1,716 research outputs found

    Using Visualizations to Enhance Users' Understanding of App Activities on Android Devices

    Get PDF
    The ever-increasing number of third-party applications developed for Android devices has resulted in a growing interest in the secondary activities that these applications perform and how they affect a user’s privacy. Unfortunately, users continue to install these applications without any concrete knowledge of the breadth of these activities; hence, they have little insight into the sensitive information and resources accessed by these applications. In this paper, we explore users’ perception and reaction when presented with a visual analysis of Android applications activities and their security implications. This study uses interactive visual schemas to communicate the effect of applications activities in order to support users with more understandable information about the risks they face from such applications. Through findings from a user-based experiment, we demonstrate that when visuals diagrams about application activities are presented to users, they became more aware and sensitive to the privacy intrusiveness of certain applications. This awareness and sensitivity stems from the fact that some of these applications were accessing a significant number of resources and sensitive information, and transferring data out of the devices, even when they arguably had little reason to do so

    Visual analytics for non-expert users in cyber situation awareness

    Get PDF
    Situation awareness is often described as the perception and comprehension of the current situation, and the projection of future status. Whilst this may be well understood in an organisational cybersecurity context, there is a strong case to be made for effective cybersecurity situation awareness that is tailored to the needs of the Non-Expert User (NEU). Our online usage habits are rapidly evolving with smartphones and tablets being widely used to access resources online. In order for NEUs to remain safe online, there is a need to enhance awareness and understanding of cybersecurity concerns, such as how devices may be acting online, and what data is being shared between devices. In this paper, we extend our proposal of the Enhanced Personal Situation Awareness (ePSA) framework to consider the key details of cyber situation awareness that would be of concern to NEUs, and we consider how such information can be effectively conveyed using a visual analytic approach. We present the design of our visual analytics approach to show how this can represent the key details of cyber situation awareness whilst maintaining a simple and clean design scheme so as to not result in information-overload for the user. The guidance developed through the course of this work can help practitioners develop tools that could help NEUs better understand their online actions, with the aim of giving users greater control and safer experiences when their personal devices are acting online

    ν˜„μž₯ 데이터 μˆ˜μ§‘ λŠ₯λ ₯을 ν™•μž₯ν•˜κΈ° μœ„ν•œ μžμœ λ„ 높은 μ…€ν”„ νŠΈλž˜ν‚Ή 기술의 λ””μžμΈ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀, 2019. 2. μ„œμ§„μš±.Collecting and tracking data in everyday contexts is a common practice for both individual self-trackers and researchers. The increase in wearable and mobile technologies for self-tracking encourages people to gain personal insights from the data about themselves. Also, researchers exploit self-tracking to gather data in situ or to foster behavioral change. Despite a diverse set of available tracking tools, however, it is still challenging to find ones that suit unique tracking needs, preferences, and commitments. Individual self-tracking practices are constrained by the tracking tools' initial design, because it is difficult to modify, extend, or mash up existing tools. Limited tool support also impedes researchers' efforts to conduct in situ data collection studies. Many researchers still build their own study instruments due to the mismatch between their research goals and the capabilities of existing toolkits. The goal of this dissertation is to design flexible self-tracking technologies that are generative and adaptive to cover diverse tracking contexts, ranging from personal tracking to research contexts. Specifically, this dissertation proposes OmniTrack, a flexible self-tracking approach leveraging a semi-automated tracking concept that combines manual and automated tracking methods to generate an arbitrary tracker design. OmniTrack was implemented as a mobile app for individuals. The OmniTrack app enables self-trackers to construct their own trackers and customize tracking items to meet their individual needs. A usability study and a field development study were conducted with the goal of assessing how people adopt and adapt OmniTrack to fulfill their needs. The studies revealed that participants actively used OmniTrack to create, revise, and appropriate trackers, ranging from a simple mood tracker to a sophisticated daily activity tracker with multiple fields. Furthermore, OmniTrack was extended to cover research contexts that enclose manifold personal tracking contexts. As part of the research, this dissertation presents OmniTrack Research Kit, a research platform that allows researchers without programming expertise to configure and conduct in situ data collection studies by deploying the OmniTrack app on participants' smartphones. A case study in deploying the research kit for conducting a diary study demonstrated how OmniTrack Research Kit could support researchers who manage study participants' self-tracking process. This work makes artifacts contributions to the fields of human-computer interaction and ubiquitous computing, as well as expanding empirical understanding of how flexible self-tracking tools can enhance the practices of individual self-trackers and researchers. Moreover, this dissertation discusses design challenges for flexible self-tracking technologies, opportunities for further improving the proposed systems, and future research agenda for reaching the audiences not covered in this research.μΌμƒμ˜ λ§₯λ½μ—μ„œ 데이터λ₯Ό λͺ¨μœΌλŠ” ν™œλ™μΈ μ…€ν”„ νŠΈλž˜ν‚Ή(self-tracking)은 개인과 μ—°κ΅¬μ˜ μ˜μ—­μ—μ„œ ν™œλ°œνžˆ ν™œμš©λ˜κ³  μžˆλ‹€. μ›¨μ–΄λŸ¬λΈ” λ””λ°”μ΄μŠ€μ™€ λͺ¨λ°”일 기술의 λ°œλ‹¬λ‘œ 인해 μ‚¬λžŒλ“€μ€ 각자의 삢에 λŒ€ν•΄ λ§ν•΄μ£ΌλŠ” 데이터λ₯Ό 더 μ‰½κ²Œ μˆ˜μ§‘ν•˜κ³ , 톡찰할 수 있게 λ˜μ—ˆλ‹€. λ˜ν•œ, μ—°κ΅¬μžλ“€μ€ ν˜„μž₯(in situ) 데이터λ₯Ό μˆ˜μ§‘ν•˜κ±°λ‚˜ μ‚¬λžŒλ“€μ—κ²Œ 행동 λ³€ν™”λ₯Ό μΌμœΌν‚€λŠ” 데에 μ…€ν”„ νŠΈλž˜ν‚Ήμ„ ν™œμš©ν•œλ‹€. 비둝 μ…€ν”„ νŠΈλž˜ν‚Ήμ„ μœ„ν•œ λ‹€μ–‘ν•œ 도ꡬ듀이 μ‘΄μž¬ν•˜μ§€λ§Œ, νŠΈλž˜ν‚Ήμ— λŒ€ν•΄ λ‹€μ–‘ν™”λœ μš”κ΅¬μ™€ μ·¨ν–₯을 μ™„λ²½νžˆ μΆ©μ‘±ν•˜λŠ” 것듀을 μ°ΎλŠ” 것은 쉽지 μ•Šλ‹€. λŒ€λΆ€λΆ„μ˜ μ…€ν”„ νŠΈλž˜ν‚Ή λ„κ΅¬λŠ” 이미 μ„€κ³„λœ 뢀뢄을 μˆ˜μ •ν•˜κ±°λ‚˜ ν™•μž₯ν•˜κΈ°μ— μ œν•œμ μ΄λ‹€. κ·Έλ ‡κΈ° λ•Œλ¬Έμ— μ‚¬λžŒλ“€μ˜ μ…€ν”„ νŠΈλž˜ν‚Ήμ— λŒ€ν•œ μžμœ λ„λŠ” κΈ°μ‘΄ λ„κ΅¬λ“€μ˜ λ””μžμΈ 곡간에 μ˜ν•΄ μ œμ•½μ„ 받을 μˆ˜λ°–μ— μ—†λ‹€. λ§ˆμ°¬κ°€μ§€λ‘œ, ν˜„μž₯ 데이터λ₯Ό μˆ˜μ§‘ν•˜λŠ” μ—°κ΅¬μžλ“€λ„ μ΄λŸ¬ν•œ λ„κ΅¬μ˜ ν•œκ³„λ‘œ 인해 μ—¬λŸ¬ λ¬Έμ œμ— λ΄‰μ°©ν•œλ‹€. μ—°κ΅¬μžλ“€μ΄ 데이터λ₯Ό 톡해 λ‹΅ν•˜κ³ μž ν•˜λŠ” 연ꡬ 질문(research question)은 λΆ„μ•Όκ°€ λ°œμ „ν• μˆ˜λ‘ μ„ΈλΆ„λ˜κ³ , μΉ˜λ°€ν•΄μ§€κΈ° λ•Œλ¬Έμ— 이λ₯Ό μœ„ν•΄μ„œλŠ” λ³΅μž‘ν•˜κ³  κ³ μœ ν•œ μ‹€ν—˜ 섀계가 ν•„μš”ν•˜λ‹€. ν•˜μ§€λ§Œ ν˜„μ‘΄ν•˜λŠ” μ—°κ΅¬μš© μ…€ν”„ νŠΈλž˜ν‚Ή ν”Œλž«νΌλ“€μ€ 이에 λΆ€ν•©ν•˜λŠ” μžμœ λ„λ₯Ό λ°œνœ˜ν•˜μ§€ λͺ»ν•œλ‹€. μ΄λŸ¬ν•œ κ°„κ·ΉμœΌλ‘œ 인해 λ§Žμ€ μ—°κ΅¬μžλ“€μ΄ 각자의 ν˜„μž₯ 데이터 μˆ˜μ§‘ 연ꡬ에 ν•„μš”ν•œ 디지털 도ꡬ듀을 직접 κ΅¬ν˜„ν•˜κ³  μžˆλ‹€. λ³Έ μ—°κ΅¬μ˜ λͺ©ν‘œλŠ” μžμœ λ„ 높은---연ꡬ적 λ§₯락과 개인적 λ§₯락을 μ•„μš°λ₯΄λŠ” λ‹€μ–‘ν•œ 상황에 ν™œμš©ν•  수 μžˆλŠ”---μ…€ν”„ νŠΈλž˜ν‚Ή κΈ°μˆ μ„ λ””μžμΈν•˜λŠ” 것이닀. 이λ₯Ό μœ„ν•΄ λ³Έκ³ μ—μ„œλŠ” μ˜΄λ‹ˆνŠΈλž™(OmniTrack)μ΄λΌλŠ” λ””μžμΈ 접근법을 μ œμ•ˆν•œλ‹€. μ˜΄λ‹ˆνŠΈλž™μ€ μžμœ λ„ 높은 μ…€ν”„ νŠΈλž˜ν‚Ήμ„ μœ„ν•œ 방법둠이며, λ°˜μžλ™ νŠΈλž˜ν‚Ή(semi-automated tracking)μ΄λΌλŠ” 컨셉을 λ°”νƒ•μœΌλ‘œ μˆ˜λ™ 방식과 μžλ™ λ°©μ‹μ˜ 쑰합을 톡해 μž„μ˜μ˜ 트래컀λ₯Ό ν‘œν˜„ν•  수 μžˆλ‹€. λ¨Όμ € μ˜΄λ‹ˆνŠΈλž™μ„ κ°œμΈμ„ μœ„ν•œ λͺ¨λ°”일 μ•± ν˜•νƒœλ‘œ κ΅¬ν˜„ν•˜μ˜€λ‹€. μ˜΄λ‹ˆνŠΈλž™ 앱은 개개인이 μžμ‹ μ˜ νŠΈλž˜ν‚Ή λ‹ˆμ¦ˆμ— λ§žλŠ” 트래컀λ₯Ό μ»€μŠ€ν„°λ§ˆμ΄μ§•ν•˜μ—¬ ν™œμš©ν•  수 μžˆλ„λ‘ κ΅¬μ„±λ˜μ–΄ μžˆλ‹€. λ³Έκ³ μ—μ„œλŠ” μ‚¬λžŒλ“€μ΄ μ–΄λ–»κ²Œ μ˜΄λ‹ˆνŠΈλž™μ„ μžμ‹ μ˜ λ‹ˆμ¦ˆμ— 맞게 ν™œμš©ν•˜λŠ”μ§€ μ•Œμ•„λ³΄κ³ μž μ‚¬μš©μ„± ν…ŒμŠ€νŠΈ(usability testing)와 ν•„λ“œ 배포 연ꡬ(field deployment study)λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μ°Έκ°€μžλ“€μ€ μ˜΄λ‹ˆνŠΈλž™μ„ ν™œλ°œνžˆ μ΄μš©ν•΄ λ‹€μ–‘ν•œ λ””μžμΈμ˜ νŠΈλž˜μ»€β€”μ•„μ£Ό λ‹¨μˆœν•œ 감정 νŠΈλž˜μ»€λΆ€ν„° μ—¬λŸ¬ 개의 ν•„λ“œλ₯Ό 가진 λ³΅μž‘ν•œ 일일 ν™œλ™ νŠΈλž˜μ»€κΉŒμ§€β€”λ“€μ„ μƒμ„±ν•˜κ³ , μˆ˜μ •ν•˜κ³ , ν™œμš©ν•˜μ˜€λ‹€. λ‹€μŒμœΌλ‘œ, μ˜΄λ‹ˆνŠΈλž™μ„ ν˜„μž₯ 데이터 μˆ˜μ§‘ 연ꡬ에 ν™œμš©ν•  수 μžˆλ„λ‘ 연ꡬ ν”Œλž«νΌ ν˜•νƒœμ˜ 'μ˜΄λ‹ˆνŠΈλž™ λ¦¬μ„œμΉ˜ ν‚·(OmniTrack Research Kit)'으둜 ν™•μž₯ν•˜μ˜€λ‹€. μ˜΄λ‹ˆνŠΈλž™ λ¦¬μ„œμΉ˜ 킷은 μ—°κ΅¬μžλ“€μ΄ ν”„λ‘œκ·Έλž˜λ° μ–Έμ–΄ 없이 μ›ν•˜λŠ” μ‹€ν—˜μ„ μ„€κ³„ν•˜κ³  μ˜΄λ‹ˆνŠΈλž™ 앱을 μ°Έκ°€μžλ“€μ˜ 슀마트폰으둜 배포할 수 μžˆλ„λ‘ λ””μžμΈλ˜μ—ˆλ‹€. 그리고 μ˜΄λ‹ˆνŠΈλž™ λ¦¬μ„œμΉ˜ 킷을 μ΄μš©ν•΄ 일지기둝 연ꡬ(diary study)λ₯Ό 직접 μˆ˜ν–‰ν•˜μ˜€κ³ , 이λ₯Ό 톡해 μ˜΄λ‹ˆνŠΈλž™ 접근법이 μ–΄λ–»κ²Œ μ—°κ΅¬μžλ“€μ˜ 연ꡬ λͺ©μ μ„ μ΄λ£¨λŠ” 데에 도움을 쀄 수 μžˆλŠ”μ§€ 직접 ν™•μΈν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬λŠ” 휴먼-컴퓨터 μΈν„°λž™μ…˜(Human-Computer Interaction) 및 μœ λΉ„μΏΌν„°μŠ€ μ»΄ν“¨νŒ…(Ubiquitous Computing) 뢄야에 기술적 μ‚°μΆœλ¬Όλ‘œμ¨ κΈ°μ—¬ν•˜λ©°, μžμœ λ„ 높은 μ…€ν”„ νŠΈλž˜ν‚Ή 도ꡬ가 μ–΄λ–»κ²Œ 개인과 μ—°κ΅¬μžλ“€μ„ λ„μšΈ 수 μžˆλŠ”μ§€ 싀증적인 이해λ₯Ό μ¦μ§„ν•œλ‹€. λ˜ν•œ, μžμœ λ„ 높은 μ…€ν”„νŠΈλž˜ν‚Ή κΈ°μˆ μ— λŒ€ν•œ λ””μžμΈμ  λ‚œμ œ, μ—°κ΅¬μ—μ„œ μ œμ‹œν•œ μ‹œμŠ€ν…œμ— λŒ€ν•œ κ°œμ„ λ°©μ•ˆ, λ§ˆμ§€λ§‰μœΌλ‘œ λ³Έ μ—°κ΅¬μ—μ„œ 닀루지 λͺ»ν•œ λ‹€λ₯Έ 집단을 μ§€μ›ν•˜κΈ° μœ„ν•œ ν–₯ν›„ 연ꡬ λ…Όμ œμ— λŒ€ν•˜μ—¬ λ…Όμ˜ν•œλ‹€.Abstract CHAPTER 1. Introduction 1.1 Background and Motivation 1.2 Research Questions and Approaches 1.2.1 Designing a Flexible Self-Tracking Approach Leveraging Semiautomated Tracking 1.2.2 Design and Evaluation of OmniTrack in Individual Tracking Contexts 1.2.3 Designing a Research Platform for In Situ Data Collection Studies Leveraging OmniTrack 1.2.4 A Case Study of Conducting an In Situ Data Collection Study using the Research Platform 1.3 Contributions 1.4 Structure of this Dissertation CHAPTER 2. Related Work 2.1 Background on Self-Tracking 2.1.1 Self-Tracking in Personal Tracking Contexts 2.1.2 Utilization of Self-Tracking in Other Contexts 2.2 Barriers Caused by Limited Tool Support 2.2.1 Limited Tools and Siloed Data in Personal Tracking 2.2.2 Challenges of the Instrumentation for In Situ Data Collection 2.3 Flexible Self-Tracking Approaches 2.3.1 Appropriation of Generic Tools 2.3.2 Universal Tracking Systems for Individuals 2.3.3 Research Frameworks for In Situ Data Collection 2.4 Grounding Design Approach: Semi-Automated Tracking 2.5 Summary of Related Work CHAPTER3 DesigningOmniTrack: a Flexible Self-Tracking Approach 3.1 Design Goals and Rationales 3.2 System Design and User Interfaces 3.2.1 Trackers: Enabling Flexible Data Inputs 3.2.2 Services: Integrating External Trackers and Other Services 3.2.3 Triggers: Retrieving Values Automatically 3.2.4 Streamlining Tracking and Lowering the User Burden 3.2.5 Visualization and Feedback 3.3 OmniTrack Use Cases 3.3.1 Tracker 1: Beer Tracker 3.3.2 Tracker 2: SleepTight++ 3.3.3 Tracker 3: Comparison of Automated Trackers 3.4 Summary CHAPTER 4. Understanding HowIndividuals Adopt and Adapt OmniTrack 4.1 Usability Study 4.1.1 Participants 4.1.2 Procedure and Study Setup 4.1.3 Tasks 4.1.4 Results and Discussion 4.1.5 Improvements A_er the Usability Study 4.2 Field Deployment Study 4.2.1 Study Setup 4.2.2 Participants 4.2.3 Data Analysis and Results 4.2.4 Reflections on the Deployment Study 4.3 Discussion 4.3.1 Expanding the Design Space for Self-Tracking 4.3.2 Leveraging Other Building Blocks of Self-Tracking 4.3.3 Sharing Trackers with Other People 4.3.4 Studying with a Broader Audience 4.4 Summary CHAPTER 5. Extending OmniTrack for Supporting In Situ Data Collection Studies 5.1 Design Space of Study Instrumentation for In-Situ Data Collection 5.1.1 Experiment-Level Dimensions 5.1.2 Condition-Level Dimensions 5.1.3 Tracker-Level Dimensions 5.1.4 Reminder/Trigger-Level Dimensions 5.1.5 Extending OmniTrack to Cover the Design Space 5.2 Design Goals and Rationales 5.3 System Design and User Interfaces 5.3.1 Experiment Management and Collaboration 5.3.2 Experiment-level Configurations 5.3.3 A Participants Protocol for Joining the Experiment 5.3.4 Implementation 5.4 Replicated Study Examples 5.4.1 Example A: Revisiting the Deployment Study of OmniTrack 5.4.2 Example B: Exploring the Clinical Applicability of a Mobile Food Logger 5.4.3 Example C: Understanding the Effect of Cues and Positive Reinforcement on Habit Formation 5.4.4 Example D: Collecting Stress and Activity Data for Building a Prediction Model 5.5 Discussion 5.5.1 Supporting Multiphase Experimental Design 5.5.2 Serving as Testbeds for Self-Tracking Interventions 5.5.3 Exploiting the Interaction Logs 5.6 Summary CHAPTER 6. Using the OmniTrack Research Kit: A Case Study 6.1 Study Background and Motivation 6.2 OmniTrack Configuration for Study Instruments 6.3 Participants 6.4 Study Procedure 6.5 Dataset and Analysis 6.6 Study Result 6.6.1 Diary Entries 6.6.2 Aspects of Productivity Evaluation 6.6.3 Productive Activities 6.7 Experimenter Experience of OmniTrack 6.8 Participant Experience of OmniTrack 6.9 Implications 6.9.1 Visualization Support for Progressive, Preliminary Analysis of Collected Data 6.9.2 Inspection to Prevent Misconfiguration 6.9.3 Providing More Alternative Methods to Capture Data 6.10 Summary CHAPTER 7. Discussion 7.1 Lessons Learned 7.2 Design Challenges and Implications 7.2.1 Making the Flexibility Learnable 7.2.2 Additive vs. Subtractive Design for Flexibility 7.3 Future Opportunities for Improvement 7.3.1 Utilizing External Information and Contexts 7.3.2 Providing Flexible Visual Feedback 7.4 Expanding Audiences of OmniTrack 7.4.1 Supporting Clinical Contexts 7.4.2 Supporting Self-Experimenters 7.5 Limitations CHAPTER 8. Conclusion 8.1 Summary of the Approaches 8.2 Summary of Contributions 8.2.1 Artifact Contributions 8.2.2 Empirical Research Contributions 8.3 Future Work 8.3.1 Understanding the Long-term E_ect of OmniTrack 8.3.2 Utilizing External Information and Contexts 8.3.3 Extending the Input Modality to Lower the Capture Burden 8.3.4 Customizable Visual Feedback 8.3.5 Community-Driven Tracker Sharing 8.3.6 Supporting Multiphase Study Design 8.4 Final Remarks APPENDIX A. Study Material for Evaluations of the OmniTrack App A.1 Task Instructions for Usability Study A.2 The SUS (System Usability Scale) Questionnaire A.3 Screening Questionnaire for Deployment Study A.4 Exit Interview Guide for Deployment Study A.5 Deployment Participant Information APPENDIX B Study Material for Productivity Diary Study B.1 Recruitment Screening Questionnaire B.2 Exit Interview Guide Abstract (Korean)Docto

    Software Usability

    Get PDF
    This volume delivers a collection of high-quality contributions to help broaden developers’ and non-developers’ minds alike when it comes to considering software usability. It presents novel research and experiences and disseminates new ideas accessible to people who might not be software makers but who are undoubtedly software users

    Augmented Reality Chemistry: Transforming 2-D Molecular Representations into Interactive 3-D Structures

    Get PDF
    Spatial reasoning is defined as the ability to generate, retain, and manipulate abstract visual images. In chemistry, spatial reasoning skills are typically taught using 2-D paper-based models, 3-D handheld models, and computerized models. These models are designed to aid student learning by integrating information from the macroscopic, microscopic, and symbolic domains of chemistry. Research has shown that increased spatial reasoning abilities translate directly to improved content knowledge. The recent explosion in the popularity of smartphones and the development of augmented reality apps for them provide, a yet to be explored, way of teaching spatial reasoning skills to chemistry students. Augmented reality apps can use the camera on a smartphone to turn 2-D paper-based molecular models into 3-D models the user can manipulate. This paper will discuss the development, implementation, and assessment of an augmented reality app that transforms 2-D molecular representations into interactive 3-D structures

    Alcohol Consumption Behavioral Contextualizer

    Get PDF
    Excessive alcohol consumption is a growing health problem in the United States. Many smartphone applications track drinking habits to solve this problem; but most do not provide contextual data, which may cause a change in habit. This Major Qualifying Project focused on researching and developing a smartphone application that visualizes contextual data of a user\u27s alcohol drinking habits, such as drinking locations, drinking times, and people drinking with. Data visualization presents data to users where recurrent patterns can be seen and not obvious information is apparent. Research steps included identifying alcohol context and charts to visualize those contexts. Surveys and focus groups were conducted to compile a set of visualizations into the mobile application AlcoContextualizer

    Recommendations for enhancing consumer safe food management behaviour with smartphone technology

    Get PDF
    Addressing consumer food safety risks through transdisciplinary research efforts highlight the importance of leveraging the affordances of smartphone technology. However, existing smartphone apps are limited by having safe food management (SFM) information in silos, gaps in context-based user experience research and insufficient evidence that portrays comprehensive evaluation. This paper reports on a research, which aimed to investigate how the affordances of smartphone technology can be leveraged to enhance the provision of information and facilitate knowledge retention to improve SFM behaviours. The findings produce key recommendations for improving information campaigns that aim to enhance SFM behaviour. It reveals that emerging software design approaches should be leveraged while incorporating context-based design principles in apps for SFM information campaigns. It further reveals that consumers should be prompted with multiple cues to revisit SFM apps for knowledge reinforcement. Finally, it highlights the importance of a consumer-centric approach to the development of SFM information campaign
    • …
    corecore