50,866 research outputs found

    Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    Get PDF
    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000–2002 combined summer drought–dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000–2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000–2001, 2005 and 2009) were characterized by negative anomalies with peak values between �1.5 and �0.5 and were statistically different (P \u3c 0:001) from relatively wet years (2003, 2004 and 2007). Conversely, the frequency distributions of the dry years were not statistically different (p \u3c 0:001) from those of the relatively wet years for the grassland biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI \u3c �1) in Inner Mongolia (IM) and Outer Mongolia (OM), showing that droughts substantially reduced vegetation activity. The correlation was stronger for the desert biome (R2 D 65 and 60, p \u3c 0:05) than for the IM grassland biome (R2 D 53, p \u3c 0:05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the desert and grassland biomes on the Plateau

    No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau

    Get PDF
    Vegetation phenology is a sensitive indicator of climate change and has significant effects on the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The Tibetan Plateau, the Earth\u27s “third pole,” is a unique region for studying the long‐term trends in vegetation phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its low‐level human disturbance. There has been a debate whether the trends in spring phenology over the Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set (1982–2014), the GIMMS NDVI data set (1982–2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data set (2001–2014), the Satellite Pour l\u27Observation de la Terre Vegetation (SPOT‐VEG) NDVI data set (1999–2013), and the Sea‐viewing Wide Field‐of‐View Sensor (SeaWiFS) NDVI data set (1998–2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS trends among the different NDVI data sets and between the two different retrieval methods. There is no consistent evidence that spring phenology (“green‐up” dates) has been advancing or delaying over the Tibetan Plateau during the last two to three decades. Ground‐based budburst data also indicate no consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature, precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval methods. The increases in winter and spring temperature had offsetting effects on spring phenology

    Changes in the soil organic carbon balance on China’s cropland during the last two decades of the 20th century

    Get PDF
    Agro-ecosystems play an important role in regulating global changes caused by greenhouse gas emissions. Restoration of soil organic carbon (SOC) in agricultural soils can not only improve soil quality but also influence climate change and agronomic productivity. With about half of its land area under agricultural use, China exhibits vast potential for carbon (C) sequestration that needs to be researched. Chinese cropland has experienced SOC change over the past century. The study of SOC dynamics under different bioclimatic conditions and cropping systems can help us to better understand this historical change, current status, the impacts of bioclimatic conditions on SOC and future trends. We used a simulation based on historical statistical data to analyze the C balance of Chinese croplands during the 1980s and 1990s, taking into account soil, climate and agricultural management. Nationwide, 77.6% of the national arable land is considered to be in good condition. Appropriate farm management practices should be adopted to improve the poor C balance of the remaining 22.4% of cropland to promote C sequestration

    Meteorological drought analysis in the Lower Mekong Basin using satellite-based long-term CHIRPS product

    Get PDF
    Lower Mekong Basin (LMB) experiences a recurrent drought phenomenon. However, few studies have focused on drought monitoring in this region due to lack of ground observations. The newly released Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) with a long-term record and high resolution has a great potential for drought monitoring. Based on the assessment of CHIRPS for capturing precipitation and monitoring drought, this study aims to evaluate the drought condition in LMB by using satellite-based CHIRPS from January 1981 to July 2016. The Standardized Precipitation Index (SPI) at various time scales (1-12-month) is computed to identify and describe drought events. Results suggest that CHIRPS can properly capture the drought characteristics at various time scales with the best performance at three-month time scale. Based on high-resolution long-term CHIRPS, it is found that LMB experienced four severe droughts during the last three decades with the longest one in 1991-1994 for 38 months and the driest one in 2015-2016 with drought affected area up to 75.6%. Droughts tend to occur over the north and south part of LMB with higher frequency, and Mekong Delta seems to experience more long-term and extreme drought events. Severe droughts have significant impacts on vegetation condition

    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China

    Get PDF
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd

    Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield

    Get PDF
    There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China\u27s land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation \u27greening\u27 and \u27browning\u27 on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield, while vegetation browning reduced ET and increased water yield. At the large river basin and national scales, the greening trends also had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the changes in vegetation greenness on the hydrological cycle varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrological cycle are needed to account for the feedbacks to the climate

    The Effect of Rainfall and Post-revolutionary Land-use Changes on Sediment Yield in Weixi Basin, Yunnan, China : New insights from multi-temporal land-use classification and radionuclide analyses

    Get PDF
    This paper looks at the dynamic interphase connecting post-revolutionary politics, modern land use practices, precipitation patterns, basin slope, and sediment yield records in Weixi basin, a small mountainous watershed in Southwestern China with a total upstream area of 198 m2. The goal is to identify what processes, climatic or not, account for the changes in local sediment yield and erosion budget. Weixi basin has an average annual sediment yield of 175 ton/km2 with two anomalously large peaks in 1979 and 1984. Precipitation is moderately correlated with sediment yield at interannual scale. It also affects seasonal fluctuations in sediment yield as major sediment loading events correspond to spring snowmelt and monsoon rainfall. However, there is no long-term trend in precipitation that could explain the peak in sediment yield. Land use/land cover classification shows an average of 22.8% bare land in Weixi basin, but no definitive conclusion about temporal changes could be drawn yet due to the discrepancy in imagery resolution. Short-lived radionuclide analyses show there is no correlation between upstream land use and depth of erosion, whereas slope is a moderate control for erosion depth
    corecore