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Abstract

Young-Ho Kim

Department of Electrical Engineering & Computer Science

College of Engineering | Seoul National University

Collecting and tracking data in everyday contexts is a common practice for both

individual self-trackersand researchers. The increase inwearableandmobile tech-

nologies for self-tracking encourages people to gain personal insights from the

data about themselves. Also, researchers exploit self-tracking to gather data in

situ or to foster behavioral change.

Despite a diverse set of available tracking tools, however, it is still challenging

to findones that suit unique trackingneeds, preferences, and commitments. Indi-

vidual self-tracking practices are constrained by the tracking tools’ initial design,

because it is di�icult to modify, extend, or mash up existing tools. Limited tool

support also impedes researchers’ e�orts to conduct in situ data collection stud-

ies. Many researchers still build their own study instruments due to themismatch

between their research goals and the capabilities of existing toolkits.

The goal of this dissertation is to design flexible self-tracking technologies

that are generative and adaptive to cover diverse tracking contexts, ranging from

personal tracking to researchcontexts. Specifically, thisdissertationproposesOm-

niTrack, a flexible self-tracking approach leveraging a semi-automated tracking

concept that combines manual and automated tracking methods to generate an

arbitrary tracker design.

OmniTrack was implemented as a mobile app for individuals. The OmniTrack

app enables self-trackers to construct their own trackers and customize tracking
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items to meet their individual needs. A usability study and a field development

study were conducted with the goal of assessing how people adopt and adapt

OmniTrack to fulfill their needs. The studies revealed that participants actively

usedOmniTrack to create, revise, andappropriate trackers, ranging froma simple

mood tracker to a sophisticated daily activity tracker with multiple fields.

Furthermore, OmniTrack was extended to cover research contexts that en-

close manifold personal tracking contexts. As part of the research, this disserta-

tionpresentsOmniTrackResearchKit, a researchplatformthatallows researchers

without programming expertise to configure and conduct in situ data collection

studies by deploying the OmniTrack app on participants’ smartphones. A case

study in deploying the research kit for conducting a diary study demonstrated

how OmniTrack Research Kit could support researchers who manage study par-

ticipants’ self-tracking process.

This work makes artifacts contributions to the fields of human-computer in-

teraction and ubiquitous computing, as well as expanding empirical understand-

ing of how flexible self-tracking tools can enhance the practices of individual self-

trackers and researchers. Moreover, this dissertation discusses design challenges

for flexible self-tracking technologies, opportunities for further improving thepro-

posed systems, and future research agenda for reaching the audiences not cov-

ered in this research.

Keywords: Self-Tracking; Self-Monitoring; Quantified Self; Personal Informatics;

End-User Toolkit; Semi-Automated Tracking; In Situ Data

Student Number: 2012-23205
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Chapter 1

Introduction

Self-tracking or personal tracking, a regular and systematic recording of one’s

health, productivity, or other aspects of life, is very common nowadays. As

of 2017, the number of mHealth apps in major app stores was about 325,000,

which was an increase of 16% compared to the last year [70]. In addition,

wearable devices such as Fitbit [55], Mi Band [112], and Apple Watch [5]

have become more affordable and prevalent; market research conducted in

2015 shows that 21% of American adults use wearable devices such as activ-

ity trackers or smartwatches [56].

1.1 Background and Motivation

Encouraged by a growing number of available apps and devices, people

can track various information about themselves, including physical activ-

ity (e.g., [5, 55, 112, 113, 121]), sleep (e.g., [5, 55, 112, 113]), diet (e.g., [128]),

weight (e.g., [6]), mood (e.g., [119]), periods, breastfeeding, finance, produc-

tivity (e.g., [139]), and reading (e.g., [7]). There also exist contexts where the

self-tracking process is managed by those who are not the ones actually cap-

turing the data; due to its effect on promoting self-knowledge and behavior
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change [125], self-monitoring has been applied to therapeutic interventions

in clinic [162] or behavior change technologies in pervasive computing [36].

In addition, self-tracking has long been applied to psychological research

methods to collect in situ behavioral data from human subjects, serving as a

core component of traditional methodologies such as diary studies [17] and

experience sampling [41].

The focus of this research is on the aspect of how data are collected

in self-tracking practice—i.e., how capture mechanisms (e.g., automatic or

manual) are devised, and how they are used to capture target behaviors. Li

and colleagues proposed a stage-based model [101] of personal informat-

ics1, which is composed of five iterative stages, namely preparation, collection,

integration, reflection, and action. The preparation and collection stages of this

model—in which people determine the information to be recorded and ac-

tually collect data [101]—are covered in this research.

The key problem is that it is challenging to find a tool that perfectly suits

individual preferences and requirements, as the individual needs are diverse

and highly personalized. Existing self-tracking tools are usually designed for

capturing specific target behaviors, providing little or no flexibility regarding

what and how to track. Only a few people with technical proficiency build

their own tracking tools, while others give up tracking entirely when they

cannot tolerate the existing tools [32].

People who fail to find a satisfactory tool often adopt flexible tools for

self-tracking. Recent studies provide empirical evidence that people appro-

priate existing general-purpose tools, including social networking services [8,

34, 80], calendar apps [80], chat rooms in a messaging app [80], and bullet

1Li and colleagues defined the term “personal informatics systems” as those that help people
collect personally relevant information for the purpose of self-reflection and gaining self-
knowledge.

2



journals [8]. According to Jeon [80], people switch to general-purpose tools

for self-tracking when they fail to find tools suitable for capturing the tar-

get behaviors and existing tools require them to insert too many manda-

tory fields that are not interested currently [80]. The use of general-purpose

tools that can adapt to people’s diversified needs implies that a flexible self-

tracking approach can empower self-trackers.

From the perspective of data collection, however, the data captured with

the aforementioned generic tools is siloed, volatile, and poorly structured,

hampering further analysis and long-term access. For example, exercise logs

collected in a chat roomvanishwhen the owner leaves the room. Also,multi-

ple values joined in a plain text message (e.g., logging ‘60s/30/45’ for plank,

push-up, and sit-up) cannot be restored until the chat messages are exported

and parsed accordingly.

In this dissertation, I examine ways to design interactive systems that

provide systematic support for flexible data collection in self-tracking con-

texts, to meet individualized tracking needs. I specifically identify a con-

cept for a component-based toolkit that can generate a wide range of data

collection tools for self-tracking. The concept was developed and evaluated

through a mixed-method approach. In particular, I investigate how flexible

self-tracking technology can enhance self-tracking practice on two levels:

(1) personal tracking contexts, where people initiate self-tracking to meet

their own tracking goals and needs, and (2) research contexts, where study

participants perform self-tracking under the planning and instruction of re-

searchers to contribute to higher-level goals regarding in situ assessment or

data collection. Utilization of self-tracking in research contexts is a long-

established practice in various disciplines. However, as questions that re-

searcherswant to answer getmore specific and sophisticated, the complexity
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of the study instrumentation has also increased, burdening them. Therefore,

flexible self-tracking approaches have potential to enhance researchers’ prac-

tice in in situ data collection studies.

1.2 Research Questions and Approaches

Over the course of the research, I have sought ways to address the following

research questions:

RQ1. Howshouldwedesignflexible self-tracking technologywith customiz-

able data capture methods to meet individualized tracking needs?

RQ2. How do individual self-trackers adopt a flexible self-tracking tool in

their personalized tracking contexts?

RQ3. How shouldwe design a flexible toolkit to cover research contexts that

enclose manifold personal tracking contexts?

To answer RQ1, I designed and developed the OmniTrack approach, a

flexible self-tracking approach that can cover a wide range of data collection

mechanisms by leveraging the semi-automated tracking [27] concept. In ad-

dressing RQ2, OmniTrack was implemented as an Android application and

evaluated through an in-lab usability study and a field deployment study.

To address RQ3, OmniTrack was extended to the OmniTrack Research Kit

with additional components and interfaces for researchers.

1.2.1 Designing a Flexible Self-Tracking Approach Leveraging
Semi-automated Tracking

The first aim of this research is to come up with a flexible self-tracking ap-

proach that can expand data collection capability in self-tracking environ-

ments. I designed OmniTrack, a concept for flexible self-tracking that builds

4



Figure 1.1: Tracking components of the OmniTrack app: Tracker list (le�), Edit Tracker
page (middle) of a tracker, and the input screen (right) of the tracker.

upon the semi-automated tracking concept [27], which describes self-tracking

as a broad spectrum between fully manual and fully automated tracking.

OmniTrack consists of various components—trackers, services, and triggers

in Figure 3.1—that can be configured to generate self-tracking tools ranging

from mostly manual to mostly automated ones. The design space of Omni-

Track is demonstrated by three use cases that represent the semi-automated

tracking spectrum.

1.2.2 Design and Evaluation of OmniTrack in Individual Tracking
Contexts

The OmniTrack approach was implemented as an Android app (referred to

as the OmniTrack app, Figure 1.1), and the usability of the mobile inter-
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face was evaluated and improved by a lab study (N = 10). To assess whether

people can capitalize on the OmniTrack components to meet their tracking

needs, I deployed the OmniTrack app to 21 self-motivated people and al-

lowed them to use the app as they wanted. The deployment study showed

that the participants used OmniTrack in many unique ways. They actively

created, revised, and removed trackers to capture 21 target behavior cate-

gories. The trackers created or modified by the participants were grouped

into four salient styles—in-situ experience logger, timestamper, daily summary,

and archive—in terms of data capture method, complexity, and time scope.

Participants modified their trackers to respond to changes in their tracking

needs over time, and it showed a potential benefit of flexible self-tracking

tools for longitudinal use.

1.2.3 Designing a Research Platform for In Situ Data Collection
Studies Leveraging OmniTrack

In this step, I extended OmniTrack to research contexts. I designed and de-

veloped the OmniTrack Research Kit (Figure 1.2), a flexible research plat-

form that enables researchers to conduct deployment studies using the Om-

niTrack technology. Drawing on prior literature, I outlined a design space of

study instrumentation for in situ data collection, and established the initial

design requirements to inform and guide the design. The specifically aim

was to address implementation, management, and ethical barriers. A design

space supported by the research kit2 is demonstrated by four examples that

replicated prior in situ data collection studies.

2Throughout this dissertation, the phrase ‘the research kit’ indicates ‘the OmniTrack Research Kit’
consistently.
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Figure 1.2: Data Overview page in the experiment dashboard of the OmniTrack research
kit, showing the current progress of an experiment.

1.2.4 A Case Study of Conducting an In Situ Data Collection Study
using the Research Platform

To demonstrate the capability and feasibility of the OmniTrack Research Kit,

I illustrate a case study in which the research kit is deployed to conduct a

diary study [91], one traditional method for in situ data collection. The goal

of the study was to understand how knowledge workers conceptualize their

productivity in both work and nonwork contexts. An OmniTrack-based di-

ary app was deployed to 24 knowledge workers for two weeks. The partici-

pants were instructed to autonomously record an activity that they related to

their productivity. The app sent a reminder every night if the participant had

no entries for the day. The examination of the diary entries using thematic

analysis [18] produced a taxonomy of productive activities and aspects of

productivity evaluation. This diary study was accepted to a peer-reviewed
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HCI conference (ACM CHI 2019), demonstrating that the research kit is a

feasible support for addressing related research questions.

1.3 Contributions

The core contributions of this dissertation are as follows:

1. Design and implementation of the OmniTrack app (Figure 1.1), a flexible

mobile platform that covers a wide range of self-tracking data collection

by leveraging semi-automated tracking.

2. Empirical findings, acquired through a field deployment study, on how

OmniTrack empowers individual self-trackers in light of its ability to adapt

to diverse tracking needs that change over time.

3. Design and implementation ofOmniTrackResearchKit (Figure 1.2), a re-

search platform that allows researchers to design and deploy OmniTrack

trackers and monitor study participants remotely.

4. A case study that demonstrates how the systematic support provided by

the OmniTrack Research Kit assists in the accomplishment of research

goals.

Thesis Statement In self-tracking contexts, the ability to collect in situ data

is limited by the design space of available tools as related to target behav-

ior, data schema, and capture granularity. Interfaces powered by customiz-

able components, supporting a broad spectrum of semi-automated tracking

mechanisms, can expand this capability, with enhanced adaptiveness to di-

versified tracking needs that evolve over time.
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1.4 Structure of this Dissertation

The rest of this dissertation is organized as follows: First, Chapter 2 presents

prior work related to self-tracking and its utilization in research contexts.

Chapter 2 also covers the semi-automated tracking concept, which serves as

a theoretical basis for the OmniTrack design.

Chapter 3 illustrates the design ofOmniTrack, a flexible self-tracking ap-

proach that leverages semi-automated tracking. The OmniTrack approach is

described in accordance with the components of its Android implementa-

tion, the OmniTrack app.

Chapter 4 reports on the qualitative and quantitative findings regarding

how individual self-trackers adopt OmniTrack for their tracking contexts.

The chapter describes a usability study (N = 10) and a three-week field de-

ployment study (N = 21) with the OmniTrack app.

Chapter 5 presents the OmniTrack Research Kit, a research platform

that allows researchers to conduct in situdata collection studies by deploying

the OmniTrack trackers to study participants. The coverage of the research

kit is demonstrated by four examples replicating prior studies.

Chapter 6 presents a case study inwhcih the research kit was used to con-

duct a diary study. The chapter demonstrates how OmniTrack Research Kit

can help researchers address their research goals by reducing the complexity

of the study instrumentation.

Chapter 7 discusses design challenges raised by the presented studies

and opportunities for further improving the systems. The limitations of the

studies are also acknowledged.

Finally, Chapter 8 concludes the dissertation by summarizing the find-

ings in this dissertation and the opportunities for future research.
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Chapter 2

RelatedWork

This chapter covers the related work that informed this dissertation. Of par-

ticular interest here is the characterization of how flexible tools and tech-

nologies are addressing both the barriers of self-tracking and its utilization

in research contexts. The chapter first covers the background of self-tracking

and its practice, focusing on personal tracking and research contexts. Bar-

riers and challenges for these areas are also indicated and followed by the

description of how flexible self-tracking approaches are addressing these,

and ways in which they still fall short. Finally, semi-automated tracking, a the-

oretical basis for the OmniTrack approach, is introduced.

2.1 Background on Self-Tracking

Before explaining why self-tracking has become a mainstream practice, it

is worthwhile to describe the concept of self-monitoring, which was raised

by Mark Snyder [150] and is one important theoretical basis of self-tracking

technology. It is denoted as self-observation and self-control guided by situa-

tional cues, and involves a consistent and repetitive self-reporting of a cer-

tain expressive behavior [150]. Self-monitoring is known to increase the per-
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son’s self-awareness—being aware of one’s current state—and the increased

self-awareness (self-knowledge) tends to promote changes in the person’s

performance or behavior [24]. This mechanism is referred to as reactivity or

reactive effects [86, 125]. Thus, self-monitoring concept has been incorporated

in most modern self-tracking tools and devices to promote behavior change

or habit formation; For example, Fitbit [55] displays step count on a display

of wrist-worn band to promote the user’s physical activity.

Regarding the utilization of self-monitoring for specific purposes, the

function of self-monitoring is discriminated into the assessment and treat-

ment functions [95]. The assessment function of self-monitoring focuses on

the capability of self-monitoring that can capture the clinically relevant be-

haviors that may not be obvious in the therapy context. Proper selection of

the target behaviors for tracking and the accuracy of the monitored data

are important considerations for a valid assessment. Treatment function of

self-monitoring focuses on the aforementioned reactivity, and utilizes self-

monitoring primarily as a formof intervention; Because the experience of pa-

tients in the self-monitoring process fosters reactivity, factors other than the

data accuracy are more important—including the design of tracking mech-

anism (e.g., target behavior valence, topography of the target, nature of the self-

recording device); situational aspects of tracking (e.g., schedule of recording, con-

current response requirements, timing of recording); feedbacks (e.g., goal setting

feedback and reinforcement); and the internal aspects of the person (e.g., moti-

vation for change) [95].

The term self-tracking is often used interchangeably with self-monitoring,

depending on the scopes and perspectives. Throughout this dissertation,

however, self-tracking will be distinguished from self-monitoring: This dis-

sertation takes a broader view on self-tracking, emphasizing its role of gen-
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erating a dataset in situ. As the collected dataset is not always consumed by

the person who captured it, self-monitoring is a part of self-tracking prac-

tice but not the same. The following subsections cover how self-tracking has

been prevalent in personal tracking and research contexts, respectively.

2.1.1 Self-Tracking in Personal Tracking Contexts

A concept of keeping track of the data about one’s various aspects of life

on a regular basis can be traced back to the Lifelogging projects in the early

2000s [12]. Early lifelogging systems focused on building a rich database that

can reconstruct one’s life, and usually incorporated intensive inputs of the

available data. For example, MyLifeBits [61] gathered all the accessible data

on the personal computer, and SenseCam [62] continuously recorded video

with a camera hung on the person’s neck.

A recent Quantified Self (QS)movement aims to help people improve the

quality of lives by gaining knowledge by reflecting on the personal data;

Quantified Self1 is a worldwide community of the enthusiastic self-trackers,

which was established in 2007 by Wired Magazine editors Gary Wolf and

Kevin Kelly. People in the QS community (Q-Selfers) actively share their self-

tracking experience in Meetups held at major cities and annual conferences.

As of December 2018, the QS Meetups were being held in 114 cities world-

wide. Q-Selfers keep track of their target behaviors using various methods–

from pen and paper to automated sensing [32]. The purposes of their self-

tracking include improving health and other aspects of life, reminiscing and

reflection, and curiosity [142].

Besides the extreme self-trackers of QS community, casual and informal

forms of self-tracking have become more prevalent among the general pub-

1http://quantifiedself.com/
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lic, even if they do not know the explicit term, self-tracking. As sensors are

getting smaller and cheaper, people nowhave a rich set of sensors embedded

in their smartphones. Also, a market for smartwatches such as Apple Watch

and Samsung Gear S is rapidly growing, as its size is expected to grow to

36,900million USD in 2023, from 10,900million USD in 2017 [63]. Vendors of

smartphones andmobile OS integrate health platforms (e.g., Google Fit [66],

AppleHealth [4], and SamsungHealth [145]) in their products, using built-in

sensors capturing various health-related behaviors, such as step count,moved

distance, heart rates, sleep duration, or sleep quality. Such a tendency has accel-

erated the familiarization of people with health tracking.

Encouraged by such familiarization of self-tracking and propagation of

smartphones and wearable devices, researchers and designers have devel-

opedmobile apps that support diverse types of target behaviors and tracking

themes [70]. Types of the target behaviors people collect are too vast to define

an exhaustive list, and the taxonomy differs depending on the granularity

of the report. For example, Li and colleagues’ survey with 68 people listed

41 types of information that were being collected by the interviewees [101].

The types were split into ones that are collected automatically—such as bank

statements, email history, or credit card bills—andmanually—such as calen-

dar events, work activities, and exercise. The authors remarked that finance,

journaling, exercise, and general health were four relevant categories that par-

ticipants focused on [101]. Rooksby and colleagues [142] also identified a

diverse set of activities their interviewees were tracking, including walking,

physical exercise, food and drink, weight and size, and sleep. In addition, a

survey of 62 tracking app in Apple AppStore by Jeon [80] revealed that 16

categories of Apple AppStore contained one or more tracking apps (Refer to

the supplementary material of [93] for the full list of the apps).
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Researcher have made efforts to understand and characterize the self-

tracking practice and its constructs. One early and widely-used model is a

five-stage model of personal informatics systems [101], which describes how

people transfer between stages towards their behavior change goal. The au-

thors established five stages—preparation, collection, integration, reflection, and

action—andbarriers of each stage. The stage are iterative and barriers cascade

to later stages [101]. Elaboratingmore on the reflection stage, the authors later

identified two-phases of self-reflection, Discovery and Maintenance, where

people focus on different questions [99].

Although thesemodels havewidely informed the design andunderstand-

ing of self-tracking technologies, they fall short at describing the in-the-wild

interaction between people and tracking tools because they assume that peo-

ple perform self-tracking for behavior change goals. Recognizing these limi-

tations, researchers raised a notion of lived informatics, the self-tracking prac-

tice integrated into everyday life. Rooksby and colleagues [142] remarked

that people interweave various activity trackers, rather than logically orga-

nizing them. The authors also identified five styles of tracker usage: (1) for

directive tracking, people follow specific goals such as ‘walking 10,000 steps a

day’; (2) for documentary tracking, people are interested in documenting the

activities rather than changing them, for various reasons; (3) for diagnostic

tracking, people look for a link between one thing and another, such as a trig-

ger of the symptom; (4) for collecting rewards, rewards and achievements mo-

tivate people; and (5) for fetishised tracking, people perform tracking because

of a purer interest in gadgets and technology [142].

Going further, Epstein and colleague proposed a lived informatics model

of personal informatics [49] by embracing the prior approaches and models.

Theirmodel describes howpeople actually react to the barriers in the process
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of tracking (collection, reflection, and integration) by employing the lapsing

stage, with four types of lapse (forgetting, upkeep, skipping, and suspending.)

Also, the authors identified three classes of motivations for self-tracking:

(1) behavior change goals; (2) instrumental tracking goals (tracking without a be-

havior change goal); and (3) curiosity. Such motivations affect people’s be-

haviors in self-tracking process differently regarding the selection of tools

and reactions to barriers.

In summary, there exist an enormous number of self-tracking tools that

are reachable. By these tools and technologies, people keep track of diverse

types of data about themselves for various goals and reasons. Sometimes

even the data itself becomes a purpose of tracking. With different motiva-

tions, people actively choose, strive with, and abandon tools.

2.1.2 Utilization of Self-Tracking in Other Contexts

Self-tracking is actively used in various areas other than personal tracking.

Lupton outlined five modes of contemporary self-tracking practice—private,

pushed, communal, imposed, and exploited—in a holistic manner [106]. Of these

modes, private self-tracking denotes the practice covered in the previous sec-

tion. Pushed self-tracking denotes the contexts in which self-trackers are en-

couraged or obliged by other investigators. Self-care of patients [130, 162],

employer wellness programs, and in-situ data collection studies [37] exem-

plify this case.Communal self-tracking refers community-driven self-tracking

movements, such as Quantified Self and citizen science. Imposed self-tracking

is when the captured data is used primarily for others’ benefit. Mandatory

productivity tracking inworkplace is one common example. Finally, exploited

self-tracking is the case in which the captured dataset is repurposed for the
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benefit of others, such as vendors of activity devices or researchers who de-

ploy the tool and collect data from users.

In clinical contexts, advances in consumer self-tracking technology en-

couraged patient-side data generation. Zhu and colleagues [176] character-

ized the clinical practice of sharing patient-generated data (PGD), noting that

self-tracking is initiated either by a patient or by the clinician: In clinician-

initiated tracking, clinicians ask their patients to perform self-tracking for

various reasons, including to foster engagement and the more accurate as-

sessment of the patient’s issue. In patient-initiated tracking, patients perform

tracking to develop self-awareness and self-management skills or to share

the collected data with clinicians. PGD is not yet generally leveraged in clin-

ics because fully leveraging it is challenging due to the tensions between pa-

tients and clinicians, patients’ unwillingness to use unfamiliar tracking tools,

and other technical and legal issues around the integration of PGD into the

electronic medical record [176].

This dissertation focuses on the utilization of self-tracking in research

contexts, where the self-tracking process and the generated dataset are man-

aged and consumed by researchers, to achieve their research goals. Accord-

ing to Lupton’s [106], this practice includes the pushed and exploited modes.

The tracking process is devised with different focus and methodologies de-

pending on the purpose for incorporating self-tracking. By applying the afore-

mentioned typology of self-monitoring functions (treatment and assessment),

the rest of this section covers two different practices in self-tracking research:

intervention-centered research and the in situ assessment.
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Intervention-Centered Self-Tracking Research

Deployment of a self-tracking tool to assess the effect of an intervention is a

common method for evaluating pervasive and ubiquitous computing tech-

nologies [22, 38, 75, 94]; Researchers recruit participants to deploy working

prototypes of self-tracking tools they design, or technology probes to elicit

the empirical findings from a self-tracking concept. Through the use of an in-

tervention tool, researchers assess the effect of the intervention in two ways:

(1) by analyzing data captured by participants (e.g., [40, 85, 92]), or (2) by

conducting a post-intervention interview asking the experience of using the

self-tracking tool (e.g., [172, 173]). Table 2.1 lists research projects that in-

volved intervention studies:

System Name Captured Behavior Goal of the System Platform

Sl
ee
p

SleepTight [29] Sleep duration, sleep
quality, sleep-related
behaviors (smoking,
showering, etc)

Increasing tracking
compliance and promoting
self-awareness

Mobile app

Lullaby [85] Sleep duration, sleep
quality, environmental
factors

Promoting self-awareness
of sleep-related
environmental factors

Custom set of
sensors and
devices

SleepCoacher [43] Sleep duration,
accelerometer
movement, noise levels

Generating sleep
recommendations through
self-experimentation

Mobile app

Ph
ys
ic
al
Ac
ti
vi
ty

UbiFit Garden [39] Physical activity sensing
(walking, running, and
cycling)

Encouraging physical
activity

Mobile app

Fish ’n’ Steps [103] Daily step count Encouraging physical
activity

Web app &
kiosk

MyBehavior [136] Food intake, exercise,
activity type (stationary,
walking, running,
vehicle)

Encouraging healthy
lifestyles through
automatically generated
feedback

Mobile app

Habito [68] Activity type, moved
distance

Fostering engagement and
inducing physical activity

Mobile app
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Pr
od
uc
ti
vi
ty

TimeAware [92] Computer usage
duration

Promoting productive
application usage /
discouraging unproductive
application usage

Desktop
widget, web
app

MyTime [76] App usage duration Reducing poor use of
smartphones

Mobile app

M
oo
d MoodRhythm [160] Sleep duration,

conversation episodes,
mood index

Maintaining a regular daily
rhythm, generating clinical
information

Mobile app

Fo
od

Food4Thought [48] Food intake Promoting mindful eating Mobile app

DECAF [40] Food intake, meal
context (social context
and enjoyment)

Exploring the advantages of
a lightweight food journal
without nutrition and
calorie information

Web app

TummyTrials [83] Breakfast context,
symptom severity

Detecting personal food
triggers through
self-experimentation

Mobile app

Table 2.1: Examples of self-tracking projects involving a deployment study.

Scientific rigor in the selection of dependent variables and the methodol-

ogy for capturing them are crucial considerations in such intervention stud-

ies. These decisions heavily affect the study protocol, as well as the system

architecture of the tools to be deployed. For example, participants’ engage-

ment with a system is one common interest of researchers who designed the

system. Because it is challenging to define a single objectivemeasurement for

engagement [144], the engagement is often heuristically assessed bymeasur-

ing usage duration. To measure the system usage duration, researchers have

to incorporate proper logic at the system level. Unfortunately in many cases,

it is infeasible to capture the objective usage duration. For example, there

are no practical ways to capture how long a person watches a widget on a

smartphone screen. For these reasons, researchers often strive to overcome

such limitations and to establish convincing heuristics.
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Another important characteristic of intervention studies is that partic-

ipants are nudged or instructed to use the intervention tools, just as they

would be in the personal tracking context, even though this is an artificial

circumstance created by a researcher. Because the experience of using the

tool is strongly related to what researchers want to observe, any extra inter-

vention that may affect the result (e.g., contacting participants during the

intervention phase) is strictly controlled. In the TimeAware study [92], for

example, one of the investigation goals was to assess the effect of on-screen

feedback on the level of engagement (duration of using the TimeAware sys-

tem). Because being contacted by the experimenter could serve as an implicit

reminder, participants were never contacted during the intervention period

unless a serious issue arose [92].

Assessment of In Situ Human Behaviors

With a goal of studying subjective experience in natural environments while

ensuring the ecological validity [41], self-tracking has long been applied to

psychological research projects that collect the situated data [14], even before

the development ofmobile devices [37]. Unlike the intervention studies, such

in situ assessment studies are often decoupled from self-monitoring, because

the focus is on gathering snapshots of the situation of interest while minimiz-

ing the effect of intervention [37].

Two relevant methodological traditions are diary studies and EMA (Eco-

logical Momentary Assessment), which have different characteristics and types

of suitable research questions (See Table 2.2). Depending on the literature

source, the two methods are sometimes considered the same, because they

appear to be similar regarding the concept of deploying a data collection

tool to human subjects to gather in situ data. However, they are very distinct
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Diary Study Experience Sampling

Initiation of
the Input
Sessions

Participant-driven (Recall) System-driven (Alert)

Trigger of
Inputs

Participants record an entry when a
situation of interest occurs.

Participants record an entry
when prompted by the system.

Complexity
of the Input
Schema

Complicated, Long Simple, Short

Table 2.2: Comparison of the diary study and experience sampling methods, based on
their canonical experimental designs in literature [14, 17, 35, 37, 149].

in terms of study protocol, data capture feasibility, design considerations,

and study instrumentation—which are crucial from the perspective of re-

searchers. Each method is covered in more detail below:

Diary study is a researchmethodwhere researchers ask their participants

to keep a log of their receptiveness or circumstantial information near the

time when a situation of interest occurs [17, 37]. The name of the method

originates from its early practice, in which participants were provided a pa-

per ‘diary’ as a recording tool. In diary studies, the initiation of recording

depends on participants’ recall of the study instructions: This self-initiation

enables participants to capture rich information about many types of events,

because they decide to record entries on their own, depending on their avail-

ability. Therefore, diary study is powerful when the situation of interest is

episodic andhas duration, because participants can capture information about

such events in the near future, minimizing retrospection error [37].

While diary study has a number of benefits, there also exist potential

drawbacks that are important to consider. Because the recording relies upon

the participant’s recall and self-initiation, participants may forget to record

even if the situation of interest happens [37]. It is mostly impossible to ob-
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tain the truth about how many times the situation of interest occurred and

howmanywere actually recorded. Also, participants are prone tomisunder-

standing the definitions of the events they should capture [17]. Sometimes

this can be caused by unclear study instructions where participants are pro-

vided a vaguedefinition of the relevant events. Therefore, establishing a clear

definition of the situation of interest and the triggering condition is crucial

for a successful diary study.

In addition, because the diaries usually ask subjective and open-ended

questions, the repeated capture of certain behaviors can elicit reactivity in

participants. Their behaviors, thoughts, andmindsets toward the eventsmay

change and develop as the study unfolds [17], leading to the inconsistent

semantics among the entry values.However, the existence of such side effects

on diary studies is still controversial [17].

In the field of HCI, researchers have actively leveraged diary studies for

collecting events and activities related to task switching on a computer [42];

using a glucose meter [129]; the occurrence of information needs away from

home or work [151]; capturing information on digital devices [21]; using a

pen [140]; or combining multiple information devices [81]. The instruments

for collecting diary entries have also been digitized and diversified. Themost

common tool is a smartphone appwith questionnaire forms, but researchers

use various platforms depending on the participants’ lifestyles and the study

context. Specific examples include Excel spreadsheets [42], voicemails [132],

a dedicatedwebsite [46], a web-based photo diary [140], and a camera to take

photos of the situation [21].

EMA or ESM (the Experience Sampling Method) is a research method in

which researchers collect the “sampled” data points about the experience

of participants [124, 148]. It was first proposed as an augmented model of
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diary study, where participants record in a paper diary when they receive a

signal from a pager [17, 41]. EMA has since been developed as a unique and

successful research method. Unlike diary studies, the initiation of recording

is driven by the system, as a response to alert signals. When receiving an

alert, participants go through a short questionnaire sequence that asks for

current status or activities [38].

Alerting is a core component of EMA. Berkel and colleagues [14] identi-

fied three common types of alert triggers: (1) the signal-contingentmechanism

sends alerts at random moments, within specific time window of the day;

(2) the interval-contingent mechanism sends alerts based on a predefined in-

terval or schedule; and (3) the event-contingent mechanism sends alerts with

responses to external events, usually triggered by sensing techniques. These

types of mechanisms are not necessarily used solely in a study, but are often

combined with others [14]. Except for the event-contingent mechanism, ran-

dom or scheduled alerts are strictly planned before the study begins, with

consideration given to the time frame of day, the number of alerts per day,

and the overall number of alerts [38]. Because the total number of alerts that

each participant is expected to receive is clearly defined, many EMA studies

report the compliance rate (ratio of the alerts responded to) of participants.

How to deliver alerts and questionnaires to participants is another crucial

consideration for EMA studies. Early EMA studies used pagers for signaling

to participants (e.g., [41]), and more recent ones have used PDAs. Phone

calls or SMS messages are also popular methods that are widely used even

today. Now that smartphones have been generalized, the EMA instruments

are often deployed as mobile apps, and alerts are sent via notifications. Be-

cause alerts can be invasive for participants, it is important to design ques-

tionnaires that can be answered quickly but accurately [37]. Reducing the
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number of exposed questions by branching, minimizing the open-ended an-

swers, and involving audio recording are common techniques researchers

consider to reduce the input burden [37].

The major drawbacks of the EMAmethod come from the system-driven

nature of the alert mechanisms. Alerts are inescapably invasive to partici-

pants because participants cannot decide or expect when alerts are to be de-

livered [37]. Therefore, the EMA alerts are prone to being ignored if they are

delivered while participants are busy or if the recording procedure imposes

high cognitive load [37]. Due to this limitation, EMA itself is not feasible

for people with limited autonomy in responding alerts during a certain pe-

riod, such as students (at school), teachers, attorneys, or surgeons [37]. To

minimize the threats and achieve high compliance, researchers employ fine-

grained planning of the alerting mechanism [37], such as excluding lunch

hours or personalizing the time frame to fit each participant’s lifestyle. Such

configuration increases the complexity of study instrumentation, requiring

flexible tools to implement sophisticated logic [38].

HCI researchers have actively incorporated EMA for understanding hu-

man behaviors, in more computerized and sophisticated forms than tradi-

tional practices. The EMA studies now incorporate sensing techniques for

recognizing an event of interest for producing a prompt at the right moment

(e.g., unlocking the smartphone [15], Foursquare check-in events [69], be-

ing active on the computer [107]). In addition, automated tracking is com-

bined with subjective reporting methods to gather rich contextual informa-

tion (e.g., software usage information + perceived productivity level with

EMA [110], physiological sensors inputs + EMA about the context [147]).
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2.2 Barriers Caused by Limited Tool Support

The previous section illustrated how self-tracking has been pushed into di-

verse areas and utilized in various contexts. However, the diversified tools

and people’s needs do not always match each other. In this section, barriers

to current self-tracking practice are described.

2.2.1 Limited Tools and Siloed Data in Personal Tracking

Section 2.1.1 introduced the advance of diverse self-tracking tools that sup-

port personal tracking contexts. These days, people’s tracking needs and

goals have diversified [142], and so have the available tracking tools [70].

However, despite the increasing number of available tracking tools, it is dif-

ficult to find one that perfectly suits individuals’ tracking needs and their

diverse goals [97]. For example, numerous food journaling tools exist to help

people capture food items and nutritional information. However, these tools

fail to fully support the broad range of food tracking goals (e.g., lose weight,

identify food triggers, understand food habits) [40]. According to the stage-

basedmodel of personal informatics [101], thismismatch can be problematic

in the preparation stage, where people determine what information to collect

and what collection tool to use [101].

The aspects of people’s tracking needs are also specific and diverse: For

example, self-trackers are sensitive to the input burden [32], as the number of

mandatory input fields can be a reason for switching tools [80]. The level of

detail regarding the information or its processed result was also one reason

for abandoning the tool [97].

Many people look for workarounds when they fail to find existing tools

that fit in their needs. A few people with technical skills build custom tools
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that support specific tracking goals such as self-experimentation [32, 97, 101].

Others have to adapt themselves to existing tools or use generic tools such as

spreadsheets or pen & paper [32]. Survey tools also provide customization

capabilities to a certain degree for people’ diverse data collection needs. For

example, Google Forms [67] allows people to collect data in a user-defined

format using a familiar form-based interface.

Interweaving and switching between multiple tracking tools is a com-

mon case of self-trackers [49, 142]. People deliberately use multiple tools at

once to capture different activities at once (e.g., tracking productivity with

RescueTime while tracking step count with Fitbit), or switch to another tool

that better suits their needs [142]. Rooksby and colleagues noted that this in-

terweaving is not a rationally organized behavior [142]. Although interweav-

ing multiple trackers is a common case, the dataset captured by each tracker

is largely siloed; each tracking service isolates data in its dedicated app, mak-

ing it challenging to obtain a holistic view of the data from multiple track-

ers. [31, 99]. In addition, when switching to a new tool for various reasons,

data from the previous tool is not seamlessly transferred to the database of

the new one [101].When people encounter this situation, they have to choose

either to discard the previous data or manually export, wrangle, and import

the data from the previous tool to the new one [101].

2.2.2 Challenges of the Instrumentation for In Situ Data Collection

Research projects that incorporate in situ data collection usually involve dig-

ital instrumentation for data collection, management, and analysis of the

result. Because self-tracking occurs in participants’ everyday contexts, re-

searchers have limited control over the usage context of the participant-side

data collection. Due to the remoteness of the participants, the instrumenta-
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tion for conducting the study requires a lot of additional components and

consideration. Unfortunately, the instrumentation components that are not

directly related to the research questions are rarely discussed in the paper

in which the study is reported. For this reason, the discourse on study in-

strumentation has not been extensive [10]. Drawing on prior experience and

other related work, the rest of this section describes three major challenges:

implementation barriers, management burdens, and ethical constraints.

Implementation Barriers As mentioned earlier, the instrumentation for in

situ data collection studies involves a lot of functional requirements [72]. The

uniqueness of research questions in each research project increases the so-

phistication of these requirements, which cannot be fully supported by exist-

ing tools. A significant number of research papers that incorporated in situ

data collection involve custom implementation of study instruments. The im-

plementation often focuses on the particular functional aspects of a project,

and instruments are rarely reused later [10]. In other words, researchers are

obliged to build their study instrument from scratch repeatedly whenever

they start a new project.

Very often, researchers appropriate existing instruments to conduct their

study. For example, Choi and colleagues conducted an EMA study by using

SMS messages for signaling and a web-based survey for collecting answers

for each session [33]. Although there is no clear evidence whether the appro-

priation was deliberate or forced by insufficient resources—expertise, time,

or budget—for implementing their own tool, appropriating non-research

tools may constrain the researchers. Theymay have to downsize the richness

of information captured, thereby compromising their claims and findings.
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Management Burdens In situ data collection studies are longitudinal; as

participants capture data in remote places for a while, various unexpected

issues may happen [58]. Participants sometimes fail to perfectly use the data

collection tool due to system compatibility or other issues [141]. Also, it is

challenging to handle system bugs that are found after the participant tool

has already been deployed [94]. If the participant-side tool is web-based,

bugs can be addressed by updating the web code on the server. However,

if tools were deployed and installed on the participants’ mobile devices, it is

even more challenging to address bugs. Unfortunately, bugs and malfunc-

tions may severely hurt not only the participants’ user experience, but also

the data collected by the tool [94], and the researchers often become aware of

such issues in exit interview, after the deployment is done. Monitoring par-

ticipants’ current progress helps detect and cope with the sudden issues [10,

11]. However, monitoring remote participants also requires support of the

study instrument, including interaction logging and network data commu-

nication between participant tools and a persistent server.

Ethical Constraints Studies with human subjects must be approved by in-

stitutional review boards (IRB) to ensure the researchmethods and the study

protocols are organized ethically. Although the strictness of ethical rules is

different depending on the study’s region and institute, it is common that

participants’ self-tracking data is reviewed very strictly. Ethical rules seri-

ously constrain the system architecture of the study instrument, as well as

the study protocol. For example, the IRB application process guideline for

the University of Michigan2 states that “All data collected on portable devices

should be transferred to an approved service as soon as possible after collection,

2https://research-compliance.umich.edu/data-security-guidelines
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and deleted from the portable collection devices.” The “approved services” in-

clude cloud services customized for the university, considering the ethical

rules. The GDPR3 (General Data Protection Regulation), applied to EU coun-

tries since May 2018, strictly prohibits keeping the personal data of EU cit-

izens outside the EU region. Therefore, researchers must carefully consider

where to store the participants’ data [72]. These ethical constraints restrict

researchers who want to appropriate existing tools and services for data col-

lection purposes, because commercial services may store the participants’

usage data and self-tracking data on their servers, possibly violating ethics.

2.3 Flexible Self-Tracking Approaches

Finding a suitable tool designed for specific context—both for personal track-

ing and research—is time-consuming. It is complex to compare among alter-

natives, and efforts often fail to find satisfactory solutions. This section de-

scribes the practice of the flexible self-tracking,where a single tool or platform

covers one or more tracking goals.

2.3.1 Appropriation of Generic Tools

People often appropriate generic tools—those which were designed not par-

ticularly focusing on self-tracking—tomeet their self-tracking goals. Spread-

sheets or pen & paper are common tools for appropriation [32]. Survey tools

also provide customization capabilities to a certain degree for people’ di-

verse data collection needs. For example, Google Forms [67] allows people

to collect data in a user-defined format using a familiar form-based interface.

3https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/
data-protection/2018-reform-eu-data-protection-rules_en
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Alternatively, people appropriate existing tools (e.g., calendars, instant

messengers, Instagram [34]) for tracking purposes. Ayobi and colleagues [8]

investigated the Instagram photos of paper bullet journal to understand how

people use the bullet journals as an analog and customizable tool for self-

tracking. The authors found that people extended and adapted bullet jour-

nals to their changing practical and emotional needs, including to create per-

sonalized visualizations, to engage in mindful reflective thinking, and to be

part of the culture of sharing and learning [8]. Similarly, Chung and col-

leagues [34] found that people perform food tracking by Instagram to obtain

benefits of social support, exchanging feedback with others.

In Jeon’s interviews with casual self-trackers [80], the interviewees were

actively appropriating various tools for self-tracking, includingGoogleDocs,

calendar apps, note-taking apps, chat rooms in a messaging app, a paper-

based diary, photo-sharing social networks, internet forums/blogs, or even

plain text files in cloud storage [80]. Figure 2.1 shows the example screen-

shots of their practice. The author identified two main reasons for adopting

these tools in tracking: (1) because automatic tracking was unavailable, and

(2) to leverage the sharing feature supported by existing applications [80].

Although these generic tools enable people to perform self-tracking in a

flexible format, these generic tools do not incorporate reminders, tracking-

specific assessments, and feedback, all of which could facilitate tracking and

help maintain self-awareness. In addition, the flexible tools are usually not

flexible regarding further utilization of the dataset: The data people collected

is locked in the tool, especially for analog ones. For example, self-tracking

data and visualizations recorded and drawn in a paper bullet journal can-

not be reused unless they are digitized somehow. Even for digitized tools,

data is often structured with ad hoc methods: In other words, the data is
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(a) Study logs in a printed table (P5)

(c) Expense with a
      dedicated app (P11)

(e) Exercise logs in Excel spreadsheet (P7)

(d) Exercise logs 
      in a messenger (P3)

(b) Beer reviews stored in a file system (P12)

Figure 2.1: Examples of tracking practice appropriating existing tools in Jeon’s study,
reprinted with permission [80].

30



































































































































































































































leveraged for interveningwhen the situation of interest actually happens (of-

ten called event-contingent [14]). In addition, an event-driven trigger can feed

additional data for the event to the tracker fields, which is not supported at

themoment. For example, if a researcher wants to collect the data about peo-

ple’s phone calls and corresponding context, an event-driven EMA reminder

can be configured to prompt the user after he or she finishes each phone call

(Figure 7.1). By leveraging the phone session information, the reminder can

feed the information, such as the contact name and session duration, to the

tracker’s fields via value connection.

7.3.2 Providing Flexible Visual Feedback

Participants in the usability study frequently asked how OmniTrack visu-

alizes data and supports self-reflection, even though the visualization com-

ponent was not tested in the study. Some participants actively commented

on visualizations (e.g., a horizontal line to indicate a user-defined goal) as a

way to better support self-reflection. This implies that visualization would

be an important feature for long-term engagement. Currently, OmniTrack

supports a set of simple visualizations, choosing a visualization based on

the field types and the data schema. However, it does not account for the

semantics of trackers, posing a risk of not using the most appropriate vi-

sualization. It is challenging to design a generalized visualization interface

without knowing in advance the semantics of and relationships among the

fields and trackers.

In the information visualization field, general visualization tools usually

suggest automatically-generated alternatives in the form of a gallery to help

people choose a proper visualization ([166]). However, this approach might

be unsuitable on a small mobile screen, and usually increases the complexity
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of interface. Designing a generalized personal data visualization that covers

a wide range of semantics warrants further investigation, and is particularly

challenging on mobile devices.

In research contexts, the limited customization support for visualizations

could be an issue because researchers often provide participants with feed-

back about the data tomotivate and engage them into the process [78]. There-

fore, there would be a need for incorporating visual feedback optimized for

each study context. Augmenting the OmniTrack app and the research kit to

support designing customized feedback warrants further study.

7.4 Expanding Audiences of OmniTrack

7.4.1 Supporting Clinical Contexts

The primary focus of designing the OmniTrack Research Kit was to support

researchers’ investigations. Clinicians are other important investigators who

benefit from in situ data collection, in this case from patients. The Omni-

Track Research Kit can enable clinicians to prescribe a tracker to their pa-

tients [89]. For example, a clinician might want her patient to collect sleep

data in a particular format. Instead of employing a paper-based sleep diary,

the clinician can deploy a sleep tracker to her patients and have them add

a few other sleep-related factors that are of particular interest to them. Be-

cause clinical contexts are different from those for research, supporting them

requires different kinds of components and interfaces. For example, a clini-

cian may prescribe the tracking schema, whereas a coordinator would train

the patient how to use the OmniTrack app. It is also challenging to design

features that allow clinicians tomake use of the collected items. Even though

clinicians recognize the value of patient-generated data for promoting con-
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sultation and diagnosis [89, 109, 162, 176], self-tracking is not yet a common

practice in those contexts due to the short durations of clinical visits. For suc-

cessful support of clinical contexts, proper clinician interfaces for consuming

the collected data—such as visualization and intelligent summary—should

be integrated to the research platform. This would be one worthwhile direc-

tion for future work.

7.4.2 Supporting Self-Experimenters

Self-experimentation can be viewed as a special case of in situ data collec-

tion, which incorporates a single participant, and in which the experimenter

and the participant are often the same person. The population using self-

experimentation needs approaches distinguished from those of both casual

self-trackers and researchers. The self-tracking process of self-experimenters

should be guided by rigorous methodologies to enable them to discover the

answers they seek. Current interfaces of the OmniTrack Research Kit were

designed for use in a single-phased study with multiple participants. Self-

experimentation, on the other hand, is commonly multi-phased, with re-

peated randomization tests of alternative hypotheses [43, 82, 83]. Therefore,

supporting it requires the incorporation of additional components. Of fore-

most importance is the ability to configure the dependent variable and in-

dependent variables for randomized trials. The interfaces for status review

and analysis by visualizing correlations and relationship between factors are

also important features. ExtendingOmniTrack to support self-experimenters

is an interesting future research topic, andwill contribute to domain of diag-

nostic self-tracking and self-care technologies, as well as to the work of other

researchers designing a self-experimentation tool.
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7.5 Limitations

This sectiondiscusses the limitations of the studies conducted. Because every

research approach has its own limitations regarding unforeseen issues and

threats to internal or external validity [134], it is worthwhile to clarify the

potential constraints that this dissertation might have.

Throughout the thesiswork,OmniTrackwas presented to people through

a series of user studies. The OmniTrack app has also been spontaneously de-

ployed to casual self-trackers who requested to use it. The feedback from

people who have experienced the OmniTrack app revealed the weaknesses

of its approach. AlthoughOmniTrack allowed for flexible self-tracking, some

parts were still perceived as less flexible, so that they hampered the tracking

apabilies of those with particular needs and motivations. Problems include

limited visualization customizability, the smartphone-only input methods,

and a limited set of available external services and measures. The first one

is substantial enough that it would be best addressed in future research, but

the latter twodemand an incremental improvement to be addressed. Because

the OmniTrack research is in the early stage, these issues pinpoint future di-

rections of improving OmniTrack.

Some methodological limitations might have affected the dataset. The

dataset from the deployment study covers a three-week usage of OmniTrack.

Because no participants had used the OmniTrack app before, novelty effects

could have played a role during the 3-week deployment [73, 94]. As a curios-

ity about novel technologies is one particular motivation of self-tracking [49,

142], some trackers might have been just created for curiosity and then re-

moved without having been used. With a longer study period, the deploy-
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ment study could have captured the patterns of adopting OmniTrack for

long-term usage, which could be more robust than novelty effects.

There is also a technological limitation caused by the implementation of

the OmniTrack app: Currently, the app can only be used on the Android de-

vices. This limitation directly constrains the recruitment of participants for

studies conducted with the OmniTrack Research Kit. It may also have af-

fected the usability study (Section 4.1), the deployment study (Section 4.2),

and the diary study (Chapter 6), by imposing a requirement to recruit people

with an Android smartphone. As Android smartphones account for a con-

siderable portion of the OS market worldwide1, this constraint can surely be

ignored in many cases. However, for some regions such as the U.S., where

iPhone users are more than half the market2, researchers would have to put

more effort into collecting the desired number of Android users.

1http://gs.statcounter.com/os-market-share/mobile/worldwide
2http://gs.statcounter.com/os-market-share/mobile/united-states-of-america
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Chapter 8

Conclusion

Concluding the dissertation, this chapter first summarizes the contributions

made by the studies and systems presented in the dissertation. Finally, future

research agendas and opportunities are discussed.

8.1 Summary of the Approaches

In Chapter 3, the first research question (How should we design flexible self-

tracking technology with customizable data capture methods to meet individual-

ized tracking needs?) was addressed. The design of prior self-tracking tools is

fixed in advance and thus not always able to fit individual preferences and

contexts. To address this issue, this research proposed OmniTrack, a novel

self-tracking approach that enables self-trackers to design their own track-

ing tools. From prior studies, four design goals were established: (1) Cover

a broad range of tracking practices, and fulfill individualized and sophisti-

cated tracking needs; (2) Lower the data capture burden to reduce tracking

fatigue; (3) Enable lay individuals to easily create, manipulate, and modify

a tracker and tracking facilitators; and (4) Support the tracker authoring on

the phone. OmniTrack can generate a wide range of self-tracking practices
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by incorporating a semi-automated tracking approach. The coverage of the de-

sign space of OmniTrack was demonstrated via three use cases that covered

the extremes of the semi-automated tracking spectrum.

In Chapter 4, the second research question (How do individual self-trackers

adopt a flexible self-tracking tool in their personalized tracking contexts?) was ad-

dressed;OmniTrackwas empirically evaluated in personal tracking contexts,

using an Android implementation. The system was first improved by ad-

dressing the issues detected in a usability study (N = 10). A three-week de-

ployment study (N = 21) was conducted to assess if people could capital-

ize on OmniTrack’s flexible and customizable design to meet their tracking

needs. The study revealed that participants were able to use OmniTrack to

fulfill their personal tracking preferences, except in some edge cases. The

analysis also identified four salient styles (in-situ experience logger, timestam-

per, daily summary, and archive) of self-tracking from the dataset. Further-

more, it was observed that the on-the-go modification feature of OmniTrack

could adapt to changes in the participants’ tracking needs, suggesting Om-

niTrack’s value for long-term self-tracking.

In Chapter 5 and Chapter 6, the third research question (How should we

design a flexible toolkit to cover research contexts that enclose manifold personal

tracking contexts?) was addressed. Chapter 5 illustrated the design and de-

velopment of the OmniTrack Research Kit, which extends the mobile system

in Chapter 3. In designing the research kit, a design space was outlined from

relatedwork. The design goalswere: (1) Support authoring of theOmniTrack

components to configure tracking mechanisms based on the study protocol;

(2) Support continuous monitoring of the participants’ status and progress

to detect issues early in the deployment phase; (3) Provide isolated tracking

environment among experiments to reduce confounding factors; and (4) Fa-
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cilitate researchers to comply with the ethics guidelines. The coverage of the

research kitwithin the design spacewas demonstrated by four examples that

replicate prior in situ data collection studies in various disciplines.

Chapter 6 presented a real-world diary study that was conducted using

the research kit. The goal of the diary study was to assess how knowledge

workers define and evaluate their productivity; 24 knowledge workers col-

lected diary entries on productive activities using the OmniTrack trackers.

From the qualitative analysis of the entry data, the researchers derived six

aspects that characterize the productivity assessment and identified how

participants interleaved multiple facets when assessing their productivity.

The case study demonstrated how the OmniTrack Research Kit can help re-

searchers accomplish their goals and also revealed opportunities for further

improvement of the research kit.

8.2 Summary of Contributions

This dissertation work contributes mainly to the fields of human-computer

interaction and ubiquitous computing. The contributions of this research are

summarized as follows: the design and implementation of the OmniTrack

app, a flexible mobile platform that covers a wide range of self-tracking data

collection process by leveraging semi-automated tracking; evaluation of the

OmniTrack interface through a usability study to learn whether people can

capitalize on the concept of OmniTrack to complete the configuration tasks;

empirical findings, obtained through a field deployment study, on howOm-

niTrack empowers individual self-trackers in light of its ability to adapt to

diverse tracking needs that change over time; design and implementation of

the OmniTrack Research Kit, a research platform that allows researchers to
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design and deploy the OmniTrack trackers and monitor study participants

remotely; and a case study of a diary method that demonstrates how the

systematic support provided by the OmniTrack Research Kit assists in the

accomplishment of research goals. In this section, the contributions are re-

stated in terms of artifact and empirical contribution, following the typology

of Wobbrock and Kientz [165].

8.2.1 Artifact Contributions

The design and development of the OmniTrack systems (the OmniTrack

app and the research kit) make artifact contributions1. The systems incorpo-

rate known technologies and components, but the functionalities they man-

ifest are new in the areas of self-tracking and personal informatics [57].

The OmniTrack Approach and Mobile System

OmniTrack is a novel self-tracking approach with flexibility on target behav-

iors and data capture methods. OmniTrack was implemented as a mobile

system and evaluated through two user studies. In a three-week deployment

study, 21 people experienced OmniTrack in their individualized tracking

contexts. The deployment study showed that OmniTrack encouraged partic-

ipants to actively create, modify, and remove their trackers, thereby demon-

strating the utility of the system. One important feature of OmniTrack is the

seamless modification of the design of self-tracking tools over the course of

data collection, without loss of the previous data. In the deployment study,

one-third of the participants made use of this functionality to reflect their

changing tracking needs. As most self-tracking tools have dedicated pur-

1Working from an HCI perspective, Wobbrock and Kientz [165] remarked that artifact contri-
butions arise fromgenerative design-driven activities (invention) and new tools are evaluated
in a holistic fashion according to what they make possible and how they do so.
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poses and designs, many self-trackers have striven to find tools or build ones

to meet their tracking needs [32, 80]. OmniTrack revealed new opportuni-

ties to empower this population by expanding possibilities for tracker design

through flexible interfaces for systematic, structural data collection.

The OmniTrack Research Kit

OmniTrack Research Kit is an in situ data collection platform that employs

OmniTrack for configuring study participants’ data collection tools. The re-

search kit inherits the flexibility of OmniTrack, incorporating additional con-

figurable components for research contexts, including informed consent, ex-

perimental groups, and predefined tracking packages. Like other data col-

lection toolkits (e.g., [11, 25, 171]), OmniTrack Research Kit supports devis-

ing well-known in situ data collection studies, such as EMA, diary studies,

or distributed sensor data collection. In addition, OmniTrack’s flexibility al-

lowsmore sophisticated studydesigns such as collecting heterogeneous data

among participants. The configurable design space of the OmniTrack Re-

search Kit was demonstrated by a set of replicated example cases. A case

study, which was about conducting a diary study using the research kit, il-

lustrated how the OmniTrack Research Kit helped researchers address ques-

tions through empirical data collection. The OmniTrack Research Kit con-

tributes to the field of HCI and any other fields that involve in situ data col-

lection because it allows other researchers to devise studies that can be an-

swered by in situ datasets.
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8.2.2 Empirical Research Contributions

Throughout this work, several empirical findings2 were obtained by observ-

ing people and gathering both qualitative and quantitative data:

Styles of Self-Tracking Apps Created by Individuals

The deployment study gathered rich data from 21 people for three weeks.

Based on the data regarding tracker creation, modification, and deletion, we

identified four salient tracker styles: in-situ experience logger; timestamper; daily

summary; and archive. The styles present lived examples of how people adapt

the tracker design for their tracking goals, and thus build on prior works [49,

142]. For example, in-situ experience loggers represent the canonical design

for instrumental tracking goals [49], because they were built to obtain a record

of a particular behavior [49]. timestampers are also usually motivated by in-

strumental tracking goals, but have extremely optimized forms to lower the

capture burden.

Characterization of Knowledge Workers’ Productivity Assessment

The case study of the OmniTrack Research Kit illustrated a diary study con-

ducted with 24 knowledge workers. Qualitative analyses based on the diary

entry data (N = 830) identified six aspects of productivity evaluation: work

product, time management, worker’s state, attitude toward work, impact & bene-

fit, and compound task. The dataset also revealed 13 activities that knowledge

workers related to their productivity. Unlike prior studies that characterized

productivity only inwork contexts [42, 107] or within specific domains [111],

2Wobbrock and Kientz [165] remarked that empirical research contributions provide new
knowledge through findings based on observation and data gathering, arising from various
sources, including experiments, user studies, interviews, and so on.
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these findings develop amore holistic understanding of productivity that en-

compasses bothwork and non-work contexts. This novel knowledge informs

other researchers who want to design productivity monitoring tools in the

future, making a clear research contribution to the field of HCI.

8.3 Future Work

This research inspired a number of future opportunities to improve the Om-

niTrack approach and systems. This section revisits the future research agen-

das raised in the previous chapters.

8.3.1 Understanding the Long-term E�ect of OmniTrack

The deployment study in Section 4.2 showed that participants actively cre-

ated,modified, and removed theOmniTrack trackers.However, a three-week

deployment was not sufficient to observe a full lifecycle of trackers. A large

dataset gathered by massive deployment is known to be helpful for verify-

ing the findings in local-scale deployments [120]. We envision a large-scale

remote deployment of the OmniTrack app to users worldwide for a longer

period. The dataset earned from the deployment will allow us to understand

how people adopt a flexible self-tracking tool in depth [8].

8.3.2 Utilizing External Information and Contexts

Currently, triggers and reminders (note that triggers and reminders are in-

ternally the same entity with different actions) do not listen to the external

events. By employing event-based triggers and reminders, OmniTrack can be

of benefit in both personal tracking and research contexts. Integrating the ex-

isting frameworks and services such asAWARE [53] or IFTTT [79] could aug-

ment OmniTrack, allowing it to be responsive to new contextual events that
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people want to track. In research contexts, contextual events can be used to

devise event-contingent EMA studies [14] where participants are prompted

when the situation of interest actually occurs.

8.3.3 Extending the Input Modality to Lower the Capture Burden

Because the OmniTrack app supported only two ways to capture an item, ei-

ther in the input screen or through a trigger, participants in a series of studies

repeatedly raised the idea of extending OmniTrack’s data capture modality.

Specifically, there aremanyways to enhance themanual data capture of Om-

niTrack. Inputs can be more streamlined by utilizing a notification drawer or

step-wise popup dialogs, or by supporting OmniTrack on other platforms

such as web browsers.

8.3.4 Customizable Visual Feedback

Although OmniTrack is a customizable data collection tool, it is poor at en-

gaging people in the collected data because feedback features are not well

established [68]. For some of the deployment study participants, this lim-

ited visualization support resulted in early disengagement fromOmniTrack.

Complementing feedback features for flexible tracking tools is challenging

due to the uncertainty of the data semantics and the difficulty of configuring

visualizations on a mobile device [98]. Designing a flexible visual feedback

interface for mobile self-tracking data is a challenging research problem.

8.3.5 Community-Driven Tracker Sharing

Users of the OmniTrack app are isolated from each other. The usability study

participants expressed a desire to share the captured items on social media

or using the same tracker with other people for a shared goal. Also, the us-
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ability study revealed that the tutorial session was crucial for understanding

the core concept and design space of OmniTrack, although tutorials cannot

be provided in real situations. One promising way to train novice users is to

allow sharing and downloading the experts’ trackers as a template, employ-

ing a community-based approach. Building a community-driven ecosystem

of autonomous OmniTrack users is one long-term goal of this research.

8.3.6 Supporting Multiphase Study Design

Although the example cases (Section 5.4) and the case study (Chapter 6)

demonstrated the possibility of OmniTrack Research Kit for various types of

study, all the studieswere single-phased. The coverage of the research kit can

be expanded by supporting multiphase design [19], which is often essential

for intervention studies. Devising a multiphase study requires much more

complex configuration of what will change between phases and groups, pos-

ing additional design challenges.

8.4 Final Remarks

Over the course of this dissertation research, efforts were made to empower

self-tracking practice of the individual self-trackers and researchers, by pro-

viding toolkits that enable them to devise their own tracking tools. The se-

ries of studies provided an opportunity to understand what people expect

in flexible tools and whether they can capitalize on the tools. One important

lesson from this research is that although flexibility is crucial for broadening

the design space, making the system learnable and understandable—even if

it compromises the flexibility—is more important to foster creativity on and

engagement with the generative platform.
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APPENDIX A

Study Material for Evaluations of
the OmniTrack App

All the supplementary materials regarding the OmniTrack studies in Chap-

ter 4 are also available at https://omnitrack.github.io/ubicomp2017.

A.1 Task Instructions for Usability Study

Task 1: Bear Tracker
You are an enthusiastic beer drinker and enjoy the experience of drinking a new
beer that you have not tried before. Youwant to keep track of each beer you tried.

Requirements

1. Make a tracker which captures the following things:

(a) A photo of the beer

(b) The date of drinking

(c) The name of the beer

(d) The category of beer: Ale, Lager, Stout, and Misc.

(e) A review score for the beer (Stars)

(f) Your own written review

2. Assign the tracker on a shortcut panel to facilitate the tracking.
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Task 2: Sleep Tracker
Recently, youhaven’tbeensleepingverywell, so youdecided tocollect your sleep
data using Fitbit in conjunction with other behavioral factors such as ca�eine in-
take, alcohol consumption, exercise, and shower. The purpose of this tracking is
to understand how these behavioral factors a�ect your sleep quality.

Requirements

1. You need two trackers: a sleep tracker which records a quality of sleep of
each day; and a co�ee tracker which records the time you had a co�ee.

2. For the sleep tracker, you need the following fields:

(a) Date of recording

(b) Sleep duration (start-end)

(c) Sleep quality (stars)

3. Send reminder at 9:00 AM every morning for the sleep tracker.

4. The sleep duration field must be connected to Fitbit’s sleep duration mea-
sure

5. For the co�ee tracker, you only need a single field that records the time.

6. Assign the co�ee tracker on a shortcut panel.

Task 3: 10,000 Step Tracker
You are not walkingmuch these days. Gaining weight, you decided to check how
many days in a week you walked over 10,000 steps.

Requirements

1. Build a trackerwhich records the timewhenyour step count exceeds 10,000
steps.

2. Your tracker needs a single time field.

3. The tracker shouldbe connected toadata-driven trigger attached toFitbit’s
step count measure.

4. The data-driven trigger must log an item when Fitbit step count exceeds
10,000 steps.
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Task 4: Custom Tracker
Now, build your own tracking system that you want to use assuming that you

have installed OmniTrack on your phone. No limits on the number of trackers,
fields, and features you use.

A.2 The SUS (System Usability Scale) Questionnaire

Question Rating

Q1. I think that I would like to use this system
frequently.

Str. Disagr.����� Str. Agr.

Q2. I found the system unnecessarily complex. Str. Disagr.����� Str. Agr.

Q3. I thought the systemwas easy to use. Str. Disagr.����� Str. Agr.

Q4. I think that I would need the support of a
technical person to be able to use this system.

Str. Disagr.����� Str. Agr.

Q5. I found the various functions in this systemwere
well integrated.

Str. Disagr.����� Str. Agr.

Q6. I thought there was toomuch inconsistency in
this system.

Str. Disagr.����� Str. Agr.

Q7. I would imagine that most people would learn to
use this system very quickly.

Str. Disagr.����� Str. Agr.

Q8. I found the system very cumbersome to use. Str. Disagr.����� Str. Agr.

Q9. I felt very confident using the system. Str. Disagr.����� Str. Agr.

Q10. I needed to learn a lot of things before I could get
going with this system.

Str. Disagr.����� Str. Agr.
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A.3 Screening Questionnaire for Deployment Study

1. What is your age?

◦ 20s
◦ 30s
◦ 40s
◦ Older than 50s

2. What is your gender?

◦ Male
◦ Female
◦ Other:

3. What is your occupation? Choose all that apply.

� Undergraduate
� Graduate
� Full-time worker
� Freelancer
� Other:

4. Please briefly describe your major or area of work.

5. Are you using an Android smartphone currently?

◦ Yes, I am.
◦ No, I’m not.

6. How long have you used the Android phone?

◦ Shorter than 6 months.
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◦ From 6 to 12 months
◦ Longer than a year

7. Choose all the behaviors you are tracking on a regular basis.

� Health (e.g., step count, heart rate)
� Food intake
� Daily diary
� Book
� Study
� What you did
� Other:

8. Choose all the tracking methods you are using.

� Pen and paper
� Excel spreadsheet or similar tools
� Manual recording with Smartphone apps (e.g., diary, calendar)
� Automated recording with Smartphone health apps (e.g., Google

Fit, S Health)
� Smartwatches or wearable devices
� Other:

9. Have you ever used Google form or similar tools before?

◦ Yes, I have.
◦ No, I haven’t.
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A.4 Exit Interview Guide for Deployment Study

Question/Guide Memo Asked

[Turn on the audio recorder] �

How old are you? �

Are you actually using OmniTrack for now?
[Check uninstallation]

�

[Match OmniTrack trackers with the target behaviors answered in
the pre-questionnaire.]

�

What motivated you to join this study? �

[For each tracker, ask purpose and semantics of fields in it.] �

[For each tracker, ask when to capture with it.] �

Is there any case of skipping logs when you had to? For co�ee
tracker, for example, have you forget to log an entry when you
drank co�ee?

�

[Ask the participant to clarify what target behaviors were realized
in OmniTrack and what were not, among the ones in the
pre-questionnaire.]

�

Do you have any new activities that you captured a�er started to
use the OmniTrack app?

�

[Ask if the participant mainly used the example trackers] Is there
any reason that you did not create any trackers? Did the example
trackers fit on your needs?

�

Have you ever modified your trackers a�er you’ve already started
logging? If so, describe the reasons and situations.

�

Have you ever exploited the OmniTrack items in any ways? such
as browsing in the item list or visualization, or exporting the data?

�

Were there any changes in your life a�er you used OmniTrack? �

[Ask opinions about the improvements and issues of the OmniTrack
system.]

�

Are you positive to use the OmniTrack app a�er the study? If not,
please explain why.

�

[Turn o� the audio recorder] �
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A.5 Deployment Participant Information
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APPENDIX B

Study Material for Productivity
Diary Study

This section contains study material used for the diary study in Chapter 6.

Note that the study was conducted in South Korea and the presented docu-

ments were originally in Korean.

B.1 Recruitment Screening Questionnaire

1. What is your age? years old

2. What is your gender?

◦ Male
◦ Female
◦ Other:

3. What is your occupation? Please use the phrase that best describes

your current status (e.g., graduate student majoring in **, Software de-

veloper, Graphic designer).
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4. Describe what you actually do for your work in detail.

5. How many hours do you work in a week, excluding meals?

hours per week

6. I have an ability to influence my work task and schedules.

Strongly disagree ����� Strongly agree

7. Productivity is important in my work.

Strongly disagree ����� Strongly agree

8. Are you interested in enhancing your productivity in your work?

◦ Yes, I’m interested in.
◦ No, I’m NOT interested in.

9. Please check all that apply to you:

� I’m using an Android Smartphone.
� I’m not currently participating in other self-report studies.
� don’t have any plan to take a vacation on the weekdays during

study period
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B.2 Exit Interview Guide

� Setupmicrophone
� Start audio recording

Tracking patterns & strategies

� For what purposes did you log the diary entries?
What did you want to achieve or know?

� Did you establish any personal rules for when to log the entries and what
activities to log?

• (Yes, I had) -
� Please elaborate more on the rules.
� Have you kept the rules well?
(No, I couldn’t) - Can you explain when and why you failed to do?

• (No, I didn’t) -
� [Referring to the data table] In what situation did you log an entry?

� Do your diary entries cover all the time you ‘did not waste’ in your life?

• (Yes, they do) -
• (No, they don’t) -

� What kind of activities did you log?
� Are there any productive activities you did not log intentionally?
� Why did you exclude them?

� (If the weekend logging was inactive) -

� Were there no productive activities on weekends? or did you skip log-
gingproductive activities because theweekend loggingwasoptional?

� (If the weekend logging was active) -

� Why did you log on weekends even though the weekend logging was
optional?

183



Reflection on Productivity

� Please explain how did you make use of visualization webpage, item list,
and the in-app visualization page.

� What did you o�en visit?

� What charts or information did youmainly check?

� Were there any aspects, factors, or causalities that youwanted to reflect on
through the productivity logging?

• (Yes, there were) -
� Please elaborate more on them.
� Were the features, includingcharts, visualizations, item lists, help-
ful for reflecting on what you wanted?
� (Yes, they were) -
� (No, they weren’t helpful) -
� Why do you think so?

• (No, there weren’t any) -

Productivity Evaluation

� In what criteria did you evaluate the productivity of your activities?

� [Looking at the table together] You seem to evaluate activities like [task name]
to be [productivity level].

� [Ask about interesting patterns of the participant’s evaluation.]

� What does high productivitymean for you?

� What does low productivitymean for you?

Lessons

� What did you learn from the productivity logging?

� Was there any influence that the productivity logging gave to you?
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Challenges

� Did any challenging issues arise during the course of the study?

� Stop audio recording

� O�er compensation
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국문초록

일상의맥락에서데이터를모으는활동인셀프트래킹(self-tracking)은개인과

연구의영역에서활발히활용되고있다.웨어러블디바이스와모바일기술의발달

로인해사람들은각자의삶에대해말해주는데이터를더쉽게수집하고,통찰할

수있게되었다.또한,연구자들은현장(in situ)데이터를수집하거나사람들에게

행동변화를일으키는데에셀프트래킹을활용한다.

비록셀프트래킹을위한다양한도구들이존재하지만,트래킹에대해다양화된

요구와취향을완벽히충족하는것들을찾는것은쉽지않다.대부분의셀프트래

킹도구는이미설계된부분을수정하거나확장하기에제한적이다.그렇기때문에

사람들의 셀프 트래킹에 대한 자유도는 기존 도구들의 디자인 공간에 의해 제약

을 받을 수밖에 없다. 마찬가지로, 현장 데이터를 수집하는 연구자들도 이러한

도구의 한계로 인해 여러 문제에 봉착한다. 연구자들이 데이터를 통해 답하고자

하는 연구 질문(research question)은 분야가 발전할수록 세분되고, 치밀해지기

때문에 이를 위해서는 복잡하고 고유한 실험 설계가 필요하다. 하지만 현존하는

연구용셀프트래킹플랫폼들은이에부합하는자유도를발휘하지못한다.이러한

간극으로 인해 많은 연구자들이 각자의 현장 데이터 수집 연구에 필요한 디지털

도구들을직접구현하고있다.

본 연구의 목표는 자유도 높은—연구적 맥락과 개인적 맥락을 아우르는 다양

한 상황에 활용할 수 있는—셀프 트래킹 기술을 디자인하는 것이다. 이를 위해

본고에서는 옴니트랙(OmniTrack)이라는 디자인 접근법을 제안한다. 옴니트랙

은자유도높은셀프트래킹을위한방법론이며,반자동트래킹(semi-automated

tracking)이라는 컨셉을 바탕으로 수동 방식과 자동 방식의 조합을 통해 임의의

트래커를표현할수있다.
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먼저옴니트랙을개인을위한모바일앱형태로구현하였다.옴니트랙앱은개

개인이자신의트래킹니즈에맞는트래커를커스터마이징하여활용할수있도록

구성되어 있다. 본고에서는 사람들이 어떻게 옴니트랙을 자신의 니즈에 맞게 활

용하는지 알아보고자 사용성 테스트(usability testing)와 필드 배포 연구(field

deployment study)를 수행하였다. 참가자들은 옴니트랙을 활발히 이용해 다양

한디자인의트래커—아주단순한감정트래커부터여러개의필드를가진복잡한

일일활동트래커까지—들을생성하고,수정하고,활용하였다.

다음으로,옴니트랙을현장데이터수집연구에활용할수있도록연구플랫폼

형태의 ‘옴니트랙리서치킷(OmniTrack Research Kit)’으로확장하였다.옴니트

랙 리서치 킷은 연구자들이 프로그래밍 언어 없이 원하는 실험을 설계하고 옴니

트랙 앱을 참가자들의 스마트폰으로 배포할 수 있도록 디자인되었다. 그리고 옴

니트랙리서치킷을이용해일지기록연구(diary study)를직접수행하였고,이를

통해 옴니트랙 접근법이 어떻게 연구자들의 연구 목적을 이루는 데에 도움을 줄

수있는지직접확인하였다.

본연구는휴먼-컴퓨터인터랙션(Human-Computer Interaction)및유비쿼터

스컴퓨팅(Ubiquitous Computing)분야에기술적산출물로써기여하며,자유도

높은셀프트래킹도구가어떻게개인과연구자들을도울수있는지실증적인이

해를 증진한다. 또한, 자유도 높은 셀프트래킹 기술에 대한 디자인적 난제, 연구

에서제시한시스템에대한개선방안,마지막으로본연구에서다루지못한다른

집단을지원하기위한향후연구논제에대하여논의한다.

주요어:셀프트래킹;셀프모니터링;퀀티파이드셀프;퍼스널인포매틱스;최종

사용자용툴킷;반자동셀프트래킹;현장데이터

학번: 2012-23205
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