75,942 research outputs found

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    Designing for interaction

    Get PDF
    At present, the design of computer-supported group-based learning (CS)GBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as ‘cooperative learning’ and ‘collaborative learning’. Critical review reveals these concepts as insufficiently substantial to serve as a basis for (CS)GBL design. Furthermore, the relationship between outcome and group interaction is rarely specified a priori. Thus, there is a need for a more systematic approach to designing (CS)GBL that focuses on the elicitation of expected interaction processes. A framework for such a process-oriented methodology is proposed. Critical elements that affect interaction are identified: learning objectives, task-type, level of pre-structuring, group size and computer support. The proposed process-oriented method aims to stimulate designers to adopt a more systematic approach to (CS)GBL design according to the interaction expected, while paying attention to critical elements that affect interaction. This approach may bridge the gap between observed quality of interaction and learning outcomes and foster (CS)GBL design that focuses on the heart of the matter: interaction

    Educational Technology: The influence of theory

    Get PDF
    In this paper we explore the role of theories in current practice in educational technology. We review a range of writings from the past 30 years on the nature of learning technology research. We discuss influences on learning technologies from the related fields of Artificial Intelligence in Education (AIED) and Human-Computer Interaction (HCI). We identify two groups of theories which have been used. The first group are related to principled decisions about the design of learning materials. The second group influence the ways in which we frame our research on learning. Research in learning technologies in the future will need to draw on both groups of theories. In this paper, we draw on our own experiences as educational technologists and the purpose of the paper is to encourage other educational technologists to join with us in reflecting on their own use of theories

    To enhance collaborative learning and practice network knowledge with a virtualization laboratory and online synchronous discussion

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 Internatinal License.Recently, various computer networking courses have included additional laboratory classes in order to enhance students' learning achievement. However, these classes need to establish a suitable laboratory where each student can connect network devices to configure and test functions within different network topologies. In this case, the Linux operating system can be used to operate network devices and the virtualization technique can include multiple OSs for supporting a significant number of students. In previous research, the virtualization application was successfully applied in a laboratory, but focused only on individual assignments. The present study extends previous research by designing the Networking Virtualization-Based Laboratory (NVBLab), which requires collaborative learning among the experimental students. The students were divided into an experimental group and a control group for the experiment. The experimental group performed their laboratory assignments using NVBLab, whereas the control group completed them on virtual machines (VMs) that were installed on their personal computers. Moreover, students using NVBLab were provided with an online synchronous discussion (OSD) feature that enabled them to communicate with others. The laboratory assignments were divided into two parts: Basic Labs and Advanced Labs. The results show that the experimental group significantly outperformed the control group in two Advanced Labs and the post-test after Advanced Labs. Furthermore, the experimental group's activities were better than those of the control group based on the total average of the command count per laboratory. Finally, the findings of the interviews and questionnaires with the experimental group reveal that NVBLab was helpful during and after laboratory class
    • …
    corecore