26 research outputs found

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Hierarchical clustering-based segmentation (HCS) aided diagstic image interpretation monitoring.

    Get PDF
    Machines are good at operations which require precision and computing objective measures. In contrast, humans are good at generalisation and making decisions based on their past experience and heuristics. Hence, to solve any problem with a solution involving human-machine interaction, it is imperative that the tasks are shared appropriately. However, the boundary which divides these two different set of tasks is not well defined in domains such as medical image interpretation. Therefore, one needs a versatile tool which is flexible enough to accommodate the varied requirements of the user. The aim of this study is to design and implement such a software tool to aid the radiologists in the interpretation of diagnostic images.Tissue abnormality in a medical image is usually related to a dissimilar part of an otherwise homogeneous image. The dissimilarity may be subtle or strong depending on the medical modality and the type of abnormal tissue. Hierarchical Clustering-based Segmentation (HCS) process is a dissimilarity highlighting process that yields a hierarchy of segmentation results. In this study, the HCS process was investigated for offering the user a versatile and flexible environment to perceive the varied dissimilarities that might be present in diagnostic images. Consequently, the user derives the maximum benefit from the computational capability (perception) of the machine and at the same time incorporate their own decision process (interpretation) at the appropriate places.As a result of the above investigation, this study demonstrates how HCS process can be used to aid radiologists in their interpretive tasks. Specifically this study has designed the following HCS process aided diagnostic image interpretation applications: interpretation of computed tomography (CT) images of the lungs to quantitatively measure the dimensions of the airways and the accompanying blood vessels; Interpretation of X-ray mammograms to quantitatively differentiate benign from malignant abnormalities. One of the major contribution of this study is to demonstrate how the above HCS process aided interpretation of diagnostic images can be used to monitor disease conditions. This thesis details the development and evaluation of the novel computer aided monitoring (CAM) system. The designed CAM system is used to objectively measure the properties of suspected abnormal areas in the CT images of the lungs and in X-ray mammogram. Thus, the CAM system can be used to assist the clinician to objectively monitor the abnormality. For instance, its response to treatment and consequently its prognosis. The implemented CAM system to monitor abnormalities in X-ray mammograms is briefly described below. Using the approximate location and size of the abnormality, obtained from the user, the HCS process automatically identifies the more appropriate boundaries of the different regions within a region of interest (ROI), centred at the approximate location. From the set of, HCS process segmented, regions the user identifies the regions which most likely represent the abnormality and the healthy areas. Subsequently, the CAM system compares the characteristics of the user identified abnormal region with that of the healthy region; to differentiate malignant from benign abnormality. In processing sixteen mammograms, the designed CAM system demonstrated the possibility of successfully differentiating malignant from benign abnormalities

    Case series of breast fillers and how things may go wrong: radiology point of view

    Get PDF
    INTRODUCTION: Breast augmentation is a procedure opted by women to overcome sagging breast due to breastfeeding or aging as well as small breast size. Recent years have shown the emergence of a variety of injectable materials on market as breast fillers. These injectable breast fillers have swiftly gained popularity among women, considering the minimal invasiveness of the procedure, nullifying the need for terrifying surgery. Little do they know that the procedure may pose detrimental complications, while visualization of breast parenchyma infiltrated by these fillers is also deemed substandard; posing diagnostic challenges. We present a case series of three patients with prior history of hyaluronic acid and collagen breast injections. REPORT: The first patient is a 37-year-old lady who presented to casualty with worsening shortness of breath, non-productive cough, central chest pain; associated with fever and chills for 2-weeks duration. The second patient is a 34-year-old lady who complained of cough, fever and haemoptysis; associated with shortness of breath for 1-week duration. CT in these cases revealed non thrombotic wedge-shaped peripheral air-space densities. The third patient is a 37‐year‐old female with right breast pain, swelling and redness for 2- weeks duration. Previous collagen breast injection performed 1 year ago had impeded sonographic visualization of the breast parenchyma. MRI breasts showed multiple non- enhancing round and oval shaped lesions exhibiting fat intensity. CONCLUSION: Radiologists should be familiar with the potential risks and hazards as well as limitations of imaging posed by breast fillers such that MRI is required as problem-solving tool

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury
    corecore