Chapter 3

Fingerprint Image Quality

3.1 Introduction

Fingerprint quality is usually defined as a measure of the clarity of the ridge and valley struc-

tures, as well as the “extractability” of features (such as minutiae and singularity points) [10].

Minutiae are usually extracted after segmenting the image into foreground and background. Fore-

ground is the fingerprint area within the captured image where a prominent ridge-valley pattern

is observed while the area not containing any ridge-valley pattern is classified as Background.

Fig. 3.1(a) shows the original image and fig. 3.1(b) shows the foreground area segmented from

the background area.

(a) (b)

Figure 3.1: (a) Original Fingerprint, (b) Segmented Fingerprint

Within the foreground, if the captured ridge-valley pattern is prominent and clear then the

fingerprint is said to be of good quality, whereas if the captured ridge-valley pattern is not clear
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(contains some noise or irregularities) then the fingerprint is said to be of bad/poor quality. Many

different approaches have already been developed for estimating quality of a given fingerprint

image, a review of which is presented in the next section.

The remainder of the chapter is organized as follows. In Section 3.2 some of the already

existing quality measures are reviewed; Section 3.3 discusses a gabor-based classification approach

for classifying fingerprint images into good, dry and smudged quality. The results and the

limitations of the proposed scheme are covered in the same section; Section 3.4 presents a novel

approach of incorporating local feature quality into the score formulation. This section also

includes the experimental results on multiple databases for different matching schemes.

3.2 Quality Estimation Techniques

Different approaches of quality estimation are summarized in this section. The individual

approaches are grouped into 5 different categories: (a) Intensity-based, (b) Filter-based, (c)

Classifier-based, (d) Wavelet-based and (e) Hybrid approaches.

3.2.1 Intensity-based Quality Estimation

Bolle et. al [43], [44] use the ratio of directional area to the non-directional area towards com-

puting quality. Directional area is defined as an area having dominant direction or a prominent

ridge-valley pattern while a non-directional area does not have a dominant direction or a promi-

nent ridge-valley pattern. A metric signifying the dryness and the smudginess in a fingerprint

image has also been derived.

Variation in the intensities around a pixel are calculated along different directions. The

intensity differences are computed between the pixel of interest and its corresponding neighboring

pixels along the respective direction. The minimal intensity variation along an orientation gives

the orientation of the pixel. If the sum of the variation in intensities along all the directions is

less than a background threshold (predetermined) for each direction, the pixel is classified as a

background pixel. When more than a certain fraction of all pixels within a block are background

pixels, the block is classified as a background block. Using connected component analysis, if the

area of a component within a block is greater than a certain fraction of the block image area, the

block is defined as a foreground block. After determining the foreground blocks, the dominant
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direction within each block is calculated. A histogram of orientations for each pixel within a block

is computed and if the histogram has a maximum value greater than a certain threshold, then the

block is labeled as prominent. Inconsistencies within “directional” and “non-directional” blocks

are removed by looking at the neighboring blocks. Finally, using connected component analysis,

regions of dominant directional blocks within an area smaller than a threshold number of blocks

are discarded. This results in foreground image which is partitioned into region of blocks with

direction and blocks without direction. Weights are assigned to foreground blocks with respect

to the centroid location of foreground. Quality of the image is calculated as the ratio of total

weights of blocks having dominant direction to total weights of foreground blocks. The objective

here is to detect blocks with dominant direction exhibiting a clear ridge/valley pattern.

The dryness and smudginess of a poor fingerprint image is also evaluated. Mean intensity

of all pixels within a foreground block is calculated. Pixels having a value less than the mean

intensity are considered as pixels on a ridge. Mean intensity of ridge pixels is calculated and the

standard deviation of all pixels within the same block is also calculated. For smudged blocks

(low contrast), the mean and standard deviation is small. The block is classified as a smudged

block if the product of the mean and standard deviation is smaller than a threshold. Smudginess

measure is determined by the fraction of smudged blocks within the foreground area. Dry blocks

(low contrast) have a large mean and a small standard deviation. The block is classified as a

dry block if the ratio of the mean and standard deviation is greater than a certain threshold.

Dryness measure is computed similar to the smudginess measure.

Park et. al [45] have proposed a similar approach in which a 16*16 block size is considered.

The average intensities in 8 different directions within each block are recorded and the difference

between the maximum and the minimum value defines the quality of the block (QB). A threshold

distinguishes a good quality block from a poor quality block. The percentage of good quality

and poor quality blocks within the foreground is computed and another threshold determines

the nature of the print, namely good or poor quality.

An approach on parallel lines has been proposed by Jain et. al [46] where in they calculate

the variance across ridge direction. The quality of an image is defined based on the calculated

variance and a goodness index is also defined which compares the minutiae extraction procedure

with the actual minutiae extracted by an human expert. The quality of a fingerprint is estimated

through the variance calculated perpendicular to the orientation field. For the foreground, vari-
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ance along the ridge direction would be low whereas variance across the ridges would be fairly

high. The background ideally has low variance in all the directions. This variance is used to

quantify the quality of each block. According to the value of the variance a “Good”, “Medium”,

“Poor” and “Background” quality is assigned to each block.

3.2.2 Filter-based Quality Estimation

An approach to determine fingerprint image quality on the basis of Gabor features is presented

by Shen et. al [47]. The image is divided into blocks and Gabor features for each block are

calculated. The quality is determined by the standard deviation of these Gabor features. For a

good quality image block with local ridge orientation, the values of one or more Gabor features are

larger than the rest of the features. For a poor quality image block without local ridge orientation,

the values of the Gabor features are closer to each other. Thus, the standard deviation can be

used for quality estimation as well as foreground or background segmentation. A pre-defined

threshold is used for labeling the block as foreground or background. The foreground block is

classified into “poor” or “good” on the basis of another threshold. The quality index is computed

as a fraction of good quality blocks within the foreground area. If this quality index is greater

than a threshold, the image is classified as “good” quality else the image is classified as a “poor”

quality image.

The smudginess index and dryness index are also determined for a “poor” quality image,

based on the mean pixel value within the block. For a smudged block, the mean value for the

block would be small while for a dry block it would be large. Thresholds are set to classify the

blocks as smudged or dry and also to classify the image as smudged or dry (similar to [43]).

Pardo et. al [48] have used a similar Gabor feature-based approach. A global quality

measure is defined which takes into account the whole fingerprint while a local quality measure is

defined which considers the region surrounding singularities. The local features are the extracted

singularities, core and delta points. For accurate singularity detection, anisotropic diffusion is

used as a pre-processing step for smoothing the image. The number of iterations required by

anisotropic diffusion is derived empirically for the specific image quality as this technique is built

towards classification. 200 iterations are required to correctly classify poor quality fingerprints,

less are required for good quality fingerprints and more for bad quality fingerprints.

For a block size of 16 × 16, 8 different Gabor features are derived for each block (similar
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to [47]). If the standard deviation of Gabor features of the block is less than a threshold then

the block is marked as a good quality block else it is marked as a bad quality block. The global

quality is defined similar to the one in [47]. The local quality is defined in an area surrounding

the singularity points called the mask and is given by the proportion of the bad quality blocks in

the mask w.r.t. the total number of blocks in the mask. The fingerprint is eventually accepted or

rejected on basis of local quality, global quality and the number of iterations used for anisotropic

diffusion.

3.2.3 Classifier-based scheme

NIST1 has developed a measure to assess the fingerprint image quality [4]. Their algorithm

associates a quality with each minutiae and also generates an quality map of the fingerprint

image. The image is divided into a grid of blocks and several parameters corresponding to each

block are calculated. These parameters aid in defining the low contrast, low flow, high curve

and direction maps. Areas exhibiting low contrast, low flow and high curves are deemed to be

unstable areas, where minutiae detection is considered to be unreliable. A reliability measure for

the minutiae is extracted on basis of their location in the quality map.

Direction Map - The purpose of this map is to define areas with sufficient ridge-valley structure

as minutiae can be reliably detected from these areas.

Low Contrast Map - The blocks with low contrast are flagged on basis of the pixel intensity

distributions. If the distributions are too narrow, the blocks are classified as low contrast blocks,

which include the background, smudged and dry blocks.

Low Flow Map - Low flow map marks the blocks that could not initially be assigned a dominant

ridge flow. Minutiae detected from these areas are not reliable. Lower quality is assigned to the

minutiae detected from these areas.

High Curve Map - Minutiae detected in the high curvature areas are not reliable, especially in

the core and delta regions. Two measures, Vorticity and Curvature are used. Vorticity measures

the cumulative change in ridge flow direction around all neighbors of the block while curvature

measures the largest change in direction between a block’s ridge flow and the ridge flow of each

of its neighbors. Lower quality is assigned to the minutiae detected from these areas as well.

Quality Map - This is the final image map obtained from the low contrast, low flow, high curve

1National Institute of Standards and Technology
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and direction maps. Five levels of quality are assigned with 0 being the background and 4 being

a very good region. The quality assigned to a specific block is determined based on its proximity

to the flagged blocks in the above mentioned maps.

Assess Minutiae Quality - MINDTCT [49] is the minutiae extraction algorithm used by NIST.

Poor quality or spurious minutiae are detected by associating a reliability measure on the basis of

two factors: (a) the quality (L) of a minutiae point based on its location in the quality map and

(b) mean and standard deviation of the pixels within an immediate neighborhood of the minutiae

location (neighborhood size 11 pixels). For a high quality region, the mean pixel intensity would

be very close to 127 while the standard deviation would be greater than or equal to 64. Reliability

measure is calculated based on the mean and standard deviation of the minutiae neighborhood.

Minutia quality is calculated using the quality map and the reliability measure.

Feature vectors are defined on basis of the quality map and the assessed minutiae quality. The

feature vector (vi) is constructed by considering 11 different features derived from: the number

of foreground blocks, percentage of foreground blocks belonging to certain quality (associated

with the quality map) and count of minutiae with differing quality values.

The purpose of this research is to define a fingerprint image quality which would predict the

matcher’s performance. Hence, good quality fingerprints are expected to fabricate high match

scores and these scores should be well separated from the non-match distributions. Similarly,

poor quality fingerprints are expected to generate lower match scores, lying in the region of

overlap with non-match scores. Thus, a quality measure should be indicative of the degree to

which the match distribution M(sm) is separated from the non-match distribution N(sn), where

sm and sn are the matched and non-matched scores respectively. Now, if the Gallery Γ represents

the set of enrollees in a biometric system while Probe set Π serves as a set of legitimate users of

the system, then the estimated quality measure of biometric sample xi is defined as

o(xi) =
sm(xi)− E[sn(xji)]

σ(sn(xji))
∀ xi ε Γ or Π (3.1)

where, o(xi) is the normalized match score of sample xi, E[.] is the expected value, σ(.) is the

standard deviation, sm(xi) is the match score of xii (also represented as xi) and sn(xji) are

the non-match scores of the sample xji. For each fingerprint, image quality is defined as the

predictor of its normalized match score. To obtain the estimated quality measure qi for the

biometric sample xi, a feature vector vi consisting of all appropriate signal and image fidelity
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characteristics is generated and then vi is non-linearly mapped to obtain o(xi).

vi = L(xi)

qi = õ(xi) = I(vi) (3.2)

where, L(.) gives the feature vector described above (11 different features extracted by MINDTCT)

and I(.) is the mapping from the space of feature vectors v to normalized match scores o(.). õ(xi)

is the predicted value of o(xi).

The 11-dimensional feature vector is provided as an input to the neural network which then

acts as a classifier to define five different quality classes. The neural network is first trained and

then tested on various databases. The final five classes representing the quality of the fingerprint

image (outputs from the neural network) are “poor”, “fair”, “good”, “very good” and “excellent”.

3.2.4 Wavelet-based Quality Estimation

A research report presented by Bolle and Ratha [50] estimates the image quality of a

wavelet compressed fingerprint image. The quality is based on the cumulative energy present in

the sub-bands of a wavelet compressed image. This procedure is only beneficial if a wavelet scalar

quantization (WSQ) compressed image is available. The transform attempts to concentrate the

signal energy in a small number of transform coefficients. This method could be advantageous

as wavelets provide a compact representation scheme and the image quality can be decided from

the partially decompressed image. One can use this decision, to determine if one can proceed

with the processing of this image. Also, one does not have to decompress the image to determine

the image quality.

The energy in each of the sub-bands is computed from the wavelet coefficients. It is observed

that the normalized cumulative energy in the initial few sub-bands of a good quality fingerprint is

much higher than that in a poor quality fingerprint. The rate of growth of the cumulative energy

is significantly different for the good and poor quality fingerprints. For poor quality images, the

energy distribution in the low order sub-bands is more or less the same, while for a good quality

image the energy is concentrated in a few selected sub-bands.
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3.2.5 Hybrid Approaches

Intensity and Orientation-based Quality Estimation

Lim et. al. [51] have proposed a quality and validity analysis technique based on both the local

and global structures of the fingerprint image. First, the quality of the image is determined and

then, invalid images are distinguished from the valid images. For the local structure, the local

orientation certainty and the ridge-valley structure is considered. For global justification, the

continuity of ridge orientation and the variation in the ridge to valley ratio is analyzed.

During local analysis, at every pixel within a block, the gray level gradients along the x-

and y-direction are calculated representative of the orientation. The covariance matrix of the

gradient vector for all the pixels within a block, provide the eigen values for the block. For

each block the ratio between the eigen values, defines the orientation certainty level which gives

an indication of the strength of energy concentration along the ridge-valley orientation. The

lower the value, the greater the energy. As some of the residue images have a strong orientation

strength, ridge-valley structure is also examined. A grey level plot of an image block in the

direction normal to the ridge flow is plotted. Three successive local maxima and minima are

recorded and their average provides a threshold value for the separation of ridges and valleys.

Ridge frequency value, ridge-to-valley thickness ratio and ridge thickness are also calculated from

the grey level plot described above. An adaptive thresholding technique is implemented which

identifies a block as a “blank” or “non-blank” identity. The non-blank blocks are then classified

as “good”, “bad” and “undetermined” on basis of orientation certainty and ridge-valley structure.

The total quality score for local analysis is computed as a function of the total number of good,

undetermined and bad quality image blocks respectively.

In global analysis, orientation along each row and column of the image blocks is observed

for the detection of smooth or abrupt changes in the fingerprint image. The blocks which show

abrupt changes in orientation are added to obtain a global orientation score. The ridge-to-valley

thickness ratio calculated in the earlier step is used for determining the global quality as well.

The standard deviation of this ratio from the mean value is used to quantify the image. Large

deviation from the mean ratio value is used as a parameter to identify a bad quality from a good

quality image. The total image quality is calculated as a function of the local quality measure,

global orientation score, ridge-to-valley thickness, number of blank blocks obtained after adaptive
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thresholding and a heuristic representing the minimum number of foreground blocks required for

a fingerprint image to be identified as one with sufficient information.

Hong et. al [8] derive several local features within a block on basis of the estimated

orientation field. The ridges and valleys are modeled as a sinusoidal-shaped wave along the

direction normal to the local ridge orientation. The amplitude, frequency and variance of the

sinusoid are estimated, and used to classify the blocks as recoverable and unrecoverable. The

image is then rejected, if the percentage of unrecoverable blocks exceeds a certain threshold.

Filter and Intensity-based Quality Estimation

Joun et. al [52] have defined three quality measures which aid in comparing the image

qualities of infant and adult fingerprints.

Measure of Foreground portion - The variance in the gray-level pixel values is utilized for dis-

tinguishing the foreground from the background. Foreground intensities will have a relatively

large variance compared to the background. Based on the magnitude of gray-level variance, each

overlapping block is assigned to the foreground or the background. This scheme is similar to the

one implemented by Jain et. al [46].

Measure of Directional Contrast - Local contrast in gray values between the ridges and the val-

leys along the local orientation of the ridge flow is used as a measure of directional contrast. For

a good quality block, the ridges and the valleys are well separated and display a high directional

contrast while a bad quality block would display a low directional contrast. A 8-directional filter

is used in a moving window operation for computing the directional contrast.

Measure of Gabor Feature - The standard deviation of the Gabor features of blocks is used as a

measure of image quality. This is similar to the approach put forth in Shen et. al [47].

These three quality measures are used as separate entities while analyzing the overall quality

of the image. The average ridge distances between infant and adult fingerprints is also calculated.

The lower quality of an infant fingerprint is a direct consequence of the average ridge distance

being 84% of the adult average ridge distance. Hence, the average ridge distance can also be

used as a quantifying measure.
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Orientation and Frequency domain approach

Chen et. al. [10]have defined a quality index in the spatial domain (similar to [51]). If λ1

and λ2 are the two eigenvalues, the coherence measure is computed as,

k̃ =
(λ1 − λ2)

2

(λ1 + λ2)2
(3.3)

k̃ reflects the clarity of the local ridge-valley orientation in each foreground block. If a block has

a distinct ridge-valley orientation, then λ1 >> λ2 which results in k̃ ≈ 1. Else, if a block is of

poor quality then λ1 ≈ λ2 which results in k̃ ≈ 0. A single quality measure Qs is defined as the

weighted average of the block-wise coherence measures, where the weights are assigned on basis

of the block location in the foreground area.

The global quality index is computed in frequency domain by considering the power spectrum

of the fingerprint image. Good quality images display a prominent ring pattern in the power

spectrum, corresponding to the consistent ridge-valley frequency. Poor quality images have

a more diffused power spectrum due to non-uniform spacing between ridges along with the

unclear ridges. Hence, the energy distribution in the power spectrum is utilized for computing

a global quality index. Bandpass filters are designed to extract the energy content in each of

the pre-defined ring-shaped concentric sectors. Energy concentration across these sectors aids in

formulating the global quality index. For a good quality image, energy is concentrated in a few

sectors while energy is more distributed in case of poor quality images.

Filter, Feature and Foreground analysis-based approach

In this approach proposed by Qi et. al. [53], seven different quality indices are combined

into one single global quality measure. The first three measures are evaluated using Gabor filters,

as shown in [47]. The first measure is calculated by averaging the standard deviation of gabor

filters across all image sub-blocks. Second and third measures indicate the level of dryness and

smudginess with the Smudginess and Dryness index (as computed in [47]). The next two features

analyze the foreground area and the foreground position. The foreground area is a ratio of the

number of foreground blocks with the total number of blocks. The foreground position is a

measure of the deviation of the foreground centroid from the centroid of the sensor. Minutiae

count index, the sixth measure, quantifies the similarity between the true extracted minutiae

count with respect to expected minutiae count. The last measure is dependent on the presence
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or absence of the core singular point. Two different functions of combining these seven different

quality factors are proposed in this paper.

A review of most of the quality measures is provided by Alonso-Fernandez et. al. [16].

The authors have grouped the techniques into local, global and classifier-based approaches. A

comparison between the quality estimation techniques described in [10], [4] and [51] with the

subjective image quality (as assigned by an human expert) is conducted.

3.3 Gabor Analysis

Most of the above mentioned techniques evaluate the fingerprint image quality and also

associate a dryness or a smudginess measure with the image [43], [44], [47], [53]. Thus, dryness

and smudginess are considered to be the most prominent factors towards poor quality prints.

Hence, in the proposed quality analysis the primary aim is to segregate the good quality prints

from the poor quality ones. The poor quality images are also classified into dry and smudged on

basis of the nature of the prints.

3.3.1 Structure of 2D Gabor Filter

The general form of a 2D Gabor filter is given by

h(x, y, θk, ft, σx, σy) = exp

[
−1

2

(
x2

θk

σ2
x

+
y2

θk

σ2
y

)]
× exp (i 2 π ft xθk

) (3.4)

k = 1..m

t = 1..n

where xθk
= x cos θk + y sin θk and yθk

= −x sin θk + y cos θk, t denotes the number of frequencies,

ft is the tth frequency of the sinusoidal wave, m denotes the number of orientations, θk is the

kth orientation of the gabor filter and σx and σy are the standard deviations of the gaussian

envelope along the x and y axis respectively. For a fingerprint image, f is the inverse of the

average inter-ridge distance and θk = π(k − 1)/m, where k = 1..m. Once these parameters are
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fixed, the magnitude of the Gabor feature at the sampling point (i,j) is defined as,

g(i, j, θk, ft, σx, σy) =

∣∣∣∣∣∣

w/2−1∑

x=−w/2

w/2−1∑

y=−w/2

I(i + x, j + y)h(x, y, θk, ft, σx, σy)

∣∣∣∣∣∣
(3.5)

k = 1..m

t = 1..n

where I(a, b) denotes the gray-level value of the pixel (a,b) and w is the size of the filter. Thus,

m × n gabor features are obtained for each pixel. The whole image can be represented by

M ×N ×m× n gabor features, where M ×N is the image dimension.

3.3.2 Advantages of Gabor Filter

Fingerprints have a well defined local frequency and orientation [5]. In the proposed scheme,

the underlying ridge-valley pattern of a fingerprint is analyzed using gabor filters. Properly

tuned gabor filters can remove noise, preserve the true ridge and valley structures, and provide

information contained in a particular orientation in the image [54], [55]. A minutia point can be

viewed as an anomaly in locally parallel ridges and it is this information that can be captured

using gabor filters [5], [56]. Gabor filters or filterbanks have been extensively used in the literature

[5], [56], [57], [47], [48], as they are a well-known technique to capture useful information in specific

bandpass channels as well as to decompose this information into biorthogonal components in

terms of spatial frequencies [5], [56].

3.3.3 Variations from the standard Gabor approach

The proposed approach, although principally similar to the one proposed by Shen et. al. [47],

varies in many aspects. The authors in [47] use a bank of gabor filters with eight different orien-

tations and one constant frequency, and convolve the image with this bank of gabor filters. Their

block-based technique is based on the criteria that for every block, in presence of a prominent

ridge-valley pattern, atleast one or several gabor filters will match the underlying fingerprint

pattern. This will result in good response for some filters and poor response for the others. In

the case of a poor quality or a background block, none of the gabor filters would result in a good

response. Thus, on basis of the standard deviation across these filter responses, a block could be

classified as being poor or good.
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Gabor filters capture both the local and global features within a fingerprint. Eight different

directions are required to completely capture the local ridge characteristics in a fingerprint while

only four directions are required to capture the global configuration [5], [57]. In our formulation

we wish to analyze the local information, hence we use eight different orientations. Also in

fingerprints, even though the ridges and valleys are parallel to each other, the inter-ridge distance

varies across the whole fingerprint and also across fingerprints. On basis of this observation, gabor

filters with five different frequencies are utilized. A pixel-based approach is implemented instead

of a block-based approach to check the contribution of each pixel towards the quality of the image.

Thus, each pixel is analyzed within its corresponding neighborhood, defined by the size of the

gabor filter mask. In presence of a good quality neighborhood, one of the filters produce a better

response than the rest as the filter frequency and orientation matches the underlying ridge-valley

pattern. While for a poor quality neighborhood, none of the filters from the filterbank produce a

good response due to the lack of underlying ridge-valley pattern. Hence, the maximum response

at all the pixels across all the filters is recorded.

In the proposed formulation, parameters of the gabor filter are: m = 8, n = 5, σx = 4, σy

= 4, w = 20 and ft takes on five (n = 5) different values [1/6, 1/7, 1/8, 1/9, 1/10]. Thus, the

orientations of the gabor filter vary in the steps of 22.5◦ (180◦/m) and the inter-ridge distances

vary between 6 and 10 pixels in steps of one. For every image at every pixel, m× n = 8 × 5 =

40 gabor features are computed. Fig. 3.2 provides an illustration of the gabor filters with same

orientation and five different frequencies.

3.3.4 Gabor-based Quality Classification

The gabor-based quality classification aids in classifying images into good, dry and smudged

images. The most prominent steps are foreground segmentation and pixel-based gabor response

analysis, after the segmented foreground is convolved with the gabor filterbank. This process is

summarized in the flow chart shown in Fig. 3.3.

Foreground Segmentation

The gabor response is only computed in the foreground and, hence, foreground segmentation

is required. Foreground region corresponds to the area containing ridges and valleys, which

is the area of interest. The background region corresponds to region outside the borders of the
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Figure 3.2: Gabor filters with the same orientation but different inter-ridge distances (frequen-
cies) (a) 6 pixels, (b) 7 pixels, (c) 8 pixels, (d) 9 pixels, (e) 10 pixels.
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Figure 3.3: Flowchart for gabor-based quality classification approach

foreground area, which does not contain any valid fingerprint information (ridge-valley structure).

A block-based variance thresholding approach is used for segmentation as the background grey-

scale variance is low in comparison with the foreground grey-scale variance. In the first step,

the image is divided into blocks and the variance of the grey-scale intensities within each block

of the image is calculated. The blocks are classified as foreground or background depending on

a global threshold. If the variance is less than the global threshold, then the block is labeled

as background block. A block is labeled as foreground block, if the variance is greater than

the global threshold. In the proposed scheme, global threshold is defined as 0.1. The grey-level

variance for a block of size W ×W is defined as:

var(k) =
1

W 2

W−1∑
i=0

W−1∑
j=0

( I(i, j)−M(k) )2 (3.6)

where, var(k) is the variance of the block k, I(i, j) is the grey-level value at pixel (i, j) and M(k)

is the mean of the grey-level intensities in block k.

Within the detected foreground region, the above procedure may label a few blocks as back-

ground blocks. These blocks may actually correspond to dry or smudged areas within the fore-

ground and are considered as misclassified blocks. Hence, morphological operators are used to

fill holes and detect the region with largest area, which would correspond to the true fingerprint

foreground area. An illustration of a few segmented fingerprints, using the above mentioned

variance thresholding approach, along with original fingerprints is shown in Fig. 3.4.

Pixel-based Gabor response analysis

The gabor filterbank consisting of 40 different filters is convolved with each fingerprint image

(refer Eq. 3.5). The maximum response at each pixel z(i, j) within the segmented foreground
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Figure 3.4: Fingerprint foreground segmentation of (a) Good image (c) Dry image (e) Smudged
image and their corresponding segmented images (b), (d), (f), respectively.
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area (F ) is recorded, as shown in Eq. 3.7.

z(i, j) = max
(i,j)∈F,k=1..m,t=1..n

{g(i, j, θk, ft, σx, σy)} (3.7)

In the work reported by [47], [48], thresholds are defined for the gabor responses to associate a

quality with each block. Similarly in this scheme, thresholds are defined to classify the pixel into

good, dry or smudged quality depending on the neighboring region. In a good quality region,

since the underlying ridge valley pattern is prominent, a good response is observed across atleast

one filter. While for a poor quality region, a poor or moderate response is observed across all the

filters. Hence, the maximum gabor response values across good quality regions and poor quality

regions differ significantly. This observation helps in distinguishing between the good and the

poor quality pixels but not in classifying the poor quality pixels into dry and smudged.

Another aspect which should not be overlooked is the fact that a gabor response is a measure

of not only the filter matching the underlying pattern but also the pixel intensity as shown in

Eq. 3.5. Poor quality pixels can be classified into dry and smudged on the basis of these pixel

intensity-based responses. Dry areas should ideally comprise of pixel intensities close to 255 (for

a 256 grey-scale image) while smudged areas should comprise of pixel intensities close to 0. But

this ideal scenario does not always exist and hence variations in the grey-level intensities close to

255 and 0 are observed. These variations propagate into the gabor responses and thus thresholds

can be defined for segregating dry quality pixels from the smudged quality pixels.

Threshold determination - All the results with the intermediate steps for the gabor-based

quality classification approach, for a good-quality fingerprint image are shown in Fig. 3.5. The

histogram of gabor pixel responses is a good indicator of the percentage of pixels contributing

towards good, dry and smudged qualities. Fig. 3.6, 3.7 and 3.8 reveal the variation in the

histogram of gabor pixel responses for good, dry and smudged quality images. The maximum

gabor response image for each of these fingerprints is also displayed. On basis of the significant

difference in the histograms of the different quality images, two different threshold values of

λ1 and λ2 are defined to analyze the contribution of pixels towards the global image quality.

Percentage of pixels within the foreground (F ) contributing towards a gabor response value that

is: (a) less than λ1 (b) between λ1 and λ2 and (c) above λ2, are used for global quality analysis.
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These percentages are defined as (a) Xλ1 , (b) Xλ1λ2 and (c) Xλ2 , respectively (refer Eq. 3.8).

Xλ1 =

( ∑∑i=M,j=N
i=1,j=1,(i,j)∈F I (z(i, j) ≤ λ1)

)
( ∑∑i=M,j=N

i=1,j=1,(i,j)∈F 1
) ∗ 100 (3.8)

Xλ1λ2 =

( ∑∑i=M,j=N
i=1,j=1,(i,j)∈F I (λ1 < z(i, j) ≤ λ2)

)
( ∑∑i=M,j=N

i=1,j=1,(i,j)∈F 1
) ∗ 100

Xλ2 =

( ∑∑i=M,j=N
i=1,j=1,(i,j)∈F I (z(i, j) ≥ λ2)

)
( ∑∑i=M,j=N

i=1,j=1,(i,j)∈F 1
) ∗ 100

where, I(e) = 1 if e is true.
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Figure 3.5: Intermediate results for the gabor-based classification approach (a) Original image
(b) Segmented image (c) Maximum gabor response image (d) Histogram of gabor pixel responses.
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Figure 3.6: Pixel-based gabor response of good quality images shown in (a) good1 and (b) good2.
(c) and (d) show the corresponding maximum gabor response images. Histogram of gabor pixel
responses are shown in (e) and (f).
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Figure 3.7: Pixel-based gabor response of dry quality images shown in (a) dry1 and (b) dry2.
(c) and (d) show the corresponding maximum gabor response images. Histogram of gabor pixel
responses are shown in (e) and (f).
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Figure 3.8: Pixel-based gabor response of smudged quality images shown in (a) smudged1 and
(b) smudged2. (c) and (d) show the corresponding maximum gabor response images. Histogram
of gabor pixel responses are shown in (e) and (f).
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In the current formulation, values of λ1 and λ2 are selected as 1000 and 2000, respectively.

These thresholds are based on the observation that the histogram of good quality images reveal

a high percentage of pixels contributing towards a better gabor pixel response (above a value of

λ2). For a dry quality image, a peak (high percentage of pixels) is observed between the response

values of λ1 and λ2. This actually corresponds to the ‘near 255’ pixel intensities in the original

image. In the case of a smudged quality image, large percentage of pixels are observed below the

λ1 response value, which relate to the ‘near 0’ pixel intensity in the original image.

Classification

The percentages of pixels defined by these thresholds for each of the images displayed in Fig.

3.6, 3.7 and 3.8 are reported in the Table 3.1. For the dry images, high pixel percentages (65.54%

No. Image quality Xλ1% Xλ1λ2% Xλ2%

1 good1 35.87 25.55 38.26

2 good2 35.89 22.70 41.05

3 dry1 17.18 65.54 16.74

4 dry2 16.37 62.57 20.29

5 smudged1 68.00 20.36 11.64

6 smudged2 57.01 24.22 18.77

Table 3.1: Percentage of pixels defined by the thresholds λ1 and λ2, used for image quality
classification.

and 62.57%) are observed for Xλ1λ2 , whereas for smudged images high percentages (68.00% and

57.01%) are observed below Xλ1 . For good quality images, the distribution of percentages is

pretty even across the three bins created by the thresholds.

On basis of the significant variations observed across the three threshold percentages, good,

dry and smudged quality images can be classified. To analyze the potential of this method,

each fingerprint image is represented using a 3D feature set comprised of the threshold pixel

percentages {Xλ1 , Xλ1λ2 , Xλ2}.

Results

To test the proposed approach, 391 fingerprint images from the FVC 2004 DB1 database2

were manually labeled with the associated quality. Visual assessment of these images led to

2FVC 2004 - DB1 (available @ http://bias.csr.unibo.it/fvc2004/)
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Table 3.2: Confusion Matrix based on Naive-Bayes classifier (ten-fold validation)

Good Dry Smudged

Good 166 1 8

Dry 0 122 0

Smudged 1 0 93

175 good, 122 dry and 94 smudged quality images. The 3D feature set {Xλ1 , Xλ1λ2 , Xλ2} for

each image was computed. Fig. 3.9 displays the 3D plot of these 391 images on basis of these

3D feature sets. Three different prominent clusters are observed in the 3D plot with a slight

0
20

40
60

80

0

20

40

60

80
0

10

20

30

40

50

 

<10001000~2000
 

>
20

00

Good
Dry
Smudged

Figure 3.9: Classification of good, dry and smudged quality images using the {Xλ1 , Xλ1λ2 , Xλ2}
feature set.

overlap. To estimate the error introduced due to misclassification, the 3D feature set of all the

391 images is passed through a Naive-Bayes classifier 3. A ten-fold validation approach with a

percentage split between the training and testing data of 50 %, resulted in a 2.55% error due

to 10 misclassified instances. The confusion matrix as reported by this classifier is provided in

Table 3.2.

3The Naives-Bayes classifier implemented in WEKA was utilized. WEKA is a collection of machine learning
algorithms for data mining tasks available at http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/�
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3.3.5 Summary and future work

A novel approach for classifying images into three different categories: good, dry and smudged

quality, has been proposed. Such a categorization would assist in invoking different image process-

ing or matching schemes based on the nature of the input fingerprint image. Also, this approach

needs to be tested on a database which contains labeled dry, good and smudged quality images.

Limitations

The above described approach is a heuristic-based approach. The defined thresholds will vary

according to the database in consideration. This undermines the ability of this approach to be

used across images from multiple databases.

It is very difficult to define an ideal set of parameters {Xλ1 , Xλ1λ2 , Xλ2} that would aid in the

computation of a global image quality measure. Slight variations in frequency or pressure can

alter these values.

This approach has an inherent limitation based on the assumption of parallel ridges and

valleys exhibiting an ideal sinusoidal-shaped plane wave, in a direction orthogonal to the local

orientation. But as shown by Yang et al. [58], this is rarely the case and a large deviation from

the sine wave is observed especially in the presence of excessive or less pressure.

3.4 Incorporating estimated quality into a fingerprint recog-

nition system

It has been reported in the literature, that the presence of poor quality images degrades the

performance of a fingerprint recognition system. By incorporating the knowledge of quality into

different modules of a fingerprint recognition system, improvement in matching performance has

been reported [10], [59], [60].

3.4.1 Incorporating quality at different stages of the recognition sys-

tem

Knowledge of the information present in the fingerprint image can be used for defining two

different types of quality:
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• a global image quality measure

• a quality measure associated with each feature extracted from the fingerprint image

During enrollment, the quality of the fingerprint image ‘to be enrolled’ can be estimated and

only images with ‘sufficient quality’ enrolled into the database. If a similar criteria is used

during the identification or verification phase, reliable matching of fingerprints may be achieved.

A study was initiated by Simon-Zorita et. al. [59], [60], which assessed the effect of varying image

quality and position variability on a minutiae-based fingerprint verification scheme. A significant

improvement in performance was reported when poor quality images with position variabilities

were excluded from the matching scheme. An improved performance by removal of poor quality

images has also been reported in [10], [16], [43].

The estimated image quality can be used to invoke different enhancement and feature ex-

traction algorithms across images. In [10], Chen et. al. tune the parameters of the enhancement

algorithm according to the estimated image quality, to improve the performance of the system.

In most of the matching schemes, features are extracted from the fingerprint images which

are later utilized for matching purposes. Hence, methods have been proposed which incorporate

the local feature quality into the matching scheme. Chen et. al. [10] use the local minutiae

quality to estimate the transformation parameters. During matching, if both the matching

minutiae are of high quality, this pair would contribute more to the estimation of transformation

parameters. NIST associates a quality or reliability measure with every extracted minutiae.

During matching, a option is provided which allows minutiae below a certain quality threshold

to be rejected from the matching phase [49]. The knowledge of image quality can be integrated

into the matching phase. Some systems can be designed to invoke a slower but more powerful

matcher when low-quality samples are observed [61]. In [62], Fierrez-Aguilar et. al. have shown

that their ridge-based fingerprint matcher is more robust to image quality degradation than their

minutiae-based system for a number of different image quality criteria.

The image qualities can also be introduced into the score formulation. The performance of two

different fingerprint matchers based on minutiae and ridge information as well as their score level

combination has been investigated under varying fingerprint image quality. An adaptive quality-

based score formulation scheme, which relies on the estimated quality has been proposed [17].

The adaptive quality-based score fusion is based on the assumption that the performance of

one of the algorithms drops significantly in comparison with the other, in the presence of image
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quality degradation.

Thus, the global image quality or the feature quality can be utilized by the individual modules

of the recognition system. In this work, the feature quality measure is incorporated in the

matching module.

3.4.2 Proposed incorporation of extracted Feature Quality into Match-

ing Score Formulation

We believe that it is important to use the knowledge of the quality of extracted features

since they are utilized for matching purposes. Also, as the computed score provides a true

representation of the ‘quality’ of matching, the quality associated with each feature should be

incorporated into the score formulation. In a minutiae-based matching scheme, a pair of high

quality matching minutiae pair should contribute more as compared to a poor quality matching

minutiae pair. But different matching schemes utilize different features for matching purposes.

In this section, the potential of incorporating feature quality into the score formulation for two

different matchers: a minutiae-based matcher and a ridge-based matcher, is demonstrated.

Minutiae-based matcher

Each fingerprint is represented by a set of extracted features, namely minutiae points. Each

minutiae point is generally characterized by its location and orientation. Matching is accom-

plished by finding the maximum number of minutiae pairings between the enrolled template and

the input minutiae set.

Standard Score formulation -

In the case of a minutiae-based matcher, the matching score is usually a measure of the number

of matching minutiae. If the first fingerprint has k minutiae while the second fingerprint has r

minutiae and l is the number of matching minutiae pairs across the two fingerprints, then the

score S is given by

S =
l2

k ∗ r
(3.9)

Proposed Score formulation -

To incorporate the feature quality into the standard score formulation, the following proce-

dure is adopted: Let Q1 = {q11, q12, q13, · · · , q1k} be the qualities associated with the minutiae
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M1 = {m11,m12,m13, · · · ,m1k} extracted from the first fingerprint. Also, qualities and minutiae

associated with the second fingerprint be given by

Q2 = {q21, q22, q23, · · · , q2r},M2 = {m21, m22,m23, · · · ,m2r}

respectively. The proposed score formulation (Sq) can then be represented as

Sq =

∑
f(q1i, q2j)

2

(∑k
x=1 q1x

)
∗

(∑r
y=1 q2y

) (3.10)

where, i and j are the matching minutiae indices in the first and second fingerprint respectively

and f(.) is a function which combines the qualities of the matching minutiae. The denominator

represents the product of the sum of all the minutiae qualities for each fingerprint.

Results -

In this technique, the feature quality associated with each minutiae is computed by implementing

the procedure proposed by NIST [4]. The minutiae quality is computed on basis of local informa-

tion in the area surrounding the minutiae location (see Section 3.2.3). The matching minutiae

records are obtained from the VERIFINGER matcher. The original flowchart of a minutiae-

based matching algorithm along with the modified flowchart after incorporating feature quality

into the score formulation is shown in Fig. 3.10.

Image
Acquisition

Image
Enhancement

Minutiae
Extraction

Minutiae
Matching

Enrolled minutiae template

Matching Score
Formulation

Associate Quality with
each Minutiae Minutiae

Matching

Quality-based
Matching Score

Formulation

Enrolled minutiae template

Figure 3.10: Flowchart of a minutiae-based matching algorithm. Modified flowchart for incorpo-
rating feature quality into the score formulation is indicated by the dotted lines.

In the proposed formulation, f(.) (in Eq. 3.10) is defined as the average of qualities of the

matching minutiae,

f(.) =
(q1i + q2j)

2
.

If two poor quality minutiae are matched then their contribution to the matching score will

be less as compared to two good quality matching minutiae. Also, two matching minutiae of

moderate quality will contribute more than a pair of poor quality matching minutiae.
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The proposed score formulation is compared with the standard score formulation for multiple

databases from FVC 2002 and 2004, the results of which are reported in Fig. 3.11. Thus, by

incorporating quality into the score formulation, slight improvement in performance is observed.
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Figure 3.11: Minutiae-based matcher: Improvement in performance can be observed by compar-
ing the proposed feature quality-based score formulation with the standard score formulation for
multiple databases from FVC 2004 and 2002

Feature-based matcher

The feature-based matcher used to demonstrate the effect of feature quality incorporation

into the score formulation, has been proposed by Jain et. al. [5], [56]. In this local texture

analysis approach, the fingerprint area of interest is tessellated with respect to the core point. A
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feature vector, called the FingerCode, is generated from the ordered enumeration of the features

extracted from the local information, contained in each sector specified by the tessellation. The

local texture information in each sector is decomposed into separate channels by using a Gabor

filterbank. Matching is performed by computing the Euclidean distance between the fingercodes

of the corresponding fingerprints. For more details regarding the feature-based matcher, refer to

Appendix C.

Standard Score formulation -

Let F = {f1, f2, f3, · · · , fk} and F ′ = {f ′1, f ′2, f ′3, · · · , f ′k} be the fingercodes of the fingerprints

being matched. The score is computed as the euclidean distance across the fingercodes (Eq.

3.11).

D =

√√√√
k∑

i=1

(fi − f ′i)
2 (3.11)

Proposed Score formulation -

To incorporate the feature quality into the score formulation, the standard score formulation is

modified as follows:

D′ =

√∑k
i=1(qi + q′i) (fi − f ′i)

2

√∑k
i=1(qi + q′i)

(3.12)

where, Q = {q1, q2, q3, · · · , qk} and Q′ = {q′1, q′2, q′3, · · · , q′k} are the qualities associated with each

of the features.

Results -

The quality associated with each feature is computed by implementing the procedure proposed

by NIST [4]. Here, each feature is associated with a sector within the fingerprint and the same

procedure, described in [4], is implemented to associate a quality with each feature. Flowchart of

this feature-based matcher along with the modified flowchart after incorporating feature quality

into the score formulation is shown in Fig. 3.12.

The results of the proposed score formulation in comparison with the standard score for-

mulation for multiple databases from FVC 2002 and 2004 are reported in Fig. 3.13. From the

performance curves, it can be concluded that by incorporating feature quality into the score

formulation improvement in performance can be achieved.
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Figure 3.12: Flowchart of the fingercode based matching algorithm - (a) Original (b) Modified
flowchart after incorporating feature quality into the score formulation
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Figure 3.13: Ridge feature-based matcher: Improvement in performance can be observed by com-
paring the proposed feature quality-based score formulation with the standard score formulation
for multiple databases from FVC 2004 and 2002
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3.4.3 Conclusion

From Fig. 3.11 and 3.13, it can be observed that the feature quality-based score formulation

leads to an improvement in performance. The potential of such a scheme has been displayed for

both, a minutiae-based matcher as well as a ridge feature-based matcher. Such a feature quality-

based score formulation could be useful when dealing with matchers which already exhibit a

great performance and slight improvements in performance are desired. More complex score

formulations need to be investigated as well.
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Chapter 4

Summary and Future Work

4.1 Sensor Interoperability

In the proposed model for sensor interoperability, we have demonstrated that a simple non-

linear calibration scheme based on the thin-plate spline model is sufficient to handle variations

in minutiae distributions across multiple sensors. The model parameters (average deformation)

are computed based on a small representative set of image pairs containing manually established

corresponding control points (landmarks). A significant performance improvement is observed

when the proposed scheme is utilized to compare fingerprint images originating from two different

sensors, viz., optical and solid state capacitive sensors.

The proposed formulation needs to be tested on different matching schemes other than a

minutiae-based matching scheme, e.g. a ridge feature-based matcher. In future, more sophis-

ticated calibration grids (similar to camera calibration in computer vision) by imaging rigid

finger-like synthetic material with pre-established control points, need to be used. This would

avoid issues related to the user-dependent elasticity of the skin. Also a generic calibration model,

based on automated control point selection from the representative image pairs, is essential to

facilitate interoperability across a wide range of sensors. In the formulation presented in this

work, variations introduced in the images and their corresponding features are compensated by

defining the solution as a simple transformation function between the extracted features. This

approach needs to be evaluated across images acquired using different sensors. To study the fea-

sibility of the proposed approach across multiple sensors, currently data from 3 different sensors

(Crossmatch Verifier 300, Secugen Hamster III, Precise 100 AX) is being acquired, in order to
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study the interoperability issues associated with them. Alternate fingerprint matching schemes

to address interoperability between minutiae sets obtained from multiple sensors need to be

developed as well.

4.2 Quality

A novel approach for classifying images into three different categories: good, dry and smudged

quality, has been proposed. Such a categorization would assist in invoking different image pro-

cessing or matching schemes based on the nature of the input fingerprint image.

In this work, we have also shown that the feature quality-based score formulation leads to

improvement in performance. The potential of such a scheme has been displayed for both, a

minutiae-based matcher as well as a ridge feature-based matcher. Such a feature quality-based

score formulation could be useful when dealing with matchers which already exhibit good per-

formance and slight improvements in performance are desired. More complex score formulations

that incorporate image quality need to be investigated as well. Also, other factors contributing

towards local feature quality need to be assessed.
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Appendix A

Roll versus Plain Prints: An

Experimental Study

A.1 Introduction

The fingerprint image acquired using a sensor is impacted by several factors including the

imaging technology, platen area, sensing resolution, etc. Due to these factors, the fingerprint

images obtained using different sensors can be significantly different [63]. Another factor that

impacts the photometric and geometric characteristics of a fingerprint image is the acquisition

methodology that is employed to procure the fingerprint. For example, contact-based sensors can

obtain rolled prints, dab prints or 4 finger slap/plain prints by requiring the subject to interact

with the sensor in a particular manner. This results in images whose inherent characteristics are

significantly different (see Fig. A.1). In this narrative, the compatibility of rolled prints with

slap prints is examined by conducting experiments on the NIST SD 29 database using the NIST

fingerprint matching software.

A.2 Background

A study conducted by Mitretek Systems [1] analyzed the issues affecting the integration

of FBI’s IAFIS1 (that uses 10 rolled prints) with the INS IDENT system2 (that uses two flat

prints). The study suggested the incorporation of 4 or more dab/flat prints of an individual

1IAFIS - FBI’s Integrated Automated Fingerprint Identification System.
2IDENT - Fingerprint matching system used by US-VISIT.



APPENDIX A. ROLL VERSUS PLAIN PRINTS: AN EXPERIMENTAL STUDY 70

(a) (b)

(c)

Figure A.1: Fingerprint images obtained by different acquisition methodologies. (a) Rolled print
(from the NIST Special Database 4); (b) Dab print (from the FVC 2002 DB1 Database); and
(c) Slap or Plain print [2].
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into the IDENT system (as opposed to 2-prints) in order to improve the identification accuracy

when searching for a match in the 10-print IAFIS database (containing more than 40 million

subjects). Another study conducted by the Criminal Justice Information Services Division of

the Federal Bureau of Investigation (FBI) [64] demonstrated a significant drop in performance

when comparing 10-print flats against rolled prints in IAFIS. This was attributed to the system’s

inability to accurately process flat prints since the system was tuned to process rolled prints. The

aforementioned studies highlight the importance of determining the cause for inferior performance

when existing fingerprint matching systems are used to match rolled prints against plain/flat

prints. It is interesting to note that a majority of the errors (misses) reported in [64] were due

to the incorrect classification (caused by the RRI filtering process) of the query prints. Thus,

the filtering constraints imposed by the matching infrastructure can significantly impact the

identification accuracy.

In this report we describe a simple experiment that establishes the following: in the absence

of filtering/indexing schemes, the matching performance of rolled prints against plain prints is

as competitive as matching plain-against-plain or rolled-against-rolled. For this analysis, the

publicly available NIST SD 29 database [3] was used3. This NIST fingerprint database offers

complete paired fingerprint cards (of 216 different users) that include all ten rolled fingerprints

as well as the corresponding plain/flat impressions (Fig. A.2). These are inked cards which

have been converted into a digital format using a FBI complaint scanner. The paired fingerprint

cards represent two sets of fingerprints of an individual captured at different time instances. The

fingerprint data from the card-pairs facilitates any combination of “plain” and “rolled” images

for comparison.

The rolled prints and the plain/flat impressions are segmented (i.e., separated) into individual

fingerprints using the NIST segmentation algorithm. Fig. A.3 shows the rolled images of the left

and right thumbs as well as the four plain impressions of the left hand after segmenting them

from the fingerprint card depicted in Fig A.2. The four plain impressions are then segmented

into individual plain prints (Fig. A.4).

3An earlier test conducted by NIST evaluated the matching performance of COTS matchers corresponding
to twelve different vendors (including the vendor currently used by the US-VISIT system) on the NIST SD 29
dataset [65].
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Figure A.2: Illustration of a fingerprint card available in the NIST Special Database 29 [3].

Figure A.3: Segmented images for right thumb, left thumb, and the four left plain impressions [3].
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Figure A.4: Plain impressions are segmented into individual fingers [4].
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A.3 Experimental Results

The 216 paired fingerprint cards are segmented to obtain 4320 (216 users *10 fingers/user *2

instances of each finger) rolled prints and 4320 segmented plain fingerprints 4. The histogram

of the number of minutiae points for each of the ten rolled and corresponding segmented plain

fingerprints are shown in Fig. A.5. The histograms indicate the differences in minutiae count

between the rolled and the plain prints of all ten fingers. This is directly related to the amount

of fingerprint area exposed in the rolled and the plain prints. Due to the elaborate acquisition

mechanism, the rolled prints contain more number of minutiae including points on the sides of

the finger.

Three different experiments were conducted:

(a) Roll vs Roll (R2R);

(b) Plain vs Plain (P2P);

(c) Plain vs Roll (P2R).

In all three experiments, only fingerprints corresponding to the same finger digit were com-

pared. Thus, for example, the fingerprint impression of the right thumb of a subject was compared

only against other impressions of the right thumb.

1. Verification: In this experiment, the genuine and impostor match scores were generated for

all three matching scenarios. The ROC curves presented in Fig. A.6 indicate that the roll-

versus-plain performance is comparable to the plain-versus-plain performance. Notwith-

standing the fewer number of minutiae points detected by the NIST matcher on plain prints,

the roll-versus-plain performance is still very competitive. The difference in performance

between the roll-versus-roll scenario and the plain-versus-plain scenario may be attributed

to the difference in minutiae points between the two sets of prints.

2. Identification: The data from 152 users was also used to analyze the identification per-

formance. The CMC (Cumulative Match Characteristic) curves for all three matching

scenarios are shown in Fig. A.7. The CMC graph plots the identification rate as a function

of the number of top matches (ranks). The rank K identification rate denotes the probabil-

ity that the correct identity occurs in the top K matches. Once again, these curves suggest

4Due to segmentation related issues, fingerprints of only 152 users were eventually used in the analysis
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Figure A.5: Histograms illustrating the number of minutiae points for the roll and plain (slap)
prints corresponding to the ten fingers. (a) Right Thumb, (b) Left Thumb, (c) Right Index finger,
(d) Left Index finger, (e) Right Middle finger, (f) Left Middle finger, (g) Right Ring finger, (h)
Left Ring finger, (i) Right Little finger, (j) Left Little finger.
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Figure A.6: The verification performance summarized using ROC curves for the SD29 database.
The NIST matcher was used to generate the genuine and impostor scores. Note that the roll-
versus-roll matching performance is significantly superior possibly due to the large number of
minutiae points available for matching.

the competitive performance of the roll-versus-plain scenario.

A.4 Summary

The ROC and CMC curves obtained using the NIST matcher suggest that matching plain

prints against rolled prints (without any filtering) does not seem to drastically impact the match-

ing accuracy. This appears to be the case with the images in the NIST SD 29 database. Thus,

it is our contention that the recognition accuracy of the system is impacted more by the fil-

tering scheme used to reduce the number of target prints. It may be the case that flat prints

do not reveal sufficient pattern characteristics essential for accurate indexing. Hence, we believe

that interoperability between prints acquired across different acquisition methodologies entail the

adoption of new indexing schemes and not necessarily new matching algorithms. Furthermore,

some of the geometric differences between such images can be accounted for by adopting simple

non-linear calibration schemes [63].
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Figure A.7: CMC curves on the SD29 database as assessed using the NIST matcher. In this
experiment, the roll-versus-plain identification accuracy is comparable to the other two scenarios,
viz., roll-versus-roll and plain-versus-plain.
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Appendix B

Fingerprint Matchers - NIST and

VeriFinger

Two different minutiae-based matchers, Bozorth3 matcher developed by NIST and the Ver-

iFinger (Neurotechnologija) matcher are used in our experiments.

Bozorth3 matcher is based on the location (x, y) and orientation (θ) values of the minutiae.

Tables are created for each of the to be matched fingerprints, based on the orientation and

distances of minutia within the fingerprint. A inter-compatibility table is constructed from the

tables generated for different fingerprints. Match score is calculated from the compatible minutia

clusters of the inter-compatibility table [66]. Bozorth3 also utilizes the quality associated with

each minutiae during matching. Only the top 150 best-quality minutiae are used for matching.

VeriFinger 4.1 r© is a minutiae based matcher which uses a proprietary fingerprint matching

algorithm 1. VeriFinger provides matching details such as translation and rotation parameters

along with a record of the matching minutiae pairs from the corresponding minutiae templates.

VeriFinger utilizes a vast amount of information for matching which comprises of location, direc-

tion and curvature (type) of minutiae points (singular points), global ridge density and blocked

orientations for the whole image. In our formulation, we have excluded both the blocked orienta-

tions and curvatures by using the VF OMIT BLOCKED ORIENTATIONS AND CURVATURES

option as we were not able to modify these parameters.

1http://www.neurotechnologija.com/
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Appendix C

Ridge Feature-based matcher:

Fingercode

In this matching scheme, both the global flow of ridge and valley structures and the local ridge

characteristics are utilized to generate a short fixed length code for the fingerprints. Detailed

description of this fingerprint matching algorithm is provided in [5].

The region of interest in a given fingerprint image is initially detected around a reference point

(Fig. C.1). The core of the fingerprint represents the reference point. The region of interest is

defined by the width and the number of bands around the reference point. Also, each band is

divided by a certain number of orientations. Defining bands and orientations in the region of

interest, leads to formation of sectors. Thus, the proposed scheme of feature extraction tessellates

the region of interest of the given fingerprint image with respect to a reference point. A feature

vector is generated by considering an ordered enumeration of the features extracted from the

(local) information contained in each sector specified by the tessellation. The feature elements

capture the local information while the ordered enumeration of the tessellation captures the

invariant global relationships among the local patterns. The local discriminatory information in

each sector is decomposed into separate components by gabor filterbanks. The average absolute

deviation (AAD) from the mean of gray values in individual sectors of the filtered images is used

to define the feature vector. The feature vector, called the FingerCode, is the collection of all the

features (for every sector) in each filtered image. Matching is based on the Euclidean distance

between the FingerCodes.
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Figure C.1: Ridge feature-based matcher: Flowchart of fingerprint matching system (taken from
[5])

.
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