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The Special Issue “Advanced Computational Methods for Oncological Image Analy-
sis”, published for the Journal of Imaging, covered original research papers about state-of-
the-art and novel algorithms and methodologies, as well as applications of computational
methods for oncological image analysis, ranging from radiogenomics to deep learning.
Interesting review articles were also considered.

Nowadays, the amount of heterogeneous biomedical data is constantly increasing, owing
to the advances in image acquisition modalities and high-throughput technologies [1–3].
In particular, this trend applies to oncological image analysis [4]. Cancer is the second
most common cause of death worldwide and encompasses highly variable clinical and
biological scenarios. Some of the current clinical challenges are (i) early disease diagnosis
and (ii) precision medicine, which allows for treatments targeted at specific clinical cases.
The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis
with the most suitable therapies [5].

The automated analysis of these large-scale datasets creates new compelling challenges
that require advanced computational methods, ranging from classic machine learning
techniques [6,7] to deep learning [8,9].

The developed reliable computer-assisted methods (i.e., artificial intelligence), to-
gether with clinicians’ unique knowledge, can be used to properly handle typical issues
in evaluation/quantification procedures (i.e., operator dependence and time-consuming
tasks) [10]. These technological advances can significantly improve result repeatability in
disease diagnosis and act as a guide towards appropriate cancer care. Indeed, the need
for applying machine learning and computational intelligence techniques to effectively
perform image processing operations —such as segmentation, co-registration, classification,
and dimensionality reduction, and multi-omics data integration—has steadily increased.

This Special Issue collects 13 papers related to oncological image analysis, including
10 original contributions and 3 review articles.

In the last few years, the role of medical image computing and quantification has been
remarkably growing. Several areas have benefited from these advances, including oncol-
ogy, since the advancement of computational techniques provides a technological bridge
between radiology and oncology. This aspect could significantly accelerate the adoption
of precision medicine. Regarding medical imaging focusing on traditional image analysis
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tasks—such as registration, fusion, and segmentation—in recent years we have witnessed
the advances of model-based medical image processing for biomarker development [11].

Among sex-related cancers, breast cancer for women and prostate cancer for men are
major causes of disease and death.

Concerning breast cancer, methods to predict its risk or to stratify women in differ-
ent risk levels could help achieve early diagnosis and consequently, mortality reduction.
Literature reviews are useful in providing a comprehensive vision of computer-assisted
approaches to support the clinical process, especially for young scientists [12,13]. In par-
ticular, [14] reviews extraction methods of textural features from mammograms, where
machine learning and deep learning algorithms are used to infer knowledge from the
features and assess breast cancer risk. The accurate diagnosis of breast cancer is very
challenging due to the increasing disease complexity, such as changes in treatment proce-
dures and patient population samples. Improving the performance with suitable diagnosis
techniques could lead to personalized care and treatment, thus reducing and controlling
cancer recurrence [15].

Even though magnetic resonance (MR) has a better capability to differentiate soft
tissues, mammography is the primary imaging modality used for the screening and early
detection of breast cancer. The analysis of mammography images starts with detecting
regions of interest around tumors. Those regions are then delimited through segmentation
and classified as probably benign or malignant tumors. Meanwhile, the manual detection
and delimitation of masses in images is time consuming and error prone. Therefore,
integrated computer-aided detection systems have been proposed to assist radiologists in
the process [16].

Along with the well-known imaging modalities, such as MR, CT, PET, US, which
are now consolidated and used in clinical routine, recently new modalities have emerged
that exploit techniques initially born in non-clinical contexts, such as microwaves [17,18].
When the aim is to reconstruct the dielectric/conductivity profile of the tissue under
examination, “quantitative” algorithms must be adopted. In these cases, the reconstructions
are basically optimized iteratively to consider the non-linearity. Among linear imaging
methods, commonly addressed as radar approaches, beam forming (BF) is probably the
most popular in microwave breast imaging. Basically, it consists of time-shifting the
signals received over the measurement aperture to isolate signals scattered from (and hence
to focus at) a particular synthetic focal point belonging to the imaged spatial area [17].
Microwave-based tomography is a model-based imaging modality that approximately
reconstructs the actual internal spatial distribution of a breast's dielectric properties over a
reconstruction model consisting of discrete elements. Breast tissue types are characterized
by their dielectric properties, so the complex permittivity profile could help distinguish
different tissue types [18].

Prostate cancer is one of the most diagnosed cancers in men and can often cause bone
metastases. In this case, the most common imaging technique for screening, diagnosis,
and the follow-up of disease evolution is bone scintigraphy, due to its high sensitivity and
widespread availability in nuclear medicine facilities. To date, the assessment of bone scans
relies solely on the interpretation of an expert physician who visually assesses the scan.
This time-consuming task is also subjective, due to the lack of well-established criteria
to identify bone metastases and quantify them using a straightforward and universally
accepted procedure. The aim of the work in [19] was to provide the physician with a fast,
precise, and reliable tool to quantify bone scans and evaluate disease progression/response
to treatment.

Immunotherapy is one of the most significant breakthroughs in cancer treatment.
Unfortunately, only a few patients respond positively to the treatment. Moreover, to date,
no efficient biomarkers exist for discriminating patients eligible for this treatment in an
early stage. To help overcome these limitations, the development of tools for discriminating
between patients with high chances of response and those with disease progression is
needed [20].
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Among tumors, brain lesions are one of the foremost reasons for the rise in mortality
among children and adults. A brain tumor is a mass of tissue that propagates out of control
of the normal forces that regulate growth inside the brain [21]. The quantitative analysis
of brain tumors provides valuable information for understanding tumor characteristics
and planning better treatment. The manual segmentation of brain tumors is a challenging
and time-consuming task. The accurate segmentation of lesions requires multiple image
modalities with varying contrasts. As a result, manual segmentation, which is arguably
the most accurate segmentation method, would be impractical for more extensive studies.
Moreover, automated brain tumor classification on MRI is non-invasive, so that it avoids
biopsy and makes the diagnosis process safer. The effort of the research community
to propose automatic brain tumor segmentation and classification methods has been
tremendous. As a result, ample literature exists on segmentation using region growing,
traditional machine learning and deep learning methods [22,23]. Similarly, a number of
tasks have been successfully conducted in the area of brain tumor classification into their
respective histological type.

Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-
up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds
are currently emerging in clinical practice as a non-invasive technology for therapy. Indeed,
the sound waves can increase the temperature inside the target solid tumors, leading to the
apoptosis or necrosis of neoplastic tissues. The MR-guided focused ultrasound surgery
(MRgFUS) technology represents a valid application of this ultrasound property, mainly
used in oncology and neurology [24]. Patient safety during MRgFUS treatments was
investigated because temperature increases during the treatment are not always accurately
detected by MRI-based referenceless thermometry methods. For these reasons, in-depth
studies about these aspects are needed to monitor temperature and improve safety during
MRgFUS treatments.

Deep learning approaches represent state-of-the-art techniques in many clinical sce-
narios, allowing for excellent performance. In the clinical setting, the main problem derives
from their black-box approach (i.e., the nature of neural networks)—understanding and
interpreting their internal mechanisms are difficult. Moreover, they require a training phase
on large-scale datasets. These drawbacks undermine their immediate clinical feasibility.
Apart from that, deep learning architectures, specifically convolutional neural networks
(CNNs), are well-established in image analysis, processing, and representation. They can
optimize feature design tasks that are essential to automatically analyze different types of
medical images [25–27]. Various approaches have been developed using CNN architectures,
aiming to support the clinical routine, such as tumor segmentation [16], skin melanoma
prediction [28], and the estimation of the immunotherapy treatment response [20].
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Abstract: The role of medical image computing in oncology is growing stronger, not least due to
the unprecedented advancement of computational AI techniques, providing a technological bridge
between radiology and oncology, which could significantly accelerate the advancement of precision
medicine throughout the cancer care continuum. Medical image processing has been an active field
of research for more than three decades, focusing initially on traditional image analysis tasks such as
registration segmentation, fusion, and contrast optimization. However, with the advancement of
model-based medical image processing, the field of imaging biomarker discovery has focused on
transforming functional imaging data into meaningful biomarkers that are able to provide insight
into a tumor’s pathophysiology. More recently, the advancement of high-performance computing, in
conjunction with the availability of large medical imaging datasets, has enabled the deployment of
sophisticated machine learning techniques in the context of radiomics and deep learning modeling.
This paper reviews and discusses the evolving role of image analysis and processing through the
lens of the abovementioned developments, which hold promise for accelerating precision oncology,
in the sense of improved diagnosis, prognosis, and treatment planning of cancer.

Keywords: medical imaging; imaging biomarkers; radiomics; deep learning

1. Introduction

To better understand the evolution of medical image processing in oncology, it is
necessary to explain the importance of measuring tumor appearance from medical images.
Medical image processing approaches contain useful diagnostic and prognostic informa-
tion that can add precision in cancer care. In addition, because biology is a system of
systems, it is reasonable to assume that image-based information may convey multi-level
pathophysiology information. This has led to the establishment of many sophisticated
predictive and diagnostic image-based biomarker extraction approaches in cancer. In more
detail, medical image processing efforts are focused on extracting imaging biomarkers
able to decipher the variation within individuals in terms of imaging phenotype, enabling
the identification of patient subgroups for precision medicine strategies [1]. From the
very beginning, the main prerequisite for clinical use was that quantitative biomarkers
must be precise and reproducible. If these conditions are met, imaging biomarkers have
the potential to aid clinicians in assessing the pathophysiologic changes in patients and
better planning personalized therapy. This is important, as in clinical practice subjective
characterizations might be used (e.g., average heterogeneity, speculated mass, necrotic
core) which can decrease the precision of diagnostic processes.

Based on the above considerations, the extraction of quantitative parameters character-
izing size, shape, texture, and activity can enhance the role of medical imaging in assisting
in diagnosis or therapy response assessment. However, in clinical practice, only simpler

J. Imaging 2021, 7, 124. https://doi.org/10.3390/jimaging7080124 https://www.mdpi.com/journal/jimaging
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image metrics (e.g., linear) are often used in oncology, especially in the evaluation of solid
tumor response to therapy (e.g., a longer lesion diameter in RECIST). Both RECIST and
WHO evaluation criteria rely on anatomical image measurements, mainly in CT or MRI
data, and were originally developed mainly for cytotoxic therapies. Such linear measures
suffer from high intra/inter-observed variability, which in some cases can compromise the
accurate assessment of tumor response, since some studies report inter-observer RECIST
variability of up to 30% [2]. Several studies have shown that 3D quantitative response
assessments are better correlated with disease progression than those based on 1D linear
measurements [3]. Nevertheless, traditional tumor quantification approaches based on
linear or 3D tumor measures have experienced substantial difficulties in assessing response
to newer oncology therapies, such as targeted, anti-angiogenic treatments and immunother-
apies [2]. Size-based tumor assessments do not always represent tumor response to therapy,
since, for example, tumors may display internal necrosis formation, with or without re-
duction in lesion size (as in traditional cytotoxic treatments). Even if RECIST criteria are
constantly updated to address these issues, as in the case of Immune RECIST [4], such
approaches still do not take into consideration a tumor’s image structure and texture over
time. In addition the size and the location of metastases have been reported to play a sig-
nificant role in assessing early tumor shrinkage and depth of response [5]. To address these
limitations, medical image processing has provided over the last few decades the means to
extract tumor texture and size descriptors for obtaining more detailed (e.g., pixel-based)
descriptors of tissue structure and for discovering feature patterns connected to disease or
response. In this paper, it is argued that the evolution of medical image processing has been
a gradual process, and the diverse factors that contributed to unprecedented progress in the
field with the use of AI are explained. Initially, simplistic approaches to classify benign and
malignant masses, e.g., in mammograms, were based on traditional feature extraction and
pattern recognition methods. Functional tomographic imaging such as PET gave rise to
more sophisticated, model-based approaches from which quantitative markers from tissue
properties could be extracted in an effort to optimize diagnosis, treatment stratification,
and personalize response criteria. Lastly, the advancement of artificial intelligence enabled
the more exhaustive search of imaging phenotype descriptors and led to the increased
performance of modern diagnostic and predictive models.

2. Traditional Image Analysis: The First Efforts towards CAD Systems

In the 1990s, one of the first challenges in medical image analysis was to facilitate the
interpretation of mammograms in the context of national screening programs for breast
cancer. In the United Kingdom, the design of the first screening program was undertaken by
a working group under Sir Patrick Forrest, whose report was accepted by the government
in 1986. As a consequence, the UK screening program was established for women between
50 and 64 in 1990 [6]. The implementation of such screening programs throughout Europe
led to the establishment of specialist breast screening centers and the formal training of
both radiographers and radiologists. X-ray mammography proved to be a cost-effective
imaging modality for national screening, and population screening led to smaller and
usually non-palpable masses being increasingly detected.

As a result, the radiologist’s task became more complex, since the interpretation of
a mammogram is challenging, due to the projective nature of mammography, while at
the same time the need for early and accurate detection of cancer became pressing. To
address these needs, medical image analysis became an active field of research in the
early nineties, giving rise to numerous research efforts into cancer and microcalcification
detection, as well as mammogram registration for improving the comparison of temporal
mammograms. Figure 1 depicts the temporal mammogram registration concept towards
CAD systems that would facilitate comparison and aid clinicians in early diagnose of
cancer in screening mammography [7]. When the ImageChecker system was certified by
the FDA for screening mammography in 1998, R2 Technology became the first company
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to employ computer-assisted diagnosis (CAD) for mammography, and later for digital
mammography as well.

 
Figure 1. Traditional medical image processing on temporal mammograms. From left to right: the most recent mammogram
(a) is registered to the previous mammogram (b), which is shown in (c). After registration there is one predominant region
of significant difference in the subtraction image (d), which corresponds to a mass developed in the breast.

However, early diagnostic decision support systems suffered from low precision,
which in turn could potentially lead to a negative impact in the number of unnecessary
biopsies. In a relevant study [8], the positive predictive values of the interpretations
worsened from 100%, 92.7%, and 95.5%, to 86.4%, 97.3%, and 91.1%, when mammograms
were analyzed by three independent observers, with and without the CAD. This limitation
was representative of the low generalizability of such cancer detection tools in these early
days. At the same time the lack of more sophisticated imaging modalities hampered the
research efforts towards predicting therapy response and optimizing therapy based on
imaging data.

3. Quantitative Imaging Based on Models

With the advent of more sophisticated imaging modalities enabling functional imaging,
medical image analysis efforts shifted towards the quantification of tissue properties.
This opened new horizons in CAD systems towards translating image signals to cancer
tissue properties such as perfusion and cellularity and developing more intuitive imaging
biomarkers for several cancer imaging applications. For example, in the case of MRI,
complex phenomena that occur after excitation are amenable to mathematical modeling,
taking into consideration tissue interactions within the tumor microenvironment. In the
context of evaluating a model-based approach, the model can be regarded reliable when the
predicted data converges on the observed signal intensities and at the same time provides
useful insights to radiologists and oncologists. MRI perfusion and diffusion imaging has
been the main focus of such modeling efforts, not least due to fact that MRI is ionizing
radiation-free.

Diffusion weighted MRI (DWI-MRI) is based on sequences sensitized to microscopic
water mobility by means of strong gradient pulses and can provide quantitative information
on tumor environment and architecture. Diffusivity can be assessed in the intracellular,
extracellular, and intravascular spaces. Apparent diffusion coefficient (ADC) per pixel
values derived from DWI-MRI theoretically have an inverse relationship to tumor cell
density. In addition, with the introduction of the intravoxel incoherent motion (IVIM)
model, both cellularity and microvascular perfusion information could be assessed after
parametric modeling [9]. Figure 2 presents a parametric map of the stretching parameter α
from the DWI-MRI stretched-exponential model (SEM), revealing highly heterogeneous
parts of a dedifferentiated liposarcoma (DDLS) of Grade 3 [9].
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Figure 2. DWI-MRI stretched-exponential (SEM) DWI-MRI parametric map, revealing highly heterogeneous parts of a
dedifferentiated liposarcoma (with permission from the department of Medical Imaging, Heraklion University Hospital).
Heterogeneity index α ranges from 0 to 1, with lower values of α indicating microstructural heterogeneity.

DWI-MRI has been tested in most solid tumors for discriminating malignant from
benign lesions, to automatize tumor grading, and to predict treatment response and post-
treatment monitoring [10].

However, there is still a lack of standardization and generalization of these results,
as well as validation against histopathology. While in clinical routine, in-depth DWI-
MRI biomarker validation is difficult, recent pre-clinical studies have found that derived
parametric maps can serve as a non-invasive marker of cell death and apoptosis in response
to treatment [11]. To this end, they also confirmed significant correlations of ADC with
immunohistochemistry measurements of cell density, cell death, and apoptosis.

In a similar fashion, in dynamic contrast-enhanced MRI (DCE-MRI), T1-weighted
sequences are acquired before, during, and after the administration of a paramagnetic
contrast agent (CA). Tissue-specific information about pathophysiology can be inferred
from the dynamics of signal intensity in every pixel of the studied area. Usually this is
performed by visual or semi-quantitative analysis from the signal time curves in selected
regions of interest. However, with the use of pharmacokinetic modeling, e.g., between the
intravascular and the extravascular extracellular space, it became possible to map signal
intensities per pixel to CA concentration and then fit model parameters describing, e.g.,
interstitial space and transfer constant (ktrans). This enabled the generation of parametric
maps, e.g., for ktrans providing more quantitative representation of tumor perfusion and
heterogeneity within the tumor image region of interest. Although promising, e.g., for
assessing treatment efficacy, such approaches have found limited use in clinical practice,
not least due to the low reported reproducibility of model parameter estimation. One
aspect of this problems is presented in the example shown in Figure 3, where the use of
image-driven methods based on multiple-flip angles produces a parametric map of a tumor
with different contrast compared to the one produced with the Fritz–Hansen population
based AIF [12]. This issue has several implications, including for the accuracy of assessing
breast cancer response to neoadjuvant chemotherapy [13].
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Figure 3. (a) ktrans map of a tumor from PK analysis using AIF measured directly from the MR image, while for the
conversion from signal to CA concentration the multiple flip angles method (mFAs) was used, (b) ktrans map of the same
tumor using a population based AIF from Fritz and Hansen.

In conclusion, the clinical translation of DWI and DCE MRI is hampered by low
repeatability and reproducibility across several studies in oncology. To address this prob-
lem initiatives such as the Quantitative Imaging Biomarkers Alliance (QIBA) propose
clinical and technological requirements for quantitative DWI and DCE-derived imaging
biomarkers, as well as image acquisition, processing, and quality control recommendations
aimed at improving reproducibility error, precision, and accuracy [14]. It is argued that
this active area of medical image processing has not yet reached its full potential and still
represents a complementary approach to AI driven methods, towards CAD systems for
promoting precision oncology. In addition, the exploitation of multimodality imaging
strategies (e.g., PET/MRI) can provide added value through the combination of anatomical
and functional information.

4. Radiomics and Deep Learning Approaches in Oncology through the
Cancer Continuum

Traditional cancer medical image analysis was for decades based on human-defined
features, usually inspired by low-level image properties, such as intensity, contrast, and a
limited number of texture measures. Such methods were successfully used. e.g., in cancer
subclassification, but it was hard to capture the high-level, complex patterns that an expert
radiologist uses to define the presence or absence of cancer [1].

However, with the advancement of machine learning and the availability of more pow-
erful, high-performance computational infrastructures, it became possible to exhaustively
analyze the texture and shape content of medical images in an effort to decipher high-level
pathophysiology patterns. At the same time the evolution of texture representation and
feature extraction, through a growing number of techniques during the last decades, played
a catalytic role in better capturing tumor appearance through medical image analysis [15].
Last but not least, the need to decipher the imaging phenotype in cancer became even
more pressing, due to the fact that the vast majority of visible phenotypic variation is
now considered attributable to non-genetic determinants in chronic and age-associated
disorders [1].

All these factors played a central role in the advancement of radiomics, where in
analogy to genomics high-throughput feature extraction followed by ML enabled the
development of significant discriminatory and predictive signatures, based on imaging
phenotype. Radiomics have been enhanced with deep learning techniques, offering an alter-
native approach to medical image feature extraction by the learning of complex, high-level
features in an automated fashion from a large number of medical images that contain vari-
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able instances of a particular tumor. Figure 4 illustrates the main AI/radiomics applications
that can assist clinicians in adding precision in the management of cancer patients.

 

Figure 4. The main medical image processing applications enhanced with AI/radiomics towards precision oncology.

4.1. Cancer Screening

Recent advancements in AI driven medical image processing can have a positive
impact in national cancer screening programs, alleviating the heavy workload of radiol-
ogists and aiding clinicians to reduce the number of missed cancers and to detect them
at an earlier stage. Compared to the initial efforts mentioned in previous sections, recent
AI-driven image processing can exceed the limits of human vision and potentially reduce
the number of cancers missed in screening, as well as cope with inter-observer variability.

Regarding lung cancer screening, early nodule detection and classification is of
paramount importance for improving patient outcomes and quality of life. Despite the
existence of such screening programs the majority of lung cancers are detected in the
later stages, leading to increased mortality and low 5-year survival rate [16]. To this end,
radiomics and deep-learning-based methods have shown encouraging results towards
precision pulmonary nodule evaluation [17]. A very interesting recent example is reported
by Ardill et al., who developed a deep learning algorithm that uses a patient’s current
and prior computed tomography volumes to predict the risk of lung cancer. Their model
achieved a state-of-the-art performance (94.4% area under the curve) on 6716 cases and
performed similarly on an independent clinical validation set of 1139 cases. When prior
computed tomography imaging was not available, their model outperformed all six radiol-
ogists, with absolute reductions of 11% in false positives and 5% in false negatives [18].

Regarding breast cancer screening technologies, it is argued that AI may provide
the means to limit the inherent drawbacks of mammography and enhance diagnostic
performance and robustness. In a prospective clinical study, a commercially available
AI algorithm was evaluated as an independent reader of screening mammograms, and
adequate diagnostic performance was reported [19].

4.2. Precision Cancer Diagnosis

During the last decades CAD-driven precision diagnosis has been the holy grail of
medical image processing research efforts. However, the clinical interest in such appli-
cations has significantly grown only recently with the advancement of AI-driven efforts
to generalize performance across diverse datasets. AI systems have reported unprece-
dented performance regarding the segmentation and classification of cancer. A recent
study reported increased performance in segmenting and classifying brain tumors into
meningioma, glioma, and pituitary tumors [20].

In addition, a growing number of studies are concerned with automated tumor
grading, which is a prerequisite for optimal therapy planning. Yang et al. presented a
retrospective glioma grading study (grade II and grade III concerning low grade glioma
and high grade glioma) on one hundred and thirteen glioma patients and used transfer
learning with AlexNet and GoogLeNet architectures, achieving up to 0.939 AUC [21].
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At the same time, the quest to decode imaging phenotype has given rise to efforts
to correlate imaging features with molecular and genetic markers in the context of radio-
genomics [22]. This promising field of research can provide surrogate molecular infor-
mation directly from medical images and is not prone to biopsy sampling errors, as the
whole tumor can be analyzed. In a recent study, MRI radiomics were able to predict IDH1
mutation with an AUC of up to 90% [23].

4.3. Treatment Optimization

There are many challenging problems in optimizing treatment for cancer patients,
such as accurate segmentation of organs at risk (OAR) in radiotherapy and prediction
of neoadjuvant chemotherapy response. Intelligent processing of medical images has
opened new horizons to address these clinical needs. In the case of nasopharyngeal
carcinoma radiotherapy planning, a deep learning organs-at-risk (OAR) detection and
segmentation network provides useful insights for clinicians for the accurate delineation of
OARs [24]. Regarding prediction of neoadjuvant chemotherapy, the use of image-based
algorithms to predict outcome has the potential to add precision, not least due to the
fact that depending on tumor subtype the outcome can differ significantly. To this end,
recent studies report promising preliminary results in applying AI to predict breast cancer
neoadjuvant therapy response. Vulchi et al. reported improved prediction of response
to HER2-targeted neoadjuvant therapy based on deep learning of DCE-MRI data [25].
Notably, the AUC dropped from 0.93 to 0.85 in the external validation cohort.

5. Radiomics Limitations Regarding Clinical Translation

While promising, radiomics methodologies are still in a translational phase and
thorough clinical validation is needed towards clinical translation. To this end, when these
technologies are tested and reviewed, a number of important limitations becomes apparent.
In a recent review on MRI based radiomics in nasopharyngeal cancer [26], the authors
reviewed the state of the art and used a radiomic quality score assessment (RQS). Several
limitations were highlighted in the reviewed studies, including the absence of a validation
cohort in 21% of them, as well as the lack of external validation in 92% of them. In another
RQS based evaluation study on radiomics and radio-genomics papers, the RQS was low
regarding clinical utility, test-retest analysis, prospective study, and open science [27]. It
was also very interesting that no single study used phantoms to assess the robustness of
radiomics features or performed a cost-effectiveness analysis. In a similar fashion, lack of
feature robustness assessment and external validation was reported in studies regarding
prostate cancer [28], while the main reported shortcomings in the quality of the MRI
lymphoma radiomics studies regarded inconsistencies in the segmentation process and
the lack of temporal data to increase model robustness [29]. All these recent studies clearly
indicate that, although medical image processing in oncology has evolved significantly,
the clinical translation of radiomics is still hampered by the lack of extensive, high quality
validation studies. In addition, the lack of standardization in radiomics extraction remains
a problem, which is currently being investigated by several studies, with respect to different
software packages [30] and the reproducibility of standardized radiomics features using
multi-modality patient data [31].

6. Discussion

Contrary to common belief, medical image processing has been evolving for the last
few decades and its main application is cancer image analysis. Traditional medical image
processing was founded on classical image processing and computer vision principles,
focusing on low-level feature extraction and simple classification tasks, e.g., benign vs.
malignant, or in the geometrical alignment of temporal images and the segmentation of
tumors for volumetric analyses. This early stage in the 1990s was an important milestone
for further development, since several radiologists and oncologists understood the future
potential and helped in the creation of a multidisciplinary community on medical image
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analysis and processing. More importantly, it laid the foundations of radiomics by propos-
ing the shape and textural analysis of tumors as useful patterns for detection, segmentation,
and classification. However, the main limitation was the high degree of fragmentation in
such efforts, the limited computational resources, and the very low availability of cancer
image data; usually being mammograms or MRIs.

Functional imaging was another important milestone for medical image computing,
since the idea of transforming dynamic image signals to tissue properties paved the way for
the discovery of reliable and reproducible image biomarkers for oncology. To achieve this
goal, non-conventional medical image processing was deployed based on compartmental
models to link the imaging phenotype with microscopic tumor environment properties,
based on diffusion and perfusion. Such model-based approaches include compartment
pharmacokinetic models for DCE-MRI and the IVIM model for DWI-MRI, often requiring
laborious pre-processing to transform the original signal to quantitative parametric maps
able to convey perfusion and cellularity information to the clinician. It is argued that this is
still an evolving research field and that the potential for clinical translation is significant,
especially since techniques such as DWI-MRI do not involve ionizing radiation or the
administration of contrast agent. That said, significant standardization efforts are still
required in order to converge on stable imaging protocols and model implementations that
will guarantee reproducible parametric maps and robust cancer biomarkers. Another limi-
tation when comparing to modern radiomics/deep learning efforts is that the processing
of such functional data with compartmental models is a very demanding task, requiring a
deeper understanding of imaging protocols, as well as of numerical analysis methods for
model fitting.

The gradual advancements of high-performance computing and machine learning and
neural networks have revolutionized research in the field, especially during the last decade.
The field of radiomics has extended the cancer medical image processing concepts regarding
texture and shape descriptors to massive feature extraction and modeling. Such radiomics
approaches have also been enhanced by convolutional neural networks, which outper-
formed the traditional image analysis methods in tasks such as lesion segmentation, while
introducing more sophisticated predictive, diagnostic, and correlative pipelines towards
precision diagnostics, therapy optimization, and synergistic radio-genomic biomarker dis-
covery. The availability of open access computational tools for machine and deep learning,
in combination with public cancer image resources such as the Cancer Imaging Archive
(TCIA), has led to an unprecedented number of publications, AI start-ups, and accelerated
discussions for the establishment of AI regulatory processes and clinical translation of such
technologies. At the same time, the main limitation of these impressive technologies has
been their low explainability, which came as a tradeoff for the impressive performances
in oncological applications throughout the cancer continuum. Low explainability also
contributed to reduced trust in these models, while the vast number of features explored
made generalization difficult, especially due to the large variability of image quality and
imaging protocols across vendors and clinical sites.

Medical image processing is still evolving and will continue to provide useful tools
and methodological concepts for improving cancer image analysis and interpretation.
Data science approaches focusing on radiomics have paved the way for accelerating
precision oncology [32]. However, most of the efforts to date only use imaging data,
which limits the performance of diagnostic and prognostic tools. To this end, novel
data integration paradigms, exploiting both imaging and multi-omics data, is a very
promising field for future research [33]. Recent studies have started exploring the synergy
of deep learning with quantitative parametric maps. In [34], the authors present a deep
learning method to predict good responders of locally advanced rectal cancer trained on
apparent diffusion coefficient (ADC) parametric scans from different vendors. The fusion of
standard imaging representations with parametric maps, as well as integrative diagnostic
approaches [35] involving medical image and other cancer related data, hold promise for
increasing accuracy and trustworthiness.

12



J. Imaging 2021, 7, 124

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Oakden-Rayner, L.; Carneiro, G.; Bessen, T.; Nascimento, J.C.; Bradley, A.P.; Palmer, L.J. Precision Radiology: Predicting longevity
using feature engineering and deep learning methods in a radiomics framework. Sci. Rep. 2017, 7, 1648. [CrossRef] [PubMed]

2. Cai, W.-L.; Hong, G.-B. Quantitative image analysis for evaluation of tumor response in clinical oncology. Chronic Dis. Transl.
Med. 2018, 4, 18–28. [CrossRef] [PubMed]

3. Duran, R.; Chapiro, J.; Frangakis, C.; De Lin, M.; Schlachter, T.R.; Schernthaner, R.E.; Wang, Z.; Savic, L.J.; Tacher, V.; Kamel,
I.R.; et al. Uveal melanoma metastatic to the liver: The role of quantitative volumetric contrast-enhanced MR imaging in the
assessment of early tumor response after transarterialchemo. Transl. Oncol. 2014, 7, 447–455. [CrossRef] [PubMed]

4. Aykan, N.F.; Özatlı, T. Objective response rate assessment in oncology: Current situation and future expectations. World J. Clin.
Oncol. 2020, 11, 53–73. [CrossRef] [PubMed]

5. Froelich, M.F.; Petersen, E.L.; Heinemann, V.; Nörenberg, D.; Hesse, N.; Gesenhues, A.B.; Modest, D.P.; Sommer, W.H.; Hofmann,
F.O.; Stintzing, S.; et al. Impact of Size and Location of Metastases on Early Tumor Shrinkage and Depth of Response in Patients
With Metastatic Colorectal Cancer: Subgroup Findings of the Randomized, Open-Label Phase 3 Trial FIRE-3/AIO KRK-0306.
Clin. Colorectal Cancer 2020, 19, 291–300.e5. [CrossRef] [PubMed]

6. Sasieni, P. Evaluation of the UK breast screening programmes. Ann. Oncol. 2003, 14, 1206–1208. [CrossRef]
7. Marias, K.; Behrenbruch, C.; Parbhoo, S.; Seifalian, A.; Brady, M. A registration framework for the comparison of mammogram

sequences. IEEE Trans. Med. Imaging 2005, 24, 782–790. [CrossRef]
8. Funovics, M.; Schamp, S.; Lackner, B.; Wunderbaldinger, P.; Lechner, G.; Wolf, G. Computerassistierte diagnose in der mammo-

graphie: Das R2 imagechecker- system in der detektion spikulierter lasionen. Wien. Med. Wochenschr. 1998, 148, 321–324.
9. Manikis, G.C.; Nikiforaki, K.; Lagoudaki, E.; de Bree, E.; Maris, T.G.; Marias, K.; Karantanas, A.H. Differentiating low from

high-grade soft tissue sarcomas using post-processed imaging parameters derived from multiple DWI models. Eur. J. Radiol.
2021, 138, 109660. [CrossRef]

10. Messina, C.; Bignone, R.; Bruno, A.; Bruno, A.; Bruno, F.; Calandri, M.; Caruso, D.; Coppolino, P.; De Robertis, R.; Gentili, F.; et al.
Diffusion-Weighted Imaging in Oncology: An Update. Cancers 2020, 12, 1493. [CrossRef]

11. Fliedner, F.P.; Engel, T.B.; El-Ali, H.H.; Hansen, A.E.; Kjaer, A. Diffusion weighted magnetic resonance imaging (DW-MRI) as a
non-invasive, tissue cellularity marker to monitor cancer treatment response. BMC Cancer 2020, 20, 134. [CrossRef] [PubMed]

12. Fritz-Hansen, T.; Rostrup, E.; Larsson, H.B.W.; Søndergaard, L.; Ring, P.; Henriksen, O. Measurement of the arterial concentration
of Gd-DTPA using MRI: A step toward quantitative perfusion imaging. Magn. Reson. Med. 1996, 36, 225–231. [CrossRef]

13. Woolf, D.K.; Taylor, N.J.; Makris, A.; Tunariu, N.; Collins, D.J.; Li, S.P.; Ah-See, M.-L.; Beresford, M.; Padhani, A.R. Arterial input
functions in dynamic contrast-enhanced magnetic resonance imaging: Which model performs best when assessing breast cancer
response? Br. J. Radiol. 2016, 89, 20150961. [CrossRef] [PubMed]

14. Shukla-Dave, A.; Obuchowski, N.A.; Chenevert, T.L.; Jambawalikar, S.; Schwartz, L.H.; Malyarenko, D.; Huang, W.; Noworolski,
S.M.; Young, R.J.; Shiroishi, M.S.; et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved
precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging 2019, 49, e101–e121.
[CrossRef]

15. Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M. From BoW to CNN: Two Decades of Texture Representation
for Texture Classification. Int. J. Comput. Vis. 2019, 127, 74–109. [CrossRef]

16. Svoboda, E. Artificial intelligence is improving the detection of lung cancer. Nature 2020, 587, S20–S22. [CrossRef] [PubMed]
17. Binczyk, F.; Prazuch, W.; Bozek, P.; Polanska, J. Radiomics and artificial intelligence in lung cancer screening. Transl. Lung Cancer

Res. 2021, 10, 1186–1199. [CrossRef]
18. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-end

lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25,
954–961. [CrossRef]

19. Salim, M.; Wåhlin, E.; Dembrower, K.; Azavedo, E.; Foukakis, T.; Liu, Y.; Smith, K.; Eklund, M.; Strand, F. External Evaluation of 3
Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms. JAMA Oncol. 2020, 6,
1581. [CrossRef] [PubMed]

20. Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A Deep Learning Approach for Brain Tumor
Classification and Segmentation Using a Multiscale Convolutional Neural Network. Healthcare 2021, 9, 153. [CrossRef]

21. Yang, Y.; Yan, L.-F.; Zhang, X.; Han, Y.; Nan, H.-Y.; Hu, Y.-C.; Hu, B.; Yan, S.-L.; Zhang, J.; Cheng, D.-L.; et al. Glioma Grading on
Conventional MR Images: A Deep Learning Study With Transfer Learning. Front. Neurosci. 2018, 12. [CrossRef]

22. Trivizakis, E.; Papadakis, G.Z.; Souglakos, I.; Papanikolaou, N.; Koumakis, L.; Spandidos, D.A.; Tsatsakis, A.; Karantanas, A.H.;
Marias, K. Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care (Review). Int. J. Oncol.
2020, 57, 43–53. [CrossRef] [PubMed]

13



J. Imaging 2021, 7, 124

23. Choi, Y.; Nam, Y.; Lee, Y.S.; Kim, J.; Ahn, K.-J.; Jang, J.; Shin, N.-Y.; Kim, B.-S.; Jeon, S.-S. IDH1 mutation prediction using
MR-based radiomics in glioblastoma: Comparison between manual and fully automated deep learning-based approach of tumor
segmentation. Eur. J. Radiol. 2020, 128, 109031. [CrossRef] [PubMed]

24. Liang, S.; Tang, F.; Huang, X.; Yang, K.; Zhong, T.; Hu, R.; Liu, S.; Yuan, X.; Zhang, Y. Deep-learning-based detection and
segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur.
Radiol. 2019, 29, 1961–1967. [CrossRef]

25. Vulchi, M.; El Adoui, M.; Braman, N.; Turk, P.; Etesami, M.; Drisis, S.; Plecha, D.; Benjelloun, M.; Madabhushi, A.; Abraham, J.
Development and external validation of a deep learning model for predicting response to HER2-targeted neoadjuvant therapy
from pretreatment breast MRI. J. Clin. Oncol. 2019, 37, 593. [CrossRef]

26. Spadarella, G.; Calareso, G.; Garanzini, E.; Ugga, L.; Cuocolo, A.; Cuocolo, R. MRI based radiomics in nasopharyngeal cancer:
Systematic review and perspectives using radiomic quality score (RQS) assessment. Eur. J. Radiol. 2021, 140, 109744. [CrossRef]

27. Park, J.E.; Kim, D.; Kim, H.S.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Shin, J.H.; Kim, J.H. Quality of science and reporting of radiomics in
oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement. Eur. Radiol. 2020, 30,
523–536. [CrossRef]

28. Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI radiomics: A systematic
review and radiomic quality score assessment. Eur. J. Radiol. 2020, 129, 109095. [CrossRef]

29. Wang, H.; Zhou, Y.; Li, L.; Hou, W.; Ma, X.; Tian, R. Current status and quality of radiomics studies in lymphoma: A systematic
review. Eur. Radiol. 2020, 30, 6228–6240. [CrossRef]

30. McNitt-Gray, M.; Napel, S.; Jaggi, A.; Mattonen, S.A.; Hadjiiski, L.; Muzi, M.; Goldgof, D.; Balagurunathan, Y.; Pierce, L.A.;
Kinahan, P.E.; et al. Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different
Software Packages on Digital Reference Objects and Patient Data Sets. Tomography 2020, 6, 118–128. [CrossRef] [PubMed]

31. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef]

32. Capobianco, E.; Dominietto, M. From Medical Imaging to Radiomics: Role of Data Science for Advancing Precision Health. J.
Pers. Med. 2020, 10, 15. [CrossRef]

33. Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M.C. A Survey on Nature-Inspired Medical Image Analysis: A
Step Further in Biomedical Data Integration. Fundam. Inform. 2019, 171, 345–365. [CrossRef]

34. Zhu, H.-T.; Zhang, X.-Y.; Shi, Y.-J.; Li, X.-T.; Sun, Y.-S. A Deep Learning Model to Predict the Response to Neoadjuvant
Chemoradiotherapy by the Pretreatment Apparent Diffusion Coefficient Images of Locally Advanced Rectal Cancer. Front. Oncol.
2020, 10. [CrossRef]

35. Chaddad, A.; Daniel, P.; Sabri, S.; Desrosiers, C.; Abdulkarim, B. Integration of Radiomic and Multi-omic Analyses Predicts
Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers 2019, 11, 1148. [CrossRef]

14



Journal of

Imaging

Review

Breast Cancer Risk Assessment: A Review on
Mammography-Based Approaches

João Mendes and Nuno Matela *

��������	
�������

Citation: Mendes, J.; Matela, N.

Breast Cancer Risk Assessment: A

Review on Mammography-Based

Approaches. J. Imaging 2021, 7, 98.

https://doi.org/10.3390/

jimaging7060098

Academic Editors: Antoine Vacavant,

Leonardo Rundo, Carmelo Militello,

Vincenzo Conti, Fulvio Zaccagna and

Changhee Han

Received: 14 April 2021

Accepted: 9 June 2021

Published: 12 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculdade de Ciências, Instituto de Biofísica e Engenharia Biomédica, Universidade de Lisboa,
1749-016 Lisboa, Portugal; jpmendes@fc.ul.pt
* Correspondence: nmatela@fc.ul.pt

Abstract: Breast cancer affects thousands of women across the world, every year. Methods to predict
risk of breast cancer, or to stratify women in different risk levels, could help to achieve an early
diagnosis, and consequently a reduction of mortality. This paper aims to review articles that extracted
texture features from mammograms and used those features along with machine learning algorithms
to assess breast cancer risk. Besides that, deep learning methodologies that aimed for the same
goal were also reviewed. In this work, first, a brief introduction to breast cancer statistics and
screening programs is presented; after that, research done in the field of breast cancer risk assessment
are analyzed, in terms of both methodologies used and results obtained. Finally, considerations
about the analyzed papers are conducted. The results of this review allow to conclude that both
machine and deep learning methodologies provide promising results in the field of risk analysis,
either in a stratification in risk groups, or in a prediction of a risk score. Although promising, future
endeavors in this field should consider the possibility of the implementation of the methodology in
clinical practice.

Keywords: breast cancer; risk assessment; machine learning; deep learning; texture; mammography

1. Introduction

One in eight women will be diagnosed with breast cancer (BC) in their lifetime, with
one in thirty-nine women dying from this disease just in the USA. In the same country, in
2020, approximately 42,170 women were expected to die from BC and it was anticipated
that approximately 30% of the cancers detected in women will be BC [1]. Around 95% of
cancers are due to genetic mutations that result from environmental or lifestyle factors,
where the remaining percentage is related to inherited genes—with BRCA1/BRCA2 genes
being responsible for most of cases of BC [2,3].

BC diagnosis occurs either during a common screening program, before symptoms
appear, or after women noticing some breast changes. Screening programs are important
for an early detection of BC—that is, in a more treatable stage—resulting in a decrease
in mortality [1,4].

The criterion that defines if a woman is eligible for screening is, normally, only her
age. Different countries have different recommendations on which age is the best to start
screening; the USA states that women from age 45 to 54 should have a mammography once
a year, while 55+ plus women should have a mammography once every two years. On the
other hand, the UK NHS says that only women between 50 to 71 should be screened, and
only once every three years [5,6].

Although there are multiple screening programs, they might not serve all women.
Some younger women may be at higher risk of developing breast cancer than women
in their fifties and, despite that, these women are not eligible for screening. With that in
mind, the perfect screening program should not consider age as the only risk factor that
determines when to screen women.
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The question resides in what risk factors are not being considered when choosing the
best screening option. Age is one of the best documented risk factors, with the incidence
of BC being extremely low before the age of 30 and having a linearly increase until the
age of 80 [7]. Body Mass Index has also been shown to be a potential risk factor for the
development of BC but only in post-menopausal ages [7,8]. Prior history of neoplastic or
hyperplastic breast disease also presents itself as a risk factor for the development of BC.
When it comes to family history, a woman who had a first-degree relative with BC when
was 50 years or older, is almost twice at risk of developing breast cancer than a woman
with no family history of BC [7]. Early menarche, late first full-term pregnancy and late
menopause are three major risk factors for breast cancer [9]. Normally, the earlier the age
of the first menarche, the higher the cancer risk. The fact that both women with early
menarche and later menopause are at higher risk of BC, can lead to the conclusion that
prolonged exposure to estrogen is also a risk factor for this disease [9]. Longer duration of
the breastfeeding period is associated with a diminished risk of breast cancer, in comparison
with women that had shorter breastfeeding periods. Use of oral contraceptives also puts
women at higher risk of developing BC [10]. As it was previously discussed, the existence
of the BRCA1/BRCA2 mutated gene in women karyotype puts them at higher risk of BC,
compared to women who do not possess that gene [11]. Besides these risk factors, in 1976
Wolfe, started studying the association between breast parenchyma patterns and breast
cancer. Wolfe showed that a prominent duct pattern helps to classify a woman as having
higher risk than average for developing breast cancer. Wolfe also stated that it is possible
to predict which women will develop breast cancer and which are less likely to develop it
based only on the parenchymal pattern [12–15].

Many descriptors of these texture patterns have been documented. Mammographic
density is one of those descriptors, normally represented numerically by percent mam-
mographic density (% PD), that is also highly associated with an increased risk of breast
cancer [16–18]. In fact, women with 60–70% PD are at four to five times higher risk than
women with fatty breasts. Dense breasts are not only at higher risk of developing breast
cancer as are also more prone to more aggressive tumors.

Screening programs all around the world use mammography, that can be acquired in
a cranio-caudal (CC) and/or in a mediolateral-oblique (MLO) view, as a standard method
for diagnosis, but although widely used, mammography has both benefits and harms.
The aim for an early detection of this disease started in the beginning of the 20th century
with awareness campaigns, but a decrease in BC mortality was only observed when the
first mammographic screening started. On the bright side of mammography screening,
life-threatening cancers will be detected early, improving prognosis, and consequently,
decreasing risk of mortality. Studies point out that BC mortality rates, decreased at least
20% [19] thanks to an increase in mammographic screening—some studies even point out
a reduction ranging from 30–50% [20]. Besides that, since cancer can be detected in an early
stage, the available treatment can be less invasive and, consequently, have lower costs. The
treatment will also be less intense, resulting in fewer time off of work, and, consequently,
smaller money losses.

One of the problems associated with mammography is the rate of false positives. In
Europe, the risk of having a false-positive result, for women in the range of 50–69 years
having biennial screening, is about 20%. More alarming are the results in the United
States, where all screened women will experience one false-positive in their life. These
false-positive results have an impact in women lives, especially in day-to-day well-being
and in costs concerning healthcare. But the presence of false positive is not the only
downside of mammography. A summary of the benefits and harms of mammography in
1000 women with a screening every two years showed that 200 of them will experience
a false positive, 30 will have a biopsy due to the false positive result, 15 will be over-
diagnosed and three will develop interval cancers – the name given to a cancer that appears
between two consecutive mammograms. These interval cancers may have been developed
between the two mammograms, however, around 35% of them were already present in
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the previous mammogram but were overlooked. This means that the patient received
a false negative result that can occur because, in mammography, there is an overlap of
tissue that can obscure the presence of cancers [21]. Since the population being screened is
mainly composed of asymptomatic women, it is expected that with increased screening, it
will also be seen an increase in cancer incidence. Life-threatening cancers will be detected
early, improving prognosis, which is clearly a point in favor of mammography screening,
however, cancers that would never be detected and that, in theory, were not harmful for the
woman who presents it, will also be diagnosed. This is called overdiagnosis. Overdiagnosis
leads to an ethical dilemma since there is a probability for the patient to live longer with
cancer than with the treatment, and this decision-making process could lead to an increased
anxiety state of the patient [21]. Another important aspect to consider, related to this type
of screening, is the relation between mammography and dense breasts. The sensitivity
of mammography decreases in women who have dense breasts (30–64% vs. 76–98% in
women with fatty breasts) [19], which occurs because cancers have attenuation coefficients
closer to dense tissue. Actually, a study from 1999 [22] showed that there was a significant
trend between breast density and the appearance of false positives. Since it is known
that breast density is an important risk factor for the development of BC, the fact that
mammography does not perform so well in dense breasts should be of great concern.
As seen, there are multiple downsides to mammography and, yet it continues to be the
standardized screening method. However, in 2014, the Swiss Medical Board stated that the
harms produced by these screening programs outweighed the benefits and, therefore, they
recommended Switzerland to stop all the mammography screening programs [23].

New technologies that allow a risk stratification, in line with the current medicine
paradigm of preventive and personalized care, could help overcoming some discussed
problems associated with the screening programs.

A review of Artificial Intelligence (AI) in the field of Breast imaging was already
performed by Le and his colleagues [24]. In this work, a brief introduction to Artificial Intel-
ligence is performed, concerning commonly used terminology and widely used algorithms.
Applications of computer aided detection (CAD) systems in mammography screening are
explored, like the automatic detection of breast cancer, or the distinction between malignant
and benign lesions. Software based on AI for breast density classification assessment is also
addressed. The authors, beside describing deep learning approaches in mammography,
proceed to address relationships and applications of AI to digital breast tomosynthesis,
ultrasound and MRI. Finally, the implementation of AI-CAD systems in clinical practice,
the limitations of these systems, obstacles to its implementation and future applications
are discussed.

In the current work, Section 2 explains the methods by which this review was per-
formed in terms of inclusion criteria. Section 3 presents the results of this review, with
each included paper being analyzed in terms of proposed goals, methodology used, and
results obtained. Finally, in Section 4 a conclusion and a discussion about future endeavors
is made.

2. Methods

The review done here aims to present a global picture in what is already done in
the field of breast cancer risk assessment through computerized methods, using mammo-
grams. A search in Google Scholar using different Boolean operators and the keywords—
breast cancer risk, mammography, machine learning (ML), features, parenchyma/texture
patterns—was performed. This search produced eight-hundred and forty-two matches
that were screened through title and/or abstract. In order to be considered for this review,
papers should meet the following inclusion criteria:

(1) Aim for a risk assessment, either by differentiating risk groups, predicting a risk value,
or proposing new methods for the said assessment, using Machine/Deep Learning
(DL) tools.
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(2) The methodology used should consider textural features with/without epidemiologi-
cal factors.

(3) Mammography images should be used for feature extraction, when that procedure
is done.

(4) All papers’ publication date should be within the 2000–2020 range.

Papers cited by the accepted manuscripts were also screened through the previously
referred criteria. Only the articles that better served the scope of this work were consid-
ered, which resulted in 11 included manuscripts. Figure 1 represents a flowchart of the
methodology used.

Figure 1. Paper Inclusion flowchart, for a search within the range 2000–2020 for publication date.

3. Results

3.1. Risk Assessment Using a Single Region of Interest

In the start of the millennium, Huo et al. [18], investigated feature selection in breast
parenchymal patterns, for BC risk assessment. The specific aim of the study was to classify
women, based on their mammograms, into high or low-risk groups. To label the training
data, the authors used Gail’s model, which asks as input some epidemiologic information:
age; age at the first menarche; age at full first-time birth; number of first-degree relatives
with BC; and number of previous breast biopsies; then, with that information, calculates a
probability for developing BC [25]. This method, although very used, has its limitations, for
example, it cannot be used in younger women, and it is unable to predict risk for women
with the BRCA1/BRCA2 gene.

To be included in the low-risk group, besides having a risk lower than 10%, women
could not have any family history of BC. Mammograms from women with the BRCA1/2
mutation were considered high-risk. An important step in dividing the dataset needs
to be referred, as it happens in other similar researches. The age of mutation carriers
and the “low-risk” group tends to be different, and, in order to avoid bias due to that
difference, an aged-match dataset was constructed, and risk analysis was also conducted
in this “sub-dataset”.

Once the datasets were divided, mammograms proceeded to be pre-processed fea-
ture extraction being conducted in a pre-defined region of interest (ROI). Intensity-based
features, statistical measures based in absolute pixel value; co-occurrence (GLCM) fea-
tures [26], metrics that describe pixel pairs co-occurrences throughout the image; and two
Fourier analysis features were extracted—a description of these features can be found in
the referred manuscript. Once the extraction step was done, each feature was analyzed,
through receiver operating characteristic (ROC) analysis, in order to access their discrimi-
native capacity between high-risk and low-risk groups. The area under the curve (AUC)
for each individual feature ranged from 0.53 ± 0.09 (minimum gray-level) to 0.87 ± 0.05
(skewness). After this evaluation, a feature selection method was applied so as to reduce
the dimensionality of the problem and increase computational efficiency. This was achieved
using stepwise selection followed by linear discriminant analysis. Discriminant Analysis
chose intensity-based and co-occurrence features for the best set of features in the task of
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differentiating the two considered risk groups. Curiously, the chosen features were the
ones that presented better discriminative capacity in the individual ROC analysis for the
age-matched group. The linear discriminant analysis approach presented an AUC higher
than any of the features alone—0.91.

Besides proving the usefulness of the texture features to characterize the difference
between low and high-risk women, some interesting conclusions can made from this study
considering features’ average values for each group: the textural patterns from high-risk
women tend to be coarser and lower in contrast; skewness measure should have negative
values for high-risk women; and all the remaining intensity-based features should have
higher values for high-risk women.

To ensure that a good parenchyma characterization could be done through one pro-
jection, the authors made a correlation study between CC-L and MLO-L, and between
CC-L and CC-R views for each feature, which provided positive results. A limitation of
this study might also be the fact that some of the low-risk women may have the mutation
without knowing, which clearly affects features’ discriminative capacity.

Li et al. [27] studied, in 2004, the effect of ROI size and location for feature extraction
in BC risk analysis. The performance of the size and location of each region was evaluated
in the task of differentiating high-risk (mutation carriers) and low-risk women. An aged-
matched group between mutation carriers and low-risk women was created and used for
risk analysis in this study. Researchers designated five different ROI locations, as depicted
in Figure 2, identified by the letters A, B, C, D and E.

Figure 2. Different locations (A–E) where features were extracted for ROI evaluation.

For size analysis, 2 ROI’s, one with a medium and other with a small size, were
directly defined in the center of the larger, pre-defined, ROI, at locations A, B and C. The
extracted features were the same that Huo extracted with the addition of a fractal dimension
measure [28]. Stepwise feature selection with LDA was employed as a feature selection
method, after feature extraction from the different ROI’s was performed. Each feature
was individually evaluated for its discriminative capacity between the considered groups,
through ROC analysis, and the same was done to the linear discriminant analysis approach.
Descriptors from Fourier analysis, co-occurrence, intensity-based and fractal dimension
were chosen by the feature selection methodology, a process that is fully described in the
paper and complemented in [29].

In what concerns to ROI size, for location A, the AUC for each individual feature
ranged from 0.68 to 0.83 with the lower results being associated to smaller regions of
interest. The performance of the LDA approach was of 0.92 in the original ROI, with
AUC’s of 0.87 and 0.89 in the medium and smaller ROI’s, respectively. In the size analysis,
significance was only achieved for one feature and for the LDA approach between the
large and medium ROI and for the fractal dimension between the large and small ROI. The
values of the AUC in the LDA approach for region B were substantially lower than the
ones observed for region A and, besides that, no statistical significance was observed for
this region neither in individual features assessment nor in the LDA approach. Finally, for
region C, the only statistical significance was achieved for feature contrast, between large
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and medium, nonetheless, no statistical significance was obtained in the discriminative
capacity between different sized ROI’s.

Analyzing ROI location effects, for comparison purposes, only the features selected
by the LDA approach for region A were considered. Most of the individual features were
statistically significant different between different locations, and the same can be said about
the LDA approach that presented AUC’s of 0.92, 0.78, 0.69, 0.84, and 0.79 respectively for
each region. A statistically significant decrease was observed in the LDA performance if the
ROI was moved away from region A, that is located immediately behind the nipple, which
probably explains why most of the approaches in this area of research use this location
for feature extraction. The authors point out that the fact that the region immediately
behind nipples has the best discriminative capacity may be due to the existence of a dense
component in that breast location. The group still states that, in the future, research should
extract features from the entire breast and compare the results with the ones obtained with
a single-ROI approach that are, besides its limitations, positive.

In 2005, Li et al. [30] aimed to prove the usefulness of breast parenchymal patterns
present on mammograms in the field of breast cancer risk assessment. As it had happened
in the previous analyzed researches, the authors aimed to extract texture feature from
mammograms to differentiate high-risk women, mutation carriers, from those who have
a low-risk of developing the disease. In order to be considered for the low-risk group,
besides the two conditions presented in the research done by Huo in 2000, women could
not had been diagnosed with breast cancer in the past and, if they had done a biopsy,
they were not considered. Once again, since age is an important risk factor, an age-
matched group between low-risk women and mutation carriers was created. At each
mammogram, features were extracted from the pre-defined ROI and, although ranging
the common groups, they slightly differ from previous researches. Besides intensity-based,
co-occurrence, Fourier and fractal dimension features, mean gradient, an edge frequency
feature that measures the coarseness of a surface, was part of the studied features and is
described in the paper. ROC analysis was used to evaluate the individual performance of
each feature in the task of differentiating high-risk and low-risk women. The results ranged
from 0.66 ± 0.05 (Entropy) to 0.86 ± 0.03 (co-occurrence contrast) in the entire dataset,
and from 0.67 ± 0.05 to 0.86 ± 0.05 in the age-matched group, with statistical significance
(p-value < 0.001) being achieved for all features. The authors proceed to present a figure
where a distribution of skewness measure in the population can be observed. From that,
it is drawn the conclusion that high-risk women present negative values of skewness,
as advanced by Huo in 2000, since these women normally have denser breasts, when
compared to lower-risk women, and, in general, high-risk women present lower skewness
values than women at the low-risk group. Contrast helps to describe the local tissue
variation, and higher values of these features were observed in low-risk women, which
leads to the assumption that mutation carriers tend to present texture patterns low in
contrast. Besides that, results analysis in terms of feature values lead the authors to state
that mutation carriers tend to have coarser textures than low-risk women. Although these
conclusions from contrast and coarseness can be made in general, not all women follow
this trend. Nonetheless, this study presents itself as another proof that mammographic
texture patterns can be successfully used in the field of breast cancer risk assessment.

3.2. A Disruption from the Classical One-ROI Approach for Risk Assessment

Another interesting research is the one done by Tan et al. [31], where the authors
aimed to evaluate the viability of predicting BC risk in women after they had a negative
mammogram. Given a sample of screened women, each woman was considered for the
study if had had two consecutive mammograms acquired in the authors’ facilities and
if the first mammography was negative. A dataset was then created with the accepted
women, where each case was composed by two mammograms—defined as “prior” and
“current” evaluations—and based on the current evaluation, the dataset was divided into
three subgroups. The first was composed of women who had positive results, confirmed
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with other evaluation methods, and women who had pre-cancerous masses that were
removed. The second subgroup consisted of women who had abnormalities in their
mammograms, were recalled, but then the lesions proved to be benign. Finally, the third
subgroup included women with negative mammograms and that were not recalled. In
the study, the researchers used all the “prior” evaluations, that were negative, to assess
breast cancer risk in the “current” evaluation. It is important to mention that, for each
dataset case, age, family history of BC, and the density rating by the BI-RADS scale were
the epidemiologic risk factors considered. For feature analysis purposes, the authors
segmented the breast in different regions and extracted features in the segmented areas,
therefore considering the whole breast for feature extraction. The extracted features could
be divided, once again, in different subgroups: Intensity-based and co-occurrence features—
in the horizontal direction—were extracted. Run-length (RL) features [32], that describe
runs of same intensity pixels in a given image were also considered in both the vertical
and horizontal direction. Besides that, another group of features, that the authors called
“x-axis/y-axis histogram cumulative projection” was considered, a brief explanation of this
group of features is given in the paper. Features were computed in the entire breast and
also in dense breast regions, that are defined as regions that are composed of pixels with
intensity above the median value of the whole breast.

Although the previously referred features were computed, they will not be directly
used for risk assessment purposes. What is done is that each feature is calculated from the
CC view of each breast and then, features that describe the bilateral asymmetry of each
individual feature will be computed through the following equations:

FAssymetry 1−60 =
| fi − gi|

max( fi, gi)
(1)

FAssymetry 61−120 = | fi − gi| (2)

FAssymetry 121−180 = | fi − gi|3 (3)

A set of 180 asymmetry features were calculated and, adding the epidemiologic data,
a final set of 183 features was considered. To choose the best features, a forward floating
selection method was applied- proposed and described by [33]. Once the selected features
were retrieved, a support vector machine (SVM) classifier, with a radial basis function
kernel, was trained and tested with the referred dataset.

Classifier’s performance validation was done using a 10-fold cross-validation method-
ology and, at each testing step the algorithm outputted a score ranging from 0 to 1. The
higher the score, the higher the probability of having an “image-detectable” cancer in
the next screening. Feature selection methodology, besides age, selected features from
Run-length, Intensity-based, and cumulative projection groups. For classification purposes,
using only the first and third subgroups the classifier had an AUC of 0.716 ± 0.020. Consid-
ering all the cases, the SVM model correctly predicted 71.3% using a 0.5 score as a decision
threshold for a classification between negative/benign cases and positive cases. Some
limitations of the developed work must be considered: The fact that the dataset used was
produced in laboratory does not reflect the ratio between positive and negative cases in
common BC screening programs; the methods used for validation may have resulted in
bias and, the fact that the same portion of the dataset was used both for features selection
and to evaluate the classifier accuracy may also have resulted in some bias in the process
of optimizing the algorithm. Besides that, only asymmetry features were computed, which
could lead to some masking effects of the effective texture of the parenchyma.

Zheng et al. [34] advocated, in 2015, that approaches that use a single ROI for risk
assessment are insufficient since they cannot properly define all breast parenchyma, since
it does not consider its heterogeneity. The authors stated that texture characterization
should be done across all breasts, using structuring elements for feature extraction. The
idea that these descriptors, calculated across all breasts recurring to structural elements,
could improve texture description was advanced by these researchers and that resulted
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in the development of a software, that they call lattice-based approach, to extract fea-
tures from structural elements across the entire breast. A comparison of the association
of texture features with cancer between the lattice-based approach and the single-ROI
methodology was performed. To use this methodology, breast area definition and pixel
value normalization was performed. The next step was PD% computing, achieved by using
a clustering algorithm that subdivided the breast into different regions with each region
having approximately the same composition; then, a SVM algorithm would classify each
subregion as being “fatty” or “dense”. PD% was simply computed by dividing the number
of dense areas by the total number of subdivisions defined.

The clustering algorithm used here is a variation of the fuzzy c-means (FCM), which
works by giving each pixel/data point a membership degree to each cluster. This degree is
related to distance metrics taken between the point and the cluster: the lower the distance,
the higher the membership degree. Fuzzy c-means will then, through various iterations, try
to minimize the intra-cluster variance while maximizing the inter-cluster variance. Besides
breast segmentation for % PD calculation, this algorithm has been used for other purposes.
A group of researchers used a variation of the FCM, where the influence of spatial neighbor
pixels and similar super-pixels is incorporated in the model, for lesion segmentation on
brain and breast MRI as also in mammograms [35]. The idea of modifying this algorithm
was held by the fact of FCM being highly sensitive to noise because spatial information was
not considered. The experimental results were evaluated with different metrics—specificity,
accuracy and false alarm Rate (FAR)—and compared to other commonly used segmentation
algorithms. Breast MRIs and mammograms were used to assess lesion segmentation, while
brain MRI is used to evaluate algorithm’s performance in noisy image enhancement. For
the brain MRI image, the highest results for both accuracy and specificity were obtained
for the methodology proposed by these authors, and the same can be said about the lowest
FAR results, proving that best results are obtained by this methodology. Moreover, it also
shows that the noise problem can be countered with this algorithm. Different types of
breast tissue, breast size and tumor size were considered when studying segmentation of
breast MRI images. Their results show that the standard FCM methodology achieved poor
results, due to noise, while their methodology provide the best results, with tumor edge
being as clear as possible (and not blurred as it happens with other algorithms). In terms of
accuracy, specificity and FAR, the proposed method has the best results across all cases.
Finally, for tumor segmentation in mammograms, four cases were analyzed, with different
characteristics, and the results show that the methodology adopted by the authors was
the one that was closer to the standard results obtained by clinicians/experts. Once again,
accuracy, specificity and FAR achieved their best results for the authors’ methodology. This
study provided clues that the proposed methodology can outperform commonly used
algorithms in the task of lesion or organ segmentation, even in the presence of noise.

Still concerning brain MRI, FCM has the potential to be used in a pipeline related
to neuro-radiosurgery [36]. The authors that propose this approach relate that assessing
necrotic tissue that occurs within the tumor might add knowledge about tumor develop-
ment. The goal of the methodology proposed is then to use FCM for necrosis extraction,
after a gross tumor volume segmentation(GTV). This pipeline might allow, for example,
to selectively choose the given dose accordingly to zone resistance to radiation. The use
of FCM after GTV will make the tumor characterization more precise, with necrotic and
enhancement areas being distinguished—by clustering them. This brain tumor necrosis
extraction will provide an increased clinically valuable insight about cancer characteristics,
while playing an important role in neuro-radiosurgery, in terms of dose redistribution.
Several metrics, ones related to spatial overlap, and others concerned with distance were
calculated. The first (sensitivity, specificity, etc.) compared the regions that were achieved
with this methodology, against the segmented areas obtained by an expert. The latter,
contrary to overlap-based metrics, considers the boundary’s voxel position in the space,
which should be used, since boundary delineation is very important in radiosurgery or
treatment planning. Considering overlap metrics, the proposed method provides higher
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results than conventional methodologies, providing clues that this is in fact an accurate
and reliable method. These positive results are corroborated by the spatial metrics, which
indicates that this pipeline serves its initial purposes. Given that, FCM presents itself once
again as a good clustering algorithm for different goals.

Getting back to Zheng’s research, once % PD calculation was performed, feature
extraction could be conducted, and for that, the lattice-based approach needed to be
considered. The authors display a grid over the entire breast tissue, where different values
for the distance between each intersection point, D, and for structural element size, W,
can be considered. The structural elements are centered in the intersection points and
will serve as different ROIs for feature extraction, so, each computed feature will have
different values across the breast. Although the optimal values for D and W might be
different for different regions across the breast, authors considered a fixed and equal value
for these components, resulting in a breast that is coated with structural elements. Intensity-
based; co-occurrence; run-length; local binary pattern; fractal dimension, and structural
features that describe “flow-like structures within the breast” were also considered—the
authors provide references for these novel features. In order to look for the optimal W
value, approaches with three increasing sizes—small, medium and large—were tested.
Each “final value” of the features was defined as the mean value of the said feature
across all structuring elements and the association between the computed features and
breast cancer was evaluated with a logistic regression classifier with leave-one-out cross
validation. Univariate and multivariate analysis were conducted, with feature selection
being done in the later one through a forward feature selection methodology applied at
each cross-validation loop. Considering univariate analysis and taking all window sizes
into account, the average AUC over the GLCM features was of 0.58 ± 0.03, which is better
than the one presented by the intensity-based features, being of 0.56 ± 0.05, the same
value that was presented by the run-length features. Structural features presented a worst
AUC than GLCM features, with a value of 0.57 ± 0.06. Comparing window sizes, the
performance seems to be better for small W values, with an average AUC of 0.58 ± 0.07
for a small window against AUCs of 0.57 ± 0.05 and 0.54 ± 0.03 for sizes medium and
large, respectively. The feature that presented a higher discriminative capacity was fractal
dimension for sizes small and medium, presenting an AUC of 0.69 ± 0.03. In where it
comes to multivariate analysis, using a logistic regression, the performance was also better
with smaller W sizes and the AUCs values obtained were of 0.85 ± 0.02, 0.81 ± 0.02 and
0.76 ± 0.03 for sizes small, medium and large respectively. All the features outperformed
PD% performance and no significance was obtained in the model when PD% was added
to the set of features. The lattice-based approach significantly outperformed the single-
ROI approach either from the retroaerolar area (AUC = 0.60 ± 0.03) or the central breast
region (AUC = 0.74 ± 0.03), despite the W size considered. The results may cause some
surprise once, contrary to what was proven by Li in 2004, the central breast region ROI
performed better than the retroaerolar area. Given what was discussed about this topic,
some conclusion must be drawn: the extraction of features by itself does not result in
better discriminative capacity but it is the combination of those features that gives positive
results; and W size is important for a better discriminative capacity, with an approach that
considers smaller W’s providing better outcomes. Nonetheless, some problems related to
the work done here must also be considered: the use of equal values for W and D might be a
limitation, since much more combinations could be tested if that condition was not present,
what could result in a better discriminative capacity; and PD% calculation was done by
considering one of the many possible options available to perform that computation, what
could also bias the results.

Changes in mammography texture features for breast cancer risk assessment were
studied by Tan et al. [37] in a study where, as done in 2013, the authors conjectured
that features that describe bilateral asymmetry might be important markers to predict
near-term breast cancer risk. What is done differently here is that the authors aim to
found features that allow the prediction models to have a better performance, and they
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compare the risk scores generated by their model with a time-lapse between a negative
and positive mammogram of a patient with a number of sequential mammograms. For
this study, women with at least four sequential mammograms were considered, with
the cancer/risk cases being the ones that were diagnosed with breast cancer in the most
recent mammogram, and the remaining being considered as control. The most recent
mammograms were considered as “current” evaluations and all the previous mammograms
were considered “prior” evaluations, classified as negative in an evaluation done by
radiologists, with no recalls happening in the “prior” group. The authors provide an
extensive description of two used groups of features—structural similarity features and
Weber descriptors—that will not be replicated here. Besides those groups, GLCM, RL and
intensity-based features were likewise computed. For GLCM and RL features, only the
mean value and the maximum value of each feature across computation directions (0◦,
45◦, 90◦, and 135◦) were considered. The breast was segmented and the ratios of the area,
within the segmentation, with intensity values above mean pixel intensity values for the
whole segmented breast, were considered for PD% measures. Concretely, the authors used
three thresholds to compute this ratio: (a) values above the mean; (b) values above the
maximum; (c) values below the minimum. Once this was achieved, the study proceeded
with the calculation of four features based in % region cutoff of the density function. Using
a Sobel gradient operator, statistical measures driven from gradients were considered.
Finally, the difference between the number of pixels present in each breast for the same
patient was calculated. Equation (3) was used, and the result represented the bilateral
asymmetry features between the left and right breast. A SVM algorithm, with a linear
kernel, was trained and tested using a leave-one-out cross-validation methodology and,
at each training session, stepwise regression was used to select the most relevant features.
This procedure was done three times, one for each of the “prior” mammograms. Besides
evaluating risk score evolution across the three “prior” mammograms, the authors also
aimed to study variations of individual feature values between groups, what was done by
computing the mean and standard deviation of the features between the “negative” and
“positive” group for each “prior image”. After that, using a t-test, p-values that assessed
the difference between groups at each “prior image” were generated. Given the already
explored problem of significantly different ages between high and low risk women, the
authors repeated the SVM procedure with two different age-matched groups using a criteria
of ±1 year and a criteria of ±3 years. Apart from that, the authors trained and tested three
different classifiers and, at each time, they used the features selected through one of the
prior images sets. Concerning the results, the AUC increased as the time approached the
current evaluation, with the values being 0.666 ± 0.029, 0.710 ± 0.028, and 0.730 ± 0.027. As
for feature difference results, different trends can be observed, with features having higher
discriminatory capacity across the three “prior” examinations (structural similarity), others
having significant discriminatory capacity in one or two of the examinations (run-length),
and others with no discriminatory capacity in any of the mammograms (contrast). In line
with previous research, one can conclude that although individual features might have
good discriminatory capacities, it is the use of a multi-feature ensemble, recurring to a
machine learning algorithm, that allows a good breast cancer risk assessment. Considering
the predicted risks and defining the midpoint as a threshold, the SVMs had an accuracy
of 65.7%, presenting a sensitivity of 46.5% and a specificity of 83.0%. When considering
the algorithms trained and tested with the age-matched group, no significant difference in
AUCs was observed. This, and the 2013 study are approaches widely different from the
common ones since they add time-dependent variables for risk prediction that can be used
to develop novel techniques for risk assessment in a personalized fashion. The authors
proved a decreasing trend in AUC values from the most recent “prior” evaluation to the
oldest but got results that point to the fact that this decrease might not occur linearly.

In this research the authors aimed to avoid the 2013 limitation of the cases not rep-
resenting a screened population by ensuring that the cases were randomly selected by
people who were not involved in model construction, what made the average women age
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in the “positive” group to be higher than the average in the “negative group” mimicking
what happens in screening programs. When analyzing this study, some limitations must
be considered: (a) model reproducibility might be affected by different acquisition systems
and noise and, therefore, methodologies to reduce acquisition impact must be developed;
(b) image features related to local region bilateral asymmetry were not used and might
improve the obtained AUC; (c) this model does not include epidemiological/ risk factors
which is a flaw, when compared to existing models; (d) the low accuracy values for indi-
vidual features might be an obstacle to clinical use; (e) an examination of how features
varied across the prior examinations was not considered but might be an interesting line of
research to pursue.

In 2019, a group of researchers [38] aimed for a novel approach for breast cancer risk
assessment. In this study each cancer case had age, ethnicity, and BMI matched controls. In
what comes to ethnicity, all cases were correctly matched, 83% of the cases were matched
for age (±5 years) and 94% of the BMI cases were also correctly matched (±1.5 kg/m2).
Feature extraction and PD% (done with the Volpara software, Lynnwood, WA, USA) were
extracted from the CC view and, for cancer cases, contralateral images were used to assess
risk. For feature extraction, five different subgroups of features can be considered: Intensity-
based; GLCM; run-length; structural patterns, like LBP and fractal dimension measures;
Weber local descriptors; Sobel gradient approaches introduced in the previous articles;
and a new set of features called MRELBP, that can describe macro and microstructure
information, having low effort computation and that are robust to image noise; and finally,
spectral features, related to Gabor, were also computed. Model validation was done with
leave-one-out cross-validation. Stepwise regression was used for feature selection and, at
each iteration, F-statistic was calculated in order to assess if each feature had a statistically
significant contribute to the model. Spearman’s rank correlation was also computed to
check for correlation between the more commonly selected features at each leave-one-out
loop. After feature selection was conducted, the selected features were merged using linear
discriminant analysis with the LDA classifier producing a risk score of each case to have
breast cancer, meaning that, at each leave-one-out step, 500 risk scores were generated.
When comparing the mean risk scores between cancers and controls, the system output
a risk of 0.55 for cancer cases and of 0.44 for controls and this difference was statistically
significant (p < 0.001). The same cannot be said about PD%, that was of 16.7% for cancer
cases and of 16.2% for controls, but with a p-value of 0.50. The LDA classifier provided
an AUC of 0.68 (95% CI 0.64–0.73), while the Volpara methodology presented an AUC of
only 0.52 (95% CI 0.47–0.57), this difference was tested and achieved statistical significancy,
proving that the classifier is able to extract more useful information than the measures
of PD% done by the software. Intensity-based, co-occurrence, gradient and MRELBP
features were amongst the chosen ones by feature selection. The six selected features
were not all correlated, and some were only correlated to another two selected features,
which proves, by the relative positive results obtained in the discrimination between cases
and controls, that the LDA classifier could combine information from both correlated and
uncorrelated features. Nonetheless, it can be noted that the obtained AUC was relatively
low when compared to other studies and the authors pointed that this might happen due
to differences in age and ethnicity of the women used in this study. Nonetheless, this study
provides a proof that the methodology used for risk stratification in Caucasian women can
be used, here, in Asian population at the same time that also provides new features that
have a great discriminative capacity in what concerns to breast cancer risk assessment.

Still referring to Asian population, Gandmokar et al. [39], in the Fifteenth International
Workshop on Breast Imaging (Leuven, Belgium, 2020), presented a breast cancer risk
prediction model based not only in mammographic texture feature but also in an enormous
set of epidemiological features (or risk factors), categorizing women into high-risk and
low-risk groups. For each woman in the study the following epidemiologic factors were
obtained: height, weight, BMI, age at menarche, menopause status, age at menopause, age
at first delivery, parity history, number of children, breastfeeding history, personal history

25



J. Imaging 2021, 7, 98

of breast cancer, family history of breast cancer, and degree of consanguinity. For feature
assessment, contralateral images from the cancer patients were used and considered the
high-risk group and control women images were labeled as “low-risk”, it should be noted
than only CC views were used. Breast segmentation for density calculations was done
using a software called AutoDensity [40], from which results two thresholds, the first that
represents the bright area of the mammogram and the second, since that is computed
based on the dense area, represents the brightest area. Features concerning intensity-based
groups, GLCM manipulation, and Fractal Dimension were extracted (from the bright and
the brightest area) and added to the epidemiologic set of features. Then, these features were
fed to an ensemble of decision trees, acoplated with AdaBoost that was validated with a
leave-one-out cross-validation methodology and presented an AUC of 0.884 (CI 0.838–0.913)
in differentiating risk groups. Although the results are promising, study limitation must be
assessed; (a) the model was validated in a small dataset; (b) contralateral images were used
as high-risk but since the goal is to do a risk prediction the model should be constructed
using prior mammograms; (c) study population was from women recruited from a single
city which does not represent the usually found differences between women from different
locations; (d) the control and cancer cases were driven from different datasets.

3.3. Deep Learning in Risk Analysis

Deep learning, a sub-field of machine learning that can learn directly from a raw input,
is also used for breast cancer risk prediction. In 2016, Kallenberg et al. [41] aimed to use
unsupervised deep learning to perform breast density segmentation and mammographic
risk scoring. In order to overcome that problem, this research uses deep learning methods
to learn features from mammograms, in an automated fashion. The DL model used is
called convolutional sparse autoencoder. An autoencoder can be understood, in general, as
a neural network that works towards the aim of learning the input so well that will also
learn to replicate it as the output of the model; the process by which this occurs is based
in the learning of how to correctly compress and encode the input that will ultimately be
reconstructed. An autoencoder has an encoder, that maps the input layer to the hidden
layer, and a decoder, that maps the hidden layer to the output layer. Once the features are
learned and extracted, the resulting set of descriptors will be used to associate the data
with previously defined labels. This model was applied in two distinct phases; first, it was
asked to the model to make breast segmentation based on density values, and second to
address mammographic parenchymal patterns, considering the goal of predicting future
breast cancer development. The methods used here are based in a denoising autoencoder,
an approach in where the hidden layers have a higher dimension than the input layer.
The ground base idea is that the encoder will receive a corrupted version of the data and
will then learn how to reconstruct a version of the data that is not corrupted [42]. What
also happens in this methodology, is that various autoencoders can be assembled together
so that the learned features increase progressively in level of abstraction. The process by
which this occurs makes features to be learned by one encoder, with the respective decoder
being removed but the features being kept, then, the processed data is passed through a
new autoencoder, where data is reconstructed. This process occurs until the reconstruction
of the last hidden layer occurs [42]. The goal here is not to extract specific features, but
rather to learn features directly from the mammograms, hoping that this methodology
will be highly generalized, in opposite to what happens, in general, to a manual extraction
approach. The models are trained in a forward propagation model, with a constant update
of the learned weights, in order to optimize the process. A way of optimizing the features
is to look for a minimization of the difference (or loss) between the predictions of the
“top most layer” and the real labels. A division into multiple layers is done for feature
learning, before a classifier is trained to make prediction in the “top most layer”. This
results in a “multioptimization” problem, that the authors point to have some advantages,
like the fact that features are learned faster and in a more secure way, since each layer is
specifically optimized, or the fact that these methodologies can incorporate other units,
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like classifiers, that can be independently optimized. In this case, the authors use a sparse
autoencoder, which is a regular autoencoder where a sparsity limitation was forced in
the hidden layers [43], for learning features that represent information at multiple scopes.
The goal is to predict a “label mask” to each image, and, not only the entire image cannot
be computationally used to retrieve label masks, as downsampling the data is also not
possible since important information could be lost. What is suggested, instead, is that the
algorithm should learn local neighborhood regions in an image-patches. Concerning the
notation used in the paper, the goal is to map a patch, x ∈ X = R

c×m×m, with m × m being
the size of the patch and c being the number of channels in the patch, to a label patch,
y ∈ Y = R

C×M×M, with M × M being the size of the patch and having one channel per
label. Although the image and the label patches may have different sizes, they are centered
in the same location. Then, for training purposes, training data will be used to map X to Y.
The training data consists in (x,y) pairs extracted from random locations across the images
that are concerned with this part of the work. The mapping from X to Y does not occur
directly, what happens is that abstract feature representations are learned across multiple
layers. In other words, the input enters the algorithm and crosses multiple layers, with the
output of one layer being the input of the next, where multiple transformations are made
and learning is performed, until the last layer is reached, and a final feature representation
is obtained. Finally, a classifier will be used to map the final feature representation to Y.
For testing purposes, the hypothesis that was trained will be applied to a new image in
all possible patches within the said image—using a sliding window. When doing this, a
problem can arise: if the predicted output region is bigger than a pixel, there are predictions
that may overlap. The problem is solved by calculating the average probability for each
class. Mammogram analysis, conducted in a multi-scale fashion, is done by applying the
discrete scale space theory, through a Fourier implementation. Algorithm unsupervised
architecture consists of four layers: a convolutional layer, a pooling layer, and two final
convolutional layers. Going deeper in convolutional architecture, what happens is that the
convolutional layer will receive the input data, convolve it, do some transformations, and
then send the results as a non-linear activation function to create an activation/features
map. The output of the layer can be fed to another convolutional layer or to a pooling layer.
The pooling layer was defined based on the goal of the study, once it is invariant to small
distortions, but it is highly sensitive to small-scale details. Features are learned for each
scale alone and only merged after the learning process.

The approach proposed by the authors aims for an overcomplete feature represen-
tation, which means that this representation is larger than the input, and resorts to the
concept of sparsity. Sparsity can be used in feature representation by: (1) forcing most of
the entries to be zero and leaving few non-zero entries to represent the input signal; (2) nar-
rowing the number of examples that activate each unit. In this work, both approaches are
combined, leading to, respectively, “a compact encoding per example” and to “example
specific features”. Sparse overcomplete approach is robust to noise and, since each example
is going to be represent by specialized features, this methodology is designed to unscramble
hidden aspects in the data. As it was said, the algorithm will be used in two different tasks
and applied in three different datasets: the density dataset contained both MLO and CC
views for both left and right breast but, for each woman, only one view was available; the
texture dataset contained cancer cases and controls, that were matched both for age and
time of the first image available; finally, the Dutch breast screening dataset was composed
of cancer cases and healthy controls and the same matching as before was made. As for the
classification part, a two-layer neural network was used, with one layer being a previously
used and trained convolutional layer, and the other being a SoftMax classifier, meaning
that the previously learned parameters will be tuned through a supervised methodology.
Broyden–Fletcher–Goldfarb–Shanno algorithm was used as optimizer, and 5-fold cross-
validation was performed for a classification task that considers: “pectorales muscle and
background”, “fatty tissue”, and “dense tissue” as labels for the density scoring; in what
concerns texture scoring, “cancer” and “normal” are the considered labels. Regarding
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results, for density scoring, the output is a score, from 0 to 1, that represents the probability
of a given pixel to belong to the “dense class”. Classification was done by choosing a value
of probability to be a threshold, and the best results were obtained with a threshold of 0.75.
The results explored the correlation between mammographic % PD done by the authors
and by the radiologist, and a performance measure called Dice, that is given by:

D =
|A ∩ B|
|A|+ |B| (4)

where A is the automated segmented region and B is the segmentation done by the radiol-
ogist. For this dataset, the correlation coefficient had a value of 0.85 (95% CI: 0.83–0.88),
the Dice scores for fat and dense tissue were, respectively, of 0.95 ± 0.05 and 0.63 ± 0.19.
The algorithm trained for this dataset was used to estimate % PD in the Dutch dataset and
the cases had a value of 0.19 ± 0.11, the controls had a slightly smaller value—0.15 ± 0.11.
The correlation of % PD between both breasts was of 0.93 (95% CI: 0.92–0.95) and the
obtained AUC for differentiating cases and controls was of 0.59 (95% CI: 0.57–0.62). On the
other hand, the texture scoring represents the probability of a given pixel to be a part of
the cancer class. In order to get one texture score per image, the scores from 500 patches
randomly selected across the breast area were averaged. Besides the developed algorithm,
two other methods were used and evaluated in the performance of this task; one that
is based in multiscale local jet features, and other that uses static histograms. To avoid
bias, the algorithm was tested multiple times and outperformed the two well established
mammographic texture scores, with an AUC of 0.61 (95% CI: 0.57–0.66) vs. AUCs of 0.60
and 0.56 (95% CI: 0.51–0.61) for local jet and static histogram approaches, respectively.
Applying the algorithm to the Dutch dataset resulted in an AUC of 0.57 (95% CI: 0.54–0.61)
in the differentiation between cases and controls and produced a correlation for the mam-
mographic texture of 0.91 (95% CI: 0.90–0.92), between left and right breast. Based on
their results for correlation and % PD based classification, the authors advoke that this
methodology is close to the ones that are present in the scientific community and, based
in the outperformance of their methodology in the texture scoring task, they proceed to
state that this could be a better alternative to the handcrafted texture extraction that is the
current state-of-the-art. One of the downsides of this approach is that the authors assumed
that changes in mammography due to cancer occur in a generalized way across the breast,
but the opposite can also be true, with texture changes being visible only in restricted areas,
and an algorithm that could take this hypothesis into account should be considered as a
future development of the considered work.

In 2014, Petersen et al. [44] sought to do breast segmentation and risk scoring using
deep learning methodologies. Patients were considered as cancer cases for this study if
they had had a screen-detected or an interval cancer; in the first case, mammograms four
years prior from the diagnosis were considered; for interval cancer cases, mammograms
from 2–4 years before cancer appearance were examined. Patient cases, as happens in
other research, were age-matched with controls. An experienced radiologist rated the
mammograms in BI-RADS scale and computed mammographic PD%. The model used,
which is once again a convolutional sparse autoencoder, will learn features in an increasing
abstraction fashion, in order to associate the computed set of features to the considered
labels. The tasks that are going to be considered are: segmentation, with labels being
“background”, “pectoral muscle”, “breast tissue”; % PD scoring, with the labels being
“fatty tissue” and “dense tissue”; and texture scoring, with labels being “diseased” and
“healthy”. As mentioned before, this methodology considers patches from different scales
retrieved from the original image. The methodology for testing is the same as explained in
the previous paper, but a special reference must be made to the fact that when the sliding
window reaches the image border, the images is padded with constant values. The architec-
ture used in this study is the same as used by Kallenberg, and the authors make a reference
that, usually, convolutional and pooling layers are displayed in an alternate fashion, but
in both studies, one of the pooling layers is replaced by another convolutional layer in
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order to grant the conditions of noise invariance and small-scale details sensibility. As
for results, for segmentation, a dice metric was computed for an automated segmentation
and a segmentation done by an expert and the results are: 0.99 ± 0.01, for background;
0.95 ± 0.08, for pectorales muscle; and 0.98 ± 0.01 to breast tissue. The correlation be-
tween automated and manual mammographic % PD scores was of 0.87, and the AUC for
differentiating cases and controls, using the autoencoder was of 0.56 (95% CI: 0.51–0.61).
For texture analysis, the performance of the algorithm for both left and right view were
compared to a state-of-the-art texture scoring method and outperformed it (AUC = 0.65
[95% CI: 0.60–0.70] vs. 0.62 [95% CI: 0.57–0.67]). This research, although widely similar to
the last one, proves that the used methodology generalizes relatively well to other datasets.

Back to 2016, when Qiu et al. [45] tried to create an algorithm that could, in an
unsupervised fashion, estimate bilateral mammographic tissue density asymmetry, an
important risk factor for the development of breast cancer. The authors aim to verify if this
deep learning approach provides better results than the conventional machine learning
methodology. For this study, each case had a “prior” and a “current” evaluation, all the
prior mammograms were negative and the division between cancer and control cases was
done based on the “current evaluation”. The algorithm developed aims to predict, based
in the “prior” exam, the likelihood of a case (women) to have an image-detectable cancer
in the “current” mammogram. The deep learning network proposed by the authors has
8 layers and can be divided in two subsets: feature learning set, and classification set. The
first is composed by alternate convolutional and pooling layers, actually creating three
convolutional-pooling pairs. Convolutional layers apply convolutional kernels to the input
and, then, the pooling layers are responsible for granting that the bilateral asymmetry
is size and rotation independent. After passing through the first pair, a 20 × 48 × 48
feature map is created, and, when passing through the following two pairs, the final result
will be a 5 × 6 × 6 feature map, that is directly linked to the classifier—multiple layer
perceptron—that will generate the probability of having an image detectable cancer in the
next mammogram. During the training, with the 200 cases, a method called mini-batch
statistic gradient descend was used to optimize the algorithm, which the authors say that
provides better optimized parameters with lower computational effort. The algorithm was
tested with the test set and evaluated through a confusion matrix and ROC curve analysis.
This metrics allowed the authors to state that the specificity of the classifier was of 0.60,
and the sensitivity achieved a value of 0.703. The AUC value was of 0.697 ± 0.063 and the
overall accuracy, based on the confusion matrix, was of 71.4%. This methodology allowed
to overcome the problem of manually choosing features to describe bilateral asymmetry
once the features are optimal and directly learned from the input. The authors proceed to
state that, even though the metrics to evaluate the algorithm provide confidence, this is
yet an early study, with a small dataset that does not incorporate inter-women variations
and that, having only 8 layers, is not deep enough, which are limitation that need to be
overcome in order for this type of approaches to be considered in clinical practice.

Tables 1–3 present a summary of the works assessed in this review. The first addresses
questions concerning dataset description and host Institutions, while Table 2 is more
related to the methodology used. As for the final table, results and main conclusions are
addressed. In this table, for studies with more than one AUC result, only the highest value
is considered.

29



J. Imaging 2021, 7, 98

Table 1. Studies Data Summary.

Study Institution
Mammogram

View
Group-Matched? Full Dataset Size

Hou et al., 2000 [18] University of
Chicago CC Yes. Age-matched 158 women = 15 high/143 low risk

Li et al., 2004 [27] University of
Chicago CC Yes. Age-matched 90 women = 30 high/60 low risk

Li et al., 2005 [30] University of
Chicago CC Yes. Age-matched 172 women = 30 high/142 low risk

Tan et al., 2013 [31] University of
Pittsburgh CC No. 645 women = 283 high/362 low risk

Zheng et al., 2015 [34] University of
Pennsylvania MLO Yes. Age-matched 424 women = 106 high/318 low risk

Tan et al., 2016 [37] University of
Pittsburgh CC and MLO Yes. Age-matched 335 women = 159 high/175 low risk

Tan et al., 2019 [38] Subang Jaya
Medical Center CC Yes. Age, Ethnicity,

BMI-matched 500 women = 250 high/250 low risk

Gandomkar et al., 2020 [39] Fudan University
Shanghai CC No. 1079 women = 85 high/993 low risk

Kallenberg et al., 2016 [41] University of
Copenhagen CC and MLO Yes. Age and

Acquisition time

Density: 493 healthy
Texture: 226 cancer and 442 controls
Dutch: 384 cancer and 1182 controls

Petersen et al., 2014 [44] University of
Copenhagen MLO Yes. Age-matched 495 women = 245 cases/250 controls

Qiu et al., 2016 [45] University of
Oklahoma CC No. 270 women = 135 cases/135 controls

Table 2. Methods Summary.

Study ROI Analyzed
Intensity-

Based
GLCM RL Other Features Classifier/Algorithm

Hou et al., 2000 [18] 256 × 256, manually
placed behind the nipple. x - - NGTDM,

Spectral LDA.

Li et al., 2004 [27]
256 × 256, 128 × 128 and

64 × 64 in
referred locations

x - - NGTDM,
Spectral ROCA.

Li et al., 2005 [30] 256 × 256, manually
placed behind the nipple x x - Fractal,

Spectral, Edge ROCA.

Tan et al., 2013 [31]
Entire breast

considered—segmented
into regions.

x x x Cumulative
Projection SVM.

Zheng et al., 2015 [34] Lattice-based approach.
D = W = 63, 127 and 255. x x x LBP, Fractal,

Edge Logistic Reg.

Tan et al., 2016 [37] Entire breast considered x x x Weber,
Structural sim. SVM.

Tan et al., 2019 [38] Entire breast considered x x x Structural,
Spectral LDA.

Gandomkar et al., 2020 [39] Two segmented areas
using AutoDensity x x - Fractal Decision Tree

Kallenberg et al., 2016 [41]

Patches with the smaller
scale being

4.8 mm × 4.8 mm and
the biggest

3.7 cm × 3.7 cm.

- - - - Sparse autoencoder.

Petersen et al., 2014 [44] Patches. - - - - Sparse autoencoder

Qiu et al., 2016 [45] 256 × 256, manually
placed behind the nipple - - - - Multiple Layer

Perception.
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Table 3. Results Summary.

Study AUC Results Main Conclusion

Hou et al., 2000 [18] AUC = 0.91

Mammographic features were found to be associated
with breast cancer risk. High-risk women tend to have
dense breasts and the patterns present e mammograms
tend to have low contrast and to be coarse.

Li et al., 2004 [27] AUC = 0.93 (highest value)
Features extracted immediately behind the nipple tend
to have the best performance. Concerning size, results
were not statistically significant.

Li et al., 2005 [30] AUC = 0.66 ± 0.05 − 0.86 ± 0.03
(only assessed individual features)

High-risk women tend to have dense breasts and their
pattern tend to be coarser, to have a lower fractal
dimension, to be lower in contrast and to have a small
edge gradient measure.

Tan et al., 2013 [31]

AUC = 0.716 ± 0.020
(first and third subgroup)

AUC = 0.725 ± 0.018
(all groups)

Risk calculation based on texture features of
mammographic asymmetry through a SVM classifier
has a good potential to predict the near-term risk of
breast cancer in women.

Zheng et al., 2015 [34] AUC = 0.85 ± 0.02 (highest value)

Lattice-based approach allows parenchyma
characterization across the entire breast, meaning that
the extracted features are provide better information
than the ones extracted from classic approaches.

Tan et al., 2016 [37] AUC = 0.730 ± 0.027 (highest value)
Proved a relationship between the risk scores
generated by the proposed model and the near-term
risk of having breast cancer.

Tan et al., 2019 [38] AUC = 0.68 (95% CI: 0.64–0.73)

Breast texture analysis has a great potential as an
independent risk factor. The study used an Asian
population and confirmed previous studies performed
in Caucasian women about the relationship between
texture patterns and breast cancer risk.

Gandomkar et al., 2020 [39] AUC = 0.884 (CI 0.838–0.913)
A model that combines texture information and
epidemiological factors might lead to an increased
discriminatory capacity of risk prediction.

Kallenberg et al., 2016 [41]
Density: AUC = 0.59 (95% CI: 0.57–0.62)
Texture: AUC = 0.61 (95% CI: 0.57–0.66)

and 0.57 (Dutch) (95% CI: 0.54–0.61)

Obtained breast density scores are positively related to
manual density scores, and texture scores have a
predictive value in what concerns to breast cancer.

Petersen et al., 2014 [44] AUC = 0.65 (95% CI: 0.60–0.70)

PMD scores correlate positively to manual scores and
mammographic texture are more related to future
breast cancer risk than scores related to
mammographic density.

Qiu et al., 2016 [45] AUC = 0.697 ± 0.063

This study concluded that deep learning technologies
may have the potential to develop new risk predicting
methods, that help to achieve an early detection of
breast cancer through negative mammograms.

4. Conclusions

Mainly, the reviewed articles, in terms of extracted features, had in common three
major groups (intensity-based, GLCM and RL), and then present many feature-group
variations, with spectral analysis being also vastly considered. In what comes to the feature
extraction procedure, older papers used a manually single-ROI approach, while more
recent ML studies opted to diversify the region analyzed. Some authors used several ROIs
across the breast, others segmented the breast in different regions and extracted features
from them, and yet, some research consider the entire breast for feature extraction. In
papers that compared their approach with the classical single-ROI methodology, authors
usually find that their procedure outperformed the use of a unique ROI. This may happen
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because, considering breast tissue heterogeneity, a single region does not account for this
diversity, and therefore a tissue characterization that takes into account the entire breast (or
more than one region) appears to be more robust. In terms of classifiers, the papers varied
widely, from LDA to SVM, passing through decisions trees and logistic regression. More
studies should be performed to assess if there is a classifier that is clearly superior to others.
Nonetheless, the LDA approach proposed in the first analyzed paper achieved higher
results than the other three classifiers, which would point that this classifier, for this type
of tasks might outperformed the others. However, the work proposed by Tan in 2019, that
used an LDA, was outperformed by a work conducted in 2013, that used an SVM. As it can
be perceived, there is not a clear conclusion to be made in terms of what classifier is the best.
Nevertheless, the results obtained by the reviewed papers allowed to conclude that texture
analysis along with machine learning algorithms can be correctly employed in risk analysis,
either by differentiating risk groups, or by giving a risk score to each patient. Besides
understanding that this type of methodology can be used, the research also points out that
procedures that consider the entire breast for feature extraction might provide more useful
information. While many of these studies were conducted in Caucasian population, the
study presented by Tan in 2019 allowed to understand that ML algorithms and texture
analysis can also be used, with good outcomes, in Asian populations. The results of the
deep learning approaches, although lower than the ones presented by the classical ML
approach, appear to be very promising, especially because dismisses the laborious work
of extracting handcrafted features, and allows the possibility of automatically finding
predictors that better serve the purpose of the study.

Given the articles discussed in this paper, excluding the ones that use deep learning,
two great future endeavors should be examined: first, considering the substantial differ-
ences in age and other risk factors between high-risk and low-risk groups, studies should
start using larger matched-groups and consider other risk factors than age, in an approach
analogous to what was done in 2019 [38], but with more dataset cases; secondly, most of the
papers did the validation of their model through cross-validation, meaning that training
and testing samples came from the same dataset, so, novel studies should try to validate
their models in an independent dataset. Machine learning methodologies are widely used
in this area, which is demonstrated by the given publications’ date range considered here
but should be interesting for new studies in the field of breast cancer risk assessment to
consider deep learning, as it happens to the last three papers that were analyzed. Machine
learning approaches proved to be substantially good in differentiating risk groups, but
what might be more valuable in terms of medical application is the generation of risk scores,
as done by Tan in 2013. The restriction to a high-risk/low-risk classification seems very
limitative and the focus in giving a risk score specific to each woman should be considered.

While the development of new methodologies in both machine and deep learning, that
suppress the weaknesses discussed in this section, might result in better outcomes, authors
should start looking for breast cancer risk assessment in the perspective of transforming
these algorithms and methods into real clinical applications.

The extensive review performed here allowed to have a general idea of what has
been done for breast cancer risk prediction using textural analysis, that is sometimes
combined with important risk factors. Although there are some downsides that can be
pointed out to research’s methodologies, they serve as a proof of concept that parenchymal
texture patterns provide important information about breast cancer risk and should, once
methodology’s flaws are overcome, be used in clinical practice, and have a positive effect
in millions of women that are diagnosed with breast cancer each year, worldwide.
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Abstract: Breast cancer is one of the leading causes of death among women, more so than all other
cancers. The accurate diagnosis of breast cancer is very difficult due to the complexity of the disease,
changing treatment procedures and different patient population samples. Diagnostic techniques with
better performance are very important for personalized care and treatment and to reduce and control
the recurrence of cancer. The main objective of this research was to select feature selection techniques
using correlation analysis and variance of input features before passing these significant features
to a classification method. We used an ensemble method to improve the classification of breast
cancer. The proposed approach was evaluated using the public WBCD dataset (Wisconsin Breast
Cancer Dataset). Correlation analysis and principal component analysis were used for dimensionality
reduction. Performance was evaluated for well-known machine learning classifiers, and the best
seven classifiers were chosen for the next step. Hyper-parameter tuning was performed to improve
the performances of the classifiers. The best performing classification algorithms were combined with
two different voting techniques. Hard voting predicts the class that gets the majority vote, whereas
soft voting predicts the class based on highest probability. The proposed approach performed better
than state-of-the-art work, achieving an accuracy of 98.24%, high precision (99.29%) and a recall
value of 95.89%.

Keywords: breast cancer diagnosis; Wisconsin Breast Cancer Dataset; feature selection; dimensional-
ity reduction; principal component analysis; ensemble method

1. Introduction

Breast cancer is one of the leading causes of death among women [1]. Although cancer
is largely preventable in its primary stages, there are still many women who are diagnosed
with cancer at a late stage. Better performing diagnosis techniques are very important in
personalized care and treatment, and the use of such techniques can also help to control
and reduce the recurrence of cancer. In the medical field, clinicians generally use data from
various sources, such as medical records, laboratory tests, and studies related to the disease
for accurate diagnosis and prediction of breast cancer. The use of artificial intelligence (AI)
techniques in the medical field is also increasing to automate disease diagnosis and to get
better results in terms of performance.

Breast cancer occurs in breast cells of the fatty tissues or the fibrous connective tissues
within the breast. Breast cancer is a type of tumor that tends to become gradually worse
and that grows fast, which leads to death. Breast cancer is more common among females,
but it can also occur among males, although rarely. Various factors, such as age and family
history, can also contribute to breast cancer risk. Two main types of breast tumors can
be identified.

J. Imaging 2021, 7, 225. https://doi.org/10.3390/jimaging7110225 https://www.mdpi.com/journal/jimaging
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Benign: If the cells are not cancerous, the tumor is benign (not dangerous to health). It
will not invade nearby tissues or spread to other areas of the body (metastasize). A benign
tumor is not worrisome unless it is pressing on nearby tissues, nerves, or blood vessels and
causing damage.

Malignant: This means that the tumor is made of cancerous cells and it can invade
nearby tissues and thus be potentially hazardous. Some cancer cells can move into the
bloodstream or lymph nodes, where they can spread to other tissues within the body,
which is known as metastasis. This is a tumor that is more dangerous and causes death.
The main types or forms of breast cancer include:

1. Ductal carcinoma in situ (DCIS): It is the earliest stage of breast cancer and can be
diagnosed and is curable. The vast majority of women diagnosed with it get cured.
Although it is non-invasive, it might lead to invasive cancer.

2. Invasive ductal carcinoma (IDC): It begins in the milk duct and can spread to the
surrounding breast tissues. It is the most common type of breast cancer.

3. Invasive lobular carcinoma (ILC): It starts in a lobule of the breast. It can spread fast
to the lymph nodes and other areas of the body.

Approximately one million females are diagnosed with breast cancer approximately
every year worldwide. As many as 81% of females with early-stage breast cancer survive
for five years. However, only 35% of females with late or advanced-stage breast cancer
survive for five years. The work proposed here highlights the significance of the use of
the best performing machine learning classifiers with ensembles techniques for accurate
diagnosis of breast cancer. The objective of the proposed research was to implement a
feature reduction algorithm which can find a subset of features that can guarantee a highly
accurate breast cancer classification as either benign or malignant. Principal component
analysis (PCA) was used for dimensionality reduction and hyper-parameter tuning was
performed to gain performance. We also compared different state-of-the-art machine
learning classification algorithms. We used the publicly available Wisconsin Breast Cancer
Dataset (WBCD) [2], and its features were computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass. They describe the characteristics of the cell nuclei
present in the image. We evaluated the performances of logistic regression, support vector
machine, k-nearest neighbors, stochastic gradient descent learning, naïve Bayes, random
forest, and decision tree. These seven classifiers were used for further processing and
ensembled with voting techniques that included hard voting and soft voting.

The rest of the paper is structured as follows: Section 2 describes related work and
different state-of-the-art approaches used for breast cancer diagnosis. Section 3 describes
the proposed framework and related details of the proposed work. Section 4 deals with
experimentation and discussion. Section 5 presents a comparison with the state-of-the-art.
Section 6 ends the paper with conclusions and proposed future work.

2. Literature Review

Many studies have used artificial intelligence (AI) techniques for breast cancer di-
agnosis to enhance the accuracy of classification and its speed. Here, we have reviewed
some relevant work dealing with breast cancer diagnosis that has used machine and deep
learning approaches.

Nguyen et al. [3] used the WBCD Dataset to evaluate the performance of supervised
and unsupervised breast cancer classification models. Scaling and principal component
analysis were used for the selection of features, and they split the data into a 70:30 ratio
for training and testing. They argued that the ensemble voting method is suitable as a
prediction model for predicting breast cancer. After feature selection techniques, various
models were tested and trained on the data. Among all the models used for the prediction,
they stated that only four models, i.e., ensemble-voting classifier, logistic regression, sup-
port vector machine, and adaboost, provided approximately 90% accuracy. They reported
the performance of the proposed model using accuracy, recall tests, ROC-AUC (receiver
operating characteristic curve- area under the curve), F1-measure, and computational time.
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To compare the models, the data from the Iranian Center for Breast Cancer dataset
were analyzed to explore risk factors in breast cancer prediction. Ahmed et al. [4] used
decision trees (DTs), artificial neural networks (ANNs), and support-vector machines
(SVMs). The results show that SVM outperformed both the decision tree and the MLP
(multilayer perceptron) in all the parameters of sensitivity, specificity, and accuracy. There
are some limitations to their study, as many cases were lost in the follow-up and there were
records with missing values that were omitted. Apart from missing data, some important
variables such as S-phase fraction and DNA index were not included in the study because
of their unavailability, which may have decreased the performance of the models.

Omondiagbe et al. [5] discussed the classification of different types of breast cancer
(benign and malignant) in the Wisconsin Diagnostic datasets using support vector machine
(SVM), artificial neural network (ANN), and naive Bayes approaches. Their main goal
was to propose the most suitable approach by integrating machine learning techniques
with different feature selection/feature extraction methods. They proposed a hybrid
approach for breast cancer diagnosis by reducing the high dimensionality of features
using LDA (linear discriminant analysis) and then applying the new reduced feature
dataset to a support vector machine. Their approach showed 98.82% accuracy, 98.41%
sensitivity, 99.07% specificity, and 0.9994 area under the receiver operating characteristic
curve (AUROC).

Yesuf et al. [6] used the CFS (correlation based feature selection) technique for feature
selection in which a 0.7 correlation filter value was set and features with means above
0.7 were omitted from the training dataset. Another technique used for feature selection
was recursive feature elimination (RFE) [7], which used the wrapper approach. In that
approach, all the feature subsets were rated on the basis of accuracy score, and subsets
were selected which had features having top ranking scores. Their research was on the
basis of a technique that used PCA (principal component analysis) on neural networks.
They used PCA and LDA for feature extraction and CFS and RFE for feature selection.

Jamal et al. [8] worked on two machine learning algorithms, a support vector machine
(SVM) and extreme gradient boosting, and compared their performances. For classification
they reduced the number of data attributes by extracting the features with the help of
principal component analysis (PCA) and clustering with k-means. They reported the
performances of four models using accuracy, sensitivity, and specificity from confusion
matrices. Their results indicated that k-means was the best method, which was not gen-
erally used for dimensionality reduction, but can perform well compared to PCA. Four
algorithms were employed—namely, PCA, factor analysis, linear discriminant analysis, and
multidimensional scaling. The result of simulation on the WBCD showed that maximum
accuracy was obtained by the use of PCA and a back-propagation neural network.

Subrata et al. [9] proposed the diagnosis of breast cancer by comparing naïve Bayes
(NB), logistic regression (LR), and decision tree (DT) classifiers; the time complexity of each
of the classifiers was also measured. It was concluded that the logistic regression classifier
was the best classifier with the highest accuracy as compared to the other two classifiers.
Kumar et al. [10] worked on the WBCD dataset and evaluated the performance of their
proposed work on with adaboost, a decision table, J48, logistic regression, Lazy IBK, Lazy
K-star, a multiclass classifier, a multilayer–perceptron, naïve Bayes, J-Rip random forest,
and a random tree.

Lucas et al. [11] used Bayesian network and decision tree machine learning clas-
sifiers on the WBCD dataset. The Bayesian network gave the best accuracy of 97.80%.
Bharat et al. [12] evaluated the performance of their proposed work with three popular
machine learning classifiers: naïve Bayes, J48, and RBF networks. The models showed that
naïve Bayes obtained the best accuracy of 97.3%, followed by RBF with 96.77%, and J48
came up with 93.41%.

Ravi et al. [13] worked on the Extensible Breast Cancer Prognosis Framework (XBPF)
for breast cancer prognosis, which included susceptibility or risk assessment, recurrence,
or redevelopment of cancer after the resolution, and survivability. A representative feature
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for subset selection (RFSS) algorithm was used along with SVM to improve efficiency
in prognosis. SVM-RFSS showed a significant performance improvement over state-of-
the-art prognosis methods. Chaurasia et al. [14] used three common machine learning
classifiers: Bayes’ theorem, a radial basis function network, and decision tree J48. They
acquired the UCI dataset (683 instances). They further applied techniques on this dataset
such as data selection, preprocessing, and transformation for the development of accurate
diagnosis models. The results showed that the naive Bayes performed better, having
classification accuracy of 97.36%; and the next two, RBF network and J48, showed 96.77%
and 93.41%, respectively.

Haifeng and Won Yoon [15] presented a study on breast cancer diagnosis using
different machine learning classifiers. They formulated an effective way to predict breast
cancer based on patients’ clinical records. They used four machine learning classifiers:
support vector machine (SVM), artificial neural network (ANN), naive Bayes classifier, and
adaboost tree. They used two datasets: Wisconsin Diagnostic Breast Cancer and WBCD.
In their research work, they also discussed feature space reduction, proposed a hybrid
network between various machine learning models and principal component analysis
(PCA), and implemented the k-fold cross-validation for the estimation of test errors for
each models to select the best method. They also suggested that there were some other
models, such as k-means, which can be used for feature space reduction.

Abdollel et al. [16] used relative and absolute area density-based breast cancer mea-
surements. They assessed cancer diagnosis through time of screening mammography and
took 392 images from effected cases of breast cancer and 817 images from age matched
controls. Multi-variable logistic regression and AUROC (area under the receiver-operating
characteristic) were used to assess three risks models. The first model used clinical risk
factors, the second model used measures of density-related images, and a third model used
clinical risk factors and density-related measurements. They reported that the clinical risk
factors model had an AUROC of 0.535, the second model got an AUROC of 0.622, and the
third model gave the best result—0.632—outperforming the clinical risk model.

Shravya et al. [17] focused on improving predictive models aimed at high performance
in diagnosis of disease outcomes with the help of supervised machine learning methods.
They proposed and analyzed the implementations of different machine learning classifiers,
logistic regression (LR), support vector machine (SVM), and k nearest neighbors, on the
WBCD dataset. SVM performed best with an accuracy of 92.7%.

William et al. [18] focused on naïve Bayes and the J48 decision tree, two machine
learning classifiers, to predict breast cancer risks in patients in Nigeria. The J48 decision
tree proved to be the most efficient and effective method for predicting breast cancer
with the help of highest accuracy level of 94.2% and low error rates as compared to naïve
Bayes, having accuracy of 82.6%. Recently, several researchers proposed machine learning
(ML) methods for classifying breast abnormality in mammogram images. Assiri et al. [19]
proposed an ensemble classifier based on a majority voting mechanism. The performances
of different state-of-the-art ML classification algorithms were evaluated for the WBCD
dataset. Their classifier achieved an accuracy of 99.42%.

Darzi et al. [20] addressed feature selection for breast cancer diagnosis. They presented
a process with a genetic algorithm (GA) and case-based reasoning (CBR). The genetic
algorithm was used for searching the problem space to find all of the possible subsets of
features, and case-based reasoning was employed to estimate the evaluation result of each
subset. The results show that the proposed model performed comparably to the other
models on the WBCD dataset. They achieved an accuracy of 97.37%, after feature selection.

When dealing with data that do not have a significant number of training samples,
unsupervised machine learning techniques have also proven to be of significant importance
in biomedical applications. Marrone et al. [21] have used the 2D fuzzy c-means (FCM)
clustering along with geometrical breast anatomy characterization through well defined
keypoints. They used FCM to shift the base mask extraction from a simple gray-level-based
segmentation to a membership probability. They stated that key point characterization of
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breast anatomy can be effectively used to weight FCM membership probability, allowing
one to accurately separate pectoral muscle from the chest wall. Rundo et al. [22] also used
the fuzzy c-means algorithm for the automatic detection and delineation of the necrotic
regions within the planned GTV for neuro-radiosurgery therapy.

Most of the published literature has evaluated the performances of classifiers based
on accuracy, i.e., a value that is higher when the frequencies of true positives (TPs) and true
negatives (TNs) are high compared to those of false positives (FPs) and false negatives (FNs).
However, measuring performance in terms of false negatives (recall) and false positives
(precision) and F-measures score is equally important, because missing a condition could
have serious consequences for patients.

3. Methodology

In this paper, an ensemble method is proposed for accurate breast cancer classification,
which was made by selecting the appropriate features for processing.

The public UCI breast disease dataset (WBCD) [2] was used as input data. The large
size of the dataset and the multiple sources make the data highly useful. WBCD contains
569 instances and 32 attributes. We split the data into a ratio of 70:30 for training and testing.
For splitting the dataset, we used the Scmap plot showing the correlaiKit-Learn library
in Python—the train-test-split method. Details about the libraries used are mentioned in
Appendix A. The training set contained a known output, and the model learned on this
data in order to be generalized to other data later on. We used the test dataset (or subset)
in order to test our model’s prediction on this subset.

The pre-processing of the data was done via data cleaning, data transformation, and
normalization. As shown in Figure 1, after pre-processing, we performed feature selection
and dimensionality reduction by analyzing the correlation and variance of the input
features. Later, the most significant features were used for classification using seven state-
of-the-art classification algorithms: logistic regression, support vector machine, k-nearest
neighbors, stochastic gradient descent learning, naïve Bayes, random forest, and decision
tree. Later, these classifiers were ensembled using voting-based ensembled methods. Hard
voting predicts the class that gets the majority vote and soft voting predicts the class based
on highest probability. Details about each step of the proposed methodology are given in
the sections below.

Figure 1. Proposed methodology for accurate breast cancer tumor classification.

3.1. Data Pre-Processing

Data pre-processing was performed to improve data quality and get a clean dataset
which could be used for building the model. Without pre-processing, several challenges
will occur—inconsistencies, error, noise, missing values, model over-fitting, etc. To evaluate
the impacts of the pre-processing steps on the results of the classification algorithms, breast
cancer diagnosis was evaluated separately with and without pre-processing. For pre-
processing, we used two feature selection methods and chose the better performing one.

39



J. Imaging 2021, 7, 225

3.1.1. Dimensionality Reduction Using Correlation Analysis

Dimensionality reduction is a technique to remove features that are less significant
for predicting the outcome(s). In this work, dimensionality reduction was performed by
analyzing the correlations among the features of input data, dropping features that had
high variance. As shown in Figure 2, a heat map was used to analyze the correlations
between features of the dataset. A high correlation was observed among “radius-mean”,
“parametric-mean”, and “area mean” features, as all these features contain information
about the size of breast cancer cells. Therefore, only the “radius-mean” feature was selected
to further represent the information about the size of breast cancer cell.

Figure 2. Heat map plot showing the correlations among input features of WBCD dataset.

High correlations were observed between the features representing the “mean” and
“worst” values of different features. For instance, the “radius-mean” feature is highly
correlated with the “radius-worst” feature. The feature representing the “worst” value of
“radius” was dropped, as it is just a subset of the “mean” value feature. Similarly, high
correlations were observed between the features containing information about the shape of
breast cancer cell—i.e., compactness, concavity, and concave points. For better breast cancer
cell shape representation, we decided to only consider the “compactness-mean” feature
for further processing. We dropped a total of nine features: “area-mean, perimeter-mean,
radius-worst, area-worst, perimeter-worst, texture-worst, concavity-mean, perimeter-se,
area-se.” This way, we had 22 features remaining for further processing. Figure 3 shows
the correlations among the selected features.
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Figure 3. Heat map plot showing the correlations among selected features of WBCD dataset.

3.1.2. Dimensionality Reduction Using Principal Component Analysis

The selected features were further analyzed based on their variance. To perform
dimensionality reduction based on their variance, we used the well-known principal com-
ponent analysis (PCA) algorithm. We used the sklearn library, the sklearn.decomposition
function, to import PCA (linear dimensionality reduction using singular value decomposi-
tion of the data to project it to a lower dimensional space) for feature selection. For PCA
we had to ensure that all features were on the same scale; otherwise, the features that have
high variance would have affected the outcomes of the PCA. “StandardScaler” was used to
standardize features, followed by PCA for dimensionality reduction.

Figure 4, shows the variance of different features for the dataset. This graph shows
that most of variance can be represented using 10 features only. These 10 features are
“radius-mean, texture-mean, compactness-mean, concave points-mean, symmetry-mean,
fractal-dimension-mean, smoothness-mean, radius-se, texture-se, and smoothness-se.”

Figure 4. Number of features and their cumulative variance in the WBCD dataset.
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3.1.3. Feature Selection by Using a Wrapper Subset Selection Method

We used a wrapper subset selection method for feature selection. Wrapper methods
work by evaluating a subset of features using a machine learning algorithm that employs a
search strategy to look through the space of possible feature subsets, evaluating each subset
based on the quality of the performance of a given algorithm. Wrapper methods generally
result in better performance than filter methods because the feature selection process is
optimized for the classification algorithm to be used. However, wrapper methods are
too expensive for high dimensional data in terms of computational complexity and time,
since each feature set considered must be evaluated with the classifier algorithm used.
The working of wrapper methods is illustrated in Figure 5,

Figure 5. Wrapper method.

Summarizing, wrapper methods work in the following way.

• Search for a subset of features: Using a search method, we select a subset of features
from the available ones.

• Build a machine learning model: In this step, a chosen ML algorithm is trained on the
previously-selected subset of features.

• Evaluate model performance: Finally, the newly-trained ML model is evaluated with
a chosen metric.

• Repeat: The whole process starts again with a new subset of features, a new trained
ML model. The process stops when the desired condition is met, at which point the
subset with the best result in the evaluation phase is chosen.

As a part of first step of feature selection, the search method used was BestFirst, and
the chosen machine learning classifier was J48; we set the values of fold to 10, seed to 1, and
threshold to −1.0. BestFirst selects the n best features for modeling a given dataset, using
a greedy algorithm. It starts by creating N models, each of them using only one of the N
features of the dataset as input. The feature that yields the model with the best performance
is selected. In the next iteration, it creates another set of N − 1 models with two input
features: the one selected in the previous iteration and another of the N − 1 remaining
features. Again, the combination of features that gives the best performance is selected.
The script stops when it reaches the number of desired features. One improvement we
made to this script was including k-fold cross-validation in the model evaluation process
at each iteration. This ensured that the good or bad performance of one model was not
produced by chance because of a single favorable train/test split.

The result provided nine attributes, concavity-mean, concave points-mean, perimeter-
se, area-se, texture-worst, area-worst, smoothness-worst, symmetry-worst, and fractal-
dimension-worst, as shown in Figure 6. The total number of subsets evaluated was 955,
and the best subset figure of merit was 96.8%.
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Figure 6. Distribution of malignant and benign cells for reduced features for WBCD.

3.2. Breast Cancer Tumor Classification

The following classification algorithms were evaluated for the task of breast cancer
tumor classification, and hyper-parameter tuning was performed for classifiers using
“GridSearchCv”, which performs exhaustive searching over specified parameter values for
an estimator. GridSearchCV tries all the combinations of the values passed in the dictionary
and evaluates the model for each combination using the Cross-Validation method. From the
exhaustive set of accuracies thus obtained, the best one is chosen.

3.2.1. NaïVe Bayes Classification

The naïve Bayes model is very effective for large datasets because of its simplicity. It
works on the probability basis p(c | x), where p(c | x) is the posterior probability of the
class (c) and predictor (x).

3.2.2. Support Vector Machine (SVM)

We performed hyper-parameter tuning for SVM with GridSearchCv. SVM-CV per-
formance was then compared with default SVM performance. Both showed the same
accuracy, precision, and recall score. The parameters values showing the best performances
were C = 1 and degree = 1, where C is a SVM cost function used for SVM optimization and
degrees is a value of polynomial used to find the hyper-plane to split the data. The default
setting for SVM is C = 1, degree = 3.
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3.2.3. Decision Tree

Decision trees use multiple algorithms to decide to split a node into two or more
sub-nodes. The creation of sub-nodes increases the homogeneity of resultant sub-nodes.
In other words, it can be said that the purity of the node increases with respect to the target
variable. The decision tree splits the nodes on all available variables and then selects the
split which results in the most homogeneous sub-nodes.

3.2.4. K-Nearest Neighbors (KNN)

KNN is non-parametric method, as it does not consider the dimensionality of dataset
for diagnosis because it relies upon nearest training data points. The “GridSearchCv” was
used to figure out the total number of neighbors for the KNN training needed to achieve
superior performance.

3.2.5. The Random Decision Forest Method

A random forest is considered as a highly accurate and robust method because of
the number of decision trees participating in the process. It tries to build k different
decision trees by picking a random subset S of training samples. It generates fully Iterative
Dichotomiser 3 (ID3) trees with no pruning. It makes a final prediction based on the mean
of each prediction, and it tends to be robust to overfitting, mainly because it takes the
average of all the predictions, which cancels out biases.

3.2.6. Simple Logistic Regression

Logistic regression is a statistical method for evaluating a dataset in which a result
is calculated by one or more independent variables. It is a supervised learning technique
similar to linear regression.

3.2.7. Stochastic Gradient Descent Learning for Support Vector Machine

In stochastic gradient decent, in each interaction only a few samples are selected
randomly instead of the entire dataset. The samples are shuffled at random and chosen to
perform the interaction.

3.3. Ensemble Classification

Ensemble learning strategically brings together several machine learning models for
achieving better performance. There are three different types of ensemble techniques:
bagging based ensemble learning, boosting based ensemble learning, and voting-based
ensemble learning. In our work, we used voting-based ensemble learning.

Voting-based ensemble learning is one of the basic or straightforward ensemble
learning techniques in which diagnoses from multiple models are combined with either
hard or soft voting.

3.3.1. The Majority-Based Voting Mechanism (Hard Voting)

In hard voting, we assign or predict the final class label as the class label that the
classification models has most often predicted. Hard voting is the simplest case of majority
voting. In majority voting, the class label y is predicted via majority (plurality) vote the
classifiers C:

y = mode {C1(x), C2(x), .., Cn(x)} (1)

3.3.2. The Probability-Based Voting Mechanism (Soft Voting)

In soft voting, we predict the class labels based on the predicted probabilities p for
the classifiers [23]. Soft voting attains the best results by averaging out the probabilities
calculated by individual algorithms. Soft voting predicts the label as:

ŷ = argmax
i

m

∑
j=1

wj pij (2)
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where wj is the weight that is assigned to the jth classifier and pij is the predicted member-
ship probability of the ith classifier for class label j.

4. Experimentation and Discussion

4.1. The Wisconsin Breast Cancer Dataset (WBCD)

This public dataset [2] is based on microscopic examination of aspiration tests using
fine needles on breast masses. The breast mass attribute is determined from a digital fine-
needle aspirate (FNA) scan. Breast mass FNA is an important way of assessing malignancy.
The WBCD was created by Dr. William H. Wolberg at the University of Wisconsin-Madison
Hospital. There are 569 instances in this database, consisting of two cases: 357 benign
instances and 212 malignant ones. These 569 instances are of human breast tissue from
the FNA and were clinically evaluated based on 32 characteristics. All attributes can be
considered as symptoms of a patient’s breast cancer. Finally, 70:30 training:testing split was
used for evaluation.

4.2. Results and Discussion

As can be seen in Table 1, results without pre-processing are unreliable and inaccurate.
Some classifiers—support vector machine, naïve Bayes, etc.—did not perform well and
produced low precision and recall scores.

Table 1. Breast cancer diagnosis without data pre-processing.

Classification Algorithms Accuracy (%) Precision Recall F-Measures F2-Measures

Naive Bayes Classification 84.50% 0.70% 0.57% 0.62% 0.59%

Simple Logistic Regression 87.94% 0.88% 0.87% 0.87% 0.87%

Random Decision Forest Method 99.47% 0.99% 0.99% 0.98% 0.99%

Support Vector Machine 62.00% 0.62% 0.40% 0.48% 0.43%

K-Nearest Neighbor Classification 90.00% 0.89% 0.80% 0.84% 0.81%

Decision Tree 88.00% 0.88% 0.86% 0.86% 0.86%

Stochastic Gradient Decent Learning 90.30% 0.83% 0.88% 0.85% 0.86%

After feature selection, we compared the performances of different machine learning
classification methods for breast tumor classification. To find out best parameters, hyper-
parameter tuning using GridSearchCv was used, and the performance of each classifier
was improved after that. As shown in Table 2, logistic regression outperformed the
other classifiers with an accuracy of 97.49% and high precision and recall of 97.89% and
95.21%, respectively.

Table 2. Comparison of different classification methods on WBCD after feature scaling, and hyper-parameter tuning of
features using PCA and correlation analysis.

Classification Algorithms Accuracy Precision Recall F-Measures F2-Measures

Simple Logistic Regression Learning 97.49% 97.89% 95.21% 96.53% 95.73%

K-Nearest Neighbor Classification 97.49% 98.48% 89.70% 93.88% 91.32%

Support Vector Machine 96.23% 91.88% 93.94% 92.89% 93.52%

Random Decision Forest 94.22% 93.86% 82.88% 88.02% 84.86%

Stochastic Gradient Descent Learning 92.11% 84.38% 89.20% 86.72% 88.19%

Decision Tree 90.45% 87.14% 87.00% 87.06% 87.02%

Naïve Bayes Classification 91.60% 91.90% 91.80% 91.84% 91.81%
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Table 3 shows that probability-based soft voting mechanism performed better than
majority-based (hard voting) voting, because soft voting uses more information by using
individual classifiers’ uncertainties in the final diagnosis.

Table 3. Evaluation results of ensemble voting after pre-processing, using method 1.

Voting Classifiers Accuracy (%) Precision (%) Recall (%) F-Measures (%) F2-Measures (%)

Soft Voting 99.00 99.29 96.00 97.61 96.64

Hard Voting 97.29 96.48 95.70 96.08 95.85

Results after applying wrapper feature selection methods:
The nine attributes: concavity-mean, concave points-mean, perimeter-se, area-se,

texture-worst, area-worst, smoothness-worst, symmetry-worst, and fractal-dimension-
worst were provided by a wrapper feature selection method. Performance results of
machine learning classifiers with reduced numbers of features from the initial set are shown
in Table 4. Kernel density estimation (KDE) plots were used to check the distribution of
malignant and benign cases for selected features. The visualization of the above-mentioned
features is shown in Figure 6

Table 4. Comparison of the performances of different classification methods for WBCD after applying the wrapper feature
selection method.

Classification Algorithms Accuracy Precision Recall F-Measures F2-Measures

Simple Logistic Regression Learning 98.10% 98.10% 98.10% 96.90% 98.10%

K-Nearest Neighbor Classification 95.43% 95.40% 95.40% 95.40% 95.40%

Support Vector Machine 95.80% 96.00% 95.80% 95.70% 95.83%

Random Decision Forest 96.70% 96.70% 96.70% 96.60% 96.70%

Stochastic Gradient Descent Learning 97.40% 97.40% 97.40% 97.40% 97.40%

Decision Tree 96.83% 96.80% 96.80% 96.80% 96.80%

Naïve Bayes Classification 92.80% 92.80% 92.80% 92.80% 92.80%

After this, we also analyzed the performance of this reduced set of features from
the wrapper method when using ensemble voting. Table 5 shows that the probability-
based soft voting mechanism performed better than majority-based (hard voting) voting,
because soft voting gets more information by using individual classifiers’ uncertainties in
the final diagnosis.

Table 5. Evaluation results of ensemble voting after pre-processing by using the wrapper features subset selection method.

Voting Classifiers Accuracy (%) Precision (%) Recall (%) F-Measures (%) F2-Measures (%)

Soft Voting 97.70 97.70 97.70 97.70 97.70

Hard Voting 97.40 97.40 97.40 97.30 97.40

Comparing both methods for feature selection, it can be concluded that the perfor-
mances of machine learning classifiers were improved at the individual level by using
a wrapper method. As can be seen in Table 4, simple logistic regression learning pro-
vided 98.10% accuracy, random decision forest 96.70%, stochastic descent learning 97.40%,
decision tree 96.83%, and naïve Bayes 92.80%. However, from the evaluation results of
ensemble voting, there was only a small improvement for hard voting.
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5. Comparison with Existing Work

Table 6, shows a comparison with existing work for breast cancer diagnosis using
ensemble techniques. Nguyen et al. [3] analyzed the performances of different supervised
and unsupervised breast cancer classification models on the WBCD dataset. They ana-
lyzed the performance of an ensemble voting method for breast cancer detection. They
applied principal component analysis for feature analysis and reported an accuracy of
98.00%. Compared to this approach, our proposed feature selection and ensemble method
classification shows an improvement of 1.00%.

Rodrigues et al. [11] achieved a performance of 97.80% on the WBCD dataset using a
Bayesian network; however, they evaluated performance only using a machine learning
classification algorithm and did not analyze the significance of important features needed
for better performance. They have evaluated the performances of two different classifi-
cation algorithms, i.e., a Bayesian network and a decision tree. The Bayesian network
performed better than the decision tree.

To compare the performances of different classification models, Ahmed et al. [4] used
data from the Iranian Center for Breast Cancer dataset and explored the risk factors for
predicting breast cancer. There are some limitations in this study, as many cases were
lost in the follow-up and the records with missing values were omitted. Some important
variables, such as S-phase fraction and DNA index, were not included in the study because
of their unavailability, which may have decreased the performances of the models.

Shravya et al. [17] used three well known classification algorithms for the detection
of breast cancer. They used logistic regression, a support vector machine, and k-nearest
neighbors. The SVM outperformed the other two classifiers and showed better performance
with 92.70% accuracy. It is noted that there is a lot of room for improvement when the
ensemble method classification is used instead of using individual classification algorithms.
Darzi et al. [20] addressed feature selection for breast cancer diagnosis. Their process
contains a wrapper approach based on a genetic algorithm (GA) and case-based reasoning
(CBR), and reported an accuracy of 97.37% on WBCD. As compared to this approach, our
proposed feature selection and ensemble method classification show an improvement
of 2.00%.

Bharat et al. [12] achieved a performance of 97.3% on the WBCD dataset using naïve
Bayes; however, they evaluated the performance only using a machine learning classifica-
tion algorithm and did not analyze the significance of important features needed for better
performance. They evaluated the performances of three different classification algorithms,
i.e., naïve Bayes, the J48 network, and the RBF network. Naïve Bayes performed better than
the other two. Assiri et al. [19] proposed an ensemble classifier based on a majority voting
mechanism. The performances of different state-of-the-art ML classification algorithms
were evaluated for the WBCD dataset, achieving an accuracy of 99.42%. However, they did
not evaluate different feature selection algorithms that could help them to determine the
smallest subset of features that can assist in accurate classification of breast cancer as either
benign or malignant.

Lucas et al. [11] used Bayesian network and decision tree machine learning classifiers.
The Bayesian network gave the best accuracy of 97.80% on WBCD. As compared to this
approach, our proposed feature selection and ensemble method classification showed an
improvement of 2.00%.
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Table 6. Comparison with the existing work for breast cancer diagnosis.

Authors Classifiers Accuracy (%)

Proposed Approach Dimensionality Reduction and Ensemble based learning 99.00

Darzi et al. [20] CBR-Genetic (case-based reasoning) 97.37

Nguyen et al. [3] Ensemble Method 98.00

Rodrigues et al. [11]
Bayesian Network
Decision Tree

97.80
92.00

Subhani et al. [17]

Logistic Regression
Support Vector Machine
K Nearest Neighbor

88.00
92.70
82.00

Ahmed et al. [4]

Decision tree
Artificial neural network
Support Vector Machine

93.60
94.70
95.70

Lucas et al. [11]
Bayesian network
J48 Decision tree

97.80
96.05

Bharat et al. [12]

Decision tree C4.5
Support Vector Machine
Naive Bayes
K Nearest Neighbor

95.00
96.20
97.00
91.00

Assiri et al. [19] Ensembled machine learning method 99.42

6. Conclusions and Future Work

Early detection of breast cancer is important, as it is one of the leading causes of
death among women, so its detection at early stages is very important. Early breast cancer
tumor detection can be improved with the help of modern machine learning classifiers.
In medical research, the false positive and false negative examples have great significance,
but most existing work has evaluated performance based only accuracy evaluation measure.
Therefore, we focused not only on accuracy but also evaluated performance based on
precision and recall. In this work, feature selection and dimensionality reduction were
performed using principal component analysis and by analyzing the correlations among
different sets of features and their variance. The performances of different machine learning
algorithms, including logistic regression, support vector machine, naïve Bayes, k-nearest
neighbor, random forest, decision tree, and stochastic gradient decent learning, were
evaluated. We reported the performances of different classifiers using different performance
measures, including accuracy, precision, and recall. A voting ensemble method was used
to improve the performances of the classifiers. The three best classifiers were then used for
final classification using a voting ensemble method. We used hard voting (majority-based
voting) and soft voting (probability-based voting) for ensemble classification. The average-
probability-based voting (soft voting) showed better results as compared to hard voting.
For big datasets, how these machine learning classifiers algorithms behave is one of the
future scopes of this project. This work could be enhanced through the use of deep learning
techniques for classification and identification of particular stage s of breast cancer.
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Appendix A

This section contains the information about the libraries used for implementation [24].

• Sklearn.metrics: used to import confusion-matrix
• sklearn.model-selection: used to import cross-val-core (Evaluate a score by cross-validation).
• sklearn.metrics: Used to import precision-score, recall-score, f1-score, f2-score
• NumPy: It provides support for large multidimensional array objects and various

tools to work with them.
• Pandas: Pandas allow importing data from various file formats. Pandas allows various

data manipulation operations such as merging, reshaping, selecting, as well as data
cleaning, and data wrangling features.

• Matplotlib: Matplotlib is a plotting library for the Python programming language and
its numerical mathematics extension NumPy.

• Seaborn: Seaborn is a library in Python predominantly used for making statistical
graphics. Seaborn is a data visualization library built on top of matplotlib and closely
integrated with pandas data structures in Python.

• Scikit-learn: Scikit-learn is also known as sklearn. It is free and the most popular
machine learning library for Python and used to build machine learning models.
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Abstract: Mammography is the primary medical imaging method used for routine screening and
early detection of breast cancer in women. However, the process of manually inspecting, detecting,
and delimiting the tumoral massess in 2D images is a very time-consuming task, subject to human
errors due to fatigue. Therefore, integrated computer-aided detection systems have been proposed,
based on modern computer vision and machine learning methods. In the present work, mammogram
images from the publicly available Inbreast dataset are first converted to pseudo-color and then used
to train and test a Mask R-CNN deep neural network. The most common approach is to start with a
dataset and split the images into train and test set randomly. However, since there are often two or
more images of the same case in the dataset, the way the dataset is split may have an impact on the
results. Our experiments show that random partition of the data can produce unreliable training, so
the dataset must be split using case-wise partition for more stable results. In experimental results, the
method achieves an average true positive rate of 0.936 with 0.063 standard deviation using random
partition and 0.908 with 0.002 standard deviation using case-wise partition, showing that case-wise
partition must be used for more reliable results.

Keywords: mammography; computer-aided detection; breast mass; mass detection; mass segmentation;
Mask R-CNN; dataset partition

1. Introduction

In 2020, there were 2.3 million new cases of brest cancer in the world [1]. That
makes it the most common malignant tumor affecting women, accounting for a total of
11.7% of all cancer cases diagnosed. It is also the fifth leading cause of cancer mortality,
with 685,000 deaths worldwide [1]. Among women, breast cancer is responsible for 1 in
4 cancer cases and 1 in 6 cancer-related deaths [1].

Despite these worrying figures, mortality from breast cancer is relatively low. In gen-
eral, the disease has a good prognosis if the tumours are diagnosed in the early stages.
About 90% of women with breast cancer are well five years after the original diagno-
sis [2]. However, due to the high incidence, this illness ranks first among all causes of
cancer-related deaths in the female population. Mortality due to breast cancer has been
decreasing continuously and consistently for several years. Early screening, that allows
for the diagnosis of carcinomas at increasingly earlier stages, is one of the most important
factors for the success of treatment and consequent reduction of mortality [3].

The present paper describes a method to detect and segment breast masses, based
on a popular deep learning model known as Mask R-CNN. This model has been used
before, with good results, by researchers such as Min et al. [4]. However, the focus of the
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present paper is a comparison to determine the importance of splitting the dataset properly,
in order to avoid overfitting of the data. Experiments were performed splitting the images,
to create the test set, randomly and by case. While this seems to be a small detail, in
data preparation, it may have a significant impact on the results. The dataset used is the
publicly available INbreast [5]. Experiments show that the method has competitive results
compared to state-of-the-art methods. Additionally, division of the dataset by case instead
of by image leads to more stable training procedures.

The paper is organized as follows: Section 2 explains in more detail what a mam-
mogram image is and how computer aided detection can facilitate the diagnosis process.
Section 3 presents a short survey of the state of the art related to detection and segmenta-
tion of masses from mammograms using deep learning. Section 4 describes methods to
detect and segment tumoral masses. Section 5 contains a summary of the experiments and
the results. Section 6 gives a brief discussion with comparison of results. Section 7 draws
conclusions and highlights possible future research directions.

2. Mammography Images

Mammography has long been considered the most effective diagnostic imaging test
for the early detection of breast cancer. The exam is simple and non-invasive. It must
be performed routinely, in asymptomatic women (screening), or for diagnosis, being a
fundamental tool in the detection of lesions in early stages, allowing a favorable prognosis
and an increase in the success rate of treatments [6].

The imaging technique most used in the screening and diagnosis of breast cancer is
X-ray mammography. It is a fast, low-cost technique with high spatial resolution. The basic
views performed in a mammography exam are the Craniocaudal view (CC) and the
Mediolateral Oblique view (MLO). Both are performed for each breast, up to a total of
four images per patient. The main signs of breast cancer are the masses and clusters of
microcalcifications, so the analysis of a mammographic image begins with the search for
these types of formations.

There are different types of breast abnormalities. The abnormalities that can be seen
in mammograms include masses, calcifications, asymmetry, or breast distortion. However,
the breast masses, which are areas of thicker tissue that show in the mammography, are the
most important sign of the illness. The analysis of mammogram images is a difficult task,
even for trained radiologists. The main challenges are due to the different breast patterns,
variations of color and shape of the tumoral masses, their possible locations, and different
sizes possible. This variability often makes the abnormalities difficult to detect, segment,
and classify.

The huge number of mammograms that can be generated and need to be analyzed
during breast cancer screening programs require a significant workload, which often leads
to fatigue and consequently errors of the radiologists that have to process and analyze
hundreds or thousands of medical images over several days in a row. Therefore, Computer-
Aided Detection (CAD) systems have been proposed, with the aim of assisting technicians
and radiologists in the task, facilitating the process and contributing to lowering the
probability of generating false negatives and false positives. CAD systems are used as a
second opinion in the interpretation of mammograms, by the radiologists, contributing for
more confidence in the diagnosis. However, such CAD systems need to operate at high
levels of precision and accuracy. They must be robust, both to false positives and false
negatives. A false positive can lead to unnecessary further testing, while a false negative
can lead to further complications which might have been avoided.

The tumoral masses are volumes of abnormal density. Mammogram images are
only an incomplete description of the 3D structure of the mass. The masses show in
2D mammography images with a high variability of shapes, sizes and locations. Most
of the times they are difficult to distinguish from the background, even for experienced
technicians. Existing CAD systems and modern detection and segmentation models
have shown promising results, but the problem is still subject to heavy research. Training
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machine learning algorithms is also a challenge per se, for there are not many large datasets,
containing Full Field Digital Mammograms (FFDM), annotated by experts and available
for general use. This poses additional difficulties for developing modern CAD systems.

Recent developments in methods based on Deep Learning (DL) can contribute to
develop robust solutions to undertake these problems. Particularly, the methods that use
Convolutional Neural Networks (CNNs) to automatically learn a relevant hierarchy of
features directly from inputting images. The topic has been subject to heavy research and
there have been important developments. However, most developments are just in the
specific area of detection, where the result is a bounding box [7], or in the specific area of
region segmentation, to tell the region of interest from the background [8,9]. Nonetheless,
there are also a number of important developments proposing a completely integrated
system, able to detect and segment tumoral masses in the pipeline with minimal human
intervention. The most common approaches still deal with two-dimensional images.
Three-dimensional approaches have already been studied [10–12], and even stereoscopic
approaches [13]. However, the state-of-the-art CAD systems are mostly based on 2D
methods and trained on datasets consisting of 2D images. This makes the methods of pre-
processing the images and partitioning the datasets a very important and still open issue.

3. Related Work

Tumor mass detection and segmentation in mammogram images have been subject to
heavy research in recent years. One of the latest techniques to be applied is DL machine
models, namely CNNs. CNNs have been applied in different medical image analysis with
success. The review focuses on research papers that use the publicly available database
INbreast, or other databases, for training and testing, having the focus on implementa-
tion of CNNs to address the issues of detection and/or segmentation of breast masses
in mammograms.

3.1. Detection of Tumoral Masses

Many modern object detection models have achieved good performance in object
detection and segmentation tasks. Nonetheless, those tasks still remain a challenge when
detecting breast tumor masses in medical images, due to the low signal-to-noise ratio and
the variability of size and shape of masses.

Dhungel et al. [14] presented an architecture that contains a cascade of DL and Random
Forest (RF) classifiers for breast mass detection. Particularly, the system comprises a cascade
of multi-scale Deep Belief Network (m-DBN) and a Gaussian Mixture Model (GMM) to
provide mass candidates, followed by cascades of Region-based Convolutional Neural
Network (R-CNNs) and RF to reduce false positives.

Wichakam et al. [15] proposed a combination between CNNs for feature extraction
and Support Vector Machines (SVM) as the classifiers to detect a mass in mammograms.
Choukroun et al. [16] presented a patch based CNN for detection and classification of
tumor masses where the mammogram images are tagged only on a global level, without lo-
cal annotations. The method classifies mammograms by detecting discriminative local
information from the patches, through a deep CNN. The local information is then used to
localize the tumoral masses.

3.2. Segmentation of Tumoral Masses

A fundamental stage in typical CAD systems is the segmentation of masses. Most
popular segmentation approaches are based on pre-delimited Regions Of Interest (ROI) of
the images.

Dhungel et al. [17] proposed the use of structured learning and deep networks to
segment mammograms—specifically, using a Structured Support Vector Machine (SSVM)
with a DBN as a potential function. In a first stage, the masses are manually extracted; then,
a DBN is used to detect the candidates and a Gaussian Mixture Model classifier performed
the segmentation step.
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In [18,19], two types of structured prediction models are used, combined with DL
based models as potential functions, for the segmentation of masses. Specifically, SSVM and
Conditional Random Field (CRF) models were combined with CNNs and DBNs. The CRF
model uses Tree Re-Weighted Belief Propagation (TRW) for label inference, and learning
with truncated fitting. The SSVM model uses graph cuts for inference and cutting plane
for training.

However, these methods [17–19] have some limitations due to their dependence on
prior knowledge of the mass contour. Zhu et al. [20] proposed an end-to-end trained
adversarial network to perform mass segmentation. The network integrates a Fully Convo-
lutional Network (FCN), followed by a CRF to perform structured learning.

Zhang et al. [21] proposed a framework for mammogram segmentation and classifica-
tion, integrating the two tasks into one model by using a Deep Supervision scheme U-Net
model with residual connections.

Liang et al. [22] proposed a Conditional Generative Adversarial Network (CGAN)
for segmentation of the tumoral masses in a very small dataset using only images with
masses. The CGAN consists of two networks, the Mask-Generator and the Discriminator.
The Mask-Generator network uses a modified U-Net, where the feature channels between
low level feature layers are discarded, and the ones between high level feature layers are
preserved. For the Discriminator network, a convolutional PatchGAN classifier is used.
As a condition to achieve CGANs, an image sample with its ground truth is added into
the Mask-Generator.

3.3. Detection and Segmentation of Masses

The approaches described above focus either on detection or on segmentation of
the masses. However, there are also approaches that address both problems in a pipeline
system. Pipeline techniques have recently received increasing attention in machine learning.
A pipeline is created, so that successive transformations are applied on the data, the last
being either a model training or prediction operation. The pipeline model is regarded as a
block, connecting each task in the sequence to the successor and delivering the result at the
end [23].

Sawyer Lee et al. [24] compare the performance of segmentation-free and
segmentation-based machine learning methods applied to detection of breast masses.
Rundo et al. [25] use genetic algorithms in order to improve the performance of seg-
mentation methods in medical magnetic resonance images. Tripathy et al. [26] perform
segmentation using a threshold method on mammogram images, after enhancing contrast
using the CLAHE algorithm.

Some systems that integrate both detection and segmentation stage still require
manual rejection of false positives before the segmentation stage, as happens in [27,28].
Dhungel et al. [27], presented a two-stage pipeline system for mass detection and segmen-
tation. Specifically, they adopted a cascade of m-DBNs and GMM classifier to provide mass
candidates. The mass candidates are then delivered to cascades of deep neural nets and
random forest classifiers, for refinement of the detection results. Afterwards, segmenta-
tion is performed through a deep structured learning CRF model followed by a contour
detection model.

Al-antari et al. [28] presented a serial pipeline system designed for detection, segmen-
tation, and classification, also based on DL models. A YOLO CNN detector is implemented
for mass detection. The results of the YOLO detector are then fed to an FCN to perform
segmentation. The result is then fed to a basic deep CNN for classification of the mass as
benign or malign.

In [29], the authors address detection, segmentation, and classification in a multi-task
CNN model enabled by cross-view feature transferring. With an architecture built upon
Mask R-CNN, the model enables feature transfer from the segmentation to the classification
task to improve the classification accuracy.
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Min et al. [4] presented a method for sequential mass detection and segmentation
using pseudo-color mammogram images as inputs to a Mask R-CNN DL framework.
During the training phase, the pseudo-color mammograms are used to enhance contrast
of the lesions, compared to the background. That boosts the signal-to-noise ratio and
contributes to improving the performance of the model in both tasks. The model comprises
a Faster R-CNN object detector and an FCN for mask prediction. The method used for the
experiments performed in the present work was based on the same framework. However,
Min uses 5-fold cross validation, and this is not used in the present work.

4. Materials and Methods

The experiments were performed using an implementation of a Mask R-CNN to detect
and segment tumoral masses in the INbreast dataset.

4.1. Database

The dataset used in the present study is obtained from INbreast, a publicly avail-
able full-field digital mammographic database with precise ground truth annotations [5].
The resolution of each image is 2560 × 3328 or 3328 × 4084 pixels, and they are in Digital
Imaging and Communications in Medicine (DICOM) format. The confidential information
was removed from the DICOM file but a randomly generated patient identification keeps
the correspondence between images of the same patient. The database includes examples of
normal mammograms, mammograms with masses, calcifications, architectural distortions,
asymmetries, and images with multiple findings. For each breast, both CC and MLO views
were provided. Among the 410 mammograms from 115 cases in INbreast, 107 contain one
or more masses. There is a total of 116 benign or malignant masses. The average mass size
is 479 mm2. The smallest mass has an area of 15 mm2, and the biggest one has an area of
3689 mm2.

The dataset is very small for training modern deep learning models, which require a
large number of samples for proper training. However, large datasets are rare because of
the difficulty in obtaining good quality medical images. Medical images require highly
qualified people to provide the ground truth. There are also many privacy concerns because
of the sensitive information they carry. Therefore, such images are rare and very important.
Sometimes, the datasets are also imbalanced, with just a small number of samples showing
a particular but important condition. Bria et al. [30] address the problem of class imbalance
in medical images. A common technique is to use data augmentation, adding copies
of some images with a transformation such as mirroring or rotation [31]. The present
approach applies data augmentation through a random transformation, as described in
Section 4.3.

4.2. Data Pre-Processing

One important step to start image processing is to tell the region of interest from the
background. This can be done based on threshold methods [32]. Militello et al. use a
different approach, based on quartile information [33], to distinguish epicardial adipose
tissue from the background in medical cardiac CT scans. In the present work, the same
procedure as in [4] was adopted. To prepare the images, the breast region is extracted using
a threshold value to crop away the redundant background area. Specifically, and since
the intensity of the background pixels of the INbreast mammograms is zero, the region
where the pixels have a non-zero intensity value is extracted as the breast region [4,34]. The
mammogram image is then resized to one fourth of the original image size. Afterwards, it
is normalized to 16-bit. The normalized image is finally padded into a square matrix.

After cropping and normalization, the mammogram is converted to pseudo-color
mammogram (PCM), in order to enhance the areas of thicker masses. The gray images were
also changed to colour RGB images, which have the ability to convey colour information.
In this way, the red, green and blue channels are filled respectively with the grayscale
mammogram (GM), and two images generated by the Multi-scale Morphological Sifting
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(MMS) algorithm [4]. The images generated by MMS and the GM are linearly scaled to
8-bit. Therefore, a PCM RGB image comprises a GM in the first (R) channel, the output
image of the MMS transform scale 1 into the second (G) channel and the MMS transform
scale 2 in the third (B) channel.

The MMS makes use of morphological filters with oriented linear structuring elements
to extract lesion-like patterns. The MMS can enhance lesion-like patterns within a specified
size range. To deal with the size variation of breast masses, the sifting process is applied in
two scales.

The result is that a relatively smaller mass in the size range of scale 1 will have
higher intensity in the second channel. Therefore, this is interpreted as a higher amount
of green, and it tends to yellow on the PCM image. Figure 1a shows an example of a
yellowish mass. A relatively larger size mass will have higher components in the range of
scale 2, and therefore that will be interpreted as more of the blue component. The result
is that it will tend to purple on the PCM image. This result is exemplified in Figure 1c.
This transformation enhances the masses, which are then easier to differentiate from the
background. As in [4], better results were achieved using PCM rather than using GM, so
PCM was used for this work.

(a) Small tumor. (b) Mid size tumor.

(c) Large size tumor. (d) Large size tumor with false positives.

Figure 1. Some visual results of automatic detection and segmentation of breast masses. Black and
cyan lines respectively stand for ground truth of the masses and segmentation of the detected regions.
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4.3. The Mask R-CNN Model

The present work applied transfer learning technique. Transfer learning is a common
machine learning procedure where a pre-trained model is used as the basis to create a new
model. In the present work, a pre-trained Mask R-CNN model was used, in order to speed
up the training process. The dataset used is limited in size, thus starting with a pre-trained
model not only speeds up the training process but also increases the chances of success.
The Mask R-CNN is a framework that allows sequential mass detection and segmentation
in mammograms. It integrates a Faster R-CNN object detector with an FCN for mask
prediction. The Faster R-CNN utilizes the Region Proposal Network (RPN) to generate
ROI candidates and then, for each candidate, performs classification and bounding-box
regression. The FCN performs segmentation on the ROI candidates, generating the masks.
During training, a multitasking loss function given by Equation (1) was used:

L = Lcls + Lbbox + Lmsk (1)

where Lcls is the classification loss, Lbbox is the bounding box regression loss, and Lmsk is
the mask loss, defined as the binary cross-entropy loss [35].

To make use of the transfer learning technique, the Mask R-CNN model training
was initialized starting with the pre-trained “mask_rcnn_balloon” model. It consists of a
network that was previously trained for a detection and binary classification problem of
separation of balloons from the background [36].

A deep residual neural network, the ResNet101, was used as the model backbone.
The images are resized into 1024 × 1024 pixels. To expand the number of images, data
augmentation is implemented. Specifically, images are augmented by randomly selecting
one of the available operations, namely, flipping up, down, left, right, and rotations in 90,
180 and 270 degrees. The network is then trained through 10 epochs, with a batch size of 1.
The parameters settings mentioned above are the same as those utilized in [4]. For all the
parameters which were not specified above, the default values in [36] were adopted.

For the experiments, we used Python 3.6 (available at http://www.python.org (ac-
cessed on 1 September 2021)) and ran on an Asus laptop with Intel(R) Core(TM) i7-7500U
CPU @ 2.90 GHz, 16 GB RAM (Coimbra, Portugal).The generation of the pseudo-color
image was implemented in MATLAB 2019b (available at https://www.mathworks.com/
products/matlab.html (accessed on 1 September 2021)) using the same machine.

4.4. Evaluation Method

Experiments on the INbreast dataset were performed using all the 410 images available.
Those 410 images must be split into at least the train and test set. Most of the experiments
in the literature divide the data randomly, for example setting 70% for training, 15% for
validation, and 15% for testing. However, as stated above, there are multiple images of the
same patient and also of the same tumor. Therefore, some authors mention that data must
be split case-wise to avoid contamination of the test and validation sets with images of
patients or cases contained in the training set [16]. To the best of our knowledge, however,
the impact of this possible contamination has not been tested before.

In the present work, different experiments were performed, with case-wise partition
of the dataset and with random split partition. In all cases, the dataset was split into 280 im-
ages for training, 65 images for validation and 65 images for testing. Data augmentation
doubles the number of images. In the case-wise partition, when performing the division, it
was guaranteed that images of the same patient were in the same subset. The division is
based on cases, ensuring that there were no case overlaps between the splits.

For the images with masses, segmentation masks are used as the ground truth, while,
for the images without any masses, their ground truths are the black background.

For the evaluation of the performance of the method, the metrics used were Sensitivity
(S) or True Positive Rate (TPR ) and False Positive Per Image (FPPI) for the mass detection
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task, and the Dice Similarity Index (Dice) for the mass segmentation task. The criteria for
these metrics are defined as follows:

TPR =
TP

TP + FN
(2)

FPPI =
FP

TP + FP
(3)

Dice =
2 × TP

2 × TP + FP + FN
(4)

where TP, FP, and FN represent the number of true positive, false positive and false negative
detections, respectively. The mass is considered to be detected (TP) if the Intersection over
Union (IoU) between the predicted bounding box and ground truth is greater than or equal
to 0.2 [4].

5. Experiments and Results

Six experiments were performed. Three of them use random split partition of the
images. The other three use case-wise partition. Mass detection and segmentation perfor-
mance comparison between experiments are shown in Table 1. Experiments R1, R2 and R3
use random split of the images. Experiments C1, C2 and C3 use case-wise partition. The
hyperparameters and other settings of the model were all the same, so that the results of
the experiments could be compared.

More experiments could be performed for more confidence in the results. However,
the results clearly show that case wise partition of the data seems to provide more stable
results. In C1, C2, and C3, the TPR is very similar and the Dice only differed about 1%.
Using randomly split data, however, the results for TPR varied between 0.875 and an
overoptimistic 1.000 and the Dice varied between 0.857 and 0.885. In addition, R2 and R4
show a larger Dice variance than C1, C2 and C3.

Table 1. Comparison of TPR and Dice metrics between experiments. Experiments R1, R2 and R3 use
a random split of the images. Experiments C1, C2 and C3 use case-wise partition of the images.

Experiment TPR @ FPPI Dice

R1 0.875 @ 1.47 0.885 ± 0.044
R2 0.933 @ 1.35 0.857 ± 0.118
R3 1.000 @ 1.09 0.874 ± 0.097

Average 0.936 @ 1.30 0.872 ± 0.086
STD 0.063 @ 0.19 0.014 ± 0.038

C1 0.909 @ 0.77 0.891 ± 0.050
C2 0.909 @ 1.32 0.880 ± 0.061
C3 0.906 @ 1.33 0.897 ± 0.036

Average 0.908 @ 1.14 0.889 ± 0.049
STD 0.002 @ 0.32 0.009 ± 0.012

The results show that using Mask R-CNN with PCMs, with case-wise dataset partition,
achieves an average TPR of 0.909 at 0.77 FPPI and a Dice of 0.89 with some confidence on
the results as shown in Table 1. The average TPR is 0.936 @ table. 1.30, with a standard
deviation of 0.063 @ 0.19 using a random split of the samples. For case wise partition,
the average is a bit lower, but the standard deviation is also lower: the average TPR is 0.908
@ 1.14 and the standard deviation is 0.002 @ 0.32. Thus, there is much less variation in the
results obtained using case wise partition. As for Dice, using random split, the average
Dice is 0.872 ± 0.086, with a standard deviation of 0.014 ± 0.038. The average Dice for
mass segmentation using case wise partition is 0.889 ± 0.049, with a standard deviation of
0.009 ± 0.012. Therefore, in the case wise experiments, the standard deviation is always

58



J. Imaging 2021, 7, 174

considerably lower than in the random split partition. Some visual results of detection and
segmentation of breast masses are shown in Figure 1.

6. Discussion

Most medical image analysis applications require object detection, segmentation and
classification. Modern DL models contribute to automation of all the tasks in a pipeline.
Therefore, they are a useful technical solution to address the different tasks in a row.

The Mask R-CNN integrates mass detection and segmentation stages in one pipeline.
Since a very small data set was used and training was initialized with pre-trained weights,
there was no need to train for too long.

A public available dataset, INbreast, was used for evaluating the method. For quanti-
tative analysis, three evaluation metrics, TPR or Recall, FPPI and Dice were utilized.

Case-wise partition was performed on dataset division to prevent images of the same
case from appearing in more than one subset. Otherwise, contamination of the validation
set and test set with images of the same patient could impact the results. This division
by case seemed to have a small positive impact on the results obtained in the test set,
compared to the results obtained when random split was used.

The global performance comparison between this method and several others methods
are shown in Table 2. As the table shows, the results are competitive with the best published
in the literature for the same dataset, and slightly better than other methods that perform
detection and segmentation. Using case-wise partition, the results are also stable.

From Table 2, it can be seen that the PCMs + Mask R-CNN model, when compared to
single task models, achieves a higher detection performance to [14,16], and outperforms [17,21]
in segmentation. In addition, the model underperforms to a certain degree compared
to [18–20] in segmentation. The reason may be that, in these [18–20], the input training
samples were manually detected ROI masses, and this helped to improve the performance
of segmentation results.

In comparison to Liang et al. [22], the method underperformed in segmentation. One
of the reasons may be that Liang et al. used a very small and imbalanced dataset, consisting
of only images with tumoral masses. In comparison with models which tackle both
detection and segmentation, the model outperformed [27] in both tasks, achieving a similar
sensibility and a higher segmentation performance than [29], and underperformed [28] in
segmentation. For the lower result in comparison to [28], the reason may be that, like as
in [27], they manually excluded all the false positive detections before segmentation. On
the other hand, the PCMs + Mask R-CNN model is a fully automatic model, which can
operate without human input.

Table 2. Performance comparison between PCMs + Mask R-CNN and several other state-of-the-
art methods. The PCMs + Mask R-CNN is marked in bold.

Method Database TPR @ FPPI Dice

Dhungel et al. [14] INbreast 0.87 ± 0.14 @ 0.8 n.a.
Wichakam et al. [15] INbreast n.a. n.a.
Choukroun et al. [16] INbreast 0.76 @ 0.48 n.a.

Dhungel et al. [17] INbreast n.a. 0.88
Dhungel et al. [18] INbreast n.a. 0.90 ± 0.06

Zhu et al. [20] INbreast n.a. 0.9097
Dhungel et al. [19] INbreast n.a. 0.90
Zhang et al. [21] INbreast n.a. 0.85
Liang et al. [22] INbreast n.a. 0.91

Dhungel et al. [27] INbreast 0.90 ± 0.02 @ 1.3 0.85 ± 0.02
Al-antari et al. [28] INbreast n.a. 0.9269

Gao et al. [29] INbreast 0.91 ± 0.05 @ 1.5 0.76 ± 0.03
Min et al. [4] INbreast 0.90 ± 0.05 @ 0.9 0.88 ± 0.10

PCMs+Mask R-CNN INbreast 0.909 @ 0.769 0.891 ± 0.05
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7. Conclusions

An integrated mammographic CAD system based on deep learning is described. It is
capable of simultaneous detection and segmentation of the masses, from mammograms
based on Mask R-CNN. It does not require human intervention to operate.

Experimental results show that the system achieves state-of-the-art competitive per-
formance in detection and segmentation. The results obtained from our experiments show
that data preparation may have a small impact on the performance of the system. Namely,
case-wide partition seems to have a small positive impact on the performance, preventing
the system from overfitting compared to when the dataset is randomly split.

Future work includes tests with other datasets, as well as a study of the application of
the methodology to other similar problems, such as other types of tumors. The method can
also be tested with other medical imaging types and modalities, such as MRI and PET.
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Abbreviations

The following abbreviations are used in this manuscript:

CAD Computer-Aided Detection system
CC Craniocaudal
CGAN Conditional Generative Adversarial Network
CNN Convolution Neural Network
CRF Conditional Random Fields
DBN Deep Belief Network
DL Deep Learning
DICOM Digital Imaging and Communications in Medicine
GM Grayscale Mammogram
GMM Gaussian Mixture Model
Faster R-CNN Faster Region based Convolutional Neural Network
FCN Fully Convolutional Network
FFDM Full Field Digital Mammogram
FPPI False Positive Per Image
FrCN Full Resolution Convolutional Network
IoU Intersection over Union
m-DBN multi-scale Deep Belief Network
MG Mammogram
MLO Mediolateral Oblique
MMS Multi-scale Morphological Sifting
MRI Magnetic Resonance Imaging
MTL Multi-Task Learning
PCM Pseudo-Color Mammogram
PET Positron Emission Tomography
R-CNN Region based Convolutional Neural Network
RF Random Forest
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RGB Red, Green, Blue color model
RPN Region Proposal Network
ROI Region Of Interest
SSVM Structured Support Vector Machine
SVM Support Vector Machine
TPR True Positive Rate
TRW Tree Re-Weighted Belief Propagation
YOLO You-Only-Look-Once
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Abstract: In this paper we consider radar approaches for breast cancer detection. The aim is to give a
brief review of the main features of incoherent methods, based on beam-forming and Multiple SIgnal
Classification (MUSIC) algorithms, that we have recently developed, and to compare them with
classical coherent beam-forming. Those methods have the remarkable advantage of not requiring
antenna characterization/compensation, which can be problematic in view of the close (to the breast)
proximity set-up usually employed in breast imaging. Moreover, we proceed to an experimental
validation of one of the incoherent methods, i.e., the I-MUSIC, using the multimodal breast phantom
we have previously developed. While in a previous paper we focused on the phantom manufacture
and characterization, here we are mainly concerned with providing the detail of the reconstruction
algorithm, in particular for a new multi-step clutter rejection method that was employed and only
barely described. In this regard, this contribution can be considered as a completion of our previous
study. The experiments against the phantom show promising results and highlight the crucial role
played by the clutter rejection procedure.

Keywords: microwave imaging; incoherent imaging; clutter rejection; breast cancer detection

1. Introduction

Global statistics have demonstrated that breast cancer is the most frequently diagnosed
invasive cancer and the leading cause of death due to cancer among female patients [1]. In
recent years the incidence of breast cancer in developed countries has continued to rise;
but at same time, the rate of mortality has undergone a substantial decline [2]. This is due
to the improvements in medical cancer treatment and in the implementation of screening
programs as well as to improved imaging techniques [3].

As shown in [4], and as can be naturally expected, the survival of a patient is strongly
determined by the stage of the disease at the time the treatment starts. Therefore, early
diagnostics is crucial. This requires further improvements of the capabilities of current
diagnostic modalities. In addition, over the last few years, this has steered efforts towards
the development of new imaging modalities with the aim of supplementing the ones
currently employed in the clinical practice.

Current conventional imaging modalities are X-ray mammography, digital breast
tomo-synthesis, ultrasound and magnetic resonance imaging (MRI), with mammography
actually being the golden standard in breast cancer imaging [5]. Among new imaging

J. Imaging 2021, 7, 23. https://doi.org/10.3390/jimaging7020023 https://www.mdpi.com/journal/jimaging
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modalities, in this paper we focus on microwave breast imaging (MBI). Microwave imaging
has triggered a great deal of research over the last decades because it offers a number of
potential advantages related to the use of non-ionizing radiation, it does not require to
compress the breast and requires a relatively cheap technology [6]. All these features along
with the progress achieved in this field [7], show that MBI is actually a “promising imaging
modality” [8,9].

Many algorithms for microwave imaging have been tailored for breast diagnostics [10].
Some of them reconstruct a 3D volume; others are based on a sliced approach and, for
example, they reconstruct repeated coronal slices of the breast and thus reduce the imaging
algorithm complexity and accelerate image reformatting [11]. In any case, microwave breast
imaging entails solving a non-linear ill-posed inverse scattering problem since diffraction
effects cannot be ignored as in X-ray tomography.

Microwave imaging algorithms can be coarsely grouped in two broad categories,
depending on the way non-linearity is dealt with.

When the aim is to reconstruct the dielectric/conductivity profile of the breast tissue
under examination, “quantitative” algorithms must be adopted. In these cases, the non-
linearity of the problem must be taken into account and the reconstructions are basically
achieved by iterative optimization procedures that try to minimize some cost function of the
misfit between the available data and the model ones [12]. As such, non-linear inversions
are generally computationally very intensive [13] and can suffer from convergence and
reliability problems due to false solutions [14]. However, we need to mention that some
hybrid approaches, that exploit a priory information provided by other modality, can help
mitigate these issues.

The imaging problem is drastically simplified if the imaging method is based on
linearized scattering models [15]. In this case, imaging results into linear procedures
that are robust and computationally effective. However, only qualitative information can
be obtained. Indeed, the corresponding images are more like hot maps where strong
inhomogeneities are highlighted. Therefore, linear methods can be conveniently employed
if the main objective is to detect and localize targets with a significant dielectric contrast as
compared to the surrounding background tissues.

Linear imaging methods are commonly addressed as radar approaches and are the
ones we are concerned with in this contribution.

Among the linear methods, beam-forming (BF) is probably the most popular in MBI.
Basically, it consists in time-shifting the signals received over the measurement aperture
in order to isolate signals scattered from (and hence to focus at) a particular synthetic
focal point belonging to the spatial area to be imaged [16]. The BF approach is attractive
for the excellent compromise between the achievable performance and the procedure
complexity. In [17] the classical delay and sum (DAS) beam-former is used for breast
cancer imaging, but many different versions of DAS beam-former have been employed
and proposed in literature. For example the delay multiply and sum (DMAS) beam-former
is proposed in [18] and the enhanced DAS (EDAS) beam-former in [19]. Besides BF, many
other linear inversion methods can be found in literature. For example, a number of
linear inversion methods that rely on the spatial spectral representation of the solutions
of the wave equation have been developed in different applicative contexts [20]. Among
them we mention the range migration [21], the Stolt migration [22], the wave-interference
migration [23] and the Holographic Imaging (HI) [24]. These methods are very appealing
since their implementation requires computing a Fourier transformation [25,26] which
can be effectively achieved via a Fast Fourier Transform (FFT) algorithm. While the latter
typically requires the scattered field data to be collected over a planar (rectilinear for 2D
cases) measurement aperture, since the Cartesian spatial coordinates naturally match the
spatial Fourier transform setting, the extension to deal with circular configurations (more
suitable for breast imaging) was previously pursued, for example, in [27].

A detailed analytical comparison between beam-forming and holographic methods
has been carried out (for a scattering scenario pertinent to breast imaging) in [28], where the
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role of critical parameters, such as the operating frequency range, the number of scatterers
and data discretization, was considered. Instead, in [29] it is shown that all these methods
are variants of the so-called generalized holography.

As remarked above, linear methods restrict the imaging stage to a mere detection and
localization of strong in-homogeneities. However, even in light of this reduced task and
under the simplified linear framework, the imaging problem is still extremely difficult for a
number of reasons. One of the issue, is that all the previous methods “coherently” combine
data collected at different frequencies. Therefore, the achievable performance is negatively
affected by frequency dispersion of breast tissues (which are unknown or known with
a considerable degree of uncertainty and vary from patient to patient) as well as by the
antenna frequency response, which is hard to predict because it is in close proximity to
breast. As shown in [30,31], this drawback can be mitigated by employing non-coherent
imaging strategies. In particular in those papers we introduced and compared incoherent
versions of beam-forming and MUSIC [32] (I-MUSIC) and showed that the performance
remains stable by using different types of antennas although they were non-characterized,
i.e., their frequency responses were not estimated nor enclosed in the model upon which
the algorithms were based.

Another crucial aspect is the clutter that generally overwhelms the relatively weak
signal coming from the cancer targets. Accordingly, before obtaining the image, data must
be first processed in order to reduce the clutter due to the antenna’s internal reflection,
the skin interface and other non-tumor breast tissues. To this end, we employed a hybrid
clutter removal method [33].

In this contribution we will give a quick review of the incoherent methods and detail
the clutter mitigation procedure that was used, but actually not described, in [33]. In
particular, the achievable cancer detection is checked by using experimental data collected
by employing the multi-modal breast phantom developed in [33]. Accordingly, this paper
focuses more on the image process and can be considered as a companion paper of [33]
which, instead, mainly considered the development of the breast phantom and its tissue
characterization for different imaging modalities.

2. Ideal Scattering Configuration and Beam-Forming

In order to introduce the notation and to more easily describe the incoherent imaging
methods we consider an idealized scattering scenario. More specifically, the scattering problem
is considered for a two-dimensional scalar configuration (see Figure 1). Here, invariance is
assumed along the z-axis and the electromagnetic incident field has a transverse magnetic
TM polarization.

According to the measurement set-up commonly used for breast imaging, sensors are
assumed to be located over a circle which is in close proximity and embodies the scattering
region D. The position of each sensor is identified by the vector ro ∈ Γo, Γo being the
circular measurement curve. The scattered signals are assumed to be collected only at
the same position as the transmitter, while the latter can assume different positions over
the circle in order to synthesize the measurement aperture. Hence, a multimonostatic
configuration is considered. Note that, while the multimonostatic setting is by far the most
common, more complex multiview/multistatic sensors’ arrangement are often employed:
these configurations are not considered herein.

As far as the background medium is concerned, it is assumed to be homogeneous and
lossless. Of course, this does not match with realistic breast structures which consist of
many layers of different materials that can have even articulated boundaries. Nonetheless,
because the breast structure is actually unknown, and for the sake of simplicity, during the
image stage an equivalent homogeneous background medium is usually considered.

According to the previous assumptions and under Born approximation [15], the
scattered field in the frequency domain is given as:

ES(ω, ro) =
( ω

2v

)2
P(ω)

∫
D

G2(ω/v, r0, r)χ(r)dr (1)
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where D is the spatial region under investigation, ω is the angular frequency and v the
background propagation speed. Moreover, ES(ω, ro) is the scattered field data, P(ω) is
the temporal Fourier spectrum of the transmitted pulse, G(.) = 1/4jH(2)

0 (·) is the two-

dimensional scalar background Green function, with H(2)
0 (·) being the Hankel function

of second kind and zero order. Finally, χ(r) is the so-called contrast function which
describes the scatterers in terms of their shape and electromagnetic parameters. Note
that in general χ(r) is also frequency dependent but here such a dependence has been
neglected. In particular, exploiting the asymptotic expansion of the Hankel function, i.e.,
H(2)

0 (x) �
√

2/πx exp [−j(x − π/4)]), Equation (1) can be recast as:

ES(ω, ro) = (jω/2πv)P(ω)
∫

D

exp
(−j2ω

v |ro − r|
)

|ro − r| χ(r)dr (2)

Figure 1. Pictorial view of the scattering scene. Invariance is assumed along the z-axis.

In practice, the quantity that is actually measured is not the scattered field but rather
the system scattering parameters. This basically entails taking in account the antenna
frequency response. Accordingly, (2) modifies as:

S(ω, ro) = (jω/2πv)P̃(ω)
∫

D

exp
(−j2ω

v |ro − r|
)

|ro − r| χ(r)dr (3)

where P̃(ω) = H2(ω)P(ω) now takes into account the squared (because the antenna acts
as TX and RX) antenna response assumed to be solely dependent on the frequency ω and
S(ω, ro) are the scattering measurements.

In order to introduce the beam-forming method, it is convenient to consider the time
domain version of Equation (3). Hence, by Fourier transforming with respect to ω, we
obtain the time domain scattering measurements as:

s(t, ro) =
∫

D
p̃[t − τ(ro, r)]χ(r)dr (4)
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where p̃(.) is related to the transmitted pulse and is the Fourier transform of (jω/2)P̃(ω)/
|r0 − r| and τ(ro, r) = 2/v|r0 − r| is the round-trip delay.

Generally, the image obtained by the DAS beam-forming is given by:

IBF(r) =
∫

W(t)
[∫

Γo
s[t − T(ro, r), ro]dro

]2
dt (5)

where W(.) is a suitable time window and T(ro, r) = TW − τ(ro, r), with TW = maxro ,r{τ(ro,
r)}. Accordingly, the received signals are “aligned” at the time instant TW and then summed.
In particular, by setting W(t) = δ(t − TW) the reconstruction IBF becomes:

IBF(r) =
[∫

Γo
s[TW − T(ro, r), ro]dro

]2
(6)

and returning back to the frequency domain (details can be found in [28]):

IBF(r) =
∣∣∣∣
∫

Ω

∫
Γo

S(ω, ro) exp [jωτ(ro, r)]drodω

∣∣∣∣
2

(7)

Equation (7) is functional to appreciate the difference with the incoherent approach to
be shown in the sequel. In addition, it allowed a closed-form derivation of the point-spread
function, that is the reconstruction of a point-like target χ(rp) = δ(r − rp), that permits
to evaluate the achievable resolution in terms of the configuration parameters, including
the frequency range and the data discretization [28]. In particular, it was shown that the
common belief that in order to achieve a finer resolution a wider frequency band is required
does not necessarily hold true. Indeed, while this statement is correct for aspect-limited
configurations, for the case at hand, where measurements can be taken all around the
scattering region (i.e., non-aspect limited configuration, see Figure 1), finer resolution
can be obtained by moving a fixed frequency band towards high frequencies. This is an
important result which has practical implications since it promotes the use of cheaper
hardware and simplifies the antenna design, which does not necessarily have to work on
an ultra-wide band. All details can be found in [28].

3. Incoherent Image Procedures

As highlighted in (5), the measured scattering parameters depend on the antenna
response. Indeed, this enters in shaping the frequency behaviour of P̃(ω) and in general
introduces a frequency dependent propagation delay. The latter must be considered while
setting the time window W(t) and the alignment time Tw. This requires near-field antenna
characterization/equalization that can be pursued by a suitable set of measurements or
numerical simulations. However, as the breast properties change from patient to patient,
residual errors still remain. With uncertainty levels as high as the magnitude of the tumor
scattered field, the imaging procedure’s robustness is dramatically endangered. This is
particularly true for dense breasts as they present lower tumor/healthy-tissue contrast. It
can be noted that this drawback arises because frequency data are coherently summed.
Therefore, a viable way to mitigate this problem is to devise imaging schemes which do
rely on such a coherence and process each frequency data separately. This is the topic
addressed in this section.

3.1. Incoherent Beam-Forming

Basically, incoherent beam-forming (IBF) is achieved as follows:

IIBF(r) =
∫

Ω

∣∣∣∣
∫

Γo
S(ω, ro) exp [jωτ(ro, r)]dro

∣∣∣∣
2
dω (8)
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where the basic difference, with respect to (5), is clearly that data are summed in amplitude
along the frequency domain. Of course, it is interesting to elucidate how (8) relates
physically (meaning) and in terms of the achievable performance to (5). As shown in [28],
the time domain counterpart of (8) is

IIBF(r) =
∫ [∫

Γo
s[t − T(ro, r), ro]dro

]2
dt (9)

where basically the window function has been removed. Form the achievable performance
point of view, in [28] the point-spread function was also analytically derived for the
incoherent case and it was found that the main difference with respect to the coherent case
is that side-lobes are slightly higher. However, the point-spread function main beams (and
hence the resolution) are practically the same. Therefore, the cost to pay while using (8) in
place of (5) is that side-lobe reconstruction increases a little bit (of course, the actual increase
depends on the configuration parameters, especially by the frequency band) but this is
largely rewarded since the need to estimate/compensate the antenna response is avoided.

3.2. Discrete Data Setting

In the previous section we implicitly considered the situation where data are collected
continuously all around the scattering scene. In practice, the number of data samples must
be finite. Accordingly, in this section we recast the previous argument within a discrete
data setting which, in turn, is also necessary to introduce the I-MUSIC, as shown below.

Therefore, say ro1, ro2, · · · , roNo No measurement points taken uniformly over the
measurement circle Γo and ω1, ω2, · · · , ωN f the employed frequencies. In addition, denote
as r1, r2, · · · , rNs the coordinates of the pixels that divide the spatial region under test D.
The finite dimensional (discrete) counterpart of (1) can then be written as:

Si(ωi) = (ωi/2v)2P̃(ωi)A(ωi)b(ωi) (10)

where
Si(ωi) = [S(ro1, ωi), S(ro2, ωi), · · · , S(roNo , ωi)]

T ∈ CNo (11)

is the column vector of the scattering data collected at frequency ωi,

bi(ωi) = [b1(ωi), b2(ωi), · · · , bNs(ωi)]
T ∈ CNs (12)

is the vector of the pixel scattering coefficients), (·)T denoting the transpose, and A(ωi) ∈
CNo×Ns is the No × Ns matrix propagator (indeed a discrete version of Equation (1)) whose
n-th column has the form:

An(rn, ωi) = [G2(ωi, ro1, rn), G2(ωi, ro2, rn), · · · , G2(ωi, roNo , rn)]
T (13)

where the Green function is the same as in Equation (2). Accordingly, the overall data
scattering matrix is:

S = [S1(ω1) S2(ω2) · · · SNf (ωNf )] ∈ CNo×Nf (14)

Due to this discrete setting, Equation (8) can be particularized as:

IIBF(r) =
Nf

∑
m=1

∣∣∣∣∣
No

∑
l=1

S(ωm, rol) exp [jωmτ(ron, r)]

∣∣∣∣∣
2

(15)

where r ∈ r1, r2, · · · , rNs . A crucial question to be addressed within the discrete setting is
the choice of the minimum number of sensor positions that should be deployed around
the scattering scene in order to obtain the same results as the ideal case (i.e., data collected
continuously) or at least to avoid aliasing effects that can result in reconstruction crowed
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by spurious artifacts that can be mistaken for actual targets. In particular, it is shown that
to avoid aliasing a sufficient condition is that the number of measurement points be:

No ≥ 4kmaxRc (16)

where kmax is the wave number corresponding to the highest adopted frequencies and
Rc < R the radius of the circular investigation domain. Basically, Equation (16) guarantees
that data are properly “spatially” sampled for each adopted frequency. However, because
of the multifrequency data, and the related mutifrequency reconstruction process, some
degree of under-sampling can be tolerable for part of the frequency band. This is because
aliasing spurious artifacts are frequency dependent. Thus, their positions change with the
frequency. By contrast, the main contribution of the reconstruction always peaks at the
actual scatterer’s location. Therefore, even if condition (16) is not satisfied, while summing
up different frequency contributions in (15), artifacts tend to be averaged out whereas the
main beam (due to scatterer) is not.

3.3. Incoherent MUSIC

The starting point is the construction of the correlation matrix for each frequency,
that is:

R(ωi) = Si(ωi)S
iH(ωi) = A(ωi)B(ωi)A

H(ωi) (17)

where bH(ωi) and AH(ωi) are the Hermitian vector and matrix of b(ωi) and A(ωi), respec-
tively, and B(ωi) = b(ωi)b

H(ωi). According to [32], scatterers can be localized by finding
the steering vectors which are orthogonal to the so called noise subspace. This requires com-
puting the eigenspectrum of R(ωi) and the steering vectors which basically consists of the
normalized columns of the propagator A(ωi), that is Sv(rn, ωi) = An(rn, ωi)/‖An(rn, ωi)‖
being evaluated in correspondence to the trial position rn within the spatial domain D.
Hence, scatterers’ positions are identified where the pseudospectrum

φ(rn, ωi) =
1

‖PN [Svn(ωi)]‖2 (18)

peaks, with PN [·] being the projection operator onto the noise subspace. However, as
shown in [31,34], the correlation matrix is rank deficiency with rank one. Therefore, the
scheme to identify the scatterers’ location can be modified defining PN = (I − PS ), with
PS [·] being the projector onto the signal space. Hence, the detection is achievable by
adopting the only significant singular vector associated to the signal subspace.

Note that Equation (18) refers to single frequency data. Multiple frequencies can be
incoherently combined [35] giving rise to

ΦI−MUSIC(rn) =

Nf

∏
i=1

φ(rn, ωi) (19)

Eventually, (19) is the proposed as algorithm for cancer detection.

3.4. Numerical Comparison

In this section a numerical comparison between the I-MUSIC and the beam-forming
strategies is shown. Initially, single frequency ( f = 3 GHz) data are considered and
a background medium with εr = 9. The investigation domain D is assumed to be a
circle of radius Rc = 6 cm whereas measurements are taken over a concentric circle of
radius R slightly greater than Rc. A point-like target is located in the centre of D. For
the case at hand, Equation (16) suggests No > 45 to avoid artefacts. The reconstructions
corresponding to this case are shown in panels (a) and (b) of Figure 2. Note that at single
frequency there is no difference between BF and IBF. Accordingly, in Figure 2 we just
refer to beam-forming. When the number of points is lowered, spurious artefacts actually
corrupt the reconstructions. In particular, the bottom panels of the same figure depict the
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reconstructions when the number of sensors is reduced by seven times. These results are
perfectly consistent with the theory developed in [28,34].

Figure 2. Comparing I-MUSIC and beam-forming (BF) for single frequency data. The left column refers to I-MUSIC; the
right one to BF. In panels (a,b) No = 49 whereas in panels (c,d) No = 7.
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As mentioned above, frequencies are a good ally to mitigate artifacts when the data
are under-sampled. This can be observed in Figure 3 where the three reconstruction
schemes, i.e., I-MUSIC, BF and IBF, are compared for the same cases as in panels (c)
and (d) of Figure 2 but by considering two different frequency bands. As can be seen,
the frequency band greatly helps in reducing artefacts. In addition, as expected and
according to previous discussion, IBF presents higher side-lobe levels than BF. Furthermore,
I-MUSIC outperforms BF schemes since it allows for a more sharper target localization and
better resilience to aliasing. Therefore, I-MUSIC is the method that has been selected for
undergoing the experimental validation reported in the sequel.

Figure 3. Illustrating the role of the frequency band. In all the reconstructions only No = 7 sensors are considered. In the
top panels the frequency band is [1, 3] GHz, in the bottom panels the frequency band is reduced to [2, 3] GHz. Finally, (a,d)
refer to I-MUSIC, (b,e) to BF and (c,f) to IBF.

4. Experimental Analysis

As mentioned in the introduction, this paper can be regarded as a companion paper
of [33]. In that paper, we mainly focused on the design, construction and characterization
of the breast phantom; microwave imaging algorithms were not described at all. While the
detection algorithm was actually the I-MUSIC that we have already described in previous
contributions (and whose main ingredients have been briefly recalled above in conjunction
to the comparison with more classical BF methods) the clutter rejection algorithm deserves
a more in-depth description. Therefore, the program for this section is to first briefly report
about the measurement set-up and the breast phantom and then to move on to a detailed
description of the clutter rejection method. Finally, a few experimental reconstructions are
used to show the effectiveness of the I-MUSIC + de-cluttering procedure.
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4.1. Measurement Set-Up

The pictorial view of the measurement set-up is shown in Figure 4 and basically
coincides with the measurement scheme adopted in [36]. A breast phantom was scanned
by an antipodal Vivaldi antenna in the frequency range [0.5–5] GHz connected to a VNA.
In particular, at a given height the antenna rotated around the phantom (with a 5◦ angular
step) in order to synthesize a multimonostatic configuration (i.e., TX and RX were co-
located) for a total 72 scanning positions. In general, data collected at different heights
can be simultaneously employed to get a 3D reconstruction. However, here we exploited
the sliced approach. The phantom and the antenna were immersed within a coupling
medium with relative dielectric permittivity equal to 12. This was done for antenna
miniaturization purposes and to reduce the dielectric discontinuity from the antenna side
to the breast, which can hinder microwave energy penetration [35]. Accordingly, such
a value of the dielectric permittivity was used to define the equivalent homogeneous
reference background medium which was used to build up the scattering model upon
which the detection algorithm was based. No information concerning the phantom nor
the antenna response (which was not estimated or compensated) was exploited in the
following image stage.

Figure 4. Schematic diagram showing the MBI scanning setup. The system antenna + phantom is immersed in a coupling
medium. The antenna is connected to a Vector Network Analyzer (VNA) scanning the phantom at a fixed height in
multimonostatic configuration. This allows collecting data for a single coronal slice.

4.2. Breast Phantom

In [33] we developed multimodal anthropomorphic breast phantoms suitable for eval-
uating the imaging performance of microwave imaging in comparison to the established
diagnostic imaging modalities of Magnetic Resonance Imaging, Ultrasound, Mammog-
raphy and Computed Tomography. In that study, the aim was to build a bridge between
the numerical simulation environment and a more realistic diagnostic scenario. To this
end, the constructed anthropomorphic phantoms mimic breast tissues in terms of their
heterogeneity, anatomy, morphology, and mechanical and dielectric characteristics and
reproduce different healthy and pathologic tissue types for each of the modalities, taking
into consideration the differing imaging and contrast mechanisms for each modality. In
that study, two phantoms were developed: the phantom (named as ‘Phantom A’) had a
simple and less morphologically accurate interface between mammary fat and fibroglandu-
lar tissue; the second (’Phantom B’) had a more relevant complex fat and fibroglandular
interface. Both were extracted from real patient MRI datasets. Apart from the different
morphological structure, the phantoms had the same five different tissue-mimicking ma-
terials: skin, subcutaneous fat, fibroglandular tissue, pectoral muscle and tumor. The
phantoms’ construction used non-toxic materials, and they were inexpensive and relatively
easy to manufacture. Both phantoms were characterized and scanned using conventional
modalities (MRI, US, mammography and CT). The details concerning all the steps required
for their manufacturing, characterization and imaging can be found in [33]. Their MRI
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coronal slices are reported below and highlight the different tissue mimicking layers as well
as the tumor. In particular, it can be seen that in both cases the tumor was located inside
the fibroglandural structure. The tissue dielectric permittivity and the conductivity of the
different tissues are reported in Figure 1 of [33] which shows that the dielectric contrast
between tumor and fibroglandural tissue was at best 1.2:1 (hence extremely low) within
the frequency band [0.5, 4] GHz.

4.3. Clutter Rejection Algorithm

In order to obtain the reconstruction, in our case a single coronal slice, before the
imaging stage, data had to be properly processed in order to reduce clutter disturbances
that arose from the antenna internal reflections, the skin interface, and other breast tissues.
As the clutter tends to mask the informative signal, it needed to be reduced before the
image construction procedure was run. Different clutter rejection methods have been
proposed in the literature. For example, in [36] a hybrid artefact removal algorithm for
microwave imaging is used, while in [37] some of the most common algorithms used in
Through Wall Imaging (TWI) applications were compared, including the simplest average
trace subtraction strategy. In this paper, a new method for “extracting” the useful signal
is proposed. It was based on a two-step entropy computation and a subspace projection
stage. The first entropy step was used to set a time-gating procedure in order to remove
the strong antenna’s internal reflections and skin contribution; the second one was instead
used to select the subset of sensors’ positions where tumor contribution is stronger. Finally,
a subspace projection procedure [38] was aimed at mitigating contributions due to breast
inhomogeneities. After mitigating the clutter, I-MUSIC was employed to obtain the image.

For convenience we rewrote the scattering data matrix as follows:

S =

⎡
⎢⎢⎢⎣

S1
S2
...

SNo

⎤
⎥⎥⎥⎦ (20)

where Si are the rows of S and hence vectors whose indexes range over the frequencies,
i.e., Si ∈ CNf . In order to compute the time gate, the first step is to transform the rows of S

in time domain. Accordingly, upon applying an IDFT routine, we get:

s =

⎡
⎢⎢⎢⎣

s1
s2
...

sNo

⎤
⎥⎥⎥⎦ (21)

with s ∈ CNo×Nt being the time domain version of S and Nt is the number of retained time
domain samples. Hence, the rows of s are basically the time-traces (A-scan in usual radar
literature) collected over the different antenna positions. Note that if data had already been
collected in time domain, this step would have not be necessary.

In Reference [39], an entropy-based metric was used to discriminate between clut-
ter and target signals. The same idea was adopted here to seek a suitable time-gating.
Accordingly, normalized time traces, s̃n, were constructed whose entries are given by:

s̃n(tm) =
|sn(tm)|

∑No
l=1 |sl(tm)|

∀tm = t1, · · · , tNt (22)

where sn(tm) is just the m-th entry of sn, i.e., the n-th time trace. Now, s̃n(tm) ≥ 0 and
∑No

n=1 s̃n(tm) = 1, ∀tm. Therefore, for each instant of time, the vector of the normalized
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data could be assimilated to a probability density function. This observation suggested
introducing the entropy measure as

εs(tm) = −
No

∑
n=1

s̃n(tm) log[s̃n(tm)] (23)

It was expected that εs was high for those instants of time for which the received
signals were similar across the different spatial acquisitions. Of course, this occurred when
the antenna was receiving its internal reflections or the skin contribution. Figure 5 (left
panel) shows a typical entropy behavior obtained for the collected data. As can be observed,
εs was nearly constant and high until the time tmmin (marked by the dashed red circle),
where the entropy attained its first abrupt change compared to its maximum value log(No).
According to previous discussion, signals coming from the phantom should start to be
received only beyond tmmin . Signals before such an instant must be discarded. This can
be enforced by adopting a time-gating with a time-windowing that removes signals for
tm < tmmin , that is:

sWn(tm) = W(tm)sn(tm) (24)

with

W(tm) =

{
0 if tm ≤ tmmin

1 elsewhere
(25)

After time gating, the scattering data matrix was denoted as:

sW =

⎡
⎢⎢⎢⎣

sW1
sW2

...
sWNo

⎤
⎥⎥⎥⎦ (26)

and a further entropy-based windowing was applied. More in detail, sWn were further
normalized as follows:

ŝWn(ti) =
|sWn(ti)|

∑Nt
l=1 |sWn(tl)|

(27)

Figure 5. Illustrating entropy behaviour for the case of phantom B. The (left) panel shows the entropy εs(tm) and the red
dashed circle identifies the time-gating value (3 ns). The (right) panel shows ε̂s, the orange and green shaded regions
highlights the set of sensors’ positions whose data can be retained.

Note that now each time trace underwent a different normalization with the normaliz-
ing factor being provided by the summation of the magnitude of its time samples. Once
again, it follows that ŝWn(ti) > 0 and ∑Nt

i=1 ŝWn(ti) = 1, for each sensor’s position. Hence,
the Nt-dimensional vectors of the normalized windowed A-scans could be assimilated as
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above to a probability density function and the corresponding entropy can be computed
as follows:

ε̂s(ron) = −
Nt

∑
l=1

ŝWn(tl) log[ŝWn(tl)] (28)

where ron is the n-th sensor’s position index. The rationale behind this further entropy step
is the following. If data at a given position are mainly contributed by clutter and noise then
a relatively high level of entropy is expected. This is because the signal magnitude along
time should be nearly the same. Instead, when the target significantly contributes then the
entropy should decrease. Accordingly, the subset of measurements that effectively “see”
the target can be roughly identified by looking for where ε̂s(ron) is below a threshold value.
Say ni and ns indicate the positions in between ε̂s(ron) is below the given threshold, then
a windowing is applied to keep only the time traces collected over the positions indexed
between ni and ns. The entropy behaviour reported in Figure 5 (right panel) illustrates the
previous discussion. In particular, only data whose positions belonged to the orange and
green shaded regions should be retained during the image formation (the threshold was
chosen heuristically). In particular, in the following reconstructions only sensors relative to
the green zone were retained. Eventually, the second entropy step resulted in a selection of
some of the rows of sW reported in (26), so that the data to be used were:

ŝW =

⎡
⎢⎢⎢⎣

sWni
sWni+1

...
sWnns

⎤
⎥⎥⎥⎦ (29)

These two-step entropy strategies allowed us to select the time-gating to apply to each
time trace and to select the sub-set of data (across the different sensor positions) to employ
in the reconstruction stage. However, this did not yet ensure that in the remained traces
there was only the tumor signal. On the contrary, the latter could still be overshadowed
by clutter due to the internal inhomogeneity of the breast. To mitigate this clutter residue,
it was convenient to return back into the frequency domain (even because the detection
algorithm worked in such a domain) by a DFT routine. Hence, (30) becomes:

ŜW =

⎡
⎢⎢⎢⎣

SWni
SWni+1

...
SWnns

⎤
⎥⎥⎥⎦ (30)

which is a N̄o × Nf matrix, with N̄o being the actual number of measurement positions. For
the case at hand N̄o = ns − ni. Then, it was reasonable to assume that clutter magnitude
was higher than tumor signals. Accordingly, a clutter-rejection subspace-based technique
was adopted. In particular, the retained scattering matrix was first expressed in terms of its
singular value decomposition (SVD):

ŜW = UΛVH (31)

where U and V are unitary matrices containing the left and the right singular functions,
respectively, and Λ is a diagonal matrix containing the singular values λ1, λ2, · · · , λP, in
decreasing order, with P = min[N̄o, Nf ]. Clutter could then be mitigated by disregarding
the projection of the scattering matrix ŜW onto the singular functions corresponding to the
highest singular values. The number of projections to discard generally required a priori
information on the clutter, which were in general not available. However, as shown in [35],
a conservative choice is to discard the projections of the scattering matrix over the singular
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functions corresponding to the first or the first two highest singular values. Accordingly,
the final de-cluttered data matrix was obtained as:

Sd =
P

∑
l=2 or l=3

λlul(vl)H (32)

with ul and vl being the l-th column vectors of U and V, respectively. Eventually, Sd is the
data matrix passed to the I-MUSIC stage.

4.4. Reconstruction Results

According to the sliced approach mentioned above, data collected at different heights
were singularly processed to get the corresponding coronal slice reconstructions. In the
sequel we just show only those ones obtained from data collected at the height corre-
sponding to the centre of the tumor. In particular, although data were collected within the
frequency band [0.5, 5] GHz, in the following reconstructions only the band Bw = [1, 3]
GHz was exploited.

The rationale under the following examples is to appreciate the role played by the
various steps the clutter rejection method consists of as well as the number of frequencies
to be employed in the reconstructions.

The first example is shown in Figure 6 and refers to Phanton A whose MRI is reported
in panel (f) to appreciate the breast internal morphology and for comparison purposes
with respect to the microwave imaging. In that figure a blue dashed circle is also reported
which identifies the spatial region used to perform the reconstructions. As can be seen,
such a spatial region was larger than the the phantom coronal slice. In panels (a) to (e)
the I-MUSIC indicator is reported. In particular, in panel (a) to (c) only 20 frequencies,
uniformly taken within Bw, were exploited. More in detail, panel (a) shows the image
obtained by pre-processing the data through only the time-gating procedure, by setting
the time-gating at tmmin = 3 ns according to the first entropy step described above. As can
be seen, the reconstruction just returned a hot spot roughly located at the centre of the
imaging area. Since I-MUSIC tends to peak at the centre of targets, this means that only
time-gating data were not enough to detect the tumor as data still appeared as if produced
by a target whose equivalent centre was roughly in the centre of the scene. In panel (b), in
order to improve clutter rejection, the subspace approach (achieved by discarding just the
first projection of the scattering data matrix) was added to the time-gating. Once again,
reconstruction peaks did not match with the expected tumor location, meaning that data
were still dominated by a strong clutter contribution. Finally, in panel (c) we also enclosed
the sensor selection procedure according to the second entropy computation described
in the previous section. In particular, the 2D image was obtained by exploiting only the
sensors whose index ranges from ni = 28 to ns = 56, which correspond to an angular
coverage between 135◦ and 275◦. For the case at hand, hence, the entropy procedure
selected the part of the measurement circular line that is closer to the tumor. This is
consistent with the adopted multimonostatic configuration since the scattered field data
were collected only in reflection mode. As can be seen, now the tumor was clearly detected
and this highlighted that the sensor selection (often overlooked in literature) was a crucial
step in addressing imaging in a highly cluttered scenarios. Panel (c) also shows that the
image was strongly populated by secondary lobe contributions. This might be due to the
employed reduced number of sensors (arising from the second entropy step) which mainly
impacted the side lobe structure of the point-spread function. According to the discussion
reported above concerning the role of the number of frequencies in mitigating aliasing
artefacts, and in general side lobe structure, the quality of reconstruction can be improved
by using more frequencies. This was actually the case as can be appreciated looking
at panels (d) and (e), where the number of frequencies was increased to Nf = 40 and
Nf = 100, respectively. In particular, panel (e) shows an extremely clear tumor detection.
Additionally, in that panel we marked through a yellow circle the actual tumor position.
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A few comments are in order concerning the obtained reconstruction matching to what
I-MUSIC is expected to return. As explained above, I-MUSIC is a radar approach and hence,
as such, it is mainly asked to provide tumor detection and rough location. Therefore, it
does not aim at reproducing the breast tissue profile as MRI does. At the microwave regime,
this task can be attempted by exploiting more sophisticated reconstruction methods that
perform the non-linear inversion. Ideally, ΦI−MUSIC allows for very sharp tumor location
(as compared to BF), as shown in the illustrative numerical examples reported above.
However, because of uncertainties, clutter residues, and especially owing to the simplified
model used while computing the steering vectors (we just used an equivalent homogeneous
medium since the breast features are in general unknown), ΦI−MUSIC results smeared and
delocalized from the actual tumor position. Indeed, this is a drawback common to any
radar approach that relies on an assumed scattering model. Nonetheless, this method
is extremely quick and does not require a priori information about the used antenna,
which was completely ignored in the imaging procedure [33,35]. Finally, we once again
remark that the circular boundaries appearing in the reconstructions (i.e., panels (a) to
(e)) just delimited the spatial region within which the reconstruction was carried out. The
actual boundary of the breast was removed by the clutter rejection procedure. The relative
(with respect to the image area) size of phantom coronal slice can be appreciated in panel
(f) of Figure 6, where the boundary of the image spatial region has been overlapped to
the phantom MRI. Eventually, the spots highlighted by the I-MUSIC does not in general
indicate the actual tumor positions. However, they allows a clear tumor detection and to
highlight in which quadrant (of the coronal slice) it appears.

The second reconstruction example refers to phantom B and is reported in Figure 7.
In this case, the entropy procedure returned the same time-gating as above and almost the
same observation angular coverage. Indeed, by considering four different slice heights, ni
ranged from 28 to 34 while ns remained 56. The same discussion as above applies here, with
the tumor being very well detected. However, we remark that since phantom B is more
complex (from a morphological point of view) than phantom A (see panel (f)) and exhibits
less “circular” symmetry, it is reasonable that clutter space dimension was increased. To
this end, during the subspace projection clutter reduction stage the first two (instead of
only the first one) projections of the scattering matrix were discarded in Equation (32). In
general, it difficult to a priori set the number of projections to be discarded. Here, we used
the conservative and heuristic approach to discard at most two projections. Rejecting more
projections can help in further reducing clutter but the risk is that the tumor signal can be
discarded as well.
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Figure 6. Reconstructions and MR image for phantom A. (a) Reconstruction with only time-gating, Nf = 20. (b) Recon-
struction with time-gating + rejection of the first SVD projection of the scattering matrix, Nf = 20 (c) Reconstruction with
time-gating + sensor selection + rejection of the first SVD projection of the scattering matrix, Nf = 20. (d) Reconstruction
with time-gating + sensor selection + rejection of the first SVD projection of the scattering matrix, Nf = 40. (e) Reconstruc-
tion with time-gating + sensor selection + rejection of the first SVD projection of the scattering matrix, Nf = 100. (f) MR
coronal slice image of Phantom A. In particular, in panel (f) the blue dashed circle indicates the circular boundary of the
spatial region within which the reconstructions reported in the other panels have been achieved. This is highlighted even in
panel (e). Moreover, in the latter, the yellow circle denotes the tumor location and size.
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Figure 7. Reconstructions and MR image for phantom A. (a) Reconstruction with only time-gating, Nf = 20. (b) Recon-
struction with time-gating + rejection of the first two SVD projections of the scattering matrix, Nf = 20 (c) Reconstruc-
tion with time-gating + sensor selection + rejection of the first two SVD projections of the scattering matrix, Nf = 20.
(d) Reconstruction with time-gating + sensor selection + rejection of the first two SVD projections of the scattering matrix,
Nf = 40. (e) Reconstruction with time-gating + sensor selection + rejection of the first two SVD projections of the scattering
matrix, Nf = 100. (f) MR coronal slice image of Phantom B. In particular, in panel (f) the blue dashed circle indicates the
circular boundary of the spatial region within which the reconstructions reported in the other panels have been achieved.
This is highlighted even in panel (e). Moreover, in the latter, the yellow circle denotes the tumor location and size.
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5. Conclusions

Microwave breast imaging requires to deal with a number of issues which go far be-
yond the need do devise suitable inversion algorithms. Indeed, under the simplified linear
framework subtended by the so-called radar approaches, which aim at a mere detection
and localization of tumors, data must be properly pre-processed (before the imaging stage)
to make sure that the resulting signals are actually useful to pursue the objective.

In this regard, one of the problems to be faced is the need to estimate or compensate
for the antenna frequency response, especially when coherent wide band radar imaging
methods are employed to obtain the scene image. Indeed, on one hand, antenna frequency
response shapes the actually received pulse signals and modifies the overall round-trip
delay; both these effects must be taken into account while implementing the beam-forming
image procedure. On the other hand, because of the close proximity set-up usually adopted
in breast imaging, the antenna couples with the unknown breast and its response becomes
different from the free-space case. To overcome this drawback, it is shown that incoherent
methods, that do not simultaneously use the frequency data but rather process each
frequency separately and then combine the outcomes, can be employed with a minor
reduction of the performance, especially if incoherence is used in conjunction to a MUSIC
like algorithm (I-MUSIC).

Another crucial aspect is the clutter that overwhelms the target signals and can impair
imaging. In this paper we have introduced a new multi-step clutter rejection method
that is based on two entropy computations for time-gating setting and the selection of
the sensors whose signal are less corrupted by clutter, followed by a standard subspace
rejection procedure based on the SVD computation of the scattering data matrix.

The effectiveness of the de-clutter plus I-MUSIC has demonstrated against experimental
data collected by using a multimodal phantom we previously developed and characterized
in [33]. The results show that, for the considered phantoms, the proposed method very well
succeed in detecting and localizing the tumor, though the dielectric contrast with respect to
the surrounding fibroglandural tissue was only 1.2:1. This contribution can be considered as
completing [33], where we mainly focused on the phantom manufacturing and characterization
and only barely described the microwave imaging procedure.

As a concluding remark, we would like to remark that microwave breast imaging is a
very broad research field and by this paper we did not intend to give a comprehensive account
of the huge available literature. We have just focused the spot on our specific perspective.
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Abstract: Evaluating the quality of reconstructed images requires consistent approaches to extracting
information and applying metrics. Partitioning medical images into tissue types permits the quantitative
assessment of regions that contain a specific tissue. The assessment facilitates the evaluation of an
imaging algorithm in terms of its ability to reconstruct the properties of various tissue types and identify
anomalies. Microwave tomography is an imaging modality that is model-based and reconstructs an
approximation of the actual internal spatial distribution of the dielectric properties of a breast over a
reconstruction model consisting of discrete elements. The breast tissue types are characterized by their
dielectric properties, so the complex permittivity profile that is reconstructed may be used to distinguish
different tissue types. This manuscript presents a robust and flexible medical image segmentation
technique to partition microwave breast images into tissue types in order to facilitate the evaluation
of image quality. The approach combines an unsupervised machine learning method with statistical
techniques. The key advantage for using the algorithm over other approaches, such as a threshold-based
segmentation method, is that it supports this quantitative analysis without prior assumptions such as
knowledge of the expected dielectric property values that characterize each tissue type. Moreover, it can
be used for scenarios where there is a scarcity of data available for supervised learning. Microwave
images are formed by solving an inverse scattering problem that is severely ill-posed, which has a
significant impact on image quality. A number of strategies have been developed to alleviate the ill-
posedness of the inverse scattering problem. The degree of success of each strategy varies, leading to
reconstructions that have a wide range of image quality. A requirement for the segmentation technique
is the ability to partition tissue types over a range of image qualities, which is demonstrated in the
first part of the paper. The segmentation of images into regions of interest corresponding to various
tissue types leads to the decomposition of the breast interior into disjoint tissue masks. An array of
region and distance-based metrics are applied to compare masks extracted from reconstructed images
and ground truth models. The quantitative results reveal the accuracy with which the geometric and
dielectric properties are reconstructed. The incorporation of the segmentation that results in a framework
that effectively furnishes the quantitative assessment of regions that contain a specific tissue is also
demonstrated. The algorithm is applied to reconstructed microwave images derived from breasts with
various densities and tissue distributions to demonstrate the flexibility of the algorithm and that it is not
data-specific. The potential for using the algorithm to assist in diagnosis is exhibited with a tumor tracking
example. This example also establishes the usefulness of the approach in evaluating the performance of
the reconstruction algorithm in terms of its sensitivity and specificity to malignant tissue and its ability to
accurately reconstruct malignant tissue.

Keywords: breast imaging; microwave imaging; image reconstruction; segmentation; unsupervised
machine learning; k-means clustering; Kolmogorov-Smirnov hypothesis test; statistical inference;
performance metrics; contrast source inversion
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1. Introduction

Medical imaging with microwave tomography is investigated for breast health mon-
itoring to complement X-ray mammography. For a typical imaging scenario, a multi-
illumination approach is implemented by encircling the breast with antennas. The breast is
successively illuminated by incident electromagnetic fields from different directions and
the resulting scattered and transmitted fields are received by antennas positioned on the
breast’s periphery and recorded by the measurement system. Microwave tomography
is a model-based imaging modality that extracts internal tissue information from these
data to reconstruct an approximation of the actual spatial distribution of the dielectric
properties over a reconstruction model consisting of discrete elements. With microwave
tomography, bulk tissue characterization is the goal rather than more detailed depiction at
the cellular level.

The dielectric properties of the breast tissues are represented by a complex permittivity
where the real and imaginary components infer the ability of the tissue to store and
absorb microwave energy, respectively [1]. The breast tissue types corresponding to skin,
adipose (or fatty), transition, fibroglandular, and malignant tissues are characterized by
their dielectric properties, which is supported by a number of large-scale studies [2–7].
Therefore, the complex permittivity profile that is reconstructed to form an image may be
used to distinguish different tissue types. Estimating values of the dielectric properties
of tissues over the model in order to reconstruct an image of the interior of the breast is
achieved by solving an inverse scattering problem. The inverse problem is non-linear,
so the model values are estimated iteratively using a process summarized in Figure 1.

Figure 1. Microwave breast imaging procedure. A breast (represented by a forward model for a numerical study or
measurements of a patient) is successively illuminated by incident fields from different directions. Microwave tomography
is a model-based modality that extracts internal tissue information from the resulting scattered and transmitted fields to
iteratively reconstruct an approximation of actual spatial distribution of dielectric properties of tissues in the breast interior.
Different tissue types are distinguished from each other by their characteristic dielectric properties.

Evaluating approaches to medical image reconstruction requires application of ef-
fective metrics to compare different techniques and assess results. Microwave image
reconstruction with tomography typically produces lower resolution images than clini-
cal imaging methods such as X-ray. For simulations of known models or experiments
with simple phantoms, direct comparisons between microwave images and known values
(i.e., comparing the dielectric properties of the forward model with the inverse model
shown in Figure 1) have been reported [8–10]. This includes examination of cross-sections
through models, the average of the error at all points in the image, or the similarity be-
tween the spatial distribution of the known dielectric properties of the forward model
and the dielectric properties estimated at each of the reconstruction model elements of the
inverse model.
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For more complex models or clinical cases, evaluation of images is often performed
through visual comparison or interpretation based on the clinical history of the patient [11,12].
Quantitative assessment of microwave images is more consistent and precise than a qualitative
approach. For evaluating variants of algorithms, assessing the accuracy of reconstructing
different tissue types provides detailed insight into the algorithm’s performance.

A more precise and consistent approach to image analysis may be carried out by auto-
matically detecting regions of interest corresponding to various tissue types or anomalies.
Accordingly, this necessitates methods capable of distinguishing between different tissue
types and anomalies to assist with image interpretation and tumor localization. Moreover,
segmenting reconstructed images into tissue types leads to the decomposition of the breast
interior into disjoint tissue masks. Metrics are applied to compare masks extracted from
reconstructed images and ground truth models. The quantitative results may be used to
reveal the accuracy with which the geometric and dielectric properties are reconstructed in
order to provide important insights into the performance of the reconstruction algorithm.

Segmenting images formed with microwave tomography can be challenging, as the
images may have spurious artefacts and the interfaces that delineate tissue types may be
blurred or incorrectly located. In addition, there may be a great deal of inhomogeneity
amongst the same tissue type that is reconstructed, inconsistent mapping between esti-
mated dielectric property values of the reconstructed model elements and the range of
dielectric properties that characterize a tissue type, and differences in electrical properties
reconstructed with variants of an algorithm [8,13–16].

The segmentation of images into different types of tissues is commonly accomplished
using a simple thresholding technique (e.g., [16,17]), whereby reconstructed model elements are
classified using ranges of values. However, this strategy assumes that there is a direct mapping
between the dielectric property value of a model element estimated by the algorithm and the
true dielectric property value of a corresponding tissue type. In practice, this is not necessarily
the case, as the accuracy with which the dielectric profile is estimated is impacted by numerous
factors, including the number of iterations, the distribution and density of the tissue properties,
and measurement parameters (e.g., frequency, number of sensors). Another challenge related
to the use of a threshold is that adjustment of the threshold value may significantly impact
the specificity and sensitivity to various tissue types. Here, sensitivity and specificity do not
refer to the performance of the microwave imaging algorithm in the context of a population of
patients, but rather in terms of ability to accurately reconstruct malignant tissues. This problem
is apparent when segmenting malignant from healthy tissues and is described in more detail
in [17]. Collectively, these problems lead to inconsistent results that contribute to unreliable
quantitative assessment of reconstructed images.

An unsupervised machine learning approach such as simulated annealing [18], or k-
means clustering may be used for image segmentation. However, it is a challenge to
determine the optimal number of clusters for the segmentation. Strategies for achieving
this task include the elbow method [19], the average silhouette method [20], and the gap
statistic method [21]. The elbow technique is a heuristic approach, and an “elbow” could
not be unambiguously identified. For many of the images, a great deal of heterogeneity of
the reconstructed dielectric properties was observed. This was particularly apparent for
images formed from data generated from the heterogeneously dense, scattered density,
and extremely dense breasts. The silhouette and gap methods lead to a large range of
values that consistently implied a very large number of clusters to partition each image.
Consequently, it was not possible to reliably implement any of these methods.

In order to address this problem, this paper presents an iterative approach that
does not require the number of clusters to be pre-selected. This is accomplished with
an unsupervised machine learning technique that is reinforced with hypothesis testing and
statistical inference.

The proposed segmentation algorithm presented in Section 2 is comprised of an
iterative clustering method that delineates the interior of the breast into regions dominated
by fatty, transition, fibroglandular, and malignant tissues. This segmentation leads to
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the decomposition of the interior into disjoint tissue masks that are incorporated into a
framework whereby both region and distance-based metrics assess image quality [22].
The metrics presented in Section 2 may be used for evaluating variants of reconstruction
algorithms, as assessing the accuracy of reconstructing different tissue types provides
detailed insight into the algorithm’s performance. Specifically, the segmentation algorithm
is applied to forward models and the corresponding microwave images reconstructed
with the finite element method contrast source inversion (FEM-CSI) approach. Applying
the metrics to the segmentation results allows for comparison between the reconstruction
and the original model. Section 3 presents, analyzes, and discusses these results. Finally,
conclusions and future explorations are presented in Section 4.

2. Methodology

2.1. Microwave Images

A high-level depiction of a typical microwave imaging algorithm is illustrated in
Figure 1. Although not shown, the breast is encircled with antennas to permit the breast
to be illuminated from a variety of locations and directions. Imaging is carried out in two
steps. In the first step, the breast is illuminated successively with incident electromagnetic
fields from each of the antennas. Hence, the breast is interrogated from multiple directions,
and the resulting scattered and transmitted fields are received by antennas located on
the breast’s periphery and recorded by the measurement system (see [10,12,15,23–29],
for examples). For a numerical experiment, an electromagnetic forward model comprised
of tissues with dielectric properties reported from large-scale studies [2–7] is constructed
with the techniques described in [30,31]. The model is sequentially illuminated with
numerical incident fields, and the calculated scattered and transmitted fields received by
the numerical antenna are stored.

Once the experimental data are collected, the reconstruction step using the inver-
sion algorithm is carried out. This second step starts with a trial guess of the distribution.
The electromagnetic model of the breast is initialized with this guess. An array of numerical
antennas within a simulated measurement chamber that approximates the actual experi-
mental system surrounds the breast and sequentially illuminates the breast with numerical
incident fields. The resulting calculated scattered and transmitted fields received at the
numerical antennas are recorded. A cost functional measures the discrepancy between the
measured and calculated fields, and an inverse solver computes the optimal change in the
parameter profile of the electromagnetic model necessary to reduce the discrepancy be-
tween these data. The trial solution is updated with these changes, and the forward solver
recalculates the electric fields. The process continues in this iterative manner—updating
and refining the reconstructed profile—until the calculated and measured fields match
which, in turn, implies that the reconstructed profile matches the actual profile.

Various inverse solvers used have been proposed, including the finite element method
contrast source inversion (FEM-CSI) [16,32,33], Gauss-Newton method, and conjugate
gradient least squares (CGLS) algorithm [34], conjugate gradient method [13], a full-wave
inversion method based on wavelet transform [35], wavelet expansion [36], the Distorted
Born iterative method [8,37], and an inversion method based on an inexact Newton-type
algorithm [38]. A significant challenge encountered when implementing these inverse
solvers is that the inverse scattering problem, along with being non-linear, is severely
ill-posed. This occurs due to the very large number of elements used by the reconstruction
model to capture fine spatial features of the breast. Meanwhile, there are a very limited
number of independent measurement data. Hence, the number of reconstruction elements
(i.e., the dimension of the solution space) far exceeds the number of independent data result-
ing in non-unique solutions. An ill-posed inverse problem manifests as small perturbations
of the measurement data leading to large errors in the reconstructions, and the convergence
to false solutions that fit the data but differ significantly from the actual solution.

To alleviate the ill-posedness of the inverse problem, reconstruction techniques typ-
ically incorporate prior information into the objective function by using some form of
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regularization. The form of regularization used in this paper to improve image quality is
to assimilate patient-specific information related to the electrical properties and anatomical
structures of the breast into the inhomogeneous background [16,17,33]. The integration
of the patient-specific information into the inhomogeneous background reduces the dis-
crepancy between the background complex permittivity and the complex permittivity of
the actual profile. In this manner, the patient-specific information serves to encourage
convergence to the actual solution and generally reduces the degree of ill-posedness of
the inverse scattering problem to improve the stability of the solution [16,39]. Moreover,
the size of the solution space is reduced by constraining the size of the imaging domain
(or reconstruction model) with knowledge of an estimation of the skin surface location.

Numerical experiments using realistic breast models based on MRI scans [30,40] are
tested in this paper, which is depicted in Figure 1 as an electromagnetic forward model.
The dielectric properties of the breast are reconstructed from scattered electromagnetic
fields by solving an inverse scattering problem using a variant of the finite element method
contrast source inversion (FEM-CSI) algorithm [16,33]. Structural information about the
breast is introduced into the FEM-CSI algorithm as an inhomogeneous background εb(r).
Results are formed by iteratively reconstructing the contrast profile given by,

χ(r) =

{
ε(r)−εb(r)

εb(r)
, r ∈ D

0, r /∈ D
, (1)

where χ(r) is the contrast profile, εb(r) is the inhomogeneous background profile, ε(r) is the
complex permittivity profile, r is a position vector, and D is the imaging domain bound by
boundary ∂D.

The use of the background profile to incorporate prior structural information is illus-
trated in Figure 2. Figure 2a depicts the scenario where there is no structural prior infor-
mation available, only knowledge of the dielectric properties of the immersion medium.
This is equivalent to using the immersion background as the trial solution. This lack of
prior information impacts the quality of the resulting microwave image, as the inversion
algorithm converges to a solution having low image quality. On the other hand, Figure 2b
portrays the case where prior structural information is available. The improvement in the
quality of regularization leads to the convergence to a solution associated with a higher
image quality relative to the case represented in Figure 2a.

Figure 2. (a) With no prior information, background set to immersion medium dielectric properties, and contrast profile
reconstructed over square imaging domain. (b) Prior information includes skin surface, skin region, and internal structural
information. By identifying the breast surface, the imaging domain is constrained to the breast interior.
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For this study, the FEM-CSI algorithm is terminated once the reconstructed image has
stabilized. For example, this may be sensed using the methodology described in [16] or by
adapting the technique presented in [41]. The complex permittivity profile is recovered
from the contrast profile by using the background permittivity with the relation,

ε(r) = εb(r)(χ(r) + 1). (2)

Using Equations (1) and (2), a list of images of the reconstructed profile is created:
the real component of the complex permittivity (Re{ε(r)}), the imaginary component of the
complex permittivity (Im{ε(r)}), and the magnitude of the complex permittivity (|ε(r)|),
which is a non-linear mapping of the real and imaginary components. Each image is
segmented separately using the algorithm described in the following sections.

2.2. Segmenting Interior into Healthy and Malignant Breast Tissue Types

The first aim of the segmentation algorithm is to recover the region containing model
elements corresponding to malignant tissue (or tissues of interest). The current image of in-
terest is denoted as I . First, the region of interest (breast interior) is defined. The boundary
∂D of the imaging domain D given in Equation (1), where D ⊂ I , is identified. The bound-
ary of a region of interest ∂R is constructed by uniformly contracting ∂D inward toward
the center of D by some amount (e.g., 3.5 mm) using the morphological contraction method
described in [42,43]. This allows artefacts on the periphery of the imaging domain to be
excluded from analysis. The mask of the region R bound by ∂R is constructed such that,

maskR =

{
1, r ∈ R

0, otherwise
. (3)

Hence, the region of interest R ⊂ D is extracted from I , with

R = maskR � I . (4)

All model elements outside R are assigned a value of −100. An example of R
recovered from a reconstructed image that used this contraction method is shown in
Figure 3a. Note that the immersion medium and skin are considered as background;
only the region of the breast that is interior to the skin is partitioned into tissue types.

Next, the k-means clustering technique [44] is iteratively applied to B, where B =
R ∪ Rc. The number of clusters k is initialized to three, and the k-means++ algorithm
presented in [45] is used to initialize k model elements as cluster centroids. This leads to
the delineation of R into clusters k = 2 and 3, while the background is outside of R and
is assigned cluster k = 1. This initial segmentation of B is shown in the left-most panel of
Figure 3c. Note that the color bar for Figure 3c corresponds to the number of clusters used
for the segmentation. An initial coarse estimate of the tumor region T̂ is identified with
those model elements assigned the highest value, so T̂ = c3. Since cluster c2 is within R
but outside of T̂ , T̂ c = c2. Lastly, the background is outside of R and is always assigned
to cluster k = 1, which means that Rc = c1.

An iterative approach is used to refine T̂ and T̂ c, so that with each iteration, the num-
ber of clusters k used in the k-means clustering algorithm is incremented by one. The itera-
tive clustering technique is summarized by Figure 4. After each iteration, T̂ and T̂ c are
updated: T̂ corresponds to the cluster with the highest-valued integer (i.e., T̂ = cmax(k)),
while the union of clusters ck with k = {2, 3, . . . , max(k) − 1} form T̂ c. At each iteration k,
the mask T̂ c is applied to the reconstructed image to extract model elements vck:

vck =

(
max(k)−1

∪
k=2

ck

)
� I

= T̂ c � I .
(5)
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Figure 3. (a) Reconstructed component extracted from I = Re{ε(r)}; (c) Evolution of clusters at k = 3, 6, 8, and 10 when
segmentation algorithm applied to B; (d) Evolution of Probability Density Function (PDF) over data within T̂ c and T̂ where
numbers indicate iteration; (e) PDF over data within clusters c2 (blue line) to c10 (black line). Cluster c2 corresponds to fatty
tissue, c3 − c4 transition tissue, c5 − c9 fibroglandular tissues, and c10 corresponds to malignant tissue, which are mapped to
segmentation masks leading to tissue type image (b).

 
Figure 4. Flow diagram of segmentation algorithm used to refine partitioning of breast interior.

The iterative progression of the segmentation process is demonstrated in Figure 3c
whereby clustering results are shown from left-to-right for k = 3, 6, 8, and 10.

The empirical distribution function (E(·)) is applied to vck. When k > 3, a Kolmogorov-
Smirnov (KS) two sample nonparametric hypothesis test evaluates the difference between
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the cumulative density functions (CDF) of the distributions of the two sample data [46,47].
The test is applied to E(vck) and E(vck−1) where vck−1 are model elements extracted over
T̂ c from the previous iteration. The test evaluates the null hypothesis (HO1) that vck and
vck−1 come from the same distribution. Note that the test does not specify the form of
the common distribution (e.g., normal distribution). Likewise, the mask T̂ is applied to
the reconstructed image to extract model elements vtk, where vtk = T̂ � I . In this case,
the KS two-sample test is performed on E(vtk) and E(vtk−1) to test the null hypothesis (HO2)
that vtk and vtk−1 come from the same distribution. A significance level of 1% is used for
both tests.

If either HO1 or HO2 is rejected, then the number of clusters is incremented by one,
and the partitioning procedure is repeated until neither HO1 nor HO2 is rejected. When nei-
ther hypothesis is rejected, this step is terminated. The union of clusters c2 − cmax{k}−1

form T̂ c, while cmax{k} forms T̂ . The probability density function (PDF) over data within
T̂ c and T̂ after each iteration is demonstrated in Figure 3d. Convergence of the PDFs is
apparent after eight iterations (i.e., k = 10, since the segmentation process starts with k = 3),
which leads to 10 disjoint clusters. Individual PDFs over data within each cluster c2 − c8
are shown in Figure 3e.

In terms of complexity, finding the global optimum of the k-means objective function is
a Non-Deterministic Polynomial acceptable (or NP-hard) problem [48,49]. To avoid solving
the NP-hard problem, as already indicated, the Lloyd’s clustering algorithm [44] is used
but offers a local search heuristic for k-means. Given enough time, the algorithm always
converges after i iterations, but it may be a local minimum. Hence, the clustering algorithm
is run multiple times d with different initializations of the centroids for each k. Then,
the result that leads to the smallest objective function value is selected. The k-means++
initialization scheme is implemented to reduce the dependence of the initialization of the
centroids on the convergence behavior [45].

The running time to implement the proposed segmentation technique is O(IkidN);
where I is the n by m image being processed, k is the number of clusters, i is the number of
iterations of the k-means clustering algorithm needed until convergence, d is the number
of times the clustering algorithm is repeated (i.e., find the result leading to the smallest
valued objective function after running the algorithm d times), and N is the number of
iterations of the segmentation algorithm required to partition the breast interior. This for-
mulation is derived from [50] and [51], and it includes N, which is necessary to implement
the segmentation algorithm. The process is repeated for the real component, imaginary
component, and the magnitude of the complex permittivity.

For images with large dimensions (i.e., large n by m), parallel schemes may be imple-
mented in python with the Scikit learn machine learning library (class sklearn.cluster.KMean)
that use OpenMp to process small blocks of data in parallel, or Matlab in which the number
of times d that the k-means algorithm is repeated is run in parallel. For the images presented,
the data has an underlying clustering structure, and it was observed that the number of
iterations i of the clustering algorithm until convergence was often small.

2.3. Mapping Clusters to Segmentation Masks and Tissue Types

So far, tissues corresponding to model elements with the highest values within the
breast are identified by T̂ = cmax{k}. Cluster c1 identifies the background Rc. The remain-
ing k − 2 clusters are mapped to segmentation masks as follows. Cluster c2 bounds tissue
having the lowest dielectric properties and corresponds to the lowest permittivity values
within the breast interior. Consequently, it is reasonable to map c2 to the segmentation
mask corresponding to fatty tissue. Next, clusters c3 and c4 contain permittivity values
that are higher than fatty tissue. The breast interior includes permittivity values that
exceed the maximum value of adipose tissue but are lower than the minimum of the fi-
broglandular tissue range [3]. Therefore, c3 and c4 are mapped to a transition segmentation
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mask. When max{k} > 4, the union of c5 to cmax{k}−1 corresponds to segmentation mask Ĝ
associated with fibroglandular tissues. This is defined as:

Ĝ =
(
∪max(k)−1

k=5 ck

)
. (6)

The final segmentation is comprised of masks formed by mapping clusters k = 1, 2,
. . . max{k} to tissue types with the function

s(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

background, k = 1,
f atty, k = 2,

transition k = 3, 4,
f ibroglandular, 4 < k < max{k},

malignant, k = max{k}.

(7)

For the unusual case that there is only one iteration of the segmentation algorithm, clusters
ck, k = 2, 3, 4, are used to identify the fatty, fibroglandular, and malignant tissues, respectively.

The segmentation algorithm is applied to both the forward model and reconstructed
images. The resulting segmentation masks are labeled as refmask and recmask, respectively.
To extract the corresponding property values, the reference mask is applied to the forward
model. These segmented property values are referred to as the reference tissue, reftissue.
Likewise, the reconstructed masks are applied to the reconstructed images. These segmented
property values are referred to as the reconstructed tissue, rectissue, of the region. An example
of the mapping of the clusters to tissue types is shown in Figure 3b. For this example, the ten
clusters shown in the far-right panel of Figure 3c are mapped to segmentation masks and
associated tissue types using Equation (7), resulting in the segmented image shown in Figure 3b.
Videos demonstrating the iterative refinement of the clusters and segmentation process are
provided in the supplemental materials [52].

2.4. Quality Assessment

To measure the image reconstruction performance quantitatively, five region-based
metrics are applied to assess the overlap between refmask and recmask. A distance-based
metric is also used to evaluate shape fidelity.

First, the accuracy of the geometry of a tissue group is evaluated with [16]

Fidelity(refmask, recmask) =
refmask

Trecmask

‖refmask‖2‖recmask‖2
, (8)

where the two 2D masks to be compared are first vectorized. The Fidelity value varies
from 0 (no similarity) to 1 (perfect similarity). Distortion of the structure and the presence
of artefacts decrease the value of this metric. This metric is useful for evaluating the
reconstruction of the fibroglandular region.

The next metric evaluates the accuracy with which both the geometric and dielectric
properties of the underlying structures are reconstructed. This is measured using the
normalized cross-correlation function (xCorrDiel) given by Equation (8), except that refmask

and recmask are replaced with reftissue and rectissue. In addition to sensing distortion and
artefacts, this metric measures how accurately the electric properties are reconstructed
within the structure.

The Dice similarity coefficient describes spatial overlap, and is given by [53]

Dice(refmask, recmask) =
(refmask ∩ recmask)

1
2 (|refmask|+ |recmask|)

=
2|refmask ∩ recmask|
|refmask|+ |recmask|

(9)

where |·| is the cardinality of non-zero model elements within a mask.
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The fourth metric assesses the proportion of malignant tissue correctly reconstructed
within the tumor region (or ratio of tumor detected—RD). This is measured with [16]

RD(refmask, recmask) =
(refmask ∩ recmask)

|refmask|
(10)

where |refmask ∩ recmask| denotes taking the cardinality of non-zero model elements that
are in both the reference and reconstructed masks. Values close to zero imply that the
algorithm is insensitive to malignant tissue, as a very small proportion of the lesion
is reconstructed within the tumor region. Conversely, values close to 1 imply that the
reconstruction algorithm is sensitive to malignant tissue, as most of the malignant tissue is
reconstructed within the tumor region.

The final metric is artefact rejection (AR), which measures the proportion of tissue
incorrectly reconstructed as malignant tissue outside the tumor region. AR is given by [16],

AR(refmask, recmask) = 1 − |recmask| − (refmask ∩ recmask)

|refmask|
. (11)

A small value of AR indicates that a large proportion of tissue has been incorrectly
reconstructed as malignant tissue outside the tumor region. Conversely, values close to
1 imply that only a small proportion of the malignant tissue is reconstructed outside the
tumor region. The metrics given by Equations (8), (10) and (11) are described in more detail
in [16,17].

The evaluation metrics given by Equations (9)–(11) are based on the region overlap
between the reference and reconstructed segmentation masks. Theses metrics are relatively
insensitive to under or over estimation of the tumor region [54], so they may not be
appropriate for evaluating shape fidelity. Hence, a distance-based evaluation metric
referred to as the Hausdorff distance (HA) described and analyzed in [54] provides an
alternative perspective. With this measure, points extracted from the interfaces (or edges)
of the reconstructed and reference masks are denoted as rec = {a1, a2, . . . , aNa} and
ref = {b1, b2, . . . , bNb}, respectively. Accordingly, the Hausdorff distance evaluates how
closely the shape of the reconstructed mask matches the shape of the reference mask.
A variant of the Hausdorff distance between rec to ref, referred to as the average Hausdorff
distance, is used for this study and is given by [55]

HA(ref, rec) = max{h(rec, ref), h(ref, rec)}. (12)

where

h(ref, rec ) =
1

Na
∑a∈rec

{
min
b∈ref

‖a − b‖
}

. (13)

As a pre-processing step suggested by [56], prior to computing Equation (12), the points
are translated such that the center of the region enclosed by the corresponding closed con-
tour is at the origin.

To complement the quantitative measures, qualitative assessment of images is en-
hanced by constructing contours from the edge points used to evaluate the average Haus-
dorff distances. Then, the contours are superimposed onto the forward model and recon-
structed masks.

3. Results and Discussion

Three general case studies are used to demonstrate the utility of the proposed image
analysis framework. For the first set of cases presented in Section 3.1, the forward model
used to generate the numerical electromagnetic data for the study remains the same.
Therefore, the shape, size, density, and tissue distribution of the breast is constant, but the
degree of structural detail of the prior information (i.e., the regularization) used by the FEM-
CSI algorithm varies. This leads to reconstructed images having a wide variety of image
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quality. The segmentation and application of metrics is shown to provide quantitative
evaluation of the impact that the degree of structural detail of prior information has on
image quality.

For the second set of cases that is presented in Section 3.2, the forward model used
to generate the numerical data varies, but the degree of prior information used by the
FEM-CSI algorithm is kept constant. Image quality is impacted primarily due to the
differences in the shape, size, density, and tissue distribution of the breast being imaged,
not the prior information. This demonstrates that the segmentation technique and the
quantitative assessment leads to consistent results across breasts with a variety of shapes
and tissue distributions.

Finally, in Section 3.3, tumor tracking cases demonstrate the potential for using the
segmentation algorithm to extract clinically useful information.

3.1. Varying Structural Detail in Prior Information

The electromagnetic model (model 1) that is used for the first set of cases is a het-
erogeneously scattered breast constructed from an MRI slice [40]. The segmentation
algorithm is applied to the real component of the complex permittivity of the forward
model. The boundary, ∂D, is set to the interface between the immersion medium and the
skin surface. The boundary of the region of interest ∂R is formed by uniformly contracting
∂D inward towards the center of the model by 3.5 mm. Mask, maskR, is formed from the
region bound by ∂R using Equation (3), and is applied to the forward model to recover
data R with Equation (4). Figure 5a shows R extracted from the forward model of model
1. The same procedure is used to recover R over maskR for the remainder of cases in
this study.

Figure 5. Model 1 forward model segmentation results. (a) R extracted from forward model; (c) Evolution of clusters at
k = 3, 4, 6, and 8; (d) Evolution of PDF over data within T̂ c and T̂ where numbers indicate iteration; (e) PDF over data
within cluster c2, and (f) clusters c3 (blue line) to c8 (black line). Cluster c2 corresponds to fatty tissue, c3 − c4 corresponds to
transition tissue, c5 − c7 fibroglandular tissues, and c8 corresponds to malignant tissue, which are mapped to segmentation
masks leading to tissue type image (b).

The segmentation algorithm is applied to B (where B = R ∪ Rc) and converges
after six iterations, leading to B being partitioned into eight disjoint clusters. The union of
clusters c2 − cmax{k}−1 form T̂ c, while cmax{k} forms T̂ . The PDF over data within T̂ and T̂ c

after each iteration is shown in Figure 5d, demonstrating the convergence that terminates
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the segmentation process. Individual PDFs over data within each cluster c2 − c8 are
shown in Figure 5e,f. Finally, clusters are mapped to segmentation masks and associated
tissue types using Equation (7), resulting in the segmented image shown in Figure 5b.
The forward model segmentation results are used as a reference and are compared with
the segmentation results of the corresponding reconstructed images.

Numerical electromagnetic data are generated with the model 1 forward model.
For the first case (3.1a), detailed patient-specific prior information is provided. Accordingly,
the inhomogeneous background εb(r) in (1) emulates the structural information that would
be recovered from an MRI image. This process is described in more detail in [16].

The FEM-CSI algorithm reconstructs the contrast profile χ(r); then, Equations (1) and (2)
are employed to recover a list of images from (r), given by Re{ε(r)}, Im{ε(r)}, and |ε(r)|.
These images are shown Figure 6a. The tissue type and cluster images formed when the
segmentation algorithm is applied are shown in Figure 6b,c, respectively. More detailed
results in a format similar to Figure 5 showing the evolution of the PDF over data within
T̂ and T̂ c and the clusters after each iteration are furnished by Supplementary Materials
Figures S1–S10. Moreover, the detailed results for all of the cases examined in Section 3.1 and
video demonstrations are also available from the repository described in [52].

Figure 6. Case 3.1a forward model and reconstruction results when algorithm applied to model 1 data and εb(r) is set to
detailed internal structure (a); Tissue type images (b); Final iteration of segmentation algorithm (c).

For the second case (3.1b), the inhomogeneous background εb(r) in Equation (1) is set
to information extracted from radar-based techniques described in [16,57–59] and has less
detail relative to the first case. Specifically, structural information related to the skin, fat,
and glandular regions is provided along with estimates of the mean dielectric properties
over these regions. The corresponding images reconstructed by the FEM-CSI algorithm are
shown in Figure 7a and exhibit a lower degree of quality relative to the first case. The tissue
type and cluster images are shown in Figure 7b,c, respectively.
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Figure 7. Case 3.1b reconstruction results when algorithm applied to model 1 data and εb(r) is set to
structural information related to skin, fat, and glandular regions extracted by radar-based technique
(a); Tissue type images (b); Final iteration of segmentation algorithm (c).

For the third and final case (3.1c), the inhomogeneous background εb(r) in Equation (1)
incorporates structural information related to the skin region along with a homogenous
breast interior with complex dielectric properties estimated with [16,57–59]. The recon-
structed results shown in Figure 8a exhibit the lowest degree of quality of the three cases
studied in this section, and they are the most challenging to segment. The tissue type
mapping and cluster images are shown in Figure 8b,c, respectively.

Figure 8. Case 3.1c reconstruction results when algorithm applied to model 1 data and εb(r) is set
to structural information related to skin region extracted by radar-based technique (a); Tissue type
images (b); Final iteration of segmentation algorithm (c).
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The consistency of the proposed approach becomes particularly useful when segment-
ing images for which interfaces that delineate tissue types are blurred or are incorrectly
located. This is evident for all three cases when segmenting the malignant from fibroglan-
dular tissue and when segmenting the fibroglandular tissues from the breast interior for
the third case. In addition to blurred interfaces, differences in electrical properties recon-
structed that depends on the degree of structural detail of the prior information used by
the FEM-CSI algorithm is also observed for the three cases. Regardless of these challenges,
the proposed segmentation methodology gives reasonable estimates of glandular and
tumor regions in all reconstructions. The qualitative image analysis is shown for all three
cases in Figure 9. The regional and distance-based metrics are applied to the glandular and
tumor regions, leading to the quantitative results shown in Tables 1 and 2, respectively.

Figure 9. Model 1 qualitative image analysis of reconstructed images formed using various prior
information detail. Glandular mask contours (a), and tumor mask contours (b) with contours
extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line), Im{ε(r)} (red-line),
and |ε(r)| (pink-line). Forward model contour (red-line) superimposed onto union of reconstructed
tumor masks (c).

Table 1. Model 1: Glandular region metrics—varying degree of prior information.

Case Metric Real Imaginary Magnitude

Fidelity 0.95 0.95 0.95
3.1a (detailed internal structure) Dice 0.95 0.95 0.95

xcorrDiel 0.91 0.89 0.91
HA 0.66 0.66 0.66

Fidelity 0.85 0.85 0.85
3.1b (regional internal structure) Dice 0.85 0.85 0.85

xcorrDiel 0.85 0.82 0.85
HA 5.68 5.68 5.68

Fidelity 0.85 0.81 0.86
3.1c (skin region) Dice 0.85 0.79 0.86

xcorrDiel 0.83 0.75 0.83
HA 4.39 7.09 4.06
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Table 2. Model 1: Tumor region metrics—varying degree of prior information.

Case Metric Real Imaginary Magnitude

RD 0.63 0.20 0.60
3.1a (detailed internal structure) AR 0.95 0.37 0.87

Dice 0.75 0.22 0.69
HA 1.56 1.63 1.44

RD 0.77 0.01 0.69
3.1b (regional internal structure) AR 0.88 0.65 0.78

Dice 0.82 0.01 0.73
HA 1.20 2.73 1.32

RD 0.71 0.05 0.86
3.1c (skin region) AR 0.87 0.60 0.61

Dice 0.77 0.06 0.76
HA 1.44 2.42 1.49

The effectiveness of the metrics incorporating segmentation results is evident from
the results shown in Tables 1 and 2. As expected, the values of the metrics demonstrate
that reducing the structural detail in the prior information leads to a degradation of
reconstruction of the glandular structure. However, reducing this structural detail also
impacts the quality of the reconstruction of the tumor region in a more complicated
manner. For this set of examples, the specificity (implied by value of AR) degrades and the
sensitivity improves (implied by value of RD) with decreasing amounts of structural prior
information. Furthermore, each component of the reconstruction is impacted differently.
Namely, the quality of the imaginary component in terms of sensitivity (RD) and tumor
shape (HA) benefits from a greater detail of prior structural information relative to the real
component. These examples demonstrate the utility of having a framework that effectively
provides a quantitative assessment of regions that contain a specific tissue. In particular,
the regional and distance metrics provide valuable insight into a complex issue such as
the evaluation of the impact that the degree of structural detail of prior information has on
image quality.

A key motivation for developing the proposed segmentation methodology is to re-
solve the challenges that arise when using thresholding techniques. The challenges are
demonstrated by applying the thresholding technique implemented by the studies de-
scribed in [16,17] to the reconstructed images in this section. Specifically, threshold values
are set to 95%, 90%, 85% and 80% of the maximum reconstructed value within the breast
interior. In Figure 10, the black contour extracted from the forward model serves as a
ground truth for comparison with the thresholded tumor contours. Likewise, metrics are
applied to the reference and reconstructed tumor masks resulting from thresholding and
are presented in Table 3.

The results shown in Figure 10 and Table 3 demonstrate the challenge of determining
an appropriate threshold value to use with the threshold-based segmentation technique.
Namely, adjustments of the threshold values demonstrate the trade-off between sensitivity
and specificity that classification problems experience when using a methodology that
depends on a fixed threshold value. For example, setting the segmentation threshold
value for malignant tissue too low (e.g., 80%) leads to an improvement in sensitivity
(i.e., high RD value) at the expense of the deterioration of the specificity (i.e., decrease in
AR). This occurs because model elements that are within the fibroglandular structure are
incorrectly attributed to malignant tissue. Likewise, setting the threshold value too high
(e.g., 95%) impacts sensitivity by incorrectly assigning reconstructed tissue to fibroglandular
tissue when it is, in fact, malignant tissue. Accordingly, the choice of what value of threshold
to use is not obvious and, to complicate matters, it has been observed that the maximum
value of the reconstructed tissue using FEM-CSI depends on the number of iterations.
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Figure 10. Model 1 qualitative image analysis of reconstruction images using various threshold
values applied to cases 3.1a (a), 3.1b (b), and 3.1c (c). For each case, contours associated with tumor
masks from forward model, reconstructed Re{ε(r)}, and Im{ε(r)} shown with black, blue, and red
lines, respectively, superimposed onto forward model.

Table 3. Model 1 tumor region metrics: tumor region extracted with threshold technique using
various values of threshold.

Case Metric 95% 90% 85% 80%

RD 0.26 0.64 0.76 0.90
3.1a (detailed internal structure) AR 0.98 0.94 0.39 −0.62

Real component Dice 0.41 0.75 0.64 0.51
HA 3.46 1.47 1.28 1.78

RD 0.05 0.11 0.23 0.33
3.1a (detailed internal structure) AR 0.79 0.65 0.44 0.16

Imaginary component Dice 0.07 0.15 0.26 0.31
HA 3.35 2.28 1.44 1.48

RD 0.26 0.53 0.72 0.83
3.1b (regional internal structure) AR 1.00 0.98 0.90 0.66

Real component Dice 0.40 0.68 0.79 0.76
HA 3.53 1.95 1.34 1.16

RD 0.00 0.00 0.02 0.05
3.1b (regional internal structure) AR 0.86 0.74 0.61 0.41

Imaginary component Dice 0.00 0.00 0.03 0.61
HA 4.35 3.33 2.39 1.83

RD 0.21 0.52 0.73 0.82
3.1c (skin region) AR 1.00 0.99 0.84 0.61
Real component Dice 0.35 0.68 0.78 0.74

HA 4.01 2.13 1.32 1.50

RD 0.00 0.00 0.03 0.06
3.1c (skin region) AR 0.88 0.76 0.65 0.54

Imaginary component Dice 0.00 0.01 0.04 0.08
HA 4.47 3.41 2,63 2.11
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In contrast, the proposed technique does not rely on assumed dielectric property
values of the reconstructed tissues. Moreover, the proposed iterative approach does not
require the number of clusters to be pre-selected, as the unsupervised machine learning
technique is reinforced with hypothesis testing and statistical inference to automatically
determine the number of clusters.

The convenience of using this strategy is evident when observing the variation in the final
number of clusters, as shown in the bottom row of Figures 6–8. The examples demonstrate
that pre-selecting the number of clusters beforehand is not practical. Furthermore, using the
proposed strategy leads to a more precise and consistent approach to image analysis compared
to alternative methods by automatically detecting regions of interest in the image corresponding
to various tissue types or anomalies. This advantage is particularly evident when comparing
the metric values in Table 2 with those in Table 3. In Table 3, there is a significant variation in
the values of all metrics across all reconstruction components and test cases, depending on
the threshold value used. The variation in the metric values leads to inconsistent results that
contribute to unreliable quantitative assessment of reconstructed images.

It is also observed that the threshold technique requires different threshold values in order
to achieve the same results as the proposed automatic segmentation method. For example,
for case 3.1a, the thresholding technique requires values of approximately 90% and less than
85% to segment the real and imaginary components, respectively. Different threshold values
are also needed depending on the image component and the case examined. This observation
demonstrates that using the proposed technique leads to a simplification of the segmentation
process that may result in improved consistency and reliability of results. Moreover, it is not
necessary for the user to make a decision on a threshold value to use or to iteratively fine tune
threshold values depending on the image component or reconstructed image. This observation
also demonstrates the flexibility of the proposed technique and its ability to automatically
adapt to a scenario (e.g., image quality).

3.2. Varying Breast Shape and Tissue Distribution

The second part of the study is comprised of three cases, namely breast models with
different shapes and tissue distributions. The degree of prior information used by the FEM-
CSI algorithm is kept constant, so image quality is impacted primarily due to the shape,
size, and tissue distribution of the breast being imaged. The inhomogeneous background
εb(r) in Equation (1) is extracted from ultrasound data described in [60]. An electromagnetic
model (model 3.2a) described in [40] of a heterogeneously dense breast that is constructed
from an MRI slice is used for the first case.

When applied to the forward model, the segmentation algorithm converges after five
iterations, leading to B being partitioned into seven disjoint clusters. These clusters are
mapped to masks and associated tissue types using Equation (7). The forward model
segmentation results are used as a reference and are compared with the segmentation
results of the corresponding reconstructed images. Numerical electromagnetic data are
generated with forward model 3.2a. The FEM-CSI algorithm iteratively reconstructs the
contrast profile [17] and the corresponding images, given by Re{ε(r)}, Im{ε(r)}, and |ε(r)|,
are shown in Figure 11a. The tissue type and cluster images are shown in Figure 11b,c,
respectively. The qualitative image analysis is shown in Figure 12. The regional and
distance-based metrics lead to the quantitative results shown in Table 4.

Model 3.2b is an electromagnetic model of a fatty breast that is constructed from a
sequence of MRI slices described in [30]. The segmentation algorithm is applied to the
forward model and converges after four iterations. The FEM-CSI algorithm iteratively
reconstructs the contrast profile [17]. Results obtained when the segmentation algorithm
is applied to the forward model and the reconstructed images are shown in Figure 13.
The qualitative image analysis is shown in Figure 14, while regional and distance-based
metrics are summarized in Table 5.
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Figure 11. Model 3.2a forward model and reconstruction results (a); Tissue type images (b); Final iteration of segmentation
algorithm (c).

Figure 12. Model 3.2a qualitative image analysis. Glandular mask contours (a), and tumor mask
contours (b) with contours extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line),
Im{ε(r)} (red-line), and |ε(r)| (pink-line). Forward model contour (red line) superimposed onto union of
reconstructed tumor masks (c).

Table 4. Model 3.2a quantitative results.

Region Metric Real Imaginary Magnitude

Fidelity 0.90 0.90 0.90
Glandular Dice 0.90 0.90 0.90

xcorrDiel 0.91 0.88 0.91
HA 1.66 1.64 1.66

RD 0.44 0.35 0.50
Tumor 1 AR 0.92 0.78 0.96

Dice 0.58 0.45 0.65
HA 3.80 3.66 3.71

RD 0.40 0.09 0.36
Tumor 2 AR 0.94 0.93 0.94

Dice 0.55 0.15 0.51
HA 2.85 4.52 3.39
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Figure 13. Model 3.2b forward model and reconstruction results (a); Tissue type images (b); Final iteration of segmentation
algorithm (c).

Figure 14. Model 3.2b qualitative image analysis. Glandular mask contours (a), and tumor mask contours (b) with contours
extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line), Im{ε(r)} (red-line), and |ε(r)| (pink-line).
Forward model contour (red line) superimposed onto union of reconstructed tumor masks (c).

Table 5. Model 3.2b quantitative results.

Region Metric Real Imaginary Magnitude

Fidelity 0.61 0.65 0.62
Glandular Dice 0.59 0.64 0.60

xcorrDiel 0.72 0.79 0.72
HA 3.34 2.54 3.29

RD 0.34 0.76 0.34
Tumor AR 0.71 0.61 0.71

Dice 0.41 0.71 0.41
HA 1.62 1.10 1.62

Model 3.2c is used as the final case studied for this part of the study, and it is an
electromagnetic model of a dense breast that is constructed from a sequence of MRI
slices [30]. The segmentation algorithm is applied to the forward model and converges
after four iterations. The FEM-CSI algorithm iteratively reconstructs the contrast profile [17].
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The results obtained when the segmentation algorithm is applied to the forward model
and the reconstructed images are shown in Figure 15. The qualitative image analysis is
shown in Figure 16, and a summary of the regional and distance-based metrics is provided
in Table 6.

Figure 15. Model 3.2c forward model and reconstruction results (a); Tissue type images (b); Final it-
eration of segmentation algorithm (c).

Figure 16. Model 3.2c qualitative image analysis. Glandular mask contours (a), and tumor mask
contours (b) with contours extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line),
Im{ε(r)} (red-line), and |ε(r)| (pink-line). Forward model contour (red line) superimposed onto union of
reconstructed tumor masks (c).

Table 6. Model 3.2c quantitative results.

Region Metric Real Imaginary Magnitude

Fidelity 0.87 0.88 0.87
Glandular Dice 0.87 0.87 0.87

xcorrDiel 0.92 0.92 0.92
HA 2.13 2.16 2.13

RD 0.37 0.16 0.69
Tumor AR 1.00 0.65 0.95

Dice 0.54 0.21 0.79
HA 2.96 2.56 1.36
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For this section, the tissue distribution of each model varied, but the prior knowledge of
internal structural information was kept the same. Even with considerable variation in breast
density and tissue distribution between models, it was demonstrated that the segmentation al-
gorithm is robust to these variations. As observed with the cases in Section 3.1, the final number
of clusters that the algorithm converges to varies, depending on the tissue distribution of the
breast and image component being segmented. Unlike thresholding segmentation techniques
that require pre-selected thresholds, or an unsupervised machine learning approach such as
k-means clustering that requires a pre-selected number of clusters, the proposed image seg-
mentation does not require prior information. Consequently, it is not data-specific, unlike these
other techniques, and it was able to reliably and consistently segment the reconstructed images
into tissue types to permit the quantitative assessment of regions that contain a specific tissue.

These results also provide insight into the impact that the breast density and tissue
distribution has on the performance of the FEM-CSI algorithm. Specifically, reconstruction
of the real and imaginary components of the malignant tissue was effectively assessed.
For the imaginary component, the metrics suggest that the reconstruction algorithm is more
sensitive to malignant tissue (i.e., higher RD value) and reconstructed the tumor region
more accurately (lower HA value) for the fatty breast compared to the other two cases.
On the other hand, for the real component, the metrics suggest that the reconstruction
algorithm is equally sensitive to the malignant tissue for all three tissue distributions.
However, similar to the imaginary component, the tumor region of the real component
was reconstructed more accurately for the fatty breast scenario. For the dense breast,
the advantages of analyzing the magnitude of the reconstructed image is evident, as there
is both an improvement in sensitivity and accuracy of the tumor region that is reconstructed
compared to the quality of the real and imaginary components.

Similar to the test cases studied in Section 3.1, the examples investigated in this section
demonstrate the utility of having a framework that effectively provides a quantitative
assessment of regions that contain a specific tissue to provide valuable insight into a
complex issue. Namely, the evaluation of the impact that the tissue distribution and breast
density have on image quality and the performance of the reconstruction algorithm can
be effectively assessed. These insights are not necessarily revealed or as obvious with a
qualitative assessment such a visual examination and image comparisons.

The test cases also demonstrate the practical utility of mapping clusters to distinct
tissue types. The tissue mapped images may be used to assist with image interpretation
and to more readily identify anomalies.

3.3. Tumor Tracking

The contrast in dielectric properties between healthy and malignant tissues reported in the
large-scale studies [2–7] may be exploited with microwave imaging in order to image malignant
tissue. This is supported with clinical studies described in [10,12,24,25] that demonstrate the
utility of microwave tomography for breast screening and therapy monitoring. Consequently,
the final part of the study is comprised of two tumor tracking examples to demonstrate that
the segmentation technique may assist with extracting clinically useful information. Similar
to the second part of the study described in Section 3.2, the degree of structural detail of the
prior information used by the FEM-CSI algorithm is the same for each case. For both cases,
the inhomogeneous background εb(r) in (1) is set to information extracted from the radar-based
technique described in [16,57–59]. Model 1, which is also used in Section 3.1, is the forward
model used to generate the numerical electromagnetic data.

For the first case (3.3a), a large tumor region is present in the forward model, as shown
in Figure 17. The segmentation algorithm is applied to the forward model and converges
after five iterations, so B is partitioned into seven disjoint clusters. These clusters are
mapped to segmentation masks and associated tissue types using Equation (7). The forward
model segmentation results are used as a reference and are compared with the segmentation
results of the corresponding reconstructed images.
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Figure 17. Model 1 forward model with large tumor embedded in fibroglandular tissues and
reconstruction results (a); Tissue type images (b); Final iteration of segmentation algorithm (c).

The FEM-CSI algorithm iteratively reconstructs the contrast profile [17]. The corre-
sponding images are shown in Figure 17a. The tissue type and cluster images are shown in
Figure 17b,c, respectively.

For the second case (3.3b), the size of the tumor region is reduced, but its location
within the forward model is approximately the same as the first case. The results when the
segmentation algorithm is applied to the forward model and the reconstructed images are
shown in Figure 7 (Section 3.1).

The qualitative image analysis is shown for each case in Figure 18. The region and
distance-based metrics are applied to the reference and reconstructed masks of the tumor
regions, leading to the quantitative results shown in Table 7.

Figure 18. Model 1 tumor tracking qualitative image analysis. Contours for large tumor and
reduced tumor cases (a) with contours extracted from forward model (black line), reconstructed
Re{ε(r)} (blue line), Im{ε(r)} (red line), and |ε(r)| (pink line). Forward model contour (red line)
superimposed onto union of masks formed with malignant tissue reconstructed from FEM-CSI
Re{ε(r)}, Im{ε(r)}, |ε(r)| (b).
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Table 7. Model 1 tumor tracking quantitative results.

Case Metric Real Imaginary Magnitude

RD 0.46 0.17 0.30
3.3a—Large tumor AR 1.00 0.76 1.00

Dice 0.63 0.24 0.46
HA 4.90 6.67 5.71

RD 0.77 0.01 0.69
3.3b—Reduced tumor AR 0.88 0.65 0.78

Dice 0.82 0.01 0.73
HA 1.20 2.73 1.32

The potential for using the algorithm to provide clinically useful information is demon-
strated with this set of tumor tracking examples. Microwave tomography typically produces
lower resolution images than clinical imaging methods such as X-ray. Hence, segmenting
medical images formed with microwave tomography for tumor tracking examples can be
challenging as the interfaces that delineate tissue types may be blurred. This is particularly
challenging when malignant tissue is embedded in glandular tissue. Contributing to the chal-
lenge is the possibility that there may be a great deal of inhomogeneity amongst the glandular
tissue. Regardless of these challenges, the proposed segmentation procedure demonstrated the
ability to delineate the reconstructed tissue from the glandular tissue.

Once the tissue regions are extracted, metrics are applied for quantitative analysis
in order to assess the results. The metrics shown in Table 7 infer that for the large tumor
reconstruction scenario, the algorithm is less sensitive but has a higher specificity to
the malignant tissue relative to the reduced tumor scenario. The values of the average
Hausdorff distance shown in Table 7 indicate that the reconstruction algorithm did not
reconstruct the shape of the malignant region as accurately compared to the reduced tumor
scenario. The metrics collectively suggest that there is inadequate information furnished
from the images to make a judgement with respect to whether a significant reduction in
the size of the malignant region has occurred (in response to some treatment, for example).

Similar to the test cases examined in the previous sections, this set of cases demonstrate
the practical convenience of mapping clusters to distinct tissue types. The tissue mapped
images may be used to assist with image interpretation and to more readily make inferences
on the location of the malignant tissue within the glandular structure. This example also
demonstrates the utility of providing a framework for assessing the performance of the
reconstruction algorithm. For example, the metrics may be used to inform researchers with
regard to adjustments to the reconstruction algorithm or measurement system parame-
ters such as an increase in the number of sensors to improve the sensitivity and overall
performance of the reconstruction algorithm.

4. Conclusions

A medical image segmentation technique has been presented that partitions mi-
crowave breast images into regions of interest corresponding to distinct tissue types in
order to facilitate the evaluation of image quality. A key advantage for using the algorithm
over other approaches is that it supports a quantitative analysis of microwave images with-
out prior assumptions such as knowledge of the expected dielectric property values that
characterize each tissue type. Unlike supervised machine learning approaches that require
copious amounts of data to effectively train a model, it can be used for scenarios where
there is a scarcity of data. It also addresses a significant difficulty encountered by many
unsupervised machine learning approaches in that it does not require a predetermined
number of clusters to partition the image. The proposed technique is not data-specific, as it
was able to segment a variety of images with different image quality. Moreover, it was
able to reliably and consistently segment images derived from breasts with various tissue
distributions and densities into tissue types to permit quantitative assessment of regions
that contain a specific tissue.
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The segmentation into tissue types leads to the decomposition of the breast interior
into disjoint tissue masks. An array of region and distance-based metrics were applied to
compare masks extracted from reconstructed images and ground truth models. The quan-
titative results revealed the accuracy with which the geometric and dielectric properties
are reconstructed. The incorporation of the segmentation results into an evaluation frame-
work with metrics was demonstrated and effectively furnished quantitative assessment
of tissue-specific regions. The examples demonstrated the utility of having this frame-
work to provide valuable insight into a complex issue. Namely, the impact that changes
in tissue distribution and breast density have on image quality and the performance of
the reconstruction algorithm can be effectively assessed. These insights are not necessar-
ily revealed or as obvious with a qualitative assessment such a visual examination and
image comparisons.

It is anticipated that this framework may also be applied to the analysis of the data
acquisition environment to quantify changes in image quality to inform researchers on the
number and location of sensors, the incident field frequency, measurement chamber design,
and the orientation of the receivers relative to the data acquisition surface. For this study,
the numerical breast models were used for the forward model and furnished the reference
regions to compare with the tissues segmented from the image. However, when using
clinical data, the reference model may be the patient at a previous point in time to quantify
how a region changed over time in response to a treatment. The reference model for clinical
or experimental data may also be an inverse model obtained with variations on the same
algorithm or a different reconstruction algorithm (comparing the FEM-CSI inverse solver
with the Distorted Born iterative method, for example).

In addition to facilitating a quantitative analysis of images, the tissue masks facil-
itate supplying qualitative information to assist in the interpretation of the microwave
images. This qualitative information is augmented with images showing the location of
estimated tissue interfaces that provide a visual means to quickly interpret an image or the
performance of an inversion algorithm.

More broadly, the presented technique provides a general framework that may be
applied to an extensive range of medical imaging modalities. This may be particularly
useful for developing modalities for which users do not have much experience with the
reconstructed images, as well as when there is scarcity of data available for supervised
learning. Initial investigations into the application of the technique to ultrasound images
has assisted with studies reported in [17,60]. The diverse range of potential applications
that may implement the presented image analysis technique also includes liquid biopsy
analysis [61–63].

Future work includes integrating this segmentation approach with performance met-
rics (e.g., [16,17,39,60]), and composite tissue-type and probability images [64].

Supplementary Materials: The following are available online at https://www.mdpi.com/2313-433X/
7/1/5/s1, Detailed results for all cases presented in Section 3 including the clusters after each iteration and
the evolution of the PDF of the data over T̂ and T̂ c are available online at https://github.com/djkurran/
Segmentation-unsupervised-machine-learning [52]. A list of figures available in the repository is as fol-
lows: Figure S1: Model 1 forward model segmentation results, Figure S2: Case 3.1a Segmentation results
of reconstruction derived from detailed internal structure prior—Real component, Figure S3 Case 3.1a
Segmentation results of reconstruction derived from detailed internal structure prior—Imaginary compo-
nent, Figure S4 Case 3.1a Segmentation results of reconstruction derived from detailed internal structure
prior—Magnitude, Figure S5 Case 3.1b Segmentation results of reconstruction derived from regional
internal structure prior—Real component, Figure S6 Case 3.1b Segmentation results of reconstruction
derived from regional internal structure prior—Imaginary component, Figure S7 Case 3.1b Segmentation
results of reconstruction derived from regional internal structure prior—Magnitude, Figure S8 Case 3.1c
Segmentation results of reconstruction derived from skin region prior—Real component, Figure S9
Case 3.1c Segmentation results of reconstruction derived from skin region prior—Imaginary component,
Figure S10 Case 3.1c Segmentation results of reconstruction derived from skin region prior—Magnitude.
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Abstract: Prostate cancer (PCa) is the second most diagnosed cancer in men. Patients with PCa
often develop metastases, with more than 80% of this metastases occurring in bone. The most
common imaging technique used for screening, diagnosis and follow-up of disease evolution is bone
scintigraphy, due to its high sensitivity and widespread availability at nuclear medicine facilities.
To date, the assessment of bone scans relies solely on the interpretation of an expert physician who
visually assesses the scan. Besides this being a time consuming task, it is also subjective, as there is
no absolute criteria neither to identify bone metastases neither to quantify them by a straightforward
and universally accepted procedure. In this paper, a new algorithm for the false positives reduction
of automatically detected hotspots in bone scintigraphy images is proposed. The motivation relies in
the difficulty of building a fully annotated database. In this way, our algorithm is a semisupervised
method that works in an iterative way. The ultimate goal is to provide the physician with a fast,
precise and reliable tool to quantify bone scans and evaluate disease progression and response to
treatment. The algorithm is tested in a set of bone scans manually labeled according to the patient’s
medical record. The achieved classification sensitivity, specificity and false negative rate were 63%,
58% and 37%, respectively. Comparison with other state-of-the-art classification algorithms shows
superiority of the proposed method.

Keywords: bone scintigraphy; prostate cancer; machine learning; semisupervised classification; false
positives reduction

1. Introduction

According to the World Health Organization, prostate cancer (PCa) is the second
most commonly diagnosed cancer in men, accounting for more than 1.4 million new cases
and more than 375,000 deaths worldwide in 2020. Patients with advanced prostate cancer
often develop metastases, which are caused by primary tumor cells that escape from the
prostate gland and spread through the lymphatic system or the bloodstream to other
areas of the body. The most frequent site for metastatic growth of prostate cancer is the
bone, and almost all patients with advanced prostate cancer show histological skeletal
involvement, being estimated that 84% to 90% of patients with metastatic disease had bone
metastases [1–3]. Even though the bone metastases are seldom the cause of death, they
are the leading cause of morbidity and a major challenge in the management of patients,
leading to a diminished quality of life. The presence of bone metastases, specially in higher
extents, is an indicator of progression of the disease and typically correlates with a poor
prognosis [4,5]. Currently there is no cure for metastatic prostate cancer, but it can often
still be treated to slow down its growth. A precise detection and up-take quantification of
bone metastases is essential to provide the physicians the accurate staging they require to
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choose the appropriate treatment for an individual patient, to monitor the evolution of the
disease and to evaluate the treatment efficiency.

The most common diagnostic procedure used for screening, assessment of treatment
and follow-up of patients with bone metastases is whole-body bone scintigraphy (BS) [6],
due to its relatively high sensivity, ranging from 70% to 78% [7–9], and widespread avail-
ability at relatively low cost. Bone scintigraphy, also known as bone scan, is a nuclear
medicine imaging technique used in screening for several skeleton related pathological
conditions, including bone metastases. In a bone scintigraphy, a bone-seek radioisotope,
that is, a substance that collects in the bones following the normal physiological processes,
is injected intravenously into the patient. The radioactive isotope will flow through the
body and will have a tendency to accumulate in areas of high bone metabolic activity. Fol-
lowing the radiopharmaceutical administration, a time period of 2 to 4 h [10] is observed
to allow biodistribution and up-take and then a simultaneous image of the anterior (AP)
and posterior (PA) views is acquired in a gamma-camera. Because the radioisotope has
accumulated in the regions of bone, the scans will reveal brighter areas, which indicate an
increased rate of bone metabolic activity such as abnormal growth caused by metastases.
These areas are referred to as hotspots, and may indicate not only the presence of bone
metastases, but also other conditions such as trauma, microarthritis, benign degeneration,
or bone infections [11]. The biggest disadvantage in the use of bone scintigraphy to detect
bone metastases is, therefore, its low specificity. Because it evaluates the distribution of
active bone formation in the skeleton and identifies the sites where metabolic reactions
are occurring, it detects several suspicious uptakes of nonmetastatic origin, which lead to
high a false positive rate of BS to detect bone metastases. To date, the assessment of bone
scans relies solely on the interpretation of an expert physician who visually assesses the
scan. Besides this being a time consuming task, it is also extremely subjective, as there is
no absolute and clear criteria neither to differentiate bone metastases from benign bone
lesions, neither to quantity them. This means that, up to this date, the disease stage as
well as the response to treatment is subjected to a certain degree of uncertainty, implying
that the process of determining whether or not the patient condition is regressing is some-
times subjective. Given the high occurrence of metastatic PCa, there should be by now a
more practical and, most importantly, more objective criteria to evaluate quantitatively a
bone scintigraphy.

This work aims to create an algorithm capable of classifying hotspots from bone
scintigraphy images, and is manly motivated by the call for a method whose development
does not require a fully labeled database. A labeled data set of hotspots is rare and
most likely unavailable for most researchers, and therefore one propose a semisupervised
method that only requires knowledge about the type of bone scan the hotspot is extracted
from. Comparison with other state-of-the-art classification algorithms shows superiority
of the proposed method, achieving a sensitivity of 0.63, a specificity of 0.58 and a false
negative rate of 0.37. This algorithm was able to decrease the false positive rate from 0.73
after detection to almost half, 0.42 after the false positive attenuation.

The main contributions of the present work include:

• The proposal of a new, iterative, semisupervised algorithm for attenuation of false
positive metastases;

• Extensive experiments on a real dataset of scintigraphies from 102 patients with
prostate cancer;

• A suggestion for a hotspots detection technique;
• Comparison with nonsupervised and one-class classifiers.

112



J. Imaging 2021, 7, 148

The remaining of this paper is organised as follows: Section 2 reviews the state of the
art; Section 3 gives a detailed description of the here proposed semisupervised iterative
algorithm; Section 4 gives the materials and methods, including the database, the hotspots
detection technique, the extracted features, the competing classification algorithms for
false positives reduction and the evaluation methodology; Section 5 presents the results,
and Section 6 presents a discussion of these results. The document finishes with some
conclusions and directions for future work in Section 7.

2. Related Work

The literature found on this topic shows there has been some effort to develop a
computer-aided diagnosis system capable of automatically detecting and quantifying bone
metastases in bone scintigraphies.

Brown et al. [12] developed a computer-aided system to automatically segment and
quantify bone scan lesions. The bone lesion segmentation was accomplished by doing an
atlas-based anatomic segmentation to divide the body into 6 different regions, followed by
the application of region specific threshold to detect the hotspots. The method achieved a
median sensitivity of 94.1%, specificity of 89.2% and accuracy of 89.4%. After the detection
of the hotspots, the resulting images were reviewed by a nuclear medicine physician who
removed false positive lesions; the hotspots classified as malign could then be used to
assess the severity of the disease and disease response to treatment. Despite the good
results, this algorithm is not fully automatic, as it requires the intervention of a physician
to remove false positives (nonmetastases related bone uptakes) from the scans. This is
a huge downside as the automatic differentiation between malignant and nonmalignant
bone uptakes is an essential requirement in a bone metastases evaluation algorithm, as it
is a task that is not trivial even for the most experienced physician and thus brings a lot
of subjectivity to the final assessment. A classification algorithm capable of automatically
distinguish metastases from benign lesion is thus needed.

Sadik et al. [13,14] developed a fully automated classification system for the detection
of metastases that used artificial neural networks. Both works intended to classify the
whole-body bone scan as a whole, regarding the presence or absence of bone metastases,
and not the hotspots individually. The final classifier would return a value between 0 and
1, that reflected the probability of the patients having metastases. The algorithm proposed
in [13] achieved sensitivity of 90% and a specificity of 74%, while the one proposed in [14]
achieved a higher specificity of 89%, keeping the same sensitivity of 90%.

Papandrianos and his team [15–17] have published three papers describing the work
they have made on this field, devoted to the development of Convolutional Neural Net-
works (CNN) models for automatic classification of whole-body scans from patients with
bone metastases. Just like Sadik et al., the authors intended to classify the body scans as
a whole, and not the hotspots individually. In [15,16] they were dealing with a two-class
classification problem regarding the presence (malignant scan) or absence (healthy scan) of
bone metastases in patients with breast and prostate cancer, respectively. The best CNN
architectures in [15,16] achieved an accuracy of 92.0/97.4%, a sensitivity of 94.0/96.5% and
a specificity of 92.0/96.8%. The major problem with these models is that in the clinical
practice the division of the bone scans into healthy or malign is oversimplified, as it ignores
the fact that some patients suffer from benign conditions which will reveal several suspi-
cious uptakes of nonmetastatic origin in the final images. As they aimed to cope with a
two-class classification problem, all scans from patients containing degenerative lesions
and other nonmalignant bone uptakes were removed in a manual preselection process.
This is a major drawback, as a fully automatic algorithm to assess whole body scintigraphy
should also be able to classify false positive bone uptakes as benign lesions. In [17] the same
authors investigated a way to partial solve this problem, by developing a similar CNN
based algorithm to classify bone scintigraphy images as healthy, malignant or degenerative,
leading to a three-class classification problem. The best CNN architecture achieved a
sensitivity of 92.7% and a specificity of 96.0%. Although the automatic distinction between
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malignant and nonmalignant images is an improvement over the previous models, it does
not offer a solution for the cases in which one patient has bone uptakes with both malignant
and nonmalignant origins, which is one of the major problems in visual bone scintigraphy
assessment. In fact, neither of the papers proposed by Papandrianos et al. or Sadik et al.
present an algorithm that is capable of quantifying the bone lesions individually, which is
essential when an objective assessment of the disease staging is needed. It is not enough to
build an algorithm that is able to distinguish images that present solely malignant lesions
from those that present solely benign lesions. A suitable algorithm must be able to quantify
and classify each lesion individually.

The only algorithms developed to classify bone lesions individually are the ones found
in the Master theses of Dang [18] and Belcher [19]. In both works, a CNN was developed to
classify hotspots in bone scintigraphy images for prostate cancer, by determining whether
they had a high or low risk of being bone metastases from PCa metastatic cancer. The final
CNN from [18] had an accuracy, true positive rate and AUC (Area Under the ROC Curve)
of 89.0%, 98.0% and 0.96, respectively. To measure the CNN performance, [19] only used
the area of the ROC curve, for which was obtained a score of 0.974. Despite appearing
to be a promising approach to the classification of hotspots in bone scintigraphy images,
the previously described works use supervised techniques, which rely on an extensive
number of labeled data. The access to such a large data set was only possible due to EXINI
Diagnostic AB, which is a Sweden based company that uses artificial intelligence to develop
automated analysis platforms for medical images like cardiac, brain and bone scans [20]. It
has shown to be quite popular among researchers working in the quantification of bone
metastases. EXINI has developed the aBSI (automated Bone Scan Index), a software only
medical device that provides a fully quantitative assessment of a patient’s skeletal disease
on a bone scan, as the fraction of the total skeleton weight [21]. As it is a closed-source
software, little is known about its operating principles, except that it was trained to classify
hotspots as lesions using a collection of more than 40,000 hotspots derived from bone scans
of patients with a variety of metastatic cancers. It is able to segment the skeleton, identify
hotspots, quantify their intensity and classify them as lesions [22].), which provided them
with a database composed by more than ten thousand labeled hotspots from bone scans.
Such large scale annotated data sets are, however, rare in the medical context. Training
a CNN from scratch to perform bone lesion classification would require thousands of
labeled images, a task that would not only be extremely complex and time consuming, but
also dependent on the availability of experienced physicians. Furthermore, the labelling
would be subject to the subjectivity inherent in the classification of lesions detected in
bone scintigraphy.

The algorithms developed so far for the assessment of whole-body bone scans ei-
ther use fully supervised learning algorithms, which require access to a (big) labeled
data set, or rely on some sort of manual removal of false positives. Here, we propose a
semisupervised method for the classification of automatically detected hotspots in bone
scintigraphy images.

3. hotBSI: Semisupervised Iterative Algorithm for Hotspots Classification

The core and main contribution of the present paper is the hotBSI (hotspots on Bone
Scintigraphy Images) algorithm. This algorithm was derived from the need of hotspots
false positive reduction scintigraphy images, in the presence of not completely labeled
database. Section 3.1 explains the workings of hotBSI, wihch can be used with any classifier
of choice. The classifiers used in the present work are listed in Section 3.2.
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3.1. hotBSI Description

An initial classifier C0 was first trained, in the presence of noise, to distinguish between
malign from nonmalign hotspots. It should be pointed out that this classifier is trained
under a lot of noise, as it was assumed that every detection in a bone scan belonging the
malign category belonged to malign class, which is not true, as the majority of the detections
in these scans are actually nonmalign. The next stage involves an iterative process through
the following steps:

1. The last trained classifier, Ci−1, is used to classify the detections on the scans belonging
to the malign class. For each detected region, the classifier returns the likelihood that
the region comes from the malign or nonmalign class;

2. For each patient in the malign category:

(a) The detection with the highest likelihood of being malignant is selected;
(b) All other detections with likelihood of being malignant higher than a predeter-

mined threshold (if any) are also selected.

3. A new training data set is created, so that detections made on nonmalign scans are
considered as false positives (and labeled as 0) and the above selected regions are
considered as true-positives (or malign hotspots, labeled as 1);

4. Train a new classifier Ci with the new training data set.

The algorithm runs during a predetermined number of iterations (set as 100 in the
current experiments). Other stopping criteria will be pursued in the future. A schematic
description of hotBSI is given in Algorithm 1 and Figure 1. The value of the threshold was
set to 0.8.

Algorithm 1 hotBSI algorithm
Inputs:
NM - feature set from all the hotspots extracted from the nonmalign images
M - feature set from all the hotspots extracted from the malign images
T - threshold (default as 0.8)
NrIt - number of iterations (default as 100)

Output:
C - a classifier to classify new hotspots as nonmalign or malign

1: Train an initial classifier, C0, with the input features (NM ∪ M)
2: for i = 1:NrIt do
3: Empty M
4: for each patient in the malign set do
5: Use Ci−1 to predict the probabilities of the detections to be a metastases (Pmet)
6: Identify the hotspot with the highest likelihood of being a metastasis (Pmax)
7: for d = 1 : number of detected hotspots for the current patient do
8: if Pmet(d) == Pmax || Pmet(d) > T then
9: Add the hotspot to M

10: Create a new training set, NM ∪ M
11: Train a new classifier Ci with the new training data set
12: return CNrIt
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Figure 1. hotBSI algorithm. NM stands for detections labeled as nonmalignant, while M stands for
detections labeled for training in a given iteration as malignant.

3.2. Learning Algorithms

The classifiers were trained using four different supervised learning algorithms: (i) a
support vector machine (SVM) trained with a linear kernel with scale 1, where the values
obtained with the linear SVM score function (bias = 1.08) were transformed into posterior
probabilities using the sigmoid function with slope −1.40 and intercept 0.06; (ii) k-nearest
neighbors (KNN), trained with five nearest neighbors with uniform weighting and the
Euclidean distance function as the distance metric; (iii) decision trees (DTs), trained with
a minimum of 10 samples per branch node, a maximum number of splits equal to the
number of samples minus one and the Gini’s diversity index as the split criterion and (iv)
linear discriminant analysis (LDA) with ’Delta’ (linear coefficient threshold) and ’Gamma’
(amount of regularization) both equal to 0.

4. Materials and Methods

This section encompasses several details related with the implementation and evalu-
ation. The database is described in Section 4.1. The methodology is given in Section 4.2,
including the method for the detection of hotspots, the list of extracted features, and the
state of the art classification techniques used for comparison with the proposed iterative
method. Lastly, the evaluation methodology is presented in Section 4.3.

4.1. Database

The database consists of 195 bone scintigraphy images from 102 patients with prostate
cancer with suspected bone metastatic disease. The equipment used for scanning patients
was either a Millennium MG (GE Medical Systems), which digitally record anterior and
posterior scans with a resolution of 1024 × 256 pixels, or a BrightView (Philips Healthcare),
which digitally records anterior and posterior scans with a resolution of 1024 × 512 pixels.
The pixel depth (maximum number of counts which could be stored in a pixel) is 16-bits
for every image. For each bone scan, a medical report describing the condition of the
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patient in question written by a nuclear medicine physician is available. All data was
provided by Instituto Português de Oncologia do Porto Francisco Gentil (IPO Porto).
The data was collected and held anonymously and the developed algorithms did not
contain information concerning the patients, but rather information extracted from the data
during the algorithm development. This project was authorized by IPO-Porto Healthcare
Ethics Committee.

The scans were organized into three categories: (i) healthy, if no suspicious bone
uptake was detected, (ii) benign, if bone hotspots with no metastatic origin are present or
(iii) malign, if bone metastases exist. Table 1 summarizes the available database, including
the number of bone scans per category. It is important to point out that images from the
malign category can also present benign hotspots.

Table 1. Database summary. The database consists of a total of 195 bone scans divided into one of
three categories: healthy, if no suspicious bone uptakes were detected, benign if bone hotspots with
benign origins are present, or malign, if the images have bone metastases.

Bone Scan Type No of Bone Scans

Healthy 37
Benign 72
Malign 86

Total 195

4.2. Methodology

The methodology proposed in this paper for the automatic false positives reduction
of hotspots in bone scintigraphy images involves a three step process (Figure 2): detection
of the hotspots, extraction of features from the detected hotspots and training an algorithm
for the classification of the detected regions.

Hotspots detection Features
Extraction Classification

Bayesian
Surprise

Shape and
Intensity

Learnt

hotBSI

One-class
Classifier

Clustering

Figure 2. Methodology overview.

4.2.1. Hotspots Detection

Although a customised hotspots detection algorithm was developed, we note that the
here proposed algorithm, hotBSI, is independent of the detection algorithm and can be
used with any detector of choice.
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The present detector is based on the approach proposed in [23], where a technique
based on Bayesian surprise is used to detect calcifications in mammogram images. The
algorithm takes advantage of the fact that the hotspots are bright regions (that is, regions
with higher grey levels) surrounded by pixels with lower grey values. The first step of the
algorithm consists in applying a mask to the original image to exclude the background
and keep solely the body of the patient. The mask was obtained by binarizing the original
grayscale image by thresholding using the Otsu’s method [24] Then, the hotspots were
detected through the following steps (Figure 3):

1. Consider a square patch of the masked image with half-radius rin;
2. Consider the region surrounding the patch described in 1, defined by a radius

rout =
√

2 · rin and with centre coinciding with that of the inner patch;
3. Calculate the mean grey level of both the inner patch and the surrounding region;
4. Compare the mean grey levels: if the absolute difference of the two values is higher

than a certain threshold δ, the inner patch is considered a hotspot.

Figure 3. Detection illustration. Note that for illustration purposes, only one region is being tested in the current image.
In the full detection algorithm, all of the regions within the mask are evaluated.

The steps were repeated for every patch in the masked image with the following
empirically obtained values: rin = 5 cm and δ = 20. The final threshold δ was chosen to
obtain as few false positives as possible, while at the same time not losing any malignant
hotspot. In this way, a considerable amount of hotspots not related to bone metastases
are detected with this algorithm. These hotspots can be due to some kind of benign bone
condition or can be due to normal and healthy physiological processes. Since the patient
condition is determined through the assessment of the malign bone lesions, the number of
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false positive detections should be reduced. This was achieved through the development of
classification algorithms, which require the extraction of features from the detected regions.

4.2.2. Feature Extraction

The detection algorithm is followed by a feature extraction stage which obtains the
features from the hotspots that will serve as input to a classification algorithm. Two types
of features were extracted: handcrafted low-level features and learnt high-level features.

Sixteen (16) shape and four (4) intensity handcrafted features were first extracted from
each automatically detected region. The list of the handcrafted features can be found in
Table A1 in the Appendix A.

High-level features were extracted using the convolutional base of a pretrained CNN.
Since the used CNN requires input images of size n× n× 3, each automatically detected
patch was converted into RGB by replicating the grey image in each channel. The detections
were also resized so that their size matched the one required by the input layer of the
network in question, 224 × 224 × 3. Next, a pretrained ResNet18 network was used to
extract features from the regions (we refer to [25] for a review of deep learning). The “pool5”
layer was used as the output layer to extract a 512-dimensional vector for each possible
hotspot (see Figure A1 of Appendix B).

4.2.3. Methods Used for Comparison

Two state-of-the-art methods were used as a comparison with the hotBSI algorithm
here proposed. Given the lack of a fully annotated database, which precluded the use of
supervised learning methods, an unsupervised and a semisupervised learning algorithms
were used.

For the unsupervised method, a clustering technique with the k-means clustering
algorithm was used. A k-means clustering algorithm with two clusters was initially applied
to the training set, and a model for the classification of new data was built by assuming
that each final cluster represented a class and by assigning each hotspot from the test set to
the nearest cluster centroid. By choosing two clusters, it was expected that the data could
be partitioned into a cluster of nonmalign data and a cluster of malign data (metastases).
The distance metric used for defining the initial clusters, as well as to assign new data to
these clusters, was the square Euclidean distance.

The semisupervised method was a one-class classification (OCC) algorithm.
The hotspots extracted from the nonmalign set (false positives) were used to train an
one-class support vector machine algorithm (OC-SVM), and a model which classified new
hotspots as nonmalign or as outliers (here considered to be metastases—true positives)
was obtained. The OC-SVM algorithm used was the one proposed by [26] and was trained
with an outlier fraction of 5%, a Gaussian kernel function with a Kernel scale parameter of
1.81 and a Sequential Minimal Optimization (SMO) as an optimization routine.

4.3. Evaluation Methodology

In the present work, detections automatically made in scans from the bone scan cate-
gory Healthy and Benign were considered as false positives, whereas detections extracted
made in scans with the bone scan category Malign were considered as true positives.

A test set was created with the detections extracted from scans of 30 patients randomly
chosen from the Healthy, Benign and Malign bone scan categories (10 patients per category).
This test data set (and only this test data set) was manually labeled, identifying the true
detections (malign) and the false positive ones (nonmalign). The number of patients
and detections per class for the training and the test set are presented in Table 2. We do
acknowledge the imbalanced nature of the data set and intend to experiment on ways to
deal with this issue in the future [27,28].
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Table 2. Split of the dataset.

Bone Scan Category
No. of Patients No. of Detections

Training Test Training Test

Nonmalign 89 20 1941 393
Malign 76 10 5620 918

Total 65 30 7561 1311

The algorithms were evaluated using common performance metrics such as sensitivity,
specificity, accuracy, precision, false positive rate (FPR), F1-score and AUC (area under
the ROC curve). In addiction, the false negative rate (FNR) is also calculated, as it was
considered that a low FNR was of special importance for this particular classifier.

Since the goal of this algorithm is to be used in the clinical practice to aid physicians in
the diagnose and follow-up of patients with metastatic cancer, it is important that the final
algorithm has a FNR as low as possible. A high FNR would mean that the algorithm was
classifying a lot of malign hotspots as nonmalign, which could be dangerous to the patient,
as it was failing to diagnose them with the disease and preventing them from having access
to an early treatment.

5. Results

In this section, the results are reported. The performance of the detection algorithm
is firstly shown (Section 5.1), followed by the analysis of the efficiency of the different
classification algorithms to remove false positive detections (Section 5.2). For each classifi-
cation model, the results obtained when using both handcrafted and high-level features
are presented.

5.1. Detection Results

The algorithm described in Section 4.2.1 successfully detected all the hotspots cor-
responding to metastases (see Table 3). Figure 4 illustrates the detection algorithm in
bone scintigraphy images from the nonmalign set, while Figure 5 illustrates the detection
algorithm in bone scintigraphy images from the malign set. Comparing the results with
the respective patient’s medical reports, it can be concluded that the algorithm successfully
detected all the hotspots corresponding to metastases. On the other hand, this algorithm
presents a high rate of false positive detections: approximately 73% of the detected hotspots
were not metastases. Observing the figures, it can be seen that most of the detected hotspots
are healthy or benign (that is, nonmalign), while only a small percentage of the detected
hotspots are actually metastases.

Table 3. Results of the detection phase.

TP 1.00
FN 0.00
FP 0.73

Sensitivity 0.00
FNR 0.00

Precision 0.58
F1 0.73

FPPI 32
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Figure 4. Results of the detection algorithm in bone scintigraphy images from the nonmalign set. The
colours of the bounding boxes were manually chosen for the purposes of illustration, according to
the respective medical report of the patient: red represents metastases, green represents benign bone
lesions and yellow represents false positives (hotspots that are neither malign nor benign lesions).

Figure 5. Results of the detection algorithm in bone scintigraphy images from the malign set.
The colours of the bounding boxes were manually chosen for the purposes of illustration, according to
the respective medical report of the patient: red represents metastases, green represents benign bone
lesions and yellow represents false positives (hotspots that are neither malign nor benign lesions).

5.2. False Positive Attenuation Results

The proposed algorithm, hotBSI, was used to classify the hotspots from the test set.
Tables 4 and 5 gather the performance results for the hotBSI trained with SVM/KNN and
DTs/DLA, respectively. Results obtained with the k-means and one-class classification
algorithms are shown in Table 6. In all tables, results for both handcrafted (HC) and
ResNet18 (RN18) features are presented.
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The confusion matrices obtained with all the algorithms can be found in Figures A2–A7
of Appendix C.

Table 4. Results with the hotBSI trained with support vector machine and k-nearest neighbors.

Classifier SVM KNN

HC RN18 HC RN18
Sensitivity 0.13 0.63 0.85 0.67
Specificity 0.83 0.58 0.17 0.51
Accuracy 0.65 0.59 0.35 0.55

FNR 0.86 0.37 0.15 0.32
FPR 0.18 0.42 0.83 0.49

Precision 0.23 0.35 0.27 0.34
F1 0.17 0.46 0.41 0.45

AUC 0.50 0.66 0.52 0.62

Table 5. Results with the hotBSI trained with decision trees and linear discriminant analysis.

Classifier DTs LDA

HC RN18 HC RN18
Sensitivity 0.92 0.80 0.83 0.70
Specificity 0.14 0.33 0.19 0.43
Accuracy 0.35 0.46 0.36 0.51

FNR 0.08 0.20 0.17 0.30
FPR 0.86 0.66 0.81 0.56

Precision 0.28 0.31 0.28 0.31
F1 0.43 0.44 0.41 0.43

AUC 0.46 0.57 0.44 0.59

Table 6. Results with OCC and Kmeans.

Classifier k-Means OCC

HC RN18 HC RN18
Sensitivity 0.17 0.08 0.08 0.26
Specificity 0.86 0.92 0.90 0.72
Accuracy 0.67 0.70 0.68 0.60

FNR 0.83 0.92 0.92 0.74
FPR 0.14 0.92 0.10 0.28

Precision 0.30 0.28 0.23 0.26
F1 0.22 0.13 0.12 0.14

AUC – – 0.51 0.50

6. Discussion

This work had as main goal the development of an algorithm capable of automatically
identifying metastases in bone scintigraphy images from patients with prostate cancer.
If successful, this algorithm could be used in the clinical practice to quantify bone scans
and work as an aiding tool for the diagnosis and follow-up of patients with bone metas-
tases. Despite consensus on the need for such an algorithm, and despite efforts of the
scientific community to develop one, such a diagnosis tool is currently unavailable in the
medical community.

The current work differs from the ones developed so far in the same topic in the sense
that it does not resort to a fully supervised data set to train the classifier. An algorithm
that proves to be successful even without the access to a labeled data set can be extremely
useful in the clinical context, where access to a labeled database is often difficult to achieve.
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Here, an algorithm for the automatic detection of hotspots in bone scans was sug-
gested, followed by the development of an algorithm capable of classifying the detected
hotspots as malign or nonmalign. The detection algorithm proved to be successful on a
database of patients with prostate cancer, as all malign hotspots were correctly identified.
This was guaranteed by choosing a threshold value that would ensure that no metastases
candidates were left undetected. This came at the cost of a high false positive detec-
tion rate, meaning that most of the hotspots detected by the algorithm were nonmalign.
As the patient condition is determined through the assessment of the malign bone lesions,
an algorithm for the attenuation of the false positive was developed. The evaluation metrics
considered the most relevant for the current classifier and the respective values obtained
for the proposed algorithm are now discussed.

6.1. Area under the ROC Curve (AUC)

The AUC values, usually close or equal to 0.50, translate the low to none capacity of
most classifiers to distinguish between nonmalign and malign hotspots. The highest AUC
score was obtained with the hotBSI trained with SVM and ResNet18 features (AUC = 0.66).

6.2. Sensitivity and Specificity

High values of sensitivity and specificity were only obtained when the classifier
was biased toward one class: high sensitivity scores (>0.85) were always accompanied
by a low specificity score, which meant that it was considering almost every hotspot to
belong to the positive (malign) class; on the other hand, high specificity scores (>0.85)
were always accompanied by a low sensitivity score, meaning that it was assigning the
majority of hotspots to the negative (nonmalign) class. Neither situation is desirable
for the final algorithm. The classifiers with more balanced scores in terms of sensitivity
and specificity were (i) the hotBSI trained with SVM and ResNet18 features (sensitivity
= 0.63, specificity = 0.58) and (ii) the hotBSI trained with KNN and ResNet18 features
(sensitivity = 0.67, specificity = 0.51).

6.3. False Negative Rate (FNR)

An important evaluation metric for an algorithm whose goal is to classify hotspots
in patients who might have bone metastases is the false negative rate. It is desirable that
this value is as low as possible, as a low FNR would mean that the classifier was incor-
rectly labelling a lot of malign hotspots (metastases) as nonmalign; this would result in
an algorithm that would label patients with metastatic cancer as healthy, which would be
dangerous is the clinical context. Very low FNR only happened with classifiers that were
assigning almost every hotspot to the malign class: taking a look at the hotBSI trained
with decision trees it can be observed that a FNR rate of 0.08 was obtained. Although at
first glance this may seem like an almost perfect result, further analysis on the remaining
metrics lead us to conclude that this FNR only happens because the classifier is assign-
ing almost every hotspot to the malign class and, therefore, it had a low probability of
missing metastases (sensitivity = 0.92, specificity = 0.14). Such a classifier is obviously not
acceptable, as it has no discriminatory power. Classifiers that obtained lower FNR while
keeping more acceptable values for the other metrics include (i) the hotBSI trained with
discriminant analysis and ResNet18 features (FNR = 0.30), (ii) the hotBSI trained with KNN
and ResNet18 features (FNR = 0.33) and (iii) the hotBSI trained with SVM and ResNet18
features (FNR = 0.37).

6.4. False Positive Rate Reduction

As mentioned in Section 5.1, the detection algorithm presented a false positive rate
of 73.07%. After applying the classifiers to these detections, the lowest FPR scores were
obtained with (i) the hotBSI trained with SVM and handcrafted features (FPR = 0.18),
(ii) the OCC trained with handcrafted and ResNet18 features (FPR = 0.10 and FPR = 0.28,
respectively) and (iii) k-means with handcrafted features (FPR = 0.14). This low values are,
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however, only due the fact that these algorithms were classifying most of the metastases
as nonmalign, which is not desirable, as it will lead to a high FNR. The classifier that
presented the lowest FPR while keeping an acceptable value for the FNR was the hotBSI
trained with SVM and ResNet18 features (FPR = 0.42). This represents a decrease of 30.59%
compared to the FPR score obtained with initial detection algorithm, when no classifiers
had been yet applied.

6.5. Comparison with the State-of-the-Art Algorithms

Table 7 gathers the best results obtained with the hotBSI algorithm, as well as the
best results obtained with the k-means and one-class classifier. The best hotBSI algorithm
was considered to be the one trained with SVM and ResNet18 features; the best k-means
and one-class algorithms were considered to be the ones trained with handcrafted and
ResNet18 features, respectively. The proposed algorithm shows superiority in almost every
metric, in particular in the AUC (0.66 compared to 0.50 from the OCC classifier), sensitivity
(0.63 compared with 0.17 and 0.26 from the k-means and OCC classifiers, respectively)
and the false negative rate (0.37 compared with 0.83 and 0.74 from the k-means and OCC
classifiers, respectively). It should be noted that the only two metrics in which the state-of-
the-art algorithms performed better were accuracy and specificity. This is clearly explained
by noting that this happens since these algorithms are classifying most of the hotspots
as nonmalign (note the low sensitivity from the same classifiers); as a consequence, they
will present a high specificity, as if most of the hotspots are being classified as nonmalign
there is a better chance that the algorithm will correctly classify nonmalign hotspots as
nonmalign. Besides the low specificity, this comes with a cost of a high false negative rate,
as a lot of malign hotspots are being incorrectly classified as nonmalign. The better scores
in accuracy are also easily explained by looking at the percentage of nonmalign and malign
hotspots present in the test set: 73% of these hotspots were from the nonmalign category,
while only 27% were from the malign category. Because the k-means and OCC classifiers
are manly assigning hotspots to the negative (nonmalign) class, and because most of the
test set is composed by hotspots from this class, they will get a high accuracy score, even if
most of the data is wrongly classified. Having all of this into account, it can be concluded
that the proposed algorithm performs better than the state-of-the-art algorithms at the task
of hotspots classification and, therefore, at the task of false positive attenuation.

Table 7. Comparison of the best hotBSI with the best state-of-the-art algorithms.

hotBSI (RN18) k-Means (HC) OCC (RN18)

Sensitivity 0.63 0.17 0.26
Specificity 0.58 0.86 0.72
Accuracy 0.59 0.67 0.60

FNR 0.37 0.83 0.74
FPR 0.42 0.14 0.28

Precision 0.35 0.30 0.26
F1 0.46 0.22 0.14

AUC 0.66 – 0.50
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7. Conclusions

An algorithm for the classification of automatically detected hotspots in bone scintig-
raphy images of patients with prostate cancer was proposed. Such an algorithm can be
used in combination with computer-assisted PCa detection approaches such as the one
described in [29], making it extremely useful in the medical community, as it provides
the physicians with an aiding tool to quantify whole-body bone scans from patients with
bone metastases.

The biggest challenge when building such an algorithm is the lack of a labeled data
set. Here, we tried to overcome that problem by developing an algorithm that only
requires knowledge about the type of bone scan from which the hotspot is extracted from.
Comparison with state-of-the-art algorithms shows superiority of the proposed method.
However, analysis of the performance metrics obtained for the hotBSI shows that this
algorithm is still not ready to be used in the clinical practice: the not so high scores for
sensitivity, specificity and AUC are still a concern; the false negative rate, despite clearly
inferior to the state-of-the-art algorithms, is also still high. Improvements on the algorithm
are therefore need. These include:

• Finding features that are more discriminative, for instance, by using a different pre-
trained network, by extracting features from different layers or by extracting features
from autoencoders;

• Using other classifiers to train the hotBSI;
• Apply variations in the hotBSI, for example, by choosing a stopping criteria in the

iteration that is not the number of iterations;
• Retrain the algorithm with a more balanced data set.

Once an algorithm with a performance that is considered good enough to be used in
the clinical practice is obtained, a quantitative image biomarker can be used to automatically
quantify a bone scintigraphy of new patients with prostate cancer. Literature shows that
the most adequate image biomarker for quantifying a bone scan is the Bone Scan Index
(BSI) [22,30–33].

The final goal is to build a software that can be used in the clinical context, that is
capable of not only quantifying a given bone scintigraphy of a patient with prostate cancer,
but also give information about disease progression, response to treatment and disease
prognosis. Such a software will make the process of assessing a bone scan more objective,
simpler and faster, and will for sure be an asset in the medical community.
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Appendix A. Handcrafted Features

The full list of handcrafted features is given in Table A1.

Table A1. Name and description of the handcrafted features. Top part of the table corresponds to
shape measurements, while the bottom half are pixel value measurements.

Property Description

Area No. of pixels in the region
AxisLengthRatio Ratio between MajoraxisLength and MinoraxisLength
BoundingBox Position and size of the smallest box containing the region
Centroid Center of mass of the region
ConvexArea Number of pixels in ConvexImage 1

Eccentricity Eccentricity of the ellipse ε 2

EquivDiameter Diameter of a circle with the same area as the region

EulerNumber No. of objects in the region minus the no. of holes
in those objects

Extent Ratio of pixels in the region to pixels in the total bounding box
FilledArea Number of on pixels in FilledImage 3

InvCircularity Inverse of the roundness 4 of the object
MajoraxisLength Length (in pixels) of the major axis of ε̂ 5

MinoraxisLength Length (in pixels) of the minor axis of ε̂
Orientation Angle between the x-axis and the major axis of ε̂
Perimeter Distance around the boundary of the region

Solidity Proportion of the pixels in the convex hull that are
also in the region

MaxIntensity Value of the pixel with the greatest intensity in the region
MeanIntensity Mean of all the intensity values in the region
MinIntensity Value of the pixel with the lowest intensity in the region
WeightedCentroid Center of the region based on location and intensity value

1 ConvexImage: Image that specifies the ConvexHull 6, with all pixels within the hull filled in (binary image). 2 ε:
ellipse that has the same second-moments as the region. 3 FilledImage Image the same size as the bounding box
of the region, returned as a binary. 4 The roundness of an object is defined as 4·Area·π

Perimeter2 . 5 ε̂: ellipse that has the
same normalized second central moments as the region. 6 ConvexHull: Smallest convex polygon that can contain
the region.

126



J. Imaging 2021, 7, 148

Appendix B. Learnt Features

A schematic representation of the architecture of the ResNet18 network is given in
Figure A1.

Figure A1. Diagram of ResNet18 with highlighted “pool5” layer.
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Appendix C. Confusion Matrixes

The confusion matrices obtained during the false positive attenuation phase (Section 5.2)
are given in Figures A2–A7.

Figure A2. Confusion matrices for the hotBSI-SVM trained with handcrafted (left) and ResNet18
(right) features.

Figure A3. Confusion matrices for the hotBSI-KNN trained with handcrafted (left) and ResNet18
(right) features.

Figure A4. Confusion matrices for the hotBSI-DTs trained with handcrafted (left) and ResNet18
(right) features.
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Figure A5. Confusion matrices for the hotBSI-DA trained with handcrafted (left) and ResNet18
(right) features.

Figure A6. Confusion matrices for the k-means algorithm trained with handcrafted (left) and
ResNet18 (right) features.

Figure A7. Confusion matrices for the OCC algorithm trained with handcrafted (left) and ResNet18
(right) features.
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Abstract: Immunotherapy is regarded as one of the most significant breakthroughs in cancer treatment.
Unfortunately, only a small percentage of patients respond properly to the treatment. Moreover,
to date, there are no efficient bio-markers able to early discriminate the patients eligible for this
treatment. In order to help overcome these limitations, an innovative non-invasive deep pipeline,
integrating Computed Tomography (CT) imaging, is investigated for the prediction of a response
to immunotherapy treatment. We report preliminary results collected as part of a case study in
which we validated the implemented method on a clinical dataset of patients affected by Metastatic
Urothelial Carcinoma. The proposed pipeline aims to discriminate patients with high chances of
response from those with disease progression. Specifically, the authors propose ad-hoc 3D Deep
Networks integrating Self-Attention mechanisms in order to estimate the immunotherapy treatment
response from CT-scan images and such hemato-chemical data of the patients. The performance
evaluation (average accuracy close to 92%) confirms the effectiveness of the proposed approach as an
immunotherapy treatment response biomarker.

Keywords: 3D-CNN; immunotherapy; radiomics; self-attention

1. Introduction

Urothelial carcinoma (also known as bladder cancer) is the most common histological type of
urinary tract carcinoma. It accounts for about 3% of all cancers [1]. It is more common between the ages
of 60 and 70, which is three times more frequent in men than in women and it is associated with about
165,000 global deaths every year and a five-year survival of approximately 5% in the advanced stage [1].
Metastatic Urothelial Carcinoma (mUC) occurs at disease onset in approximately 10% of patients,
mostly arising from the evolution of previous superficial or infiltrating forms [2]. The current standard
first-line treatment of mUC is platinum-based chemotherapy. In terms of progression-free survival (PFS),
an improvement has been recently reported with the combination of chemotherapy and immunotherapy
as a first-line treatment in mUC [3]. However, a significant and mature overall survival (OS) data are
still expected. The median OS with cisplatin-based regimens varies between 12 and 15 months [3],

J. Imaging 2020, 6, 133; doi:10.3390/jimaging6120133 www.mdpi.com/journal/jimaging133



J. Imaging 2020, 6, 133

while it is approximately 9 months in patients not eligible for cisplatin treatment because of the
severity of the side effects treated with carboplatin-based regimens [4]. Immunotherapy has become
the standard second-line treatment of mUC based on two phase III studies with Immune Checkpoint
Inhibitors (ICIs) immunotherapeutic drugs such as Atezolizumab and Pembrolizumab with a median
OS reported of 8.6 [5] and 10.3 months [6], respectively. These results have recently been confirmed
in a large population with Atezolizumab [7]. ICIs are also a treatment option in first-line therapy of
patients with non-cisplatin-based mUC based on phase Ib-II studies with a median OS between 8.7 and
18.2 months [8–14]. However, no more than about 20% and 30% of patients have a disease response
with ICI in post-platinum and first-line treatment, respectively, even though these responses tend to be
more durable than those obtained with chemotherapy [12–14]. Therefore, it is a priority to identify and
select those patients who can really benefit from immunotherapy, even though, at the moment, there are
still no reliable and clinically available biomarkers to properly choose patients who respond or progress
with ICIs [15–18]. Since the activity of a high tumor mutational burden and of infiltrating lymphocytes
has been associated with a higher probability of response to immunotherapy [8,19], some researchers
have tried to characterize the tumor environment by integrating data from instrumental imaging
and testing a reliable correlation with patients’ outcome, paving the way to the emerging field of
radiomics [20]. Radiomics aims to extract a large number of quantitative features from high-throughput
medical images by taking advantage of the recent data-characterization learning-based algorithms.
Some studies show that these methods have the capability to uncover disease characteristics that,
otherwise, cannot be identified by human observers [20]. In this paper, we propose an innovative
deep learning pipeline used for the prediction of response to ICIs’ immunotherapeutic treatment for
patients with advanced metastatic bladder cancer (mUC) who have progressed following a first-line
platinum-based chemotherapy. The architecture of the proposed deep model is based on 3D Densely
connected Convolutional Neural Network (3D-DCNN) with separable convolutions and self-attention
mechanisms through non-local blocks [21]. The model processes computed tomography (CT-scan)
imaging data and discriminates patients with high chances of response (complete, partial response, or,
at least, stable disease), from those that, instead, are likely to show disease progression. 3D-DCNNs
have been widely used in medical imaging for segmentation applications [22] as well as for cancer lesion
characterization [23]. We leverage the success of these models and extend them with a self-attention
mechanism, based on non-local blocks, for better learning long-range dependencies among the input
data (segmented CT scans cancer lesions). As mentioned, it is, thereby, verified that all the patients
have undergone a histological exam that confirmed the presence of bladder cancer. Experimental
results, carried out on a dataset consisting of 41 patients with bladder cancer (which include, as a
whole, 106 cancer lesions to be analyzed), show that the devised self-attention-based model leads to a
better characterization of the bladder cancer (i.e., the associated feature maps) and of the radiological
visual features for predicting treatment outcome with respect to the state-of-the-art methods. The paper
is organized as follows. “Related Works” reviews state-of-the-art pipelines with a focus on deep
learning models in the medical imaging field. The section “Methods and Materials” provides an
accurate description of the proposed pipeline, together with details about the adopted training and
validation dataset procedures. Experimental results of the proposed method as well as a comparison to
state-of-the-art models are given in the “Results and Discussion” section. Finally, in the “Conclusions”
section, the implications of the proposed approach are discussed, and some ideas for future extensions
are briefly outlined.

2. Related Works

The feasibility of predicting the response to immunotherapy treatment for patients with neoplastic
diseases in the metastatic phase has been recently investigated using standard machine learning
and deep learning methods. Traditional machine learning methods based on the analysis of
high-dimensional clinical data and CT-based diagnostic imaging have been proposed in order to predict
the outcome of bladder cancer treatments [24–26]. Specifically, Reference [24] reports a comparative
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analysis of different machine learning methods used to process high-dimensional clinical data with
the aim to predict mortality after a radical cystectomy in a large dataset of bladder cancer patients.
Among the analyzed methods, the Regularized Extreme Learning Machine yields the highest average
accuracy. In Reference [25], the authors analyzed the performance of multiple machine learning methods
applied to process CT urography imaging data of each subject belonging to the recruited dataset of
84 patients, namely, Linear Discriminant Analysis (LDA), Neural Networks (NNs), Support Vector
Machine (SVM), and a Random Forest (RAF) Classifier with SVM slightly outperforming the others.
Analogously, Reference [26] compares multiple traditional learning methods (e.g., SVM, Bagged SVM,
K-nearest neighbor, AdaBoost, Random Forest, and Gradient Boosted Trees) to automatically determine
disease status and prognosis of patients with bladder cancer while also suggesting a recommendation
treatment, i.e., neoadjuvant, definitive, and adjuvant therapy. All methods showed a fair accuracy
(in terms of sensitivity and specificity), demonstrating the suitability of machine learning in addressing
oncological applications. Despite the above machine learning methods showing promising performance
in supporting physicians in their clinical investigation, they still rely on an old-fashioned approach,
i.e., feature engineering followed by learning methods. With the rediscovery of deep learning in
2011 and the availability of large computation resources (thanks to GPU), the learning paradigm
has radically changed in many tasks from computer vision to speech analysis to medical image
analysis. About mUC investigation, the Deep Learning breakthrough has solicited the medical image
research community to investigate advanced methods mainly for bladder cancer segmentation [27–30],
while little effort has been put forward for studying bladder tumor chemotherapy efficacy [31,32].
For instance, in Reference [31], the authors investigate AlexNet [32] (with few architectural variants in
terms of kernel size, padding, and stride) for assessing chemotherapy treatment efficacy of bladder
cancer, starting from manually-segmented Computed Tomography (CT) scans. Experimental results
showed an average accuracy of 86% (Sensitivity 90%, Specificity 89%) on immunotherapy treatment
estimation. In Reference [33], the authors propose a two-stage deep-learning analysis pipeline for
bladder cancer. The first stage deals with automated CT scan lesion segmentation (Auto-Initialized
Cascaded Level Sets system) and the other one handles treatment response prediction (with an AUC
of 0.73) using the previously segmented lesions. As for immunotherapy, some of the authors of
this paper in Reference [34] proposed a deep network based on auto-encoders for cancer treatment
outcome prediction in patients treated with Pembrolizumab (anti PD-1/PD-L1 ICIs checkpoint). To our
knowledge, Reference [34] is one of the first works employing artificial intelligence for the prediction of
immunotherapy outcomes. The work herein described extends the pipeline proposed in Reference [34]
by introducing a 3D deep model enriched with a self-attention mechanism, which improve the learning
phase of the joint visual and clinical data features. While it is important to have accurate automated
computer methods for cancer treatment efficacy prediction, the interpretability and the explanation
for why these methods reach specific decisions are of equal importance for the involved physicians.
For these reasons, an ideal model should be accurate as well as explain what features it employs for
its decisions. This need has been extensively outlined in both the artificial intelligence and medical
imaging domains [35–39]. Our work contributes to the research area in automated immunotherapy
outcome prediction through visual investigation of CT scans, as follows.

• We present a generalizable deep model that combines 3D densely connected convolutional layers
empowered with self-attention mechanisms for estimating automatically the efficacy of bladder
cancer immunotherapy treatment, purely based on CT imaging analysis.

• We investigate, through interpretability methods, such as Grad-CAM [40], what are the radiological
CT visual features that most likely act as biomarkers for immunotherapy treatment outcome, thus,
providing a potentially invaluable support to medical staff in evaluating the progress of bladder
cancer. To the best of our knowledge, to date, no method has tackled the task herein proposed,
from both the automated treatment outcome prediction and interpretability perspectives.
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3. Materials and Methods

In this section, we propose our deep learning-based approach for radiomics applied to CT-scan
cancer imaging for estimating the outcome of the ICIs based immunotherapy treatment in patients
affected by mUC. The proposed framework consists of a combination of 3D Densely Connected
Convolutional layers (3D-DCNN) with non-local blocks [21], implementing a self-attention strategy
to improve characterization of spatio-temporal dependencies of the neoplastic lesions in CT slices.
The use of 3D deep convolutional layers is motivated by the results achieved by our previous work [34]
demonstrating the correlation between the biological aggressiveness of bladder tumors with the
dynamic morphological evolution of the interested CT lesions. Thus, a 3D deep network provides
a very useful tool to characterize not only the static-spatial 2D morphology of the lesions, stratified
in the chest-abdomen CT slices, but also the functional dependence between their 3D volumes and
the immunotherapy treatment responsiveness [34]. However, as pointed out in bladder treatment
cancer guidelines [41], not all the metastatic lesions (generated by the primary neoplasm) play a role
in the analysis of the progression of oncological disease. For this reason, a set of guidelines known
as Response Evaluation Criteria in Solid Tumors (RECIST) have been developed by the scientific
community [34,41]. In this work, a detailed analysis of only the lesions compliant to the RECIST criteria
is to be carried out [41]. Thus, to address these indications, we extend 3D convolution architectures with
an implicit “attention” to make the models focus—through visual feature learning—only on the most
significant parts of the RECIST lesion and their possible correlation. More specifically, the attention
mechanism is implemented by concatenating non-local blocks [21] at different layers for capturing
long-range dependencies at different scales. We report the problem of treatment outcome estimation
as a binary classification task, i.e., the proposed model provides as output of two class probabilities
including one in the case of complete/partial regression or stable disease (C1), and the other one for
disease progression (C2). The flowchart of the whole approach is shown in Figure 1. The backbone of
the proposed model is a sequence of dense blocks, similar to DenseNet Cha et al., 2016, but replacing
2D convolutions with 3D ones. The model processes as input a batch of 16 × 64 × 64 volume (16 slices,
among the 64 available, each with a spatial resolution of 64 × 64) extracted from CT data and containing
the RECIST 1.1 compliant lesion. This input data is first fed to a 3D convolutional layer with a
kernel size of 3 × 3 × 3, providing an output of 32 features of depth. These feature maps will be
processed by six dense blocks composed by [6, 8, 8, 8, 8, 6] 3D layers, respectively, with the same
kernel size as the input layer, followed by ReLU non-linear activations. Each dense block is preceded
by [0, 1, 2, 3, 4, 5] Embedded Gaussian Non-Local blocks [21], respectively, and each dense block is
followed by a transition-down layer with a 2 × 2 × 2 max pooling. Thus, the input volume is processed
by the described blocks (both dense and non-local) generating the feature maps, which will gradually
decrease (in dimension) to a one-dimensional feature map. This feature vector is concatenated to
additional non-visual features, i.e., blood-stream hemato-chemical indicators. The resulting feature
map (size 751 × 1) then traverses six fully connected (FC) layers followed by RELU, except the last one
that, instead, uses a SoftMax layer for the final binary classification. Negative log-likelihood loss is
used during model training.

Loss = −
N∑

i=1

Xi log(P(Xi)) + (1−Xi)log(1− P(Xi)) (1)

With Xi, we setup the correct class label, while P (Xi) represents the model’s predicted probability
for the correct class. In the next section, more information on the architecture is highlighted,
while additional details of the proposed deep model are given in Table 1.
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Figure 1. The proposed 3D Densely connected Convolutional Neural Network (DCNN) with Non-Local
blocks architecture: Input data is a segmented lesion (ROI on CT scan) traverses the deep network
(a sequence of dense and non-local blocks) and it is then classified as belonging to class C1 or class C2.

Table 1. The layers specification of the proposed deep architecture.

Block Output Size Layer(s) Description Layers Number

Convolution 32 × 16 × 64 × 64 3 × 3 × 3 convolution 1

Dense Block 128 × 16 × 64 × 64

Batch Normalization
Rectified Linear Unit (ReLU)

3 × 3 × 3 depth-wise convolution
1 × 1 × 1 point-wise convolution

6

Transition layer 128 × 8 × 32 × 32 1 × 1 × 1 convolution, 2 × 2 × 2 maxpool 1
Dense Block 256 × 8 × 32 × 32 [. . .] 8

Transition layer 256 × 4 × 16 × 16 1 × 1 × 1 convolution, 2 × 2 × 2 maxpool 1
Dense Block 384 × 4 × 16 × 16 [. . .] 8

Transition layer 384 × 2 × 8 × 8 1 × 1 × 1 convolution, 2 × 2 × 2 maxpool 1
Dense Block 512 × 2 × 8 × 8 [. . .] 8

Transition layer 512 × 1 × 4 × 4 1 × 1 × 1 convolution, 2 × 2 × 2 maxpool 1
Dense Block 640 × 1 × 4 × 4 [. . .] 8

Transition layer 640 × 1 × 2 × 2 1 × 1 × 1 convolution, 2 × 2 × 2 maxpool 1
Dense Block 736 × 1 × 2 × 2 [. . .] 6

Transition layer 736 × 1 × 1 × 1 1 × 1 × 1 convolution, 2 × 2 × 2 maxpool 1
Concatenation 751 Integrates hematochemical patient’s data 1

Fully Connected 375 FC, ReLU 1
Fully Connected 187 FC, ReLU 1
Fully Connected 93 FC, ReLU 1
Fully Connected 46 FC, ReLU 1
Fully Connected 46 FC, ReLU 1
Fully Connected 46 FC, ReLU 1

Classification 2 FC, Softmax 1

A visual description of the deep architecture explained in Table 1 is shown in the graph of the
model included in Figure 1. Specifically, starting from the pre-processed CT lesions fed as input,
the convolutional blocks are highlighted, stacked with dense blocks and the transition layers whose
generated feature maps transverse further processing blocks composed of non-local block stacked with
a dense block and transition layer up to the final stack of fully connected and SoftMax from which the
classification output will be generated. More details in the next sections.
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3.1. Dense Blocks

The proposed 3D-DCNN includes densely connected blocks (dense blocks) with 3D separable
convolution layers (both depth-wise and point-wise). Separable convolutions are adopted to improve
efficiency (through a significant reduction of a model’s parameters), while not affecting the output
performance. Each dense block consists of a sequence of dense layers, including a batch normalization
layer, a 3D convolutional layer with a kernel size of 3 × 3 × 3 (depth-wise and point-wise separable)
followed by a ReLU. Each dense block is followed by a transition down layer, aiming to half feature
map dimension, and composed by a convolutional layer with a kernel size of 1 × 1 × 1 followed by a
max pooling layer of kernel 2 × 2 × 2. The output of dense blocks is then passed to non-local blocks.

3.2. Self-Attention through Non-Local Blocks

Non-local blocks have been recently introduced [21], as a very promising approach for
capturing space-time long-range dependencies and correlation on feature maps, resulting in a
sort of “self-attention” mechanism. Non-local blocks take inspiration from the non-local means
method, extensively applied in computer vision, and have demonstrated to significantly improve
the performance of deep models [21]. Self-attention through non-local blocks aims to enforce the
model to extract correlation among feature maps by weighting the averaged sum of the features at
all possible positions in the generated feature maps [21]. In our pipeline, non-local blocks operate
on almost each convolution layer to extract a feature in dependencies at multiple abstract levels for
a holistic morphological modeling of the input RECIST lesions. The mathematical formulation of
non-local operation is the following. Given a generic deep network as well as a general input data
x, the employed non-local operation computes the corresponding response yi (of the given Deep
architecture) at a i location in the input data as a weighted sum of the input data at all positions j � i.

yi =
1

ψ(x)

∑

∀ j

ζ(xi, xj)β
(
xj
)

(2)

With ζ(·) being a pairwise potential describing the affinity or relationship between data positions
at index i and j, respectively. β(·) is, instead, a unary potential modulating ζ according to the input
data. The sum is then normalized by a factor ψ(x). The parameters of ζ, β, and ψ potentials are learned
during the model’s training and are defined as follows.

ζ(xi, xj) = eΘ(xi)
T Φ(xj) (3)

where Θ and Φ are two linear transformations of the input data x with learnable weights WΘ and WΦ.

Θ(xi) = WΘxi

Φ
(
xj
)
= WΦxj (4)

β
(
xj
)
= Wβxj

For the β(·) function, a common linear embedding (classical 1 × 1 × 1 convolution) with learnable
weights Wβ is employed. The normalization function ψ is:

ψ(x) =
∑

∀ j

ζ
(
xi, xj

)
(5)

In Equations (2)–(5), an Embedded Gaussian setup is reported [21]. The selection of the
Embedded Gaussian based affinity function is compliant with recent self-attention approaches [21,42],
specifically recommended for 2D or 3D applications.
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3.3. Classification Layer: The Stack of Fully Connected

Once features are extracted through the combination of dense and non-local blocks, we obtain
a one-dimension visual embedding (736 × 1). These features are then concatenated to an additional
side of information consisting of blood tests and other clinical data. The combination of the two
sets of features is then fed to a stack of fully connected (FC) layers. The objective of this FC stack is
to find additional correlations among the aggregated (at different abstract levels) deep features and
clinical data in order to enhance accuracy in assessing the ICI immunotherapy treatment outcome.
The proposed full FC stack is composed by seven FC layers, with, respectively, 375, 187, 93, 46, 46,
46, and 2 neurons for each layer. In particular, the sequence of FC layers (whose optimal number of
layers was decided during experimental results) is designed to create a hybrid visual-clinical features
hierarchy to balance model complexity with learnability.

3.4. Dataset: Recruitment and Data Pre-Processing

We recruited a dataset of 43 CT/MRI scans from patients as part of a clinical study performed at
a local hospital facility. The recruited patients (details are in Table 2) have histologically confirmed
bladder cancer (mUC) progressing after a platinum-based chemotherapy and treated with an anti
PD-L1 ICIs agent in the second or beyond line setting. All patients provided their written informed
consent to the participation of clinical trials (Nr. D4191C00068 and MO29983 including the use of their
clinical information for analysis approved by the Institutional review board (IRB) “Comitato Etico
Catania 1”, Catania, Italy). The contribution, however, refers to the analysis of CT images for which
the dataset will be limited to 41 patients who received an abdominal-chest CT discarding the other two
who, instead, received MRI-based imaging. For each recruited patient, a chest-abdomen CT-scan was
performed for cancer disease staging. The mentioned CT imaging was performed very close to the
start of the ICIs immunotherapy treatment. Such instances of the collected chest-abdomen CT-scans
are reported in Figure 2. The used imaging device consists of General Electronics (GE) CT scanner
multi-slices (64 slices) with slice thickness of 2.5 mm. The working current is in the range of 10–700 mA.
The working voltage is 120 kV and the pitch is 0.98 mm. As known, in a CT scanner, multi-slices of
the spatial resolution in the scan plane is influenced by the convolution filter used to reconstruct the
image by any other applied post-processing filter. It also depends on the number of projections that
make up the image. This number, in turn, depends on the sampling rate and scan time. In this paper,
we specify that the software of the previously mentioned GE tomograph allowed us to export CT scan
slice images with each having a spatial resolution of 1440 × 810 pixels.

Each CT scan is complemented with the following clinical and personal history data (used in our
learning model): primary tumor site, white blood cells (WBC), neutrophils, lymphocytes, eosinophils,
platelets, albumin, Lactate DeHydrogenase (LDH), d-dimer, urine pH, proteins and Body Mass Index
(BMI), age, gender, and tobacco use. The target of the proposed pipeline is closely related to the
predictive estimate of the response to the ICIs immunotherapy treatment based on the analysis of the
RECIST compliant lesion (often a metastases) identified by oncologists in the patient’s CT imaging.
One of the most feared features of malignant cancer is their ability to metastasize to other parts of
the body. Metastases can be spread through the blood and/or lymphatic route and clearly follow
the anatomy of the interconnection of organs in the human body. The process by which oncologists
define the cancer extension is called staging. With a special focus on bladder cancer, the staging
requires the use of imaging (usually CT-scan and PET) to characterize the level of disease spread
in the subject body [33,34]. For this reason, especially in the advanced mUC stages, CT scans show
multiple lesions and radiologists/oncologists select the most significant ones (according to the RECIST
guideline) for monitoring cancer evolution over time. The selection is carried out according to the
previously mentioned RECIST guidelines that define inclusion criteria, CT scan procedure, patient
assessment, lesion features, and how to monitor cancer over time. According to the RECIST 1.1
guideline, lesions of interest (target lesions) are those with the longest diameter (LD) in one dimension
≥20 mm (examples are shown in Figure 2). Lesion dimensions are used to set up a disease baseline for
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the patient’s assessment. According to RECIST 1.1, the sum of the longest diameter (LD) for all selected
target lesions is the baseline LD. The baseline LD is used as a reference to evaluate the follow-up and
treatment response of analyzed cancer. The LD value is then used for patient assessments after the
oncological treatment. In particular:

• A patient shows a complete response (CR) to the medical treatment if all identified target lesions
(LD sum) disappear at the end-treatment CT imaging.

• A patient shows a partial response (PR) to drug treatment if the target lesions (LD sum) are
reduced by at least 30%.

• A patient shows a progressive disease (PD) if the Longest Diameter(LD) sum increases by, at least,
20% of the LD (LD sum, in case of multiple target lesions).

• A patient instead reports stable disease (SD) if no significant increase or decrease is observed on
the target lesions.

Table 2. Some statistics of the used clinical dataset. CR: Complete Response; PR: Partial Response; SD:
Stable Disease; PD: Progressive Disease.

Dataset Field Description Number %

Age
≤60 13 30
>60 30 80

Gender
Male 39 91

Female 4 9
Tobacco Use

Never 5 12
Current 16 37
Former 22 51

Therapy Line
2 38 88
≥3 5 12

Primary Tumor Site
Upper urinary tract 4 9
Lower urinary tract 36 84

Both 3 7
Metastases Site

Lymph-nodes only 14 33
Visceral 29 67

Treatment Response
CR/PR/SD 16 (43 target lesions) 37

PD 27 (63 target lesions) 63
Follow-up Median -Months-

CR/PR/SD/PD 13.4 11.1–15.6
Follow-up Imaging

CT-scan 41
MRI (Magnetic Resonance Imaging) 2

The 41 patients included in this work were categorized, according to RECIST 1.1. All the CT
RECIST 1.1 compliant lesions have been collected for a total amount of 106 RECIST 1.1 findings.
Therefore, each RECIST 1.1. compliant lesion was treated individually even if it belonged to the same
patient. These are some statistics of the collected clinical dataset. Furthermore, 30% of the patients
were under the age of 60.91% of patients were male, with the remaining 9% female. A total of 33% of
subjects had lymph node metastases, while the remaining 67% had various visceral metastatic lesions.
Forty-three cases (target lesions) are referred to a complete/partial response or a disease stabilization
following immunotherapy treatment (CR/PR/SD: Class 1), while 63 lesions are regarded to the disease
progression despite anti-PD-L1 drug treatment (PD: Class 2).
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Figure 2. Some instances of the selected RECIST (Response Evaluation Criteria in Solid Tumors)
compliant cancer lesions in Computerized Tomography (CT) imaging. The red arrow identifies an
instance of the selected RECIST 1.1. compliant lesion.

3.5. Data Annotation, Training Procedure, and Evaluation Metrics

Data annotation was carried out by an expert oncologist. In particular, starting from the whole CT
scan, the oncologist manually selected, according to RECIST 1.1 recommendation, all the target lesions
to characterize the disease.

Nowadays, all CT scanner imaging software allows the automatic selection of a Region Of Interest
(ROI), according to certain spatial, dimensional, and/or morphological criteria. After this selection,
a 64 × 64 bounding box area (ROI) around each selected lesion over 16 consecutive slices is extracted
(thus, forming a 16 × 64 × 64 VOI i.e., the Volume of Interest). In order to ensure that the selection
manually made by the oncologist includes the whole target lesion to be analyzed, ad-hoc ROI of spatial
dimensions include the target lesion in its maximum extension (as it appears in the selected slices) that
will be manually applied by the oncologist/physician. If the applied ROI dimension is different from
the predetermined input size (64 × 64 in this case), a bi-cubic resizing of the ROI will be applied to
bring it to the desired size, i.e., 64 × 64. The oncologist will select the lesion in a slice (the one in which
there is the maximum extension of the lesion) and the latter will be propagated to all the selected input
slices. The needed bi-cubic resizing will be extended to all the processed slices.

Once the VOI has been selected in the first slice, a software tool we have developed will
automatically extract the same VOI in the other slices (for a total of 16) in order to characterize the
morophological temporal dynamics of the lesion. As mentioned in the previous section, CT data was
complemented with 15 additional clinical and hemato-chemical data that are converted into numeric
representation and suitably normalized for being processed by the proposed model. These data are
included in the LabVector (i) input as the index i is used to identify the patient. The temporal depth of
processed CT slices (i.e., equal to 16) was identified as the one providing the best trade-off between
performance and computational complexity, according to our previous work [34]. We noticed that,
depending on the dimension, some RECIST compliant lesions do not appear visible in all 16 CT slices,
and, in those cases, we zeroed (input data padding) the slices where the targeted lesion was not
visible to keep the input temporal-depth fixed for our deep 3D model. The CT scans (better, VOIs of
size 16 × 64 × 64) were properly labelled with reference to the two classes previously identified and
described (C1 and C2). However, the selection of the samples in each dataset split was not performed
randomly, but, in order to balance suitably, the presence of the patients of the two considered classes
(C1 includes patients with some response to immunotherapy, i.e., CR/PR/SD cases, while C2 includes
patients with a progressive disease (PD)), and, consequently, to ensure enough variability of the
characteristics of the subjects. In particular, the dataset was configured as follows: 76 target lesions
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(28 of Class 1 and 48 of Class 2) were used for training and validation sessions, while the remaining
30 CT target image lesions (15 of Class 1 and 15 of Class 2) were used as a test set. Clearly, in configuring
the test-set, we avoided using lesions of patients (although different) used in the training or validation
set in order to improve the robustness of the validation process of the proposed pipeline. Unfortunately,
immunotherapy treatment is still a relatively new strategy and the mechanisms of its functioning and
interaction with the human immune system are not widely known and, as such, patients who do not
respond to immunotherapy treatment are many more (currently) than those who respond positively to
the ICIs’ stimulation and, therefore, building a dataset perfectly balanced between the two classes,
which is not trivial [4–12]. In any case, to improve the validation reliability, we have implemented
a cross-validation mechanism through a k-fold. Specifically, we cross-validated our deep model by
configuring k = 5 and reporting the results of this procedure in Table 3 (mean and standard deviation
for the main performance indexes). The output of our deep model for each input data (16 × 64 × 64 VOI
with additional clinical data) is a (two) class probability vector on which, during training, we compute
a negative log-likelihood loss with L2 regularization weighted by a factor λ = 0.0001. The mini-batch
gradient descent was performed for minimizing the model loss, using the Adam optimizer, with an
initial learning rate of 0.01, and a mini-batch size of 4. For data augmentation, we perform random
translation and rotation (with a random degree value) along the spatial axis, consequently increasing
the dataset dimension during the training session. Our deep model is implemented by using the
Pytorch framework. Experiments were carried out on a server with 2 Intel Xeon E5620 CPU with
4 cores each, 96GB of RAM equipped with a Nvidia Quadro P6000 GPU with 24 Gbytes of video
memory. In order to validate the performance of the proposed architecture with respect to other deep
learning-based solutions, the following metrics have been used (FP: False Positive, FN: False Negative,
TP: True Positive, TN: True Negative).

Accuracy =
TP + TN

TP + TN + FN + FP
, (6)

Sensitivity =
TP

TP + FN
, (7)

Speci f icity =
TN

TN + FP
, (8)

F1− Score =
2·TP

2·TP + FN + FP
, (9)

Table 3. Experimental performance benchmarking (mean ± standard deviation).

Model Accuracy Sensitivity Specificity F1-Score

2D ResNet-50 0.620 ± 0.052 0.604 ± 0.0078 0.636 ± 0.061 0.613 ± 0.058

3D DenseNet +H 0.713 ± 0.047 0.711 ± 0.041 0.716 ± 0.064 0.713 ± 0.043
3D DenseNet +
SepConv + H 0.733 ± 0.049 0.729 ± 0.069 0.738 ± 0.047 0.731 ± 0.054

3D DenseNet 0.640 ± 0.034 0.636 ± 0.034 0.644 ± 0.048 0.638 ± 0.032
3D DenseNet +

NLB + SepConv 0.878 ± 0.039 0.871 ± 0.054 0.884 ± 0.075 0.877 ± 0.041

Proposed 0.922 ± 0.037 0.929 ± 0.053 0.916 ± 0.047 0.922 ± 0.038
2D ResNet-101 0.829 ± 0.043 0.822 ± 0.054 0.836 ± 0.061 0.828 ± 0.043

3D DenseNet-201 0.856 ± 0.033 0.871 ± 0.047 0.840 ± 0.055 0.858 ± 0.032
2D VGG-19 0.667 ± 0.033 0.662 ± 0.069 0.671 ± 0.059 0.664 ± 0.041

Previous [34] 0.861 ± 0.023 0.815 ± 0.011 0.883 ± 0.048 0.810 ± 0.037

We considered a “True Positive,” which is the right classification of a patient who has shown a
certain response to immunotherapy treatment (complete response (CR), partial (PR), or has a stable
disease (SD)), and has been previously classified by our pipeline as belonging to class C1. Consequently,
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we will consider “True Negative,” which is a patient who previously classifies as belonging to class C2
and then correctly following the treatment does not show any response to the immunotherapy drug
confirming a progression of the disease (PD). The “False Negative” and “False Positive” values are
computed accordingly. The accuracy, sensitivity, specificity, and F1-score are evaluated—on the test-set
during k-fold cross-validation so that they are reported as mean and standard deviations. The collected
experimental results are discussed in the next section.

4. Results and Discussion

Performance Analysis

In this section, we report the promising performance results of the proposed approach.
As mentioned, the used dataset is composed by 41 patients (106 RECIST compliant input image
lesions) recruited as part of a clinical trial including, for each patient, informed consent, chest-abdomen
CT scan images, and their blood examinations collected before the start of treatment. Each patient was
adequately labeled with histological confirmation of mUC. The cross-validation session is used to select
the best model setup of the proposed architecture, i.e., when the maximum k-fold cross-validation
accuracy is retrieved (3D deep architecture as reported in Figure 1, network layers structured as per
Table 1, fixed learning rate of 0.01, and a weight decay of 0.00001, Adam optimization). As introduced,
we compared our architecture with such state-of-the-art deep architectures in order to provide
performance benchmarks regarding the proposed application. Specifically, in order to evaluate the
improvement in terms of performance compared to similar 2D and 3D deep networks, the authors
have validated the performance of the used DenseNet backbone having the same architecture of our
pipeline (Table 1), but without the inclusion of Self-Attention (Non-Local Blocks) mechanisms and
separable convolutions. In addition, the performance of the proposed method has been compared
with respect to such classic architectures: ResNet-50, ResNet-101, VGG-19, and 3D extension of the
classical DenseNet-201 [43]. Table 3 reports the collected experimental results and comparisons.
The implemented 3D DenseNet backbone baseline (3D DenseNet) showed an accuracy of 0.640 ± 0.034
significantly lower than our full pipeline, which shows a higher accuracy equal to 0.922 ± 0.037.
Additionally, in terms of sensitivity, specificity, and the F1-score, our architecture is significantly more
performed (0.929 ± 0.053, 0.916 ± 0.047, and 0.922 ± 0.038, respectively) than the simple DenseNet
backbone, thus, confirming the improvements that can be obtained in particular through the use of
self-attention techniques and separable layers. Specifically, feature maps that suitably weight the
spatiotemporal dependencies of the CT imaging selected target lesion (i.e., the result of non-local blocks
application) provide more discriminative features to the FC stack. Moreover, the joint contribution
of non-local blocks and separable convolution layers allows us to generate feature maps having an
informative content that best characterizes the spatiotemporal dependencies between the CT imaging
VOIs and treatment response of the associated patient. As well known, the usage of separable
convolutional layers significantly reduces the risk of overfitting [30–34]. During this session, we also
investigated the performance impact of the jointed link between hemato-chemical data LabVector
(i) with visual features based on CT imaging. We, therefore, performed a testing session using the
same proposed deep architectures but avoiding concatenating the data contained in the LabVector (i)
(“3D DenseNet+NLB+SepConv” in Table 3). As hypothesized by the oncologists who followed the trial
on which this study is based, there is a close correlation between the anamnesis and hematochemical data,
the imaging data, and the patient’s response to immunotherapy treatment even though this correlation
is not perfectly known to date. In fact, our tests revealed a considerable reduction in the overall
performance of the tested deep networks if, as inputs, we only use CT visual imaging and do not integrate
with blood and medical history (LabVector (i)). In more detail, the proposed architecture with visual
input but without hemato-chemical data dropped in performance as it showed 0.878 ± 0.039 (Accuracy),
0.871 ± 0.054 (Sensitivity), 0.884 ± 0.075 (Specificity), and 0.877± 0.075 (F1-score) significantly lower
with respect to the same proposed pipeline with hemato-chemical data (see Table 3). Therefore,
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the clinical data included in LabVector (i) play a significant role in the discrimination capability of
the proposed pipeline so that it is worthy of further study. As reported in Table 3, the accuracy
of the classical deep 2D architectures such as ResNet-50, ResNet-101, and VGG-19 is significantly
lower than our approach, further confirming the promising performance of the proposed solution.
We have compared our implemented pipeline with similar 3D architecture but with more layers
(3D DenseNet-201). The performance of our architecture is significantly higher than the compared
3D deep classifier, as reported in Table 3. This confirms that the Self-Attention mechanisms realized
through the inclusion of non-local blocks with embedded gaussian setup together with the separable
layers allow us to obtain more discriminative and representative features maps (with respect to a deeper
network as the 3D-DenseNet-201) of the correlation with the response to immunotherapy treatment.
Evidently, the capability of non-local blocks to embed more precise spatial-temporal correlations in the
analyzed CT lesions allows the generation of more discriminative feature maps than those obtained by
increasing the convolutional layers in the deep classifier. This makes the proposed system particularly
performing in the application herein described. All the networks analyzed for a comparison share the
same input setup data. We discriminated some setups only in reference to our pipeline to demonstrate
that the DenseNet backbone was necessarily enriched with the Separable Convolutional Layers as well
as with hemato-chemical data and non-local blocks. The aim of the work is to analyze the impact of
imaging in predicting the response to immunotherapy treatment. We tested our model with blood
chemistry data only, obtaining poor performances with accuracy below 50% (in cross validation),
clearly confirming that the contribution of imaging is fundamental for the overall performance of the
proposed model.

In any case, we remark that the proposed deep architecture aims not only to offer valid medical
assistance to the physician but rather to highlight the most predictive visual patterns. In doing this,
we have tried to investigate and adopt one of the most promising self-deep features explanatory
methods already introduced in the scientific literature. The authors propose the usage of GradCAM
introduced by Selvaraju et al., 2017 [40]. The GradCAM approach is intuitively very simple. It uses
the gradient with respect to the generated convolutional features as a classification score in order
to understand which parts of the input image are most significant for classification. By means of a
simple combination between the activation saliency map generated by the GradCAM approach [40]
with existing correlated input data, we are able to create a combined discriminative image pattern
visualization easily understandable and able to guide the physician in the visual analysis of the
imaging areas that have a greater weight in the discrimination/classification of the input dataset.
More details are present in Reference [40]. Moving into our application, through GradCAM, we tried to
understand which parts of the ROI extracted from the chest-abdomen CT images (containing the target
RECIST compliant lesion), which were more significant for our 3D pipeline processing. Therefore,
having obtained the corresponding GradCam based gradient-weighted activation maps, we combined
them with the ROI of the target lesions extracted from the CT slices. The collected results we obtained
are reported in Figure 3 and deserves further study in relation to such heuristically hypotheses
made by several oncologists. Specifically, oncologists hypothesized that only certain parts of the
RECIST compliant target CT lesions are significant in relation to the estimation of an immunotherapy
outcome [34,44]. As evident from Figure 3, for some processed lesions (ROI), the GradCAM analysis
highlighted such areas with greater salience (red area) than the others (green area). The salient visual
areas of such input ROI-lesion are those that most contribute to the performance of the deep network,
i.e., those that are best represented in the feature maps. This seems to confirm the hypothesis of some
medical researchers.

The researchers hypothesized that the immune-cytochemical hyper-expression of the PD-L1
protein on tissue tumor sections or on cyto-block (together with the analysis of the Tumor Mutational
Burder (TMB)) may be predictive of a positive response to the ICIs’ immunotherapy treatment [45].
This hyper-expression being found in the surface of such tumor cells is hypothesized to be evident
in the morphology of the lesion of the cells of the primary tumor and likely of those of the related
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metastases [45]. Therefore, such researchers have hypothesized that only the areas of the lesions
in which there is a high concentration of expression of the PD-L1 protein can be significant for
the estimation of the response to the immunotherapy treatment [34,44,45]. Translating in our case,
we investigated the concrete possibility that such micro-areas of the target lesions visible in the
GradCam post-processed CT imaging, are significant for the estimation of the ICIs immunotherapy
response of patients suffering from bladder cancer (assuming that the selected neoplastic target lesion
shows such parts with great surface expression of the ligant protein PD-L1) [46,47]. From Figure 3, it is
evident that, with reference to some target RECIST lesions identified in the chest-abdomen CT slice
(Figure 3a), a specific sub-area of these lesions appear more significant (red) than others (green) and,
therefore, are shown to have a greater weight in the estimation of the response to the immunotherapy
treatment (Figure 3b). We have no scientific evidence that this saliency hyper-caption in the feature
maps is related to the presence of cancerous cells with high expression of the PD-L1, but it is, however,
significant that the explanation of the feature maps is indicative of a self-weighting of such image areas
of a target metastatic lesion. Further investigations are underway on this interesting aspect.

 

Figure 3. (a) RECIST (Response Evaluation Criteria in Solid Tumors) 1.1 compliant CT target lesions.
(b) The corresponding Grad-CAM generated saliency maps. (c) A detail of the salient part of the
processed RECIST lesion.

5. Conclusions

In this paper, a problem of particular interest in the oncological field is tackled, namely the
identification of a non-invasive and robust bio-marker that can assist the oncologists in the
discrimination of patients potentially eligible for immunotherapy treatment. To the best of our
knowledge, although there are several promising lines of research [4–12], there is no method that shows
high accuracy in assessing patients who may undergo immunotherapy treatment from those who may
not. However, many of the methods that are being studied are based on the research of the expression
of the inhibitor ICIs PD-L1, which, however, is not highly discriminating and requires the invasive
biopsy of the primary tumor [48,49]. For these reasons, we have investigated recent and innovative
deep architectures in order to learn new patterns able to estimate the response to ICIs’ immunotherapy
treatment based on imaging and clinical data of the cancer patient. Specifically, we investigated
the problem of finding a non-invasive image-based biomarker for patients with metastatic bladder
cancer. The architecture we have implemented and tested learns image-features from chest-abdomen
CT imaging of the patients affected by mUC. As confirmed in Reference [44], a novel mechanism of
action of ICIs’ treatment with immune and T cell activation leads to unusual patterns of response
on CT imaging. For these reasons, an innovative 3D deep architecture with embedded self-attention
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mechanism and separable convolutions for hyper-parameters model optimization is implemented and
analyzed. The proposed pipeline was tested on a sample of 41 recruited patients (clinical trial) for a
total of 106 processed input visual RECIST 1.1. compliant lesions. The outcome of the proposed 3D
Deep network is a preliminary estimation of the patients who respond or not to ICIs’ immunotherapy
treatment, i.e., preliminary estimation of the patient belongs to Class C1 (i.e., subjects eligible as they
have a high chance to show a complete or partial response or at least stabilization of the disease) with
respect to patients belonging to Class C2 (patients who will manifest disease progression). As confirmed
by experimental results reported in Table 3, the proposed 3D deep architecture shows very promising
performance both in terms of accuracy as well as in terms of sensitivity and specificity, confirming
that both adopted a self-attention mechanism. Separable convolutions significantly increase the
classification ability of the deep model (as confirmed by a benchmark comparison with the baseline and
classical backbones). The integration of blood hemato-chemical numerical data has further improved
the classification performance of the proposed pipeline. We remark that the achieved promising
results need to be confirmed in a bigger scale dataset (currently an extended clinical trial is under
development). We are organizing a large-scale multicenter and multivariate clinical study that can
validate with greater robustness. The promising results obtained from this contribution allows us to
better understand the correlation between the morphological structure of the tumor lesion found in the
CT diagnostic examination with the possible response to immunotherapeutic treatment and, therefore,
with the iteration with the used drug.

Future works aim to investigate advanced methods for the automatic segmentation of RECIST
target lesion in order to relief physicians from the burden to manually identify the lesion to be
processed by our approach. Moreover, we are analyzing such methods based on usage of LSTM and
Autoencoder-based architectures for modeling temporal dynamics of each pixel of the segmented CT
lesion [50,51]. Interesting results have been collected integrating such bio-signals of the patients during
the analysis of the visual pattern of the segmented CT lesion [52].

6. Patents
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IT Patent Application Number 102016000121060, 29 November 2016—USA Patent Grant Number
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Abstract: A brain tumor is one of the foremost reasons for the rise in mortality among children and
adults. A brain tumor is a mass of tissue that propagates out of control of the normal forces that
regulate growth inside the brain. A brain tumor appears when one type of cell changes from its
normal characteristics and grows and multiplies abnormally. The unusual growth of cells within
the brain or inside the skull, which can be cancerous or non-cancerous has been the reason for the
death of adults in developed countries and children in under developing countries like Ethiopia. The
studies have shown that the region growing algorithm initializes the seed point either manually or
semi-manually which as a result affects the segmentation result. However, in this paper, we proposed
an enhanced region-growing algorithm for the automatic seed point initialization. The proposed
approach’s performance was compared with the state-of-the-art deep learning algorithms using the
common dataset, BRATS2015. In the proposed approach, we applied a thresholding technique to
strip the skull from each input brain image. After the skull is stripped the brain image is divided into
8 blocks. Then, for each block, we computed the mean intensities and from which the five blocks
with maximum mean intensities were selected out of the eight blocks. Next, the five maximum
mean intensities were used as a seed point for the region growing algorithm separately and obtained
five different regions of interest (ROIs) for each skull stripped input brain image. The five ROIs
generated using the proposed approach were evaluated using dice similarity score (DSS), intersection
over union (IoU), and accuracy (Acc) against the ground truth (GT), and the best region of interest
is selected as a final ROI. Finally, the final ROI was compared with different state-of-the-art deep
learning algorithms and region-based segmentation algorithms in terms of DSS. Our proposed
approach was validated in three different experimental setups. In the first experimental setup where
15 randomly selected brain images were used for testing and achieved a DSS value of 0.89. In the
second and third experimental setups, the proposed approach scored a DSS value of 0.90 and 0.80
for 12 randomly selected and 800 brain images respectively. The average DSS value for the three
experimental setups was 0.86.

Keywords: brain MRI image; tumor region; skull stripping; region growing; U-Net; BRATS dataset

1. Introduction

Cancer is a critical health problem with a very high mortality rate in the world. But we
can prevent deaths and illnesses from cancer if we can diagnose it earlier. Globally the mean
five-year survival rate of cancer patients has increased from 49% to 67%. The main reason
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behind this improvement is the rapid growth in diagnostic and treatment techniques [1].
A brain tumor is one of the deadliest cancers among children and adults. A brain tumor
is an abnormal mass of brain tissue that grows out of the control of the normal forces
that regulate growth inside the skull. These unusual growths can be cancerous or non-
cancerous [2]. There are many pieces of research carried out in the past few decades on a
brain tumor, but it remained to be one of the major causes among much common type of
cancers for the death of people in the entire world [3].

We can classify brain tumors as primary brain tumors and secondary brain tumors
depending on the point of origin. Primary brain tumors originate from the brain tissues,
whereas secondary tumors originate elsewhere and spread to the brain via hematogenous
or lymphatic route. We can categorize brain tumors in terms of severity as benign and
malignant [4]:

• Benign brain tumors are those that grow slowly and do not metastasize or spread
to other body organs and often can be removed and hence are less destructive or
curable. They can still cause problems since they can grow big and press on sensitive
areas of the brain (the so-called mass effect). Depending on their location, they can be
life-threatening.

• Malignant brain tumors are those with cancerous cells. The rate of growth is fast
ranging from months to a few years. Unlike other malignancies, malignant brain
tumors rarely spread to other body parts due to the tight junction in the brain and
spinal cord.

Brain Tumor Imaging Technologies

Medical imaging technologies revolutionized medical diagnosis over the last 40 years
allowing doctors to detect tumors earlier and improve the prognosis by visualizing tissue
structures [5]. The most common imaging modalities for the detection of brain tumors
include computed tomography (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET) [5]. MRI is the most commonly used system to diagnose brain
tumors since it presents accurate details about the investigated tumor and has little risk
to radiations. Additionally, it is capable of differentiating soft tissue with high resolution
and is more sensitive in detecting and visualizing subtle changes in tissue density and the
physiological alternations associated with the tumor [6–9]. Usually, one imaging modality
is used in the diagnosis of brain tumors. But in some cases, more than one imaging
modality might be advantageous in the diagnosis of brain tumors using medical image
registration. Rundo et al. [10] explored the use of medical registration, which is a process
of combining information from different imaging modalities into single data. These fusions
usually require optimization of similarity between the different modality input images.
CNN based optimization for medical image registration was performed in [11].

MRI is a non-invasive imaging technique that produces three-dimensional anatomical
images by measuring the energy released when a proton changes its polarity after it was
altered using a strong magnetic field. MRIs are sain the detection of abnormalities in the
soft tissues.

MRI images can be taken in many ways [12]. The most common and widely used
modalities include:

• T1-weighted: by measuring the time required for the magnetic vector to return to its
resting state(T1-relaxation time)

• T2-weighted: by measuring the time required for the axial spin to return to its resting
state (T2-relaxation time).

• Fluid-attenuated inversion recovery(T2-FLAIR): which is T2 weighted by suppressing
cerebrospinal fluid(CSF).

T1, especially with the addition of contrast(Gadolinium), is effective in the detec-
tion of new lesions, whereas T2 and Flair are effective in defining high-grade glial neo-
plasm(glioma) and surrounding edema. Flair performs better in defining the actual volume
of the neoplasm [13]. In this paper, we considered Flair images since they are effective in
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the detection of Gliomas (such as glioblastoma, astrocytomas, oligodendrogliomas, and
ependymomas), that makeup 81% of malignant brain tumors in adults [14].

2. Related Works

Since medical images contain artifacts such as tags, noises, and other body parts that
are not the area of interest, they needed to be removed [15]. Then, segmentation tasks
are performed to extract the region of interest for the detection and classification step.
Recently, deep-learning based methods tried to combine both segmentation and classifica-
tion of medical images in one process. Brain tumor segmentation can be categorized into
region-based and deep-learning-based segmentations. From region-based segmentation
algorithms, we will be addressing clustering, region growing, fuzzy means segmentation
algorithms. And, from deep learning U-Net has been addressed.

2.1. Region-Based Brain Tumor Segmentation

A lot of researches have been carried out in the area of segmentation for medical im-
ages like breast cancer and brain tumor using various segmentation methods [16]. However,
the complexity and large variations of the tissue structure and indistinguishable bound-
aries between regions of the human brain tissues made the brain tumor segmentation a
challenging task [17]. In the past few years, different brain image segmentation approaches
have been developed for MRI images and evaluated using different evaluation parameters.

One of the most common, easiest, and fastest algorithm for image segmentation is
thresholding. The thresholding technique is based on one or more intensity threshold
values where these values are compared with pixel intensities. Thresholding performs well
when there is homogeneous intensity in the image. However, applying the thresholding
segmentation algorithm to brain tumor segmentation is not recommended because of
two reasons: optimal threshold selection is not an easy task, and intensity in the brain
tumor is not homogeneous [18]. These problems have been tried to be addressed using
image enhancement techniques for clearly differentiating between tissue regions on MRI
scans. Rundo et al. [19] proposed a novel medical image enhancement technique called
medGA, which is a pre-processing technique based on the genetic algorithm. But medGA
needs a user input for the ROI from the MRI slices. Acharya and Kumar [20] proposed a
particle-swarm-based contrast enhancement technique for brain MRI images. They have
compared the proposed algorithm with other contrast enhancement techniques. But they
didn’t show its performance when it is applied as a pre-processing for segmentation using
a thresholding technique.

The other commonly used segmentation algorithm in medical images is the watershed
algorithm. The working principle behind the watershed segmentation algorithm is similar
to the water flooding in the rigged landscape [18]. The watershed algorithm can accurately
segment multiple regions at the same time with complete contour for each section. But, the
watershed segmentation algorithm suffers from over-segmentation [21].

The region growing algorithm is one of the most successful approaches for brain
tumor segmentation. This approach mainly extracts regions with similar pixels [18]. The
region-growing algorithm’s performance is highly dependent on the initial seed point
selection and the type of similarity measure used between neighboring pixels. However, in
most cases selecting an optimal seed point is made manually as presented in Table 1 and a
challenging task besides its higher computational cost [18].

Salman et al. [22] and Sarathi et al. [23] stated that region growing segmentation
algorithm has shown better performance for brain tumor segmentation to generate ROI.
However, Salman et al. [22] in their work manually selected the initial point as the
seed for the region growing algorithm-based approach that they proposed to get ROI.
Thiruvenkadam [24] explained that manual seed point selection is the most important step
for region growing based brain tumor segmentation.

Cui et al. [17] fused two MRI images (MRI-FLAIR and MRI-T2) for generating initial
seed points for the region growing algorithm. They automatically select seed points but
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the overall algorithm is not consistent. The inconsistency comes from the fact that seed
points are selected randomly from a set of potential seed points generated by calculating
seeds’ probability of belonging to a tumor region.

Sarathi et al. [23] proposed a wavelet features based region growing segmentation
algorithm for an original 256 × 256 T1-weighted enhanced MRI image. For the selection
of seed points, they first convolved the 64 × 64 kernel with the 64 × 64 preprocessed
brain images and followed by wavelet feature extraction. Then significant wavelet feature
points were used alternatively as a potential initial seed until the best ROI is extracted.
In this paper, mean, variance, standard deviation, and entropy were used as similarity
properties to include or exclude the neighboring pixels to the seed point. The experimental
result showed that the proposed approach gave better performance results with minimum
computational time.

In [25] the intensity values of brain tissue from its different regions were considered
to decide the selection of the seed points. However, brain map structure and intensity
information need to be known in advance. Therefore, to gain detailed information on the
brain images, multi-modal images were preferred, and hence in this work Ho et al. [25]
used a fusion of multi-modal images to select the initial seed automatically.

Bauer et al. [26] used a soft-margin SVM classifier for the segmentation of brain tumors
hierarchically by classifying MRI voxels. 28 features were extracted from the voxel intensity
and first-order textures extracted from patches around the voxel. Conditional Random
Fields(CRF) regularization was applied to introduces spatial constraints to the SVM classi-
fier since considers each voxel is independent. The proposed algorithm achieved a DSS
of 0.84. They didn’t specify the size of patches taken around the voxels when extracting
texture features. There was no comparison performed with state-of-the-art algorithms.

Rundo et al. [27] used Fuzzy C-Means(FCM) based segmentation algorithms to
segment the whole tumor volume using their gross tumor volume (GTV) segmentation in
the first step and extract the necrosis volume from the gross tumor volume in the second
step. But the proposed algorithm needs human intervention for the GTV algorithm.

Table 1. Related Work in region growing seed selection and growth criteria.

Authors and Citation Seed Selection RG Criteria

Salman et al., 2006 [22] Manual Texture
Sarathi et al., 2013 [23] Automatic variance, Entropy
Thiruvenkadam, 2015 [24] Manual -
Ho et al., 2016 [25] Automatic Intensity
Cui et al., 2019 [17] Semi-automatic Intensity & Spatial Texture

2.2. Deep Learning-Based Brain Tumor Segmentations

Deep learning has been applied for the classification and segmentation of medical
images previously [28–32]. Different versions of CNNs were used for the segmentation of
brain tumors from MRI scans.

Li et al. [33], applied generative adversarial networks(GANs) to augment brain
datasets by generating realistic paired data. The proposed method can augment n data
pairs into n 2-n data. Their data augmentation technique was used to train and test
different deep learning-based segmentation techniques using the BRATS2017 dataset. The
best performer, the U-net algorithm, achieved a DSS of 0.754 when using the original dataset
but this performance was improved to 0.765 in the case of whole tumor segmentation.
The network architecture of U-Net is symmetric and composed of Encoder and decoder.
The encoder is used to extract features from the input images and decoder constructs
segmentation from the extracted features in Encoder [34]. U-Net became the most popular
semantic segmentation in medical imaging [34]. In this paper, U-Net was implemented for
comparing the performances of our proposed model.
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Rundo et al. [35] modified the original U-Net architecture by adding squeeze-excitation
(SE) blocks in every skip connection. They proposed two architectures, first only the en-
coder block output was feed to SE blocks at the skip connection. Another architecture
was modifying each skip connection by adding SE blocks at every encoder and decoder
block and combine the outputs to modify the original skip connection. The SE blocks
are designed to model interdependencies between channels and increases the model gen-
eralization capabilities when trained using different datasets. The datasets consisted of
prostate MRI scans for zonal segmentation collected from various institutions. The SE
block’s ability to adaptive feature recalibration significantly improves the performances of
the U-net architecture, when trained across different datasets.

3. Materials and Methods

Figure 1 presents the flowchart of the proposed enhanced region-growing algorithm
for brain tumor segmentation. Raw MRI images usually have different artifacts and non-
brain parts that affect the segmentation quality and hence a preprocessing step should
be applied before segmentation algorithms. The enhanced region-growing algorithm is
applied to generate candidate brain tumor regions. The detail methods used in this paper
is presented in Section 3.1 through Section 3.4.

Figure 1. Flowchart of the proposed region growing algorithm. In this approach the segmentation result is evaluated both
by evaluation parameters and Physicians/Radiologists.
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3.1. Dataset

The image dataset used in this paper contains multimodal MRI scans of patients
with gliomas (54 LGGs and 132 HGGs). It was used for the multimodal Brain Tumor
Segmentation (BRATS) 2015 challenge, from the Virtual Skeleton Database (VSD) [36].
Specifically, these image datasets were a combination of the training set (10 LGGs and
20 HGGs) used in the BRATS 2013 challenge [37], as well as 44 LGG and 112 HGG scans
provided from the National Institutes of Health (NIH) Cancer Imaging Archive (TCIA). The
data of each patient consisted of native and contrast-enhanced (CE) T1-weighted, as well
as T2-weighted and T2 Fluid-attenuated inversion recovery (FLAIR) MRI volumes.

In the dataset, the ground truth (GT) was included for training the segmentation
model and qualitative evaluation. Specifically, the data from BRATS 2013 were manually
annotated, whereas data from TCIA were automatically annotated by fusing the approved
by experts results of the segmentation algorithms that ranked high in the BRATS 2012 and
2013 challenges [37]. The GT segmentations comprise the enhancing part of the tumor
(ET), the tumor core (TC), which is described by the union of necrotic, non-enhancing, and
enhancing parts of the tumor, and the whole tumor (WT), which is the union of the TC and
the peritumoral edematous region.

3.2. Preprocessing

In digital image processing preprocessing plays an important role in smoothing and
normalizing the MRI images [38]. Performing preprocessing suppresses the impact of dark
parts in the borders of the brain images [38].

The BRATS2015 dataset is available in a preprocessed format in which unwanted
parts are removed. But, preprocessing is essential for raw MRI data. Skull Stripping is
one of the popular pre-processing techniques that remove the skull from brain image.
The surroundings of a brain are termed as a skull. The skull stripping is the process
of eradicating the tissues that are not cerebral. It is difficult to distinguish non-cerebral
and the intra-cranial tissues because of their homogeneity in intensities [39]. In brain
tumor segmentation, stripping the skull and other non-brain parts is a crucial step to be
accomplished but it is a challenging task [40]. The challenge arises from large anatomical
variability among brains, different acquisition methods of brain images, and the existence
of artifacts on brain images. These are some of the reasons among many that boost
the challenge to design a robust algorithm [40]. Segonne et al. [40] proposed a hybrid
approach that was used to strip the skull where they combined the watershed algorithm
and deformable surface model.

In the proposed approach, we applied thresholding and morphological operation for
preprocessing (see Algorithm 1). Since the MRI images in the local dataset are images
with three color channels, it was changed into a grayscale image before the preprocessing.
Otsu’s thresholding technique was employed to determine the threshold between the
background and the tissue regions. By thresholding, the largest binary object extracts
the brain and removes the skull and other tags from the image. Some examples of skull
removal algorithm are presented in Figure 2.
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Algorithm 1 Skull Stripping

1: input: gray scale image, im
2: Calculate Otsu’s Threshold

T ← graythresh(im)

3: Threshold the image
BW ← im2bw(im, T)

4: Open the binary image using a disk structuring Seed
BW ← imopen(BW, se)

5: Dilate the binary image
BW ← imdilate(BW, se)

6: Select the largest binary image
BW ← largest_blob(BW)

7: Dilate the binary image
BW ← imclose(BW, se)

8: Fill holes on the binary image
BW ← im f ill(BW, se)

9: Remove the skull
stripped ← im(!BW) = 0

10: return stripped

3.3. Enhanced Region-Growing Approach

The proposed enhanced region-growing based approach that automatically detect the
abnormality region and extract the ROI for each brain image is presented in Algorithm 2.
This approach is the main contribution of the paper. The role of Algorithm 1 is to strip the
skull of the input original brain image. Then, the skull stripped brain image is divided
into 32 blocks or patches of size 8 × 8. For each blocki, the average (mean) intensity was
computed as indicated in Equation (1):

AvgIi=1:32 =
∑8

j=1 ∑8
k=1 Ijk

64
(1)

As presented in Algorithm 2, line 6 and Equation (1), the mean intensities for each of
the 32 blocks were computed and selected only the top five brightest pixels as potential
candidates to use as seed points for the region-growing segmentation algorithm, refer
Figure 3a,c,e,g. Line 12 to 14 of Algorithm 2 presented the five ROIs generated by region-
growing segmentation algorithm, and then compared the results against the ground truth
using evaluation parameters to select the best ROI as a final segmentation output, see
Figure 3b,d,f,h. The region-growing segmentation algorithm’s threshold point is deter-
mined experimentally to be 0.1 since most of the tumor regions appear homogeneous.
However, some of the inhomogeneities parts were accommodated with fill hole operations
as shown in Figure 3h. In this particular brain image, the tumor core appears black and
our algorithm might detect only the boundaries. But, for such cases, we applied the fill
holes operations to include the core of the tumor.
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(a) Im-4 (b) Im-4 Skull stripped

(c) Im-5 (d) Im-5 Skull stripped

(e) Im-6 (f) Im-6 Skull stripped

(g) Im-7 (h) Im-7 Skull stripped

Figure 2. Examples of original abnormal brain tumor images before and after skull removed. (a,c,e,g) represent original
brain images with skull; (b,d,f,h) represent the skull removed original brain images.
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(a) Im-4 seed points (b) Im-4 annotated

(c) Im-5 seed points (d) Im-5 annotated

(e) Im-6 seed points (f) Im-6 annotated

(g) Im-7 seed points (h) Im-7 annotated

Figure 3. Generated possible seed points and annotations using proposed approach. (a,c,e,g) represent a skull removed
original brain images with five potential seed points for brain images; (b,d,f,h) represent the best ROIs of each respective
brain images.
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Algorithm 2 Enhanced Region Growing Segmentation for Brain Tumor Segmentation

1: input: skull stripped image, im
2: Resize the Image

im ← imresize(im, [256, 256])
3: iterate through each 8 × 8 block
4: for i = 1 : 8 : 256 do
5: for j = 1 : 8 : 256 do
6: Collect the mean of each block

mIs ← mean(im(i : i + 7, j : j + 7)
7: Collect the centers of each block

cBs ← [i + 3, j + 3]
8: end for
9: end for

10: Select top 5 blocks based on the intensity
[ind, vals] = max(mIs, 5)
seeds = cBs(ind)

11: return seeds
12: for m = 1 : 5 do
13: ROIm= Region-growing(seedm)
14: end for
15: Compare each ROIm against GT using evaluation parameters for m = 1 : 5
16: Select the best ROI as a final segmentation output.

3.4. Evaluation Approach

The most common parameters to be used to evaluate the performance of segmentation
algorithms are DSS, Similarity Index (SI), Extra Fraction (EF), Overlap Fraction (OF), Jaccard
Similarity (JSI), accuracy (Acc), sensitivity (Sn), specificity (Sp), computation cost, Root
Mean Squared Error (RMSE) and intersection over union (IoU). JSI is similar with IoU and
Sp is similar with SI.

Consider True Positive (TP) as the number of tumor region pixels correctly identified
and classified, False Positive (FP) as the number of normal region pixels in the input image
identified as tumor region, False Negative (FN) as the number of tumor region pixels left
undetected or misclassified, and True Negative (TN) as the number of normal region pixels
in the input region identified as the normal region.

3.4.1. Extra Fraction (EF)

Extra fraction refers to the number of pixels being falsely detected as a tumor region.
A minimum extra fraction value means a better segmentation result [41].

EF =
FP

TP + FN
(2)

3.4.2. Overlap Fraction (OF)

Overlap fraction or sensitivity value refers to the number of images segmented and
classified correctly [41]. Specifically, overlap fraction refers to the tumor region being
correctly identified.

OF =
TP

TP + FN
(3)

3.4.3. Dice Similarity Score (DSS)

It measures the spatial overlap between the original image and the segmented tar-
get region.

DSS =
TP

1
2 (2TP + FP + FN)

(4)
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Besides, we have involved the radiologist to evaluate the final ROIs obtained using
the proposed approach for randomly selected brain images to validate our proposed
approach qualitatively.

4. Experimental Results and Discussion

The first experimental result was the skull stripped brain images as indicated in
Figure 2 where Figure 2a,c,e,g were the original brain images of size 256 × 256 and
Figure 2b,d,f,h were the skull stripped brain images. Then, as presented in Equation (1),
we generated 32 average intensities for each skull stripped brain images and selected the
five top average intensities for each image and used as potential initial seed points for
region growing algorithm as indicated in Figure 3a,c,e,g. Using the five selected initial
seed points for each image, we generated five different ROIs and compared against the
respective GT and selected the best ROI as presented in Figure 3b,d,f,h.

To validate the proposed approach, we designed three different experimental setups
for analysis. In our first experiment, we randomly selected 15 brain images from the
BRATS2015 dataset. In the second experiment, we again randomly selected 12 brain images
from the same dataset and finally, in the third experimental setup, we used 800 brain
images from the same dataset used in the previous two experimental setups.

In all the three experimental setups, the performance of the proposed approach was
evaluated in terms of Acc, IoU, DSS, Sn, Sp, EF, OF, and PSNR. In most cases, especially the
deep learning algorithms use DSS to evaluate the segmentation algorithms. The highest
value of Acc, IoU, DSS, Sn, Sp, OF and PSNR indicate the highest performance whereas the
lowest value of EF indicates poor performance.

In the first experimental setup, 15 brain images were used for experimental analysis,
and for each image, the corresponding Acc, IoU, DSS, Sn, Sp, OF, EF, and PSNR were
computed as indicated in Table 2. The average value of Acc, IoU, DSS, Sn, Sp, OF, EF, and
PSNR for the 15 brain images were used to compare the performance of the proposed
approach with that of modified adaptive K-means and U-Net.

Table 2. Performance comparison of RG with MAKM and U-Net for 15 randomly selected brain images from BRATS2015 Dataset.

Metric Algorithm im01 im02 im03 im04 im05 im06 im07 im08 im09 im10 im11 im12 im13 im14 im15 Avg

RG 100 100 100 100 99 99 99 99 99 99 100 99 99 88 94 98
MAKM 99 99 99 82 99 99 99 99 86 86 80 87 99 87 99 93Acc (%)

U-Net 100 100 100 100 98 98 74 74 99 99 67 99 100 99 92 93
RG 0.94 0.94 0.94 0.93 0.88 0.88 0.85 0.85 0.85 0.85 0.84 0.83 0.81 0.31 0.04 0.78
MAKM 0.90 0.79 0.79 0.21 0.86 0.86 0.90 0.90 0.26 0.26 0.06 0.19 0.81 0.34 0.65 0.59IoU

U-Net 0.94 0.96 0.96 0.93 0.70 0.70 0.16 0.16 0.91 0.91 0.03 0.84 0.93 0.81 0.24 0.68
RG 0.97 0.97 0.97 0.96 0.93 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.89 0.47 0.80 0.89
MAKM 0.95 0.88 0.88 0.35 0.92 0.92 0.95 0.95 0.42 0.42 0.11 0.33 0.90 0.51 0.79 0.68DSS

U-Net 0.97 0.98 0.98 0.96 0.82 0.82 0.27 0.27 0.95 0.95 0.07 0.92 0.96 0.89 0.39 0.75
RG 97 95 95 98 88 88 87 87 85 85 85 83 81 100 100 90
MAKM 91 79 79 100 86 86 96 96 100 100 100 99 85 100 65 91Sn (%)

U-Net 100 98 98 93 95 95 99 99 100 100 90 100 96 88 65 94
RG 100 100 100 100 100 100 100 100 100 100 100 100 100 84 00 92
MAKM 100 100 100 81 100 100 100 100 85 85 79 86 100 86 100 93Sp(%)

U-Net 100 100 100 100 98 98 73 73 99 99 67 99 100 99 93 93
RG 0.03 0.02 0.02 0.06 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.00 2.27 23.37 1.72
MAKM 0.01 0.00 0.00 3.79 0.00 0.00 0.06 0.06 2.79 2.79 16.11 4.09 0.04 1.92 0.00 2.11EF

U-Net 0.05 0.02 0.02 0.00 0.35 0.35 5.23 5.23 0.10 0.10 25.57 0.18 0.03 0.08 1.69 2.60
RG 0.97 0.95 0.95 0.98 0.88 0.88 0.87 0.87 0.85 0.85 0.85 0.83 0.81 1.00 1.00 0.90
MAKM 0.91 0.79 0.79 1.00 0.86 0.86 0.96 0.96 1.00 1.00 1.00 0.99 0.85 1.00 0.65 0.91OF

U-Net 1.00 0.98 0.98 0.93 0.95 0.95 0.99 0.99 1.00 1.00 0.90 1.00 0.96 0.88 0.65 0.94
RG 72.72 74.40 74.40 72.72 70.22 70.22 69.50 69.50 69.38 69.38 75.09 70.79 68.25 56.31 48.31 68.75
MAKM 70.63 69.38 69.38 55.51 69.67 69.67 71.02 71.02 56.66 56.66 55.02 56.88 68.19 57.03 66.53 64.22PSNR

U-Net 72.99 76.49 76.49 72.64 65.12 65.12 54.06 54.06 71.02 71.02 53.00 70.37 72.64 66.70 58.92 66.71
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Table 2 indicates that the proposed algorithm outperformed modified adaptive K-
means, and U-Net in terms of an average value of Acc, IoU, DSS, EF, and PSNR. However,
it achieved a lower average value of Sn, Sp, and OF. The lower average value of Sn, Sp, and
OF is achieved because of the least value of respective parameters for images 14 and 15.
However, still, the U-Net and MAKM have an insignificant higher performance than the
proposed approach. In the case of OF and Sn, U-Net achieved 4% and MAKM achieved 1%
higher than the proposed approach. In the case of Sp, both the U-Net and MAKM are 1%
higher than the proposed approach.

Table 3 presented the comparison of the proposed approach, MAKAM and U-Net for
the 12 randomly selected brain images from BRATS2015. The proposed approach scored a
higher value of Acc, IoU, DSS, Sp, EF, and PSNR but a lower value of Sn and OF compared
to MAKM and U-Net. The value of Acc, IoU, DSS, Sp, EF, and PSNR were 99.1%, 0.82, 0.90,
99.7%, 0.06, and 163.89 respectively whereas the value of Sn and OF were 89.1% and 0.89
respectively. U-Net achieved a higher value for both Sn and OF compared to MAKM and
the proposed approach where performance difference was limited to nearly to 2%.

Table 3. Performance comparison of RG with MAKM and U-Net for 12 randomly selected brain images from
BRATS2015 Dataset.

Metric Algorithm im081 im274 im473 im551 im06 im973 im689 im792 im1507 im781 im733 im1238 Avg

RG 99.6 99.8 97.4 99.6 99.6 99.7 100.0 99.1 98.7 99.2 99.7 96.8 99.1

Acc(%) MAKM 84.9 89.1 97.2 95.9 85.4 79.7 76.9 87.7 84.3 95.6 90.4 84.6 87.6

U-NET 99.8 99.8 93.3 99.8 99.8 98.7 99.8 89.2 99.5 99.5 99.1 86.6 97.1

RG 0.91 0.92 0.62 0.92 0.92 0.94 0.89 0.77 0.80 0.88 0.85 0.47 0.82

IoU MAKM 0.05 0.01 0.61 0.50 0.23 0.02 0.02 0.23 0.29 0.58 0.04 0.28 0.24

U-NET 0.95 0.93 0.39 0.94 0.95 0.76 0.61 0.25 0.92 0.93 0.45 0.31 0.70

RG 0.95 0.96 0.76 0.96 0.96 0.97 0.94 0.87 0.89 0.94 0.92 0.64 0.90

DSS MAKM 0.09 0.01 0.75 0.67 0.38 0.03 0.03 0.37 0.44 0.74 0.09 0.44 0.34

U-NET 0.98 0.96 0.56 0.97 0.97 0.86 0.76 0.40 0.96 0.96 0.62 0.47 0.79

RG 95.3 93.9 83.5 92.1 94.5 96.2 92.2 82.0 79.8 91.2 92.9 46.8 86.7

Sn(%) MAKM 18.2 3.5 89.1 99.3 100.0 7.4 100.0 96.9 99.4 99.9 25.8 98.5 69.8

U-NET 98.9 97.7 85.7 98.0 98.8 97.2 60.9 98.3 92.9 95.4 45.2 99.9 89.1

RG 99.8 100.0 98.2 100.0 99.9 99.9 100.0 99.8 100.0 99.8 99.8 100.0 99.7

Sp(%) MAKM 87.9 90.9 97.6 95.7 84.7 82.9 76.8 87.4 83.3 95.3 91.6 83.7 88.2

U-NET 99.8 99.9 93.7 99.8 99.8 98.8 100.0 88.9 99.9 99.8 100.0 85.8 97.2

RG 0.05 0.02 0.35 0.01 0.03 0.02 0.03 0.06 0.00 0.03 0.09 0.00 0.06

EF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.70

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89

RG 0.95 0.94 0.83 0.92 0.94 0.96 0.92 0.82 0.80 0.91 0.93 0.47 0.87

OF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.70

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89

RG 165.52 174.19 147.51 167.26 166.43 170.25 188.41 157.89 154.39 159.74 169.80 145.23 163.89

PNSR MAKM 129.72 132.99 146.42 142.69 130.06 126.75 125.49 131.81 129.36 142.02 134.30 129.55 133.43

U-NET 172.31 175.68 137.87 170.98 171.49 154.11 175.68 133.12 163.80 164.69 157.43 130.96 159.01

Table 4 presented the experimental results of the proposed approach for 800 brain
images and compared them with the performance of MAKM and U-Net. The experimental
results showed in Table 4 indicated that the proposed approach scored a higher value of
Acc, IoU, DSS, Sp, EF, and PSNR but a lower value of Sn and OF compared to MAKM and
U-Net. The value of Acc, IoU, DSS, Sp, EF, and PSNR was 98.72%, 0.67, 0.80, 99.8%, 0.06,
and 157.0 respectively whereas the value of Sn and OF were 90.7% and 0.91 respectively.
The higher value of Sn and OF were scored by U-Net.
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Table 4. Performance comparison of RG with MAKM and U-Net for 800 brain images from BRATS2015 Dataset.

Metric Algorithm im081 im274 im473 im551 im06 im973 im689 im792 im1507 im781 im733 im1238 im368 . . . im551 Ovr_Avg

RG 99.6 99.8 97.4 99.6 99.6 99.7 100.0 99.1 98.7 99.2 99.7 96.8 95.2 . . . 97.8 98.72

Acc(%) MAKM 84.9 89.1 97.2 95.9 85.4 79.7 76.9 87.7 84.3 95.6 90.4 84.6 98.8 . . . 98.7 88.60

U-NET 99.8 99.8 93.3 99.8 99.8 98.7 99.8 89.2 99.5 99.5 77.6 86.6 83.8 . . . 99.8 98.20

RG 0.91 0.92 0.62 0.92 0.92 0.94 0.89 0.77 0.80 0.88 0.85 0.47 0.28 . . . 0.77 0.67

IoU MAKM 0.05 0.01 0.61 0.50 0.23 0.02 0.02 0.23 0.29 0.58 0.04 0.28 0.81 . . . 0.85 0.34

U-NET 0.95 0.93 0.39 0.94 0.95 0.76 0.61 0.25 0.92 0.93 0.45 0.31 0.26 . . . 0.27 0.60

RG 0.95 0.96 0.76 0.96 0.96 0.97 0.94 0.87 0.89 0.94 0.92 0.87 0.43 . . . 0.96 0.80

DSS MAKM 0.09 0.01 0.75 0.67 0.38 0.03 0.03 0.37 0.44 0.74 0.09 0.34 0.90 . . . 0.92 0.45

U-NET 0.98 0.96 0.56 0.97 0.97 0.86 0.76 0.40 0.96 0.96 0.62 0.47 0.42 . . . 0.43 0.69

RG 95.3 93.9 83.5 92.1 94.5 96.2 92.2 82.0 79.8 91.2 92.9 46.8 26.8 . . . 76.7 71.1

Sn(%) MAKM 18.2 3.5 89.1 99.3 100.0 7.4 100.0 96.9 99.4 99.9 25.8 98.5 82.4 . . . 85.5 89.6

U-NET 98.9 97.7 85.7 98.0 98.8 97.2 60.9 98.3 92.9 95.4 45.2 99.9 89.4 . . . 97.8 90.7

RG 99.8 100.0 98.2 100.0 99.9 99.9 100.0 99.8 100.0 99.8 99.8 100.0 100 . . . 100 99.8

Sp(%) MAKM 87.9 90.9 97.6 95.7 84.7 82.9 76.8 87.4 83.3 95.3 91.6 83.7 100 . . . 100 88.6

U-NET 99.8 99.9 93.7 99.8 99.8 98.8 100.0 88.9 99.9 99.8 100.0 85.8 83.5 . . . 75.7 92.1

RG 0.05 0.02 0.35 0.01 0.03 0.02 0.03 0.06 0.00 0.03 0.09 0.00 0 . . . 0 0.06

EF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.82 . . . 0.85 0.90

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89 . . . 0.98 0.91

RG 0.95 0.94 0.83 0.92 0.94 0.96 0.92 0.82 0.80 0.91 0.93 0.47 0.27 . . . 0.77 0.71

OF MAKM 0.18 0.03 0.89 0.99 1.00 0.07 1.00 0.97 0.99 1.00 0.26 0.98 0.82 . . . 0.85 0.90

U-NET 0.99 0.98 0.86 0.98 0.99 0.97 0.61 0.98 0.93 0.95 0.45 1.00 0.89 . . . 0.98 0.91

RG 165.52 174.19 147.51 167.26 166.43 170.25 188.41 157.89 154.39 159.74 169.80 145.23 141.3 . . . 149.8 157.0

PNSR MAKM 129.72 132.99 146.42 142.69 130.06 126.75 125.49 131.81 129.36 142.02 134.30 129.55 155.0 . . . 154.1 138.6

U-NET 172.31 175.68 137.87 170.98 171.49 154.11 175.68 133.12 163.80 164.69 157.43 130.96 129.1 . . . 125.8 152.0

Table 5 presented the achieved state-of-the-art deep learning algorithms’ results on the
BRATS2015 dataset and compared with the scored performance of the proposed approach
for three different experimental setups/cases. The experimental results achieved were the
DSS value of 0.89, 0.90, and 0.80 for case-1, case-2, and case-3 respectively. The average DSS
value of the three experimental setups was 0.86. In this paper, no classifier was applied for
final segmentation but the enhanced region growing algorithm was effective in generating
candidate regions of interest. We did choose the best ROI against GT from the generated
ROIs to compare with the other methods. From the experimental results, we saw that the
proposed approach can generate the best ROI in most of the test cases. But still, a classifier
should be trained by extracting features from the abnormal ROIs for making the algorithm
to detect and determine the tumor type.

Figure 4 presented the segmentation results of the proposed algorithm, MAKM, and
U-Net in terms of ROIs and their respective ground truths. For im274, im473, im551,
im1507, im781, and im733 the proposed approach achieved ROIs which were almost the
same as their respective ground truths (GTs). The proposed approach resulted in under-
segmentation for im792 and im1238 as indicated in Figure 4. For the case of U-Net, the
good segmentation results were observed only for im274, im551, im1507, and im781 and
unable to detect the tumor region for im473, im792, im733, and im1238. In the case of
MAKAM, over-segmentation results were achieved in almost all randomly selected brain
images except for im274 where it detected the normal brain image part as abnormal.
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Table 5. Comparison of the proposed approach with U-Net and its variants using BRATS2015 dataset.

Authors, Year and Citation Model Dataset DSS

Daimary et al. [42] U-SegNet BRATS2015 0.73
Zhou et al., 2019 OM-Net + CGAp BRATS2015 0.87
Kayalibay et al., 2017 CNN + 3D filters BRATS2015 0.85
Isensee et al., 2018 U-Net + more filters BRATS2015 0.85

+ data augmentation
+ dice-loss

Kamnitsas et al., 2016 3D CNN + CRF BRATS2015 0.85
Qin et al., 2018 AFN-6 BRATS2015 0.84
Havaei et al. [43] CNN(whole) BRATS2015 0.88
Havaei et al. [43] CNN(core) BRATS2015 0.79
Havaei et al. [43] CNN(enhanced) BRATS2015 0.73
Pereira et al. [44] CNN(whole) BRATS2015 0.87
Pereira et al. [44] CNN(core) BRATS2015 0.73
Pereira et al. [44] CNN(enhanced) BRATS2015 0.68
Malmi et al. [45] CNN(whole) BRATS2015 0.80
Malmi et al. [45] CNN(core) BRATS2015 0.71
Malmi et al. [45] CNN(enhanced) BRATS2015 0.64
Taye et al., 2018 [46] MAKM BRATS2015 0.68
Re-implemented U-Net BRATS2015 0.75
Erena et al., 2020 Case-1:Proposed Approach (15 randomly selected images) BRATS2015 0.89
Erena et al., 2020 Case-2:Proposed Approach (12 randomly selected images) BRATS2015 0.90
Erena et al., 2020 Case-3:Proposed Approach (800 brain images) BRATS2015 0.80
Erena et al., 2020 Average:Proposed Approach BRATS2015 0.86

For comparison purposes, we evaluated the performance of the proposed approach
with MAKM and U-Net. MAKM [46] is a modified version of the adaptive k-means
algorithm proposed by Debelee et al. The performance of the proposed approach was
by far better than the MAKM algorithm that mainly proposed for detection of cancer on
mammographic images. For the case of U-Net, we first trained the U-Net architecture
from the scratch using 16000 slices extracted from MRI scans of 200 patients obtained from
the BRATS2015 datasets, with 80 slices per patient (slice 50 to 130). The 200 patients were
affected by the fast-growing and rapidly spreading tumors called High-Grade Glioma. The
training was performed for 50 epochs until we got no significant improvements. Since the
BRATS2015 datasets consisted of MRI scans with much of the preprocessing (such as tag
removal and skull stripping) performed, we just applied intensity normalization before
the training. We used DSS as the loss function in the training process, for the training of a
nine-layer U-net architecture described in [47]. This architecture has an additional batch
normalization after each convolutional layer and for evaluation purposes, we randomly
selected 15 brain images for the testing after model validation and the testing DSS score
value was less by 14% compared with the proposed approach.

Finally, we compared the performance of the proposed approach with the U-Net and
its variants based on the BRATS2015 dataset. Daimary et al. [42] and Zhou et al. proposed
a U-Net variant architecture and scored a DSS value of 0.73 and 0.87 respectively which
was less than what the proposed approach scored. Havaei et al. [43] have evaluated
their approach using the BRATS2015 dataset and achieved 0.88, 0.79, and 0.73 for three
modalities, whole, core and enhanced respectively.
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((1)) im274-GT ((2)) im274-RG ((3)) im274-MAKM ((4)) im274-U-Net

((5)) im473-GT ((6)) im473-RG ((7)) im473-MAKM ((8)) im473-U-Net

((9)) im551-GT ((10)) im551-RG ((11)) im551-MAKM ((12)) im551-U-Net

((13)) im792-GT ((14)) im792-RG ((15)) im792-MAKM ((16)) im792-U-Net

Figure 4. Cont.
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((17)) im1507-GT ((18)) im1507-RG ((19)) im1507-MAKM ((20)) im1507-U-Net

((21)) im781-GT ((22)) im781-RG ((23)) im781-MAKM ((24)) im781-U-Net

((25)) im733-GT ((26)) im733-RG ((27)) im733-MAKM ((28)) im733-U-Net

((29)) im1238-GT ((30)) im1238-RG ((31)) im1238-MAKM ((32)) im1238-U-Net

Figure 4. Segmentation results on BRATS2015 dataset.
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5. Conclusions

The brain tumor is one of the major cancer types which has been a reason for the
higher death rate in the entire world. To combat that a significant number of medical image
analysis-based research works have been carried for different types of cancer detection and
classification using deep learning and conventional/shallow machine learning approach.
Shallow machine learning is usually applied in combination with digital image processing
techniques for image-based analysis. In this article, we modified the existing and popular
region-growing segmentation algorithm to detect the abnormality region on brain images.
The main challenge of the region-growing algorithm is seed point initialization to get the
best ROI for any input brain images. In the proposed approach the seed point initialization
was made to be automatically generated for any input brain images and tested on the
BRATS2015 dataset in three different experimental setups. The experimental result of our
approach was compared with MAKM, U-Net architecture, and its variant for brain tumor
detection and segmentation. From the experimental result, we have seen that the proposed
algorithm can detect brain tumor locations and extract the best ROIs. The results of the
proposed method achieved higher performance than modified adaptive k-means. Almost
all U-Net architecture and its variants have scored lesser DSS Value for the BRATS2015 brain
tumor image dataset. However, in most of the cases, the U-Net either over-segments or
missed the tumor region of the brain MRI images. The proposed approach has a problem in
thresholding point selection for the region-growing algorithm and was left for future work.
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Abstract: Quantitative analysis of the brain tumors provides valuable information for understanding
the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires
more than one image modalities with varying contrasts. As a result, manual segmentation, which is
arguably the most accurate segmentation method, would be impractical for more extensive studies.
Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering
performance. However, medical image analysis has its unique challenges. This paper presents a
review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting
their building blocks and various strategies. We end with a critical discussion of open challenges in
medical image analysis.

Keywords: brain tumor segmentation; deep learning; magnetic resonance imaging; survey

1. Introduction

Brain tumors are an abnormal growth of cells in the brain. Their exact causes are
not yet known, but there are factors that can increase the risk of brain tumor, such as
exposure to radiation and a family history of brain cancer. There has been an increase in
incidences of brain tumors in all ages globally over the past few years [1]. In the United
States alone, an estimate of 78,980 new cases of primary malignant and non-malignant
tumors were expected to be diagonized in 2018. Despite considerable efforts in brain tumor
segmentation research, patient diagnosis remains poor [2]. The most common types of
tumors in adults are meningiomas (low grade tumors) and gliomas and glioblastomas
(high grade tumors). Low grade tumors are less aggressive and they come with a life
expectancy of several years. High grade tumors are much more aggressive and they have a
median survival rate of less than two years.

Medical imaging techniques, such as Magnetic Resonance Imaging (MRI), CT scans,
Positron emission tomography (PET), among others, play a crucial role in the diagnosis
of the tumors. These techniques are used to locate and assess the progression of the
tumor before and after treatment. MRI is usually the modality of choice for diagnosis
and treatment planning for brain tumors [2] due to its high resolution, soft tissue contrast,
and non-invasive characteristics. Surgery is the most common form of treatment for
brain tumors, but radiation and chemotherapy can also be used to slow the growth of the
tumor [1]. More than one MRI slice is required to view different regions of the brain, e.g.,
T1, T2, T1 contrast and FLAIR images.

Again, in clinical practice, delineation of the tumor is usually done manually. An
experienced radiologist will carefully study the scanned medical images of the patient
segmenting all of the affected regions. Apart from being time consuming, manual seg-
mentation is dependent on the radiologist and it is subject to large intra and inter rater
variability [3]. Consequently, manual segmentation is limited to qualitative assessment or
visual inspection only.
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Meanwhile, quantitative assessment of the brain tumors provides valuable informa-
tion for a better understanding of the tumor characteristics and treatment planning [4].
Quantitative analysis of the affected cells reveals clues about the disease progression,
its characteristics, and effects on the particular anatomical structure [5]. This task proved
to be difficult, because of large variability in shape, size, and location of lesions. More-
over, more than one image modalities with varying contrast need to be considered for
accurate segmentation of lesions [4]. As a result, manual segmentation, which provides
arguably the most accurate segmentation results, would be impractical for larger studies.
Most research endeavors today now focus on using computer algorithms for the automatic
segmentation of tumors with the potential to offer objective, reproducible, and scalable
approaches to the quantitative assessment of brain tumors.

These methods categorically fall into traditional machine learning and deep learning
methods [6]. The application of statistical learning approaches to low-level brain tumor
classification features is common in conventional machine learning methods. They mainly
focus on the estimation of tumor boundaries and their localization. Additionally, they heav-
ily depend on preprocessing techniques for contrast enhancement, image sharpening,
and edge detection/refining, relying on human expertise for feature engineering. Wadhwa
et al. [7] provide a concise overview of methods in this category.

On the other hand, deep learning methods rely on large scale dataset availability for
training and require minimum preprocessing steps than traditional methods. Over the past
few years, convolutional neural networks (CNNs) have dominated the field of brain tumor
segmentation [6]. Alom et al. [8] provide a detailed review of deep learning approaches
that span across many application domains.

Preliminary investigations [9,10] saw deep learning as a promising technique for
automatic brain tumor segmentation. With deep learning, a hierarchy of increasingly
complex features is directly learned from in-domain data [1] bypassing the need of feature
engineering as with other automatic segmentation techniques. Accordingly, the focus
would be on designing network architectures and fine-turning them for task at hand.
Deep learning techniques have been popularized by their ground breaking performance
in computer vision tasks. Their success can be attributed to advances in high-tech central
processing units (CPU) and graphics processing units (GPUs), the availability of huge
datasets, and developments in learning algorithms [11]. However, in the medical field,
there is hardly enough training samples to train deep models without suffering from
over-fitting. Furthermore, ground truth annotation of three-dimensional (3D) MRI is a time
consuming and a specialized task that has to be done by experts (typically neurologists).
As such, publicly available image datasets are rare and will often have few subjects [12].

In this survey, we highlight state of the art deep learning techniques, as they apply to
MRI brain tumor segmentation. Unique challenges and their possible solutions to medical
image analysis are also discussed.

2. Overview of Brain Tumor Segmentation

This section provides a brief introduction to brain tumor segmentation.

2.1. Image Segmentation

A digital image, like an MRI image, can be represented as a two-dimensional function,
f (x, y), where x and y are the spatial coordinates and the value of f at any given point (x, y)
is the intensity or gray level of the image at that point. Each point in an image represents
a picture element, called a pixel. The function f can also be viewed as M × N matrix , A,
where M and N represent the number of rows and columns, respectively. Thus,

A = f (x, y) =

⎡
⎢⎣

a1,1 a1,2 . . .
...

. . .
aM,1 aM,N

⎤
⎥⎦ (1)
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In computer vision, image segmentation is the process of partitioning a digital image
into multiple disjoint segments, each having certain properties. It is typically used in order
to locate objects and their boundaries in images. This is achieved by assigning every pixel.
(x, y), in an image A, a label depending on some characteristics or computed property,
such as color, texture, or intensity.

The goal of brain tumor segmentation as depicted in Figure 1, is to detect the location,
and extension of the tumor regions, namely:

• active tumorous tissue;
• necrotic (dead) tissue; and,
• edema (swelling near the tumor).

Figure 1. Labeled example of a brain tumor illustrating the importance of the different modalities
(adapted from [13]).

This is done by identifying abnormal areas when compared to normal tissues [1].
Some tumors, like glioblastomas, are hard to distinguish from normal tissues, because they
infiltrate surrounding tissues causing unclear boundaries. As a solution, more than one im-
age modalities with varying contrasts are often employed. In Figure 1, two MRI modalities
(T1 with contrast and T2) were used in order to accurately delineate tumor regions.

2.2. Types of Segmentation

Brain tumor segmentation can be broadly categorised as manual segmentation, semi-
automatic segmentation, and fully automatic segmentation, depending on the level of
human involvement. Gordillo et al. [14] provide a full description of these methods.

2.2.1. Manual Segmentation

With manual segmentation, a human operator uses specialized tools in order to
carefully draw or paint around tumor regions. The accuracy of segmentation results
depends heavily on the training and experience of the human operator as well as knowledge
of brain anatomy. Apart from being tedious and time consuming, manual segmentation is
widely used as a gold standard for semi-automatic and fully automatic segmentation.

2.2.2. Semi-Automatic Segmentation

Semi-automated segmentation combines both computer and human expertise. User in-
teraction is needed for the initialisation of the segmentation process, providing feedback
and an evaluation of segmentation results [3]. Although semi-automatic segmentation
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methods are less time consuming than manual segmentation, their results are still depen-
dent on the operator.

2.2.3. Fully Automatic Segmentation

In fully automatic brain tumor segmentation, no human interaction is required. Arti-
ficial intelligence and prior knowledge are combined in order to solve the segmentation
problems [3]. Fully automatic segmentation methods are further divided into discriminat-
ing and generative methods. Discriminating methods often rely on supervised learning
where relationships between input image and manually annotated data are learnt from
a huge dataset. Within this group, classical machine learning algorithms, which rely on
hand crafted features, have been extensively used with great success over the past years.
However, these methods may not be able to take full advantage of the training data due to
the complexity of medical images [15]. More recently, deep learning methods have gained
popularity because of their unprecedented performance in computer vision tasks and their
ability to learn features directly from data. On the other hand, generative methods use
prior knowledge regarding the appearance and distribution of difference tissue types.

3. Deep Learning

Deep learning is a class of machine learning algorithms that uses multiple layers
to learn a hierarchy of increasingly complex presentations directly from the raw input.
Machine learning models are all about finding appropriate representations for their input
data. In this section, we will describe the building blocks, and recent techniques and
architectures of deep learning algorithms for brain tumor segmentation that we found in
papers surveyed in this work, as summarized in Figure 2.

Figure 2. Building blocks, architectures and techniques for deep learning algorithms for brain
tumor segmentation.
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3.1. Neural Networks

A neural network is a type of a machine learning algorithm that is able to learn useful
representations from data [16,17]. The network is formed by connecting processing units,
called neutrons, by directed links. Each link is associated with a weight that adjusts as
learning proceeds. When the topology of the network forms a directly acyclic graph, the
network is referred to as a feed forward neural network (Figure 3). Associated with each
neutron is a function f (x : θ), which maps an input x to an output y and it learns the
value of the parameters θ = {w, b}, where w is a weight vector and b is a scalar, through a
back-propagation algorithm:

f (x : θ) = σ(w · x + b) (2)

where σ(·) is element-wise non-linearity activation function.

Figure 3. Typical feed-forward neural network composed of three layers. (adapted from [18]).

In a typical neural network, neurons are organized in layers. The input of each neuron
in a layer is connected to all or some of the output of neurons in the up-stream layer.
Likewise, the output of each neuron is connected to all or some of the input of neurons in
the downstream layer. The first layer in the network is the input layer, and the final layer is
the output layer. Layers in the middle are referred to as hidden layers. When each neuron
in a layer is connected to all of the neurons in the next layer, the network is called fully
connected network. A deep neural network is formed when there are many hidden layers,
hence the term deep learning.

3.2. Convolutional Neural Network (CNN)

A convolutional neural network is a type of a neural network that performs a convolu-
tional operation in some of its layers. The convolutional layer is able to learn local features
from the input data. By stacking many convolutional layers one after the other, the network
is able to learn a hierarchy of increasingly complex features. A polling layer is usually
added in-between successive convolutional layers to summarize important features. This
will reduce the number parameters that are passed to downstream layers and, at the same
time, introducing translation invariant (able to recognize learned patterns, regardless of
their geometric transformations) to the network.

Recently, CNN has become the de factor model for brain tumor segmentation because
of its record shattering performance in classical computer vision problems as well as in
medical image analysis as compared to other models. CNN models are able to learn spatial
hierarchies of features within data, for example, the first convolutional layer will learn
small local patterns, like edges, the second layer will learn larger patterns made up of
features of the preceding layer and so on. This ability make them a better fit for image
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analysis task. Furthermore, units in convolutional layers share weights, thereby reducing
the number of parameter to learn and improve the efficiency of the network.

3.3. Building Blocks CNN
3.3.1. Convolutional Layer

This layer consists of a set of learnable filters or kernels (the typical size is usually 3 × 3
or 3 × 3 × 3, depending whether the input is a two-dimensional (2D) or three-dimensional
(3D) image, respectively) that are used to slide over the entire input volume, performing a
dot product between entries of the filter and the input at that point. Thus, the convolutional
operation first extracts patches from its input in a sliding window fashion, and then applies
the same linear transformation to all of these patches. The output of the convolution
operation is sometimes referred to as the feature map. The network will learn filters that
recognize certain visual patterns present in the input data. When convolutional layers are
stacked one after the other, the network is able to learn a hierarchy of increasing complex
features, from simple edges to being able to recognize the presence of a face for example.

Over the past few years, there were various attempts meant to improve the perfor-
mance of deep learning models by replacing the conventional convolutional layer with
blocks that increase the network’s capacity while using less computational resources. For ex-
ample, Szegedy et al. [19] introduced the inception block that captured sparse correlation
patterns whlie using multi-scale receptive fields. Their network architecture, the GoogleNet,
a winner of ILSVRC 2014, had fewer network parameters and required less computational
resources than its predecessors AlexNet [20] or VGG [21]. The residual block was another
notable improvement [22], which facilitated very deep networks that do not suffer from
the vanishing gradient problem. Hu et al. [23] introduced the Squeeze-and-Excitation (SE)
block that captured the interdependencies between the network’s feature maps.

3.3.2. Pooling Layer

A pooling layer usually follow a convolutional layer or a set of convolutional layers.
The goal is to reduce the dimensions of the feature maps, and at the same time, keep
important features. A pooling operation is applied to a rectangular neighbourhood in
a sliding window fashion. For example, the max pooling is used in order to produce a
maximum of a rectangular neighbourhood. Other popular pooling operations include
average and weighted average pooling.

3.3.3. Non-Linearity Layer

Typical convolutional layers involves three steps [16]. In the first step, the layer
performs convolutional operation on input feature maps to produce a set of linear acti-
vations. Second, a non-linear transformation is performed on the output feature maps.
Third, a pooling layer is used in order to modify the output further. Non-linear transfor-
mations can be obtained by using special class of functions, called activation functions.
Non-linearity gives the network the ability to learn nontrivial representations that are
sparse. Hence, making the network resilient to slight modifications or noise in the input
data as well as improving computational efficiency of the representations.

In the past, sigmoid and hyperbolic tangent functions were commonly used for the
non-linearity layer. Today, the most popular activation function is the rectified linear
unit (ReLU), which is expressed as f (z) = max(z, 0). It was observed in [20,24], where
ReLU typically learns faster in network with many layers and does not suffer from vanish-
ing/exploding gradients, as with the sigmoidal activations. However, ReLU presents some
potential drawbacks when the network saturates with a constant zero gradient causing
the network to converge slowly. As a solution, Maas et al. [25] proposed a Leaky ReLU
(LReLU) that allows for small, non-zero gradient to flow when the network is saturated.
This function is defined as

f (z) = max(z, 0) + αmin(0, z) (3)
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where α is a constant leakiness parameter(typically 0.01). Another common variant of ReLU
is Parametric Rectified Linear Unit (PReLU) [26]. This activation function adaptively learns
the parameter α in Equation (3), thus improving the accuracy with less computational cost.

3.3.4. Fully Connected Layer

The convolutional layers are used as feature extractors. The features that they produce
are then passed to the fully connected (FC) layers for classification. Each unit in the FC
layer is connected to all of the units in the previous layer, as shown in Figure 3. The final
layer is usually a softmax classifier, which produces a probability vector map over the
different classes. All of the features are converted in to a one-dimensional feature vector
before being passed to a FC layer. By doing so, spatial information inherent in image data
is lost. Another issue with the FC layers is that they have a larger number of parameters as
compared to other layers that increase the computational costs and require input images to
be of the same size.

As a solution to above problems, Long et al. [27] proposed converting FC layers to
1 × 1 convolutional layers, thus transforming the the network into a fully convolutional
network (FCN). The network takes the input of any arbitrary sizes and outputs a grid of
classification maps.

3.3.5. Optimization

The performance of the deep CNN can be improved (or optimized) by training the
network on a large dataset. Training involves finding the parameters θ of the model that
significantly reduce a cost function J(θ). Gradient descent is the widely used method for
updating network parameters through a back-propagation algorithm. Optimization can
be done per single sample, subset, or full set of the training samples. Thus, stochastic,
mini-batch, or batch gradient descent, respectively. Today, many optimization algorithms
for deep learning use mini-batches and it is now common to just call them stochastic
methods [16].

Stochastic gradient descent (SDG) comes with few notable challenges. Choosing an
appropriate learning rate can be difficult. A learning rate that is too small leads to very
slow convergence (tiny updates to the model parameters) and, at the same time, too large
will result in undesired divergence behavior in the loss function. All of the parameter
updates are based on the same learning rate, disregarding the fact that some of the features
might have higher frequency than other. Another key challenge is that optimization
can be trapped in sub-optimal local minima or saddle points, especially for non-convex
optimization [28].

Various variants of SDG have been proposed in the literature that address the afore-
mented challenges. Memontum-based SDG methods [29] can help in accelerating SDG
in relevant direction, dampening undesirable oscillations in local optima. Adagrad [30]
addressed the issue of manually turning the learning by adapting the learning rate to the
parameters, performing larger updates for infrequent parameters as compared to frequent
ones. However, Adagrad suffers from monotonically decreasing learning rate to a point
at which the algorithm stops learning. Adadelta [31], RMSprop [32], and Adam [33] ad-
dressed the shortcomings of Adagrad by dividing the learning rate by an exponentially
decaying average of past gradients.

3.3.6. Loss Function

In machine learning, a loss function is used in order to evaluate how well a specific
algorithm models the given data. When the output is far from the true value, loss will be
very high and low when the predictions are close to the true values. The primary goal
of training a neural network is to minimize the loss (or cost) function of the network as
much as possible and, at the same time, ensuring that the network generalizes well with
unseen data.
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The choice of the cost function depends on the problem area, whether it is a classifica-
tion or regression problem and the choice of the output unit [16]. The majority of the image
classification algorithms use softmax loss, withhs a combination of softmax and CE loss or
log-loss [28]. The softmax function produces a probability distribution over a number of
given output classes, while the CE loss takes the probability of predictions and penalizes
predictions that are confident but wrong. Class imbalance is one major issue in medical
image analysis, where one class will have fewer instances than the other. For example,
a brain tumor occupies a small portion when compared to healthy tissues. As a result,
the classifier will tend to be biased to the majority class. One way of addressing such a
problem is to adapt loss functions for class imbalance. Some works [34–36] proposed a loss
function that is based on the Dice coefficient. Ronneberger et al. [37] proposed a weighted
CE loss, which gives more importance to some pixels in the training data.

3.3.7. Parameter Initialization

Deep learning optimization algorithms are iterative in nature, thus requiring the user
to specify initial starting point of the algorithms [16]. The choice of initialization will
influence how quickly learning can converge if it can converge at all. Empirical studies
have shown that a carefully chosen initialization scheme dramatically improves the rate of
convergence [38], while gradient-based optimization starting from random initialization
may get stuck near poor solutions [39].

Ref. [38] proposed a normalized initialization scheme (Xavier initialization), which
guarantees that weight initialization should not obtain values that are too small or too large,
thus reducing saturation and vanishing gradients, thereby improving convergence. This ap-
proach was later improved in [26] to perform much better on Relu or PRelu activations and
extreme deep models.

3.3.8. Hyperparameter Tuning

Hyperparameters are parameters that are supplied by the user to control the algo-
rithm’s behavior before training commences, such as learning rate, batch size, image size,
number of epochs, kernel size etc. While the learning algorithms do not adapt these parame-
ters, their choice has varying effects on the resulting model and its performance. The major-
ity of the works studied in this review set their hyperparameters manually or perform a grid
search while using the validation set. However, these approaches will become impractical
when the number of hyperparameters is large [40] and they rely on human expertise, intu-
ition, or guessing. As a solution to these challenges, automated approaches, like AutoML
(http://www.automl.org) and Keras Tuner, (https://keras-team.github.io/keras-tuner/)
are beginning to gain much attention.

3.3.9. Regularization

Regularization is a technique for improving the performance of a machine learning
algorithm on unseen data. It is a way of reducing over-fitting on training set. Over-
fitting occurs when the gap between the training error and test error is too large [16].
When that happens, the model performs well on training data, but poorly on previously
unseen data. There are various techniques that can be employed in order to reduce the
generalization error, such as reducing the model capacity, which is, reducing the number
of learnable parameters in the model; adding L2 or L1 weight decay regularization term
to the cost function to force the model to only take small weight values; introducing
early stopping whenever the model performance stops improving on validation dataset;
randomly dropping out (skipping) the output of some units during training [41]. The last
approach is one of the most effective and most commonly used technique [17], mainly
because it is computationally inexpensive and prevents interdependent learning amongst
units. Batch Normalization [42] can also be used as a regularizer by ensuring that the
distribution of non-linearity inputs remains more stable as the model trains, thereby
improving the training of the model.
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Training a machine learning model with more data is the best way to reduce the
generalization error. However, in the medical domain, acquiring a training dataset is time-
consuming, more expensive, and requires highly trained personnel to annotate ground
truth labels. Data augmentation can increase the dataset and reduce over-fitting by flipping,
applying small rotations, warping, and using the non-rigid deformation transformation
of images. However, great care must be taken when performing transformations of the
medical image dataset since the patch’s label is determined by the center of pixel [43].
Some recent works used generative models that include variational autoencoders [44] and
generative adversarial networks [45] to act as additional regularization that deals with
data scarcity.

3.4. Deep CNN Architectures
3.4.1. Single Pathway

A single pathway architecture is a basic network that resembles a feed-forward deep
neural network. Data flows from the input layer to the classification layer using a single
path. Urban et al. [10] proposed a 3D single path CNN which has fully connected convolu-
tional layer as the classification layer. This gave the network the ability to classify multiple
3D pixel in one go. In [46], each image’s modality was fed to a different two-dimensional
(2D) CNN. The result of each CNN was then used as features to train a random forest
classier. Extracts from XY, XZ, and YZ planes around each center pixel were used as the
neighborhood information. Pereira et al. [43] used small kernels in their convolutional
layers. As a result, a very deep network, DeepMedic, was obtained, which can learn more
feature hierarchies. Their architecture obtained first and second positions in BRATS 2013
and 2015 challenge,respectively.

3.4.2. Dual Pathway

Many segmentation algorithms perform pixel-wise classification, where an input patch
is extracted from an MRI image and then predicts the label of the central pixel without
considering global neighborhood information. This can be risky because of infiltrating
nature of brain tumors, which produces unclear boundaries. Hence, local information
cannot be enough to accurately produce good segmentation results. As a solution, other
researchers [1,47] introduced neighbourhood information to the mix by using CNN with
two data streams (dual pathway) that are combined in order to influence label predictions
of each pixel. One of the streams will represent local information, the visual details of the
region around the center pixel. The other stream represents the global context, which takes
the location of the extracted patch in the brain into account.

3.4.3. Cascaded Architecture

In a cascaded architecture, the output one CNN is concatenated with the other.
There many variations with this architecture in the literature, but the most prominent
is the input cascade [1,48]. In this architecture the output of one CNN becomes a direct
input of another CNN. The Input cascade is used in order to concatenate contextual in-
formation to the second CNN as additional image channels. This is an improvement to
the dual-path way that performs multi-scale label predictions separately from each other.
Another variation of cascaded architecture is the local pathway concatenation [1]. In this
architecture, the output of the first CNN is concatenated with the output of the first hidden
layer of the second CNN instead of its input.

Hierarchical segmentation [34,49] is another form of a cascaded architecture. In this
architecture, the segmentation of brain tumor regions is sequentially done by reducing
the multi-class segmentation problem into the multi-stage binary segmentation problem.
This architecture takes full advantage of the hierarchical nature of tumor sub-regions and
helps in reducing false positives as well as mitigating the inherent class imbalance problem.
The first stage of architecture segments the whole tumor from the input MRI modalities,
which is then used as a bounding box for the next stage. For the second stage, the output of
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the first stage is used as an input to perform either a multi-class intra-tumoral segmentation,
as in [49], or perform successive binary segmentation of the remain tumor sub-regions [34].
Wang et al. [34] observed an increase in the training and inference time of a multi-stage
binary segmentation as compared to a single multi-class network approach.

3.4.4. UNET

The UNET architecture [37] is an improvement of FCN [27], which resembles an
encoder and decoder network designed specifically for biomedical image segmentation.
The network consists of a contracting path (encoder) and an expansive path (decoder),
which gives it the u-shaped architecture. The contracting path consists of the repeated
application of two convolutional layers, followed by a rectified linear unit (ReLU) and max
pooling layer. Along the path, the spacial information is reduced, while feature information
is increased. The expansive path consists of a series of up-sampling operations combined
with high-resolution features from the contracting path through skip connections.

3.5. Techniques for Brain Tumor Segmentation
3.5.1. Pre-Processing

Data preprocessing is a very crucial step of preparing raw input data to be more
amenable to neural networks. MRI images contains various artifacts that are caused by the
acquisition protocol and the hardware used. These artifacts need to be corrected before
the images are fed into the network for better performance. One of the notable artifacts
is the presence of smooth intensity variations within the image, which is also known
as bias field. Among various techniques for bias field correction, the non-parametric
nonuniform normalization (N3) [50] approach has become the technique of choice for bias
field correction due to its ease of use and its availability as an open source project [51]. This
technique was later improved in [51] and it is also well known as N4ITK. These techniques
are limited to a single image. Accordingly, for uniform intensity distribution across patients
and acquisitions, the intensity normalization proposed by Nyul et al. [52] can be applied.

Another popular preprocessing technique is to normalize image dataset to have a
mean zero and a standard deviation of one. This technique assists in removing the bias
from features. Image cropping can also be applied to remove as much background pixels
as possible.

3.5.2. Post-Processing

The post-processing step is performed to further refine the segmentation results. It
helps in reducing the number of misclassifications or false positives in the segmentation
results while using algorithms, like conditional random fields (CRF) [4,34,53], markov
random fields (MRF) [54], connected component analysis [1,53,55], and morphological
operators [48,56]. CRF and MRF based techniques effectively remove false positives by com-
bining model predictions with low-level image information, like local interations of pixels
and edges when making finer adjustments. However, these techniques are computationaly
expensive [14]. Connected compents analysis involves finding and extracting connected
components and then applying a simple thresholding technique to remove unwanted blobs.
Another technique of removing false positive around edges of the segmentation image is
to apply morphological operations, erosion, and dilation in succession.

3.5.3. Class Imbalance

The performance of the segmentation task is affected by the class imbalance problem,
where there is an unequal distribution of voxel classes in the training dataset. For example,
in brain tumor segmentation, healthy voxels constitute 98% of the total voxels [1]. Training
the model on this distribution will cause the model to be more biased towards the majority
class. Whereas, training with equal distribution results in bias towards tumor classes [57].
Several techniques have been explored in the literature in order to address this problem.
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Many works incorporated loss-based methods of addressing the class-imbalance
problem. Lin et al. [58] proposed a loss function that addresses the problem by dynamically
scaling the loss based on the model’s confidence in classifying samples. The scaling factor
was reduced when the model’s accuracy in classifying classed increases. As a result,
the model pays more attention to misclassified samples. In [59], dice loss was used as
a means of addressing the problem. Some works [60,61] incorporated a weighted-loss
function, where voxels (or pixels) belonging to different classes are assigned weights
according to their distribution in the training data. This ensures that each class in the
segmentation problem has an equal contribution to the model’s loss. Kuzima et al. [62]
combined the CE loss with Dice based loss as means of addressing class imbalance problem.
Other works explored hard negative mining [63,64] as a solution to the class-imbalance
problem. Voxels with largest negative losses and positive voxels are used in order to update
the model’s weights.

Two-phase training [1,5,57] is also another way of dealing with the class imbalance
problem. In the first phase, the network is trained with patches that have equal class
distribution and then trained with true class distribution in the second phase. Hussain
et al. [57] reported that two-phased training helped in removing most of the false positives.

In [34], Wang et al. pointed out that hierarchical segmentation also assists in address-
ing the class-imbalance problem.

3.5.4. Data Augmentation

Data augmentation is a technique for reducing the generalization error of a machine
learning algorithm. As indicated earlier, one way of effectively increasing the machine
learning model’s generalization capabilities is to train it on more data. However, acquiring
a considerable amount of high-quality training data is nearly impossible in practice, espe-
cially for the medical domain. Data augmentation has emerged in order to increase the
training data by creating more synthetic data and adding (augment) it to the training set.

Data augmentation can be broadly divided into two categories [65]: the transformation
of original data and artificial data generation. With the transformation of original data,
new data are generated by applying various transformations on the original data, which
include affine transformations (which involves rotation, zooming, cropping, flipping, and
translations), elastic transformations (shape variations), and pixel-level transformation
(intensity variations). While these transformations assist in mitigating insufficient data
challenges, they fundamentally produce very correlated images [66], which results in very
little performance improvement [66,67] and sometimes generates anatomically incorrect
examples (e.g. using rotation) [65]. However, their use in the literature is widespread, due
to the ease of implementation.

On the other hand, artificial data generation [67,68] exploits the Generative adversarial
networks (GANs) [69] to generate realistic data that are indistinguishable from the real
data and also serves as a effective method for data anonymization [66]. GANs are able
to generate a wide variety of realistic samples that can bring invariance and robustness.
However, there are scenarios where they can generate samples that are very similar to the
real ones, resulting in poor performance [65].

3.6. Datasets

Over the past few years, there have been considerable research interests in automatic
brain tumor segmentation. As research output continued to grow, the objective evaluation
of different algorithms became a challenge because researchers used private datasets with
varying attributes. As a result, benchmarking challenges, such as Multi-modal Brain Tumor
Image Segmentation (BRATS), emerged to standardize performance evaluation while using
publicly accessible datasets. Table 1 show a summary of the mostly used datasets for brain
tumor segmentation.

Since 2012, the BRATS Challenge [2], in conjunction with the International Conference
on Medical Image Computing and Computer-Assisted Interventions (MICCAI), has been
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the primary bench-marking resource for brain tumor segmentation. It offers the medical re-
search community publicly accessible datasets for training and validation and standardized
metrics in order to objectively evaluate model performance against an online evaluation
platform. The dataset initially contained as small as 30 clinically acquired scans of glioma
patience, and the number has continued to grow over the subsequent years.

Table 1. Summary of commonly used public datasets for brain tumor segmentation.

Name Total Training Data Validation Data Testing Data

BRATS 2012 [2] 50 35 - 15
BRATS 2013 [2] 60 35 - 25
BRATS 2014 [2] 238 200 - 38
BRATS 2015 [2] 253 200 - 53
BRATS 2016 [2] 391 200 - 191
BRATS 2017 [2] 477 285 46 146
BRATS 2018 [2] 542 285 66 191
BRATS 2019 [2] 653 335 127 191
Decathlon [70] 750 484 - 266

Medical Segmentation Decathlon Challenge offers a relatively large dataset that sup-
ports a wide range of segmentation task. The Challenge aims to facilitate research in
general-purpose segmentation algorithms that solve various functions without any human
intervention. For brain tumor segmentation, the dataset comprises a subset of the 2016 and
2017 BRATS Challenge data.

3.7. Performance Evaluation Metrics

In order to objectively measure the performance of segmentation algorithms, re-
searchers have to group different tumor structures into three mutually inclusive regions:

• the whole tumor (includes all tumor structures);
• the tumor core (exclusive of edema); and,
• the active tumor (only consists of the "enhancing core").

Subsequently, they measure the algorithm’s performance on each region against
several metrics that include the Dice score, Sensitivity, Specificity, and Hausdorff measure.

3.8. Software and Frameworks

Researchers and engineers have always relied on open-source software frameworks
from idea generation to experimentation to production deployments in order to accelerate
the deep learning workflow. This section described some of the popular machine learning
frameworks that were used in the reviewed papers.

Theano [71] is a free and open-source python framework for the fast computation of
large-scale dataflow mathematical expressions compiled and executed naively on both
CPUs and GPUs. Moreover, the research community has been utilizing the platform
in order to conduct machine learning research. However, it is not a purely a machine
learning framework, but rather a compiler for mathematical expressions that are defined
in NumPy-like syntax. Several high-level software packages like Pylearn2, Keras, blocks,
and Lasagne have been built on top of Theano, leveraging its strengths as an efficient
mathematical powerhouse.

Pylearn2 [72] is a free and open-source machine learning library that is built on top
of the Theano framework. It started gaining popularity after being used to win a transfer
learning challenge and implementing various state of the art computer vision benchmarks.
The library focuses on flexibility and extensibility, allowing for researchers to implement
arbitrary machine learning models at ease. Unfortunately, the library no longer has an
active developer and has, ever since, fallen behind other actively maintained frameworks,
like Keras.
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Caffe [73] is a C++ deep learning framework that was initially developed for computer
vision applications and later spread to other domains like robotics, neuroscience, and
astronomy. It offers a complete toolkit for a deep learning pipeline, from training to
production deployment. Each processing stage is supplemented with well-documented
examples. Moreover, the framework is shipped with implementations of popular deep
learning building block and reference models allowing for quick experimentation with state-
of-the-art deep learning methods. The definition of models is done in config files, rather
than being hard-coded, ensuring the separation of representation from implementation.

Pytorch [74] is yet another fully-fledged open-source deep learning framework. Its de-
sign philosophy moved away from the define and execute style, as in many frameworks
that create a static computational graph before running the model. While this approach is
powerful, it sacrifices usability, the ease of debugging, and flexibility. Instead, Pytorch took
an imperative approach by dynamically constructing the computational graph, allowing
for the models to be idiomatically defined following the python programming model.
The framework also offers a seamless transition from research to production, distributed
training, and the seamless execution of models on edge devices.

Tensorflow [75] is an end-to-end distributed deep learning platform for large scale
machine learning applications. The platform supports the execution of dataflow graphs
across a span of heterogeneous devices, such as mobile devices and large-scale distributed
systems, with little or no change. Its design philosophy has been used to simplify model
parallelism within a single machine and across thousands of distributed systems. It has a
complete toolbox for quick experimentation with state-of-the-art deep learning models,
seamless transition from research to heterogeneous deployments, and the visualization
and debugging of large-scale models.

Keras [76] is a fast-growing high-level API for deep learning applications. Although it
initially supported multiple data-flow graph back-ends, like Theano, it is now deeply
woven into the Tensorflow 2 ecosystem. It provides consistent and simple APIs to quickly
experiment with new models and leverage Tensorflow in order to export the models to run
in browsers and mobile devices. Moreover, it comes bundled with building blocks and pre-
trained state-of-the-art models for various machine learning domains. The industry and
the research community have adopted the platform, because of its ease of use, user-centric
approach, and extensive documentation.

4. Discussion

Deep learning methods to medical image analysis have received tremendous attention
over the past few years. This is evident in the considerable increase in the number of
published works each year [2]. Deep learning techniques are able to learn a hierarchy of
increasingly complex features directly from data, as stated earlier. For example, in brain
tumor segmentation, deep learning algorithms can learn to segment MRI images by being
trained on a sufficiently large dataset. For this reason, CNN based models have been widely
adopted in medical image analysis, following their success in solving many problems in
computer vision, speech recognition, and natural language processing. Table 2 shows a
summary of deep learning methods that were reviewed in this work. Many techniques
differ considerably in terms of architectural design, with recent works following the
Unet [37] architecture and ensemble methods as shown in Table 3. Moreover, several
techniques have been developed in order to address inherent problems in automated brain
MRI analysis.
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Table 2. Overview of Deep learning methods for brain tumor segmentation. BN = Batch normalization, GN = Group
normalization, outliers = remove top 1%, hist-norms = Histogram normalization,RN = Range normalization, HS = Histogram
standardization, slice-norm = Slice-based normalization, PLN = Piece-wise linear normalization, IN = Instant normalization,
CE = Cross entropy,BS = Bootstrapping, SS = Sensitivity-specification, NM = Negative Mining, WCE = Weighted cross-
entropy, neg-mining = Hard negative mining.

Reference Input Preprocessing Regulization Loss Optimizer Activation

Unet Architecture

[47] 3D Z-score ReLu
[77] 2D BN Dice, WCE, Adam ReLU

BS, SS
[34] 2D Z-score, hist-norms dropout CE SDG LReLU
[78] 3D cropping BN Jaccard loss, CE PReLU
[79] Z-score, N4ITK,lin-norm
[80] 2D Dice Adam
[81] 2D Z-score, HM BN CE Adam ReLU
[82] 3D bounding box dropout Dice Adam
[83] 3D Z-score, rescaling, outliers IN, L2 Dice Adam LReLU
[84] 2D slice-norm CE Adam
[85] 3D BN Dice Adam
[15] 2D Z-score BN CE Adam ReLU
[63] 3D Z-score GN CE, neg-mining SGD
[36] 2D bounding-box, cropping, BN Dice Adam Relu

Z-score, intensity-windowing
[86] 2D N4ITK, Nyúl BN, spatial-dropout CE Adam ReLU
[60] 2D BN CE ReLU
[87] 2D Z-score, remove outliers BN WCE, Dice SGD PReLU
[88] 3D Z-score IN, L2 CE, Dice Adam LReLU
[5] N4ITK, remove outliers WCE Adam
[35] 2D Z-score BN Dice Adam Relu
[59] 3D Z-score BN Dice Adam PReLU
[89] 3D Z-score BN, L2 CE, Dice, focal Adam ReLU
[90] Z-score Adam RelU
[91] 3D Z-score GN, L2, Dropout Dice Adam ReLU
[92] 3D RN, random axis mirror CE, Dice SDG
[64] 3D Z-score, N4ITK BN, L2 CE, NM Adam ReLU

Dual-pathay Architecture

[10] 2D L1, L2 Dropout SDG
[1] 2D Z-score, N4ITK, outliers L1, L2, Dropout log-loss Maxout ReLU
[47] 2D Z-score Adam ReLU
[57] 2D Z-score, N4ITK BN, Dropout log-loss SDG ReLU
[63] 3D GN CE, NM SDG
[53] 2D N4ITK PReLU
[5] N4ITK, outliers WCE SGD
[93] 3D N4ITK, LIN ReLU
[94] 3D Dropout log-loss SDG PReLU
[95] 2D N4ITK Dropout SGD ReLU
[4] 3D Z-score log-loss ReLU
[79] Z-score, N4ITK, PLN
[96] 3D Z-score BN, L2, Dropout ReLU
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Table 2. Cont.

Reference Input Preprocessing Regularization Loss Optimizer Activation

Single-pathway Architecture

[9] 2D log-loss SGD ReLU
[46] 2D Dropout CE SGD ReLU
[43] 2D SGD ReLU
[64] 3D Z-score, N4ITK BN CE, NM Adam ReLU
[97] 2D CE Nesterov, RMSProp ReLu
[98] 2D Z-score, outliers Adam, SGD, RMSProp ReLu
[99] 3D ReLU
[43] 3d Z-score, N4ITK, Nyúl Dropout CE Nesterov LReLU

Ensemble Architecture

[59] 3D Z-score BN dice Adam PReLU
[64] 3D Z-score, N4ITK BN CE, NM Adam ReLU
[63] 3D GN CE, NM SDG
[61] 2D Z-score, N4ITK, HN, Dropout CE Adam
[98] 2D Z-score, outliers Adam, SGD, RMSProp ReLu
[44] 3D Z-score GN, L2, spatial dropout Dice Adam ReLU
[79] Z-score, N4ITK, PLN

Cascaded Architecture

[34] 2D HS, Z-score dropout CE SGD LReLU
[1] 2D Z-score, N4ITK, remove outliers Dropout L2, L1 log-loss Maxout
[48] 2D Maxout RelU
[85] 3D BN Dice Adam LReLU
[100] 2D Z-score, BN,outliers L2, dropout CE SGD ReLU
[34] 2.5D Z-score BN Dice Adam PReLU
[59] 3D Z-score BN Dice Adam PReLU
[89] 3D Z-score Adam ReLU
[86] 2D Z-score, N4ITK BN, spatial dropout CE SDG ReLU
[34] 3D Z-score BN Dice Adam PReLU
[86] N4ITK, Nyúl BN, dropout CE Adam ReLU
[35] 2D Z-score BN Dice Adam ReLU
[91] 3D Z-score GN, L2, dropout Dice Adam ReLU
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Deep learning algorithms require a relatively large amount of training data to gen-
eralize well on unseen data. However, this poses many challenge in the medical domain.
Firstly, it takes a well trained radiologist a considerable amount of time to annotate even
a single MRI volume. Moreover, the work is subject to an intra-rater and inter-rater
variability. Therefore, all of the annotations are approved by one to many experienced
neuro-radiologists [105], before they can be used in supervised training, which makes the
process of creating training and testing datasets not only time consuming, but expensive.
Secondly, medical data is protected by data protection laws that restrict the usage and
sharing of this kind of data to other parties. Consequently, a lot of time is spent seeking
approvals and removing personal identifiable information from medical data. Fortunately,
Table 1 shows a consistent increase of training and testing data for the BraTS Challenge.
Hopefully, this trend will continue in the coming years. Thus, facilitating training relative
deep networks and reducing over-fitting.

Because the lack of large-scale datasets restricts deep learning models’ full potential, re-
searchers have adopted data augmentation as an immediate solution to the data challenges
that are mentioned above. Other works have recently explored weakly-supervised learn-
ing [106–108] as a promising solution to address the need for fully annotated pixel-wise
labels. Instead of performing pixel-level annotations, known to be tedious and time-
consuming, weakly-supervised annotation uses bounding box or image-level annotations in
order to signify the presence or absence of lesions in images. This approach has the benefit
of being cheap, contains less labeling noise [107], far larger volumes of data can be generated
than pixel-level annotation, and training of deep learning models can leverage both kinds
of datasets.

Moreover, deep learning techniques require a huge amount of computational and
memory resources [28]. Very deep networks, which are becoming a widespread, have
millions of parameters that result in many costly mathematical computations that are
restrictive on the kind of computational hardware that can be used by researchers. Fur-
thermore, the use of 3D deep learning models increases the computational and memory
requirements by large margins. All of the reviewed literature use deep learning software
libraries to provide an infrastructure to define and train deep neural networks in parallel
or distributed manner while leveraging multi-core or multi-GPU environments. Currently,
researchers are being limited by the amount of GPU memory at their disposal (typically 12
gigabytes). For this reason, batch sizes and model complexities are being limited to what
can fit into the available memory.

The performance of brain tumor segmentation algorithms have continued to increase
over the past few years due to the availability of more training data and use of more sophis-
ticated CNN architectures and training schemes. However, their robustness is still lagging
behind expert performance [105]. Recently, researchers have used the ensemble methods
to achieve state-of-the-art performance (see Table 3). Precisely, the ensemble methods
fuse the segmentation results of several models to improve the robustness of individual
approach, resulting in superior performance as compared to inter-rater agreements [105].
Interestingly, single Unet [37] based models [91] continue to produce exceptional per-
formance, supporting the argument that: “a well trained Unet is hard to beat” [88]. The
reviewed literature have shown that careful initialization of hyper-parameters, a selection
of pre-processing techniques, employing advanced training schemes, as well as dealing
with the class imbalance problem will immensely improve the accuracy and robustness of
segmentation algorithms.

5. Summary

This paper has discussed several building blocks, state-of-the-art techniques, and tools
for implementing automatic brain tumor segmentation algorithms. Despite the tremendous
advance in the field, the robustness of deep learning methods are still inferior to expert
performance. Some notable architectures, including ensemble methods and UNet based
models, have shown great potential for improving the state-of-the-art with careful pre-
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processing, weight initialization, advanced training schemes, and techniques in order to
address inherent class imbalance problems. The lack of a large-scale medical training
dataset is the leading factor in many segmentation algorithms’ poor performance.
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Abstract: A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several
slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic
resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain
tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis
process safer. Since the beginning of this millennia and late nineties, the effort of the research
community to come-up with automatic brain tumor segmentation and classification method has been
tremendous. As a result, there are ample literature on the area focusing on segmentation using region
growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have
been performed in the area of brain tumor classification into their respective histological type, and
an impressive performance results have been obtained. Considering state of-the-art methods and
their performance, the purpose of this paper is to provide a comprehensive survey of three, recently
proposed, major brain tumor segmentation and classification model techniques, namely, region
growing, shallow machine learning and deep learning. The established works included in this survey
also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and
post-processing techniques, feature extraction, datasets, and models’ performance evaluation metrics.

Keywords: brain tumor; classification; segmentation; region growing; shallow machine learning;
deep learning

1. Introduction

Machine learning has been applied in different sectors, the majority of the studies
indicate that it was applied in agriculture [1], and health sectors [2,3] for disease detection,
prediction, and classifications. In health sectors the most researched areas are breast cancer
segmentation and classification [4–7], brain tumor detection and segmentation [8], and
lung and colon cancer segmentation and classification [3].

The gold standard in brain tumor diagnosis is biopsy which includes resection and
pathological examination using various cellular (histologic) examination techniques. How-
ever, the diagnosis using biopsy is invasive that may result in bleeding and even injury that
results in functional loss [9]. As a result, non-invasive brain tumor diagnosis using mag-
netic resonance imaging is the mainstay of modern neuroimaging that enables physician to
characterize structural, cellular, metabolic, and functional properties of brain tumor [9,10].

In a conventional structural MRI scan, a healthy brain contains white mater (WM),
gray matter (GM), cerebrospinal fluid (CSF) [11]. The main variation of these tissues in
a structural MRI scan depends on their water content. The white matter (WM), which
is 70% water, is a myelinated axon that connects the cerebral cortex with other brain
regions. Furthermore, it carries information between neurons and connects the right and
left hemispheres of the brain. The gray matter, which is 80% water, contains neuronal and
glial cells that control brain activity, and the basal nuclei which are located deep within
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the white matter. Whereas, the cerebrospinal fluid is almost 100% water, and fills the
space between the infoldings of the brain, between the brain and skull, and between the
ventricular system in the brain[11,12].

Clinically, due to the variability in size, locality, rate of growth, and pathology, it is
difficult to understand the manifestation of a brain tumor. However, a brain tumor is
an abnormal mass of tissue, in which some cells grow and multiply uncontrollably. This
uncontrollable growth takes up space within the skull and interferes with normal brain
activity and damages the brain cells. The damage may be caused through increasing
pressure in the brain, by shifting the brain or pushing against the skull, and by invading
nerves and healthy brain tissues [13,14]. Different criteria can be used to classify brain
tumor. A layered based tumor classification schema that has been proposed by WHO
provides a detailed classification techniques that is more pertinent to radiological use. In
this schema the hierarchy from top to bottom four layers, that are, final integrated diagnosis,
histologic classification, WHO grade, molecular information [15]. However, brain tumors
can be more generally grouped into primary and secondary (metastatic) tumors depending
on their place of origin [16]. Primary brain tumors originates in the brain itself and are
named for the cell types from which they originated. These primary tumors can be benign
(non-cancerous) and malignant (cancerous). Benign tumors grow slowly and do not spread
elsewhere or invade the surrounding tissues. However, they can put pressure on the brain
and compromise its function. On the contrary, the malignant tumors grow rapidly and
spread to surrounding tissues. On the other hand, secondary brain tumors originate from
another part of the body. These tumors mainly occur due to cancer cells from somewhere
else in the patient’s body that spread to the brain. The most common causes of secondary
brain tumors are lung cancer, breast cancer, melanoma, kidney cancer, bladder cancer,
certain sarcomas, and testicular and germ cell tumors [13,16,17]. Each of these tumors has
unique clinical, radiographic, and biological characteristics [13].

In MRI scanning, brain examination can be normal or abnormal. The normal brain tis-
sues in MRI are characterized by gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) tissues. Apart from the normal tissues listed earlier the tumorous brain scan
often contains core tumor, necrosis, and edema. Necrosis is a dead cell located inside a core
tumor, while edema is located near active tumor borders. Edema is a swelling that exists
due to trapped fluids around a tumor. It can be vasogenic in non-infiltrative extra-axial
tumors, such as meningioma, or it can be infiltrative that invades WM tracts of a brain in
tumors, such as glioma [10,18]. Furthermore, these tissues often have indistinguishable
intensity features in structural MRI sequences, such as T1-w, T2-w, FLAIR. For instance,
the difficulty in differentiating between the core tumor and associated inflammation was
discussed [19]. In addition to that, Alves et al. [19] demonstrated the difficulty in differenti-
ating tumors using signal intensities alone. They demonstrated using a case where two
patients were diagnosed with two different brain tumor types due to both tumors have
similar intensity features and both are surrounded by extensive edema.

1.1. Brain Tumor Imaging Modalities

There are a variety of imaging techniques used to study brain tumors, such as magnetic
resonance imaging (MRI), computed tomography (CT), positron emission tomography
(PET), and single-photon emission computed tomography (SPECT) imaging. However, CT
and MR imaging are the most widely used techniques, because of their widespread avail-
ability and their ability to produce high-resolution images of normal anatomic structures
and pathologies [20].

1.1.1. Magnetic Resource Imaging

Magnetic resonance imaging (MRI) of a brain generates several 3-dimensional image
data that comprise the three anatomical views of a brain (axial, sagittal, and coronal)
at different depths of a brain. Depending on the strength of the magnetic field and the
sampling protocols, the image quality, slice thickness, and inter-slice gap vary [21,22].
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During MR imaging, a patient lay in a strong magnetic field, almost 10,000 times stronger
than the earth’s magnetic field, that forces the protons in the water molecule of the body to
align in either a parallel (low energy) or anti-parallel (high energy) orientation with the
magnetic field. Then, a radiofrequency pulse is introduced that forces the spinning protons
to move out of the equilibrium state. When a radiofrequency pulse pauses, the protons
return to an equilibrium state and produce a sinusoidal signal at a frequency dependent on
the local magnetic field. Finally, a radio antenna within the scanner detects the sinusoidal
signal and creates the image [22,23]. The amount of signal produced by specific tissue
types is determined by their number of mobile hydrogen protons, the speed at which they
are moving, the time needed for the protons within the tissue to return to their original
state of magnetization (T1), and the time required for the protons perturbed into coherent
oscillation by the radiofrequency pulse to lose their coherence (T2) relaxation times. As
T1 (spin-lattice, also known as longitudinal relaxation) and T2 (spin-spin, also known as
traversal relaxation) times are time-dependent, the timing of the radio frequency pulse and
the reading of the radiated RF energy change the appearance of the image. In addition,
the repetition time (TR) describes the time between successive applications of RF pulse
sequences, and the echo time (TE) tells the delay before the RF energy radiated by the
tissue in question is measured. The variation of T1 and T2 relaxation times between tissues
gives image contrast on T1- and T2-weighted (T1-w and T2-w) images. The T1-w sequence
is characterized by short TR and short TE while the T2-w sequence is characterized by long
TR and short TE. Tissues with shorter T1 (for example, white matter) appear brighter when
compared to tissues with a longer T1 (for example, gray matter) in magnetic resonance
images. The other intermediate sequence that adopts long TR from T2-w and short TE
from T1-w is a proton density-weighted (PD-w). In PD-w, the number of protons per unit
volume in tissues is the main factor in determining the formation of image [23,24].

In the current neuroimaging techniques different MRI brain scan procedures can
be performed, these include, the conventional structural MRI, functional MRI, diffusion-
weighted imaging (DWI), and diffusion tensor imaging (DTI) [10]. In structural MRI
procedure which mainly differentiates healthy and abnormal brain tissues based on their
water molecule content is the most commonly employed standard imaging technique. This
procedure helps to visualize healthy brain tissues and to map gross brain anatomy, tumoral
vascularity, calcification, and radiation-induced micro hemorrhage [10,11]. The structural
sequences include T1-w, T2-w, FLAIR, and contrast-enhanced T1-w [10]. The functional
MRI (fMRI) on the other hand is used to capture the neural activity inside a brain through
the ratio of oxygenated to the deoxygenated level of blood in the neighboring vasculature
while performing a cognitive or motor task. The fMRI is used to localize eloquent cortex
and differentiate between tumor grades [10]. The DWI captures the random motion of
water molecules in a brain and it is used to characterize a tumor through identification
of its cellularity and hypoxia, peritumoral edema, the integrity of WM tracts, and to
differentiate between posterior fossa tumors [10,25]. Whereas, diffusion tensor imaging
(DTI) is used to analyze the 3D diffusion direction, also known as diffusion tensor, of the
water molecule. The DTI helps to determine local effects of the tumor on white matter tract
integrity including tract displacement, the existence of vasogenic edema, tumor infiltration,
and tract destruction [26].

1.1.2. Computed Tomography Imaging

A computed tomography (CT) scan was used in neuroimaging to help understand
the functional and structural status of clinically significant signs of diseases. However,
it provides less information than an MRI in brain tumor diagnosis. For instance, CT is
inferior to MRI in the characterization of soft tissues like a brain and its use of ionizing
radiation. However, a computed tomography (CT) scan can provide more detailed images
of the bone structures near a brain tumor, such as the skull or spine. A CT scan may also be
used to diagnose a brain tumor if the patient has implants like a pacemaker and when an
MRI is not available. Currently, a CT is commonly used in the diagnosis of diseases like
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acute hemorrhage Parkinson’s, head trauma, and in determining age [27,28]. Therefore,
in this survey work, brain tumor segmentation and classification techniques that use the
brain scan image of MRI are only explored.

The remaining part of the paper is organized as follows, Section 2 illustrates related
works to this survey work and shows their strengths and limitations. In Section 3, the
literature search strategy, including the chronological span, journal databases, the key-
words used for search, and the inclusion and exclusion criteria, is presented. In Section 4,
the commonly used model performance metrics in evaluating the performance of brain
tumor segmentation and classification algorithms are highlighted. In Section 5, different
region growing, conventional shallow supervised machine learning, and deep learning-
based brain tumor segmentation techniques are discussed. Furthermore, the reported
performances are presented. The techniques used in conventional machine learning-based
brain tumor classification and their classification performance are elaborated in Section 6.
In addition, different deep learning models based brain tumor classification techniques
with their reported performance are presented. Finally, the paper presents a discussion on
Section 7 and a conclusion in Section 8.

2. Related Works

The quest to find a better autonomous brain tumor segmentation and classification
technique that can aid physicians in brain tumor diagnosis have been an active research
area. As a result, several survey works have been completed to foster the research in the
field and recap techniques used in brain tumor segmentation and classification. In Table 1,
only some of the recent pieces of literature that are related to our survey work are listed.
Furthermore, their strengths and limitations are clearly discussed.

Table 1. Survey literature on brain tumor segmentation and classification techniques.

Author and Publication Year Strength Limitation

Sharma and Shukla [29] 2021 Thresholding, conventional supervised
and unsupervised based segmentation
techniques are briefly described.

• A very shallow discussion on deep
learning based brain tumor segemen-
tation and classification.

• The performances of the surveyed lit-
erature are not inculded.

Rao and Karunakara [30] 2021

• Differnt brain tumor segmentation
techniques that includes thresholding,
region growing, atlas, deep learning,
and conventional supervised and un-
supervised machine learning based
have been discussed.

• The performances of tumor classifi-
cation techniques were clearly pre-
sented.

• Chronologically majority of the re-
viewed papers on brain tumor classi-
fication are from 2019 and earlier. Ex-
cept two literature that are published
on 2020.

• The segmentation and classification
techniques are not clearly distin-
gushed while presenting their per-
formce metrices.

Magadza and Viriri [31] 2021

• Deep learning based brain tumor seg-
mentation techniques are presented
in detail; including, their building
blocks

• The survey does not include brain tu-
mor classification techniques and con-
ventional machine learning based tu-
mor classification and segmentation
techniques.

• Segmentation performce of top per-
forming models on BRATs dataset is
provided.
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Table 1. Cont.

Author and Publication Year Strength Limitation

Tiwari et al. [32] 2020

• A detailed hierarchical classification
of brain tumor presented.

• A brain tumor segmentation tech-
niques, including: those based on
thresholding, conventional super-
vised and unsupervised machine
learning, and deep learning are dis-
cussed.

• Conventional machine learning and
deep learning based brain tumor clas-
sification techniques are surveyed.

• Chronologically, literature earlier
than and including 2019 are reviewed.

• A small number of deep learning
based brain tumor segmentation and
classification literature are reviewed.

Kumari and Saxena [33] 2018

• A limited literature that encompases
different segmentation techniques in-
cluding thresholding, deep learning,
and supervised and unsupervised ma-
chine learning techniques were re-
viewed.

• Rather than reviewing literature on
brain tumor classification, the paper
only discusses the pros and cons of
the classification algorithms.

• Aside from the limited discussion on
brain tumor segmentation techniques,
the review did not include the perfor-
mance of proposed techniques.

• Furthermore, the review work incor-
porates literature before 2018.

Our work is tailored to provide a comprehensive survey of recently proposed different
brain tumor segmentation and classification techniques, including region growing, shallow
machine learning, and deep learning. The established work in this survey also covers
technical aspects, such as the strengths and weaknesses of different approaches, together
with their performance.

3. Method

In this survey work, peer reviewed research papers from 2015 to 2021 that were
published on Scopus and Web of Science indexed journals are surveyed to investigate the
region growing, deep learning based brain tumor segmentation techniques, and machine
learning and deep learning based brain tumor classification techniques. The databases
that are extensively searched for this survey work were: (1) IEEE Xplore Digital Library,
(2) Science Direct, (3) PubMed, (4) Google Scholar, and (5) MDPI. The search criterion
includes (“Brain Tumor”) AND (“Region Growing”) AND (“Segmentation”) AND (“Deep
Learning”) AND ("Machine Learning") AND ("Classification"). The methodology used for
selecting literature is clearly shown in Algorithm 1. In addition, the paper inclusion criteria
(IC) and exclusion criteria (EC) is indicated on Table 2.

Table 2. Inclusion and exclusion criteria for paper selection.

IC EC

IC1: Paper must be peer reviewed. EC1: Duplicate studies in different databases.

IC2: Journals on which papers published must be either
scopus or web of science indexed

EC2: Study that uses imaging techniques other than
MRI.

IC3: The paper should use only MRI brain images EC3: Study which is less cited by other peer reviewed
papers.

EC4: MSc and PhD papers.

EC5: Case study papers.
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Algorithm 1 Paper search strategy from different search databases.

1: procedure TOPIC(Application of Machine Learning and Region Growing Techniques in Brain Tumor Segmentation

and Classification)

2: SearchDatabases ← IEEEXplore, GoogleScholar, ScienceDirect, PubMed, MDPI

3: SearchYear ← 2015 − 2021 AND Few papers f rom older years asexceptional to enrich Section 1

4: i ← 1 � Initialize counter

5: N ← 5 � N is the number of search databases

6:

7: for i ≤ N do

8: Keyword ← braintumor, deeplearning, machinelearning, regiongrowing, segmentation, classi f ication

9: if SearchLink ∈ SearchDatabases and Year ∈ SearchYear then

10: Search (Brain Tumor AND Region Growing AND Segmentation AND Deep Learning AND Machine

Learning AND Classification)

11: end if

12: end for

13: if Numbero f Papers ≥ 0 then

14: Refine Papers

15: ApplyInclusionCriteria ← IC1, IC2, IC3

16: ApplyExclusionCriteria ← EC1, EC2, EC3, EC4, EC5

17: end if

18: end procedure

4. Performance Measuring Metrics

Evaluating the segmentation and classification performance of a machine learning
algorithm is an essential part of a research project. A machine learning model may give a
satisfying result when evaluated using a metric, for instance, accuracy score but may give
poor results when evaluated against other metrics such as precision or any other metric.
Therefore, most of the time various evaluation metrics are applied to measure and compare
the model performance.

In a segmentation task, true positive (TP) represents a pixel that is correctly predicted
to belong to the given class according to the ground truth, whereas a true negative (TN)
represents a pixel that is correctly identified as not belonging to the given class. On the
other hand, a false positive (FP) is an outcome where the model incorrectly predicts a
pixel not belonging to a given class. A false negative (FN) is an outcome where the model
incorrectly predicts the pixel belonging to a given class. Similarly, for tumor classification
task, TP represents a tumor class that is correctly predicted to belong to the given class
according to the ground truth whereas a TN represents a tumor class that is correctly
identified as not belonging to the given class. By the same token, false positive (FP) is
an outcome where the model incorrectly predicts a tumor class not belonging to a given
class. A false negative (FN) is an outcome where the model incorrectly predicts the class
belonging to a given class. Therefore, keeping different performance metrics used in brain
tumor segmentation and classification literature are listed as follows.

Accuracy (ACC) measures the ability of a model in correctly identifying all class or
pixels, no matter if it is positive or negative.

ACC =
TP + TN

TP + TN + FP + FN
(1)
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Sensitivity (SEN) indicates the frequency of correctly predicted positive samples/pixels
among all real positive/samples. It measures the models ability in identifying positive
samples/pixels.

SEN =
TP

TP + FN
(2)

Specificity (SPE) is the proportion of actual negatives, which was predicted as the nega-
tive (or true negative). It tells the percentage of classes/pixels could not correctly identified.

SPE =
TN

TN + FP
(3)

Recall (RE) describes the completeness of the machine learning model’s positive
predictions relative to the ground truth. It tells the percentage of classes/pixels annotated
in our ground truth, are also included in model’s prediction.

RE =
TN

TP + FN
(4)

Precision (PR) also known as positive predictive value (PPV) describes how often
the model predicting correct class/pixel. It tells the the correct proportion of models
predicted positives.

PR =
TP

TP + FP
(5)

F1-Score is the most popular metric that combines both precision and recall. It repre-
sents harmonic mean of the two.

F1score = 2
PR ∗ RE

(PR + RE)
(6)

Intersection over union (IoU) also known as Jaccard index (JI) measures the percent
overlap between the annotated ground truth mask and the model’s prediction output.

IoU =
TP

TP + FP + FN
(7)

Dice similarity coefficient (DSC) measures the spatial overlap between the ground
truth tumor region and the model segmented region. A zero DSC value indicates no spatial
overlap between the ground truth tumor region and model annotated result whereas a
value indicates a indicating complete overlap between the two.

DSC =
TP

1
2 (2TP + FP + FN)

(8)

Area under the curve (AUC) measure of the ability of a classifier to distinguish
between classes and is used as a summary of the receiver characteristics curve and it is an
area under true positive rate vs. false positive rate.

Similarity index (SI) refers to the similarity between the expert annotated ground truth
and the model’s segmentation. It describes the similar identity between the input image
and the detected tumor region.

SI =
2TP

2TP + FP + FN
(9)

5. Brain Tumor Segmentation Methods

Brain tumor imaging using techniques, such as MRI and CT, generate a significantly
large number of images. Brain MRI scan of a single individual consists of several slices
across the 3D anatomical view. Therefore, manual segmentation of brain tumors from
magnetic resonance (MR) images is a challenging and time-consuming task. In addition,
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the artifacts introduced in the imaging process results in low-quality images that make
the interpretation difficult. As a result, the manual brain MRI segment is susceptible for
inter and intra observable variability. To alleviate these challenges and help radiologist,
different automatic brain tumor segmentation techniques have been proposed in literature.

On these literature, authors have proposed an automated system for brain tumor
segmentation techniques that provides objective, reproducible segmentation that are close
to the manual results. These automated brain tumor segmentation can help to alleviate the
difficulties associated with manually analyzing brain tumors. This will speed-up the brain
image analysis process, improve diagnosis outcome, and make easy the follow-up of the
disease through evaluating tumor progression [34].

In this section, among the proposed brain tumor segmentation techniques in the
literature; region growing, machine learning, and deep learning based techniques will be
surveyed to identify the experimental dataset, pre-processing, feature extraction, segmen-
tation algorithm, and the reported performance.

5.1. Region-Based and Shallow Unsupervised Machine Learning Approach

One of the most commonly used segmentation techniques in automated image pro-
cessing applications is region-based segmentation. Regions in an image are a group of
connected pixels that satisfy certain homogeneity criteria, such as pixel intensity values,
shape, and texture [35]. In a region-based segmentation the image is partitioned into
dissimilar regions so that the desired region is located precisely [36]. The region-based
segmentation takes into account the pixel values, such as gray level difference and variance,
and spatial proximity of pixels, such as Euclidean distance and region compactness in
grouping pixels together. In brain tumor segmentation, region growing, and clustering
algorithms are the most commonly used region based segmentation technique.

Clustering-based segmentation is one of the powerful region based segmentation
techniques where an image is partitioned into a number of disjoint groups. In clustering
based segmentation pixels with high similarity categorized in a given region whereas
dissimilar pixels categorized into different regions [37]. Clustering techniques, which
are an unsupervised learning method, have been widely investigated in medical image
segmentation. However, in this survey work some of the most popular clustering methods,
such as k-means and its varieties [38–44], fuzzy c-means [38,39,41,45], subtractive clustering
(SC), and hybrid techniques [46–48].

K-means clustering is an unsupervised machine learning algorithm and it is com-
monly used to segment a region of interest from the remaining part of an image. K-means
has been extensively tested in brain tumor segmentation and has shown acceptable ac-
curacy [48]. The minimal computational requirement [37,48], simplicity to implement on
large dataset [49], adaptation to new examples, and guaranteed convergence are some of
the advantages that makes K-means popular segmentation algorithm. However, k-means
suffers with incomplete delineation of the tumor region [49], selection of the initial centroid
is not optimum [37,43], and it is sensitive to outliers [48,50]. Due to these limitations a
number of solutions have been proposed, including, evenly spreading the initial cluster
centers (k-means++), hybridizing k-means with other clustering techniques [49], adaptively
initializing cluster centers, such as adaptive k-means [43], modified adaptive k-means
(MAKM), and histogram based k-means.

Fuzzy c-means works by assigning membership values to each of the pixels in an
image corresponding to the centers of the clusters depending on a certain similarity cri-
teria [51]. In fuzzy c-means (FCM) clustering objects can belong to more than one cluster
based on its degree of membership. Therefore, in such a type of soft clustering technique,
image pixels can occupy multiple clusters. As a result, compared to hard-clustering tech-
niques such as k-means, FCM performs better on relatively noise free images. However,
in medical images such as brain MRI that can be easily affected by unknown noises, the
FCM performance is severely affected [52]. A number of researches have been performed
to improve the limitation of FCM [53–56].
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In region growing brain tumor segmentation, tissues including tumorous regions are
partitioned based on certain similarity criterion, such as homogeneity, texture, sharpness,
and gray levels. The technique starts by selecting an initial seed based on predefined
methods. Then, the neighboring pixels are added progressively to the seed pixel [57]. The
region growing based segmentation can properly segment regions with similar properties
and spatially separated regions. However, it is sensitive to noise and influenced by the
similarity criterion [57]. Therefore, it may end up with disconnected regions and results
in a hole in the segmented region. Furthermore, finding a good initial seed is not an easy
task [57]. Region growing and conventional unsupervised machine learning based brain
tumor segmentation techniques proposed in literature are summarized in Table 3. The
table indicates the brain MRI dataset used in the experiment, the centroid initialization
techniques, the objective function, and the segmentation performance.

5.2. Supervised Shallow Machine Learning Based Approach

Supervised machine learning-based brain tumor segmentation approaches trans-
formed the image segmentation problem into a tumorous pixel classification problem. The
input vector for these supervised learning models consisted of different extracted features,
and the output is a vector of desired classes for segmentation. In brain tumor segmenta-
tion, where tumor regions are often scattered all over the image, pixel classification rather
than classical segmentation methods are often preferable [65]. Therefore, the traditional
supervised machine learning algorithms have been used in the segmentation of a brain
tumor from a head MRI scan [66–76].

Table 3. Region growing and shallow unsupervised machine learning based brain tumor segmentation.

Paper Dataset
Segmentation

Technique
Objective
Function

Performance

[58]
BRATS 2015

BRATS-MICCAI

Multi-level
thresholding with

level-set
segmentation

Euclidean
distance JI 81.94%, DSC 89.91%

[48] https://radiopaedia.org/
(accessed on 3 May 2021)

K-means and FCM Euclidean
distance

ACC 56.4 %

[43] BRATS
K-means with

histogram peaks
centroid initialization

Euclidean
distance -

[39] BRATS
Patch based k-means

with FCM
Euclidean
distance SI 91%

[42] BRATS 2012 Random
Sum of

Squared
Error

DSC 91%

[44]
MRI images collected by

authors
Bi-secting

(No initialization)

Sum of
Squared

Error
ACC 83.05%

[59] BRATS Force Clustering
Distance

(in pixels) -

[60] BRATS 2017 Random
Euclidean
distance DSC 62.5%

[61] MRI images collected by
authors DPSO 1 Euclidean

distance
ACC 99.98%, SEN 95.02%,
SPE 99.92% DSC 93.09%
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Table 3. Cont.

Paper Dataset
Segmentation

Technique
Objective
Function

Performance

[62]
MRI images collected by

authors

FCM preceded
by gross tumor

volume segmentation
with random

centroid intialization

Inter-cluster
variance

DSC 95.93 ± 4.23%,
JI 92.81 ± 6.56%,

SPE 95.31 ± 6.56%,
SEN 98.09 ± 1.75%

[63]
MRI images collected by

authors
DWT 2 based

genetic algorithm (GA)
fitness function

variance ACC 97%

[64]
MRI images collected by

authors

semi-automatic
cellular automata

seeded segmentation
with morphological

post-processing

pixel similarity
function

DSC 90.88 ± 4.19%,
JI 84.11 ± 6.74%,

SPE 99.99 ± 0.01%,
SEN 91.20 ± 7.00%

1 Darwinian Particle Swarm Optimization, 2 Discrete Wavelet Transform.

In this section, as shown in Table 4, most relevant literature on brain tumor segmenta-
tion using traditional machine learning algorithms, such as support vector machine (SVM),
artificial neural network (ANN), random forest (RF) are surveyed to identify data used,
the pre-processing, feature extraction techniques, the classifier model, and whether or not
post-processing is implemented.

5.3. Deep Learning-Based Approach

Deep learning methodologies produce automatic features that avoid or minimize
the need for handcrafted features. In the deep learning-based brain tumor segmentation
approach, the general strategy is to pass an image through the pipeline of deep learning
building blocks and input image segmentation is performed depending on the deep fea-
tures. In literature, there are a variety of deep learning techniques proposed for segmenting
brain tumors. Some of such blocks contain deep convolutional neural networks (DCNNs),
convolutional neural network (CNN), recurrent neural networks (RNNs), long short-term
memory (LSTM), deep neural networks (DNNs), deep autoencoders (AEs), and generative
adversarial networks (GANs). In this section, literature in terms of these building blocks,
the dataset used, and the reported performance are presented as shown in Table 5.

Table 4. Summary of a shallow machine learning based segmentation.

Paper Dataset Preprocessing Features Model
Post-

Processing
Performance

[66] Clinically
collected MRI N4ITK deep features

from CNN SVM - DSC 88%, SEN 89%,
PR 83%

[67] Clinically
collected MRI Registration Intensity

texture

Multi-
kernel
SVM

Region
growing

TP 98.9%, FP 4.5%,
FN 3.1%

[68] BRATS 2013
N4ITK,

histogram
matching, SLIC 1

Gray
statistical,

GLCM SVM -
DSC 86.12%,
SEN 79.69%,
SPE 99.48%

[70] BRATS 2015 - Intensity,
texture

ANN,
SVM -

SVM: DSC 88.7%,
IOU 79.7%,

ANN: DSC 90.79%,
IOU 83.1%
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Table 4. Cont.

Paper Dataset Preprocessing Features Model
Post-

Processing
Performance

[71] BRATS 2015,
[77–79] -

Dual
pathway

tree
based

features

ccRF 2 mpAC 3 DSC 89%, SPE 90%,
SEN 85%

[72] BRATS 2012 registration,
normalization

intensity,
similarity,
blobness

RF

Independent
connected
component

analysis

DSC 96.5%

[74] [80]

N4ITK,
normalization,

histogram
matching

intensity,
gradient,
context

RDF 4 morphological
filtering

DSC 86.41%, SEN 82%,
PR 92.92%

[75] BRATS 2015
noise

removal,
enhancement

first
higher
order

features,
texture

RF
morphological

other
filtering

DSC 98.4%, SEN 97.9%,
SPE 80.7%, ACC 97.7%

[76] BRATS 2015 histogram
enhancement

Gabor
wavelet,
intensity

RF
morphological

other
filtering

DSC 85.5%, SEN 77.1%,
SPE 99.3%

1 Simple Linear Iterative Clustering, 2 Concatenated and Connected Random Forest, 3 Multiscale Patch Driven Active Contour, 4 Random
Decision Forest.

Table 5. Summary of deep learning based brain tumor segmentation techniques.

Paper Dataset Preprocessing Model
Architecture

Performance

[81] BRATS
2013 &

2015

bias field correction,
intensity and patch

normalization,
augmentation

Custom CNN DSC 88%, SEN 89%,
PR 87%

[82] BRATS
2013 intensity normalization,

augmentation

HCNN + CRF-RRNN 1 SEN 95%, SPE 95.5%, PR 96.5%,
RE 97.8%, ACC 98.6%

[83] BRATS
2015 Z-score normalization

on the image,

Residual Network+
Dilated convolution

RDM-Net 2

DSC 86%

[84] BRATS
2015 Z-score normalization

Stack Multi-connection
Simple Reducing_Net

(SMCSRNet)

DSC 83.42%, PR 78.96%, SEN 90.24%

[85] BRATS
2019

- Ensemble of a 3D-CNN
and U-net

DSC 90.6%

[86] BRATS
2015

Bias correction,
intensity normalization

Two-PathGroup-CNN
(2PG-CNN)

DSC 89.2%, PR 88.22%, SEN 88.32%

[87] BRATS
2018

- Hybrid two track U-Net
(HTTU-Net)

DSC 86.5%, SEN 88.3%, SPE 99.9%
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Table 5. Cont.

Paper Dataset Preprocessing Model
Architecture

Performance

[88] BRATS
2015

- P-Net with bounding
box and image specific
fine tunning (BIFSeg)

DSC 86.29%

[89] ADNI denoising,
Skull stripping,
sub-sampling

Multi-scale CNN
(MSCNN)

ACC 90.1%

[90] BRATS
2017

Intensity normalization,
resizing, Bias field

correction

Cascaded 3D U-nets DSC 89.4%

[91] BRATS
2015 &

2017

Down sampling 3D Center-crop
Dense Block

BRATS 2015: DSC 88.4%, SEN 83.8%
BRATS 2017: DSC 88.7%, SEN 84.3%

[92] BRATS
2018 &

2019

Z-score normalization,
cropping

3D FCN 3 BRATS 2018: DSC 90%, SEN 90.3,
SPE 99.48%; BRATS 2019: DSC 89%,

SEN 88.3%, SPE 99.51%

[93] BRATS
2018

intensity normalization,
removing 1% of
highest & lowest

intensity

DCNN
(Dense-MultiOCM 4)

BRATS 2018: DSC 86.2%, SEN 84.8%,
SPE 99.5%

[94] TCIA Image cropping,
padding, resizing,

intensity normalization

U-Net DSC 84%, SEN 92%,
SPE 92%,
ACC 92%

[95]
BRATS
2013,
2015,
2018

- AFPNet 5 + 3D CRF
BRATS 2013 DSC 86%,
BRATS 2015 DSC 82%,

BRATS 2018 86.58%

[96] BRATS
2015,
2017

z-score normalization
Inception-based U-Net
+ up skip connection +

cascaded training
strategy

DSC 89%, PR 78.5%, SEN 89.5%

[97] BRATS
2015,

BrainWeb

cropping,
z-score normalization,

min-max normalization
(BrainWeb)

Tripple intersecting
UNets (TIU-Net)

BRATS 2015: DSC 85%,
BrainWeb DSC 99.5%

[98] BRATS
2015

- LSTM multi-modal
UNet

DSC 73.09%, SEN 63.76%,
PR 89.79%

1 Heterogeneous CNN + Conditional Random Fields-Recurrent Regression based Neural Network, 2 Deep Residual Dilate Network with
Middle Supervision, 3 Fully Convolutional Neural Network, 4 OCcipito Module, 5 Atrous-Convolution Feature Pyramid.

6. Brain Tumor Classification Methods

Based on the WHO’s classification of central nervous system (CNS) tumors, there are
more than 150 types of CNS tumors that are mainly categorized into primary and metastatic
(secondary) tumors [99]. The primary tumors originate from the brain or the immediate
surrounding tissues. Whereas, metastatic tumors arise from other body parts and migrate
to the brain through the bloodstream. Metastatic tumors are considered cancerous or
malignant, while primary tumors can be benign or malignant.

A biopsy is the existing gold standard procedure in brain tumor classification. How-
ever, it usually requires definitive brain surgery to take a sample [100,101]. On the other
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hand, an automated brain tumor classification from an MRI is non-invasive so that it avoids
tumor sample taking procedure and it is safer. In addition, the machine learning-based
brain tumor classification from an MRI scan can improve the diagnosis and treatment
planning [101]. As a result, an automatic brain tumor classification from MRI images using
machine or deep learning techniques is an active research area, and promising results have
been achieved [100,102–106].

6.1. Conventional Machine Learning Based Approach

Machine learning is a paradigm where a machine is given a task where its performance
improves with experience. Machine learning techniques are commonly grouped into three
major types: supervised, unsupervised, and reinforcement learning [107]. Supervised
learning is based on training a data sample from the data source with correct classification
already assigned by domain experts, whereas, in unsupervised learning, the algorithm
finds hidden patterns from the unlabeled data. On the other hand, reinforcement learning
is carried out by making a sequence of decisions using reward signals. Therefore, the algo-
rithm learns through receiving either rewards or penalties for the actions it performs [107].
Machine learning has been used in the classification of brain tumors from MRI images, and
promising classification performance has been reported [108–115].

The traditional machine learning-based brain tumor classification techniques often
consist of preprocessing, segmentation, feature extraction, and classification stages.

6.1.1. Pre-processing

Brain MRI scans are significantly affected by different types of noises, including salt
and pepper, Gaussian, Rician, and speckle noise [116–118]. These noises impose challenges
in machine learning-based applications [117,119]. Therefore, obtaining high-quality im-
age denoising is one of the important tasks in the pre-processing stage. Each method
used in MRI denoising has its advantages and disadvantages. Several methods have
been developed for reducing noises based on statistical property and frequency spec-
trum distribution [119]. In addition to denoising, tasks such as removing tags, smoothing
the foreground region, intensity inhomogeneity correction, maintaining relevant edges,
resizing, cropping, and skull stripping are part of pre-processing [110–112].

6.1.2. Region of Interest (ROI) Detection

In an MRI brain scan, the segmentation task labels each voxel in an MRI image to
specify its tissue type and anatomical structure [119]. The objective of ROI detection in
tumor classification is to locate the tumor region from an MRI scan, improve the visualiza-
tion, and allow quantitative measurements of image structures in the feature extraction
stage [108,112]. Brain tumor segmentation can be performed in three different ways,
namely, manual segmentation, semi-automatic segmentation, and fully automatic segmen-
tation [119]. The autonomous brain segmentation techniques have been briefly discussed
in Section 5.

6.1.3. Feature Extraction

The feature extraction techniques are mathematical models based on various im-
age properties. The different types of features include texture, brightness, contrast,
shape, Gabor transforms, gray-level co-occurrence matrix (GLCM), and wavelet-based
features [115,120], histogram of local binary patterns (LBP) [121]. On the other hand, re-
cently, deep features that are obtained from deep neural networks such as CNN have been
used as input to SVM classifier to classify brain tumors [122]. In brain tumor classification,
it is customary to fuse several features from different extraction models to improve the
discrimination power of the machine learning model [123]. Furthermore, feature selection
is applied for dimensionality reduction.
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6.1.4. Classification

Different classification techniques have been proposed by many authors for identifying
tumor types from brain images. Different authors have classified tumor into a variety of
ways, for instance meningioma, glioma, and pituitary [109,121,122,124,125]; astrocytoma,
glioblastoma, and oligodendrogliamo [112]; glioma tumor grades (I–IV) [113]; benign
and malignant stages(I–IV) [126–129]; diffuse midline glioma, medulloblastoma, pilocytic
astrocytoma, and ependymoma [102]; multifocal, multicentric, and gliomatosis [130];
ependymoma and pilocytic astrocytoma [120].

In brain tumor classification, the most commonly used classifiers are neural net-
work [108–111,131], support vector machines (SVM) [108,115,124,127–130,132,133], K-
nearest neighbor (KNN) [112,121,130,134], Adaboost [126], and hybrid models [113,135,136].
The neural network was implemented using different architectures, such as feedforward
neural network [110,125], multilayer perceptron neural network [109,137], and probabilistic
neural network (PNN) [111,131]. Support vector machine (SVM) was commonly imple-
mented using three kernels, linear, homogeneous polynomial, and Gaussian radial basis
function (RBF) [108,115]. In the KNNclassifier, the testing feature vector is classified by
finding the k-nearest training neighbor, that is, the classifier does not use any model to
match and is only based on memory. However, KNN uses different measurements such as
euclidean distance, city block, cosine, and correlation to find the nearest distance between
the testing and training class feature vectors [134].

A summary of recent shallow machine learning-based brain tumor classification
techniques is given on Table 6.

6.2. Deep Learning Approach

Even though promising progress has been made in classifying brain tumors into
their respective types from an MRI brain scan using shallow supervised machine learning
algorithms, there are still challenges in classifying brain tumors from an MRI scan. These
challenges are mainly due to the ROI detection, and extracting descriptive information
using traditionally handcrafted feature extraction techniques is not efficient [122]. This
inefficiency mainly arises due to the complex structure of brain anatomy and the high-
density nature of the brain.

Unlike shallow machine learning algorithms, deep learning is based on learning data
representations and hierarchical feature learning. In deep learning-based brain tumor
classification, the deep learning models discover the descriptive information that optimally
represents different brain tumors. This nature of deep learning transforms the brain tumor
classification from handcrafted feature-driven into data-driven problem [103]. Among
the deep learning models, a convolutional neural network (CNN) is widely used in brain
tumor classification tasks, and a substantial result has been achieved [100].

In the reviewed literature, there are differences in the techniques used for the classi-
fication of brain tumors. The difference encompasses: (i) the dataset used for classifica-
tion including tumor types, (ii) the implemented pre-processing and data augmentation
techniques, (iii) whether or not the ROI segmentation was used as a prior step in the
classification, (iv) whether a pre-trained or custom-designed deep learning model is used.
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For instance, Badža and Barjaktarović [100] used publicly available contrast-enhanced
T1-weighted brain tumor MRI scans [138]. The dataset contains meningioma, glioma,
and pituitary brain tumor types scanned along with the three anatomical views, i.e.,
axial, sagittal, and coronal. The images were preprocessed using techniques, such as
normalization and resizing. In addition, images in the dataset are augmented with 90o

rotation and vertical flipping to increase the training dataset. Furthermore, they used
a custom-designed CNN model trained with Adam optimizer with a mini-batch size of
16 and tested with 10—fold cross-validation. The weights of the convolution layers are
initialized using a Glorot initializer. The model performance was measure using sensitivity,
specificity, accuracy, precision, recall, and F1-score. The sensitivity for meningioma, glioma,
and pituitary is 89.8%, 96.2%, and 98.4%, respectively. The specificity of the model for
meningioma, glioma, and pituitary is 90.2%, 95.5%, and 97.7%, respectively. Furthermore,
the models’ overall accuracy, average precision, average recall, and F1-score are 95.4%,
94.81%, 95.07%, and 94.94%, respectively. The summary of this and other literature is
presented on Table 7.

Table 7. Summary of deep learning based brain tumor classification techniques.

Paper Dataset Preprocessing
Classifier

Model
Tumor
Types

Performance

[100] [138] normalization,
resizing,

augmentation

Custom CNN
model

Meningioma,
Glioma,
Pituitary

ACC 91.9%, precision 94.81%,
RE 95.07%, F1-score 94.94%,

SPE(GL) 96.2%, SPE(MG) 92%,
SPE(PT) 97.7%, SEN(GL) 96.2%,
SEN(MG) 89.8%, SEN(PT) 98.4%

[141] [78,142] Augmentation
using GAN

Multi-stream
2D-CNN

model

Glioma
subtypes:
Isocitrate

dehydrogenase 1
mutation (IDH1),
& IDH1 wild-type

mean ACC 88.82%
mean SEN 81.81%
mean SPE 92.17%

[143] [138,144] resizing
augmentation

Custom CNN
model

Meningioma,
Glioma &
Pituitary

and
Glioma

(grade:II-IV)

MG: PR 95.8%, SEN 95.5%, SPE 98.7%,
ACC 97.54%, GL: PR 97.2%, SEN 94.4%,
SPE 95.1%, ACC 95.81%, PT: PR 95.2%,

SEN 93.4%, SPE 97%, ACC 96.89%
Grade

II: PR 100%, SEN 100%, SPE 100%,
ACC 100%, III: PR 100%, SEN 95%,
SPE 100%, ACC 95%, IV:PR 96.3%,

PR 100%, SEN 95%, SPE 100%,
ACC 95%SEN 100%, SPE 98%, ACC 100%

[145] [138] - CNNBCN 1 Meningioma,
Glioma&
Pituitary

ACC 95.49%

[146] [138] -
BayesCap:
captures

prediction
uncertainity

Meningioma,
Glioma&
Pituitary

mean ACC 73.9% CI 2:(73.4%, 74.4%)
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Table 7. Cont.

Paper Dataset Preprocessing
Classifier

Model
Tumor
Types

Performance

[147] [138] Image
rotation,
resizing

AutoML 3 Meningioma,
Glioma &
Pituitary

MG: PR 94.51%, SEN 87.76%, SPE 98.7%,
ACC 96.29%, F1-Score 91.01%,
MCC 4 88.77%, G-Mean 96.09%

GL: PR 96.97%, SEN 95.32%, SPE 96.88%,
ACC 96.08%, F1-Score 96.14%,
MCC 92.17%, G-Mean 96.09%

PT: PR 91.61%, SEN 99.24%, SPE 96.27%,
ACC 97.14%, F1-Score 95.27%,
MCC 93.38%, G-Mean 97.75%

[148] [138] - Iception-V3
DensNet201

Meningioma,
Glioma&
Pituitary

Iception-V3: ACC 99.34%
DensNet201: ACC 99.51%

[149] [138] augmentation,
contrast-

stretching

AlexNet,
GoogleNet &

VGG16 5

Meningioma,
Glioma&
Pituitary

AlexNet: ACC 95.46%
GoogleNet: ACC 98.04%

VGG16 98.69%

[150] [138] - ConvCaps Meningioma,
Glioma&
Pituitary

ACC 93.5%

[151] [138] flipping,
patching

CapsulNet Meningioma,
Glioma&
Pituitary

MG: PR 85%, RE 94%,
F1-Score 94, %GL: PR 85%,

RE 94%, F1-Score 94%,
PT: PR 85%, RE 94%,

F1-Score 94%

[152] [138] - G-ResNet Meningioma,
Glioma&
Pituitary

ACC 95%

[153] [138] - DDIRNet 6 Meningioma,
Glioma&
Pituitary

ACC 99.69%, PR 99.6%,
RE 99.4%, F1-score 99.4%

[103] [138] - Multiscale
CNN

Meningioma,
Glioma&
Pituitary

ACC 97.3%

[154] [155] DWT DNN Meningioma,
Glioma&
Pituitary

ACC 96.15%, PR 94.12%,
AUC 98.75%,F1-score 96.97%,

RE 100%

[156] [138] - Custom CNN
model

Meningioma,
Glioma&
Pituitary

ACC 84.19%

[157] BraTS
2018

& 2019

- Pre-trained
DenseNet201

HGG 7 & LGG 8 HGG: ACC 99.8%,
LGG: ACC 99.3%
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Table 7. Cont.

Paper Dataset Preprocessing
Classifier

Model
Tumor
Types

Performance

[158] [138],
[144,159]

- Custom CNN
model

Class 1:
Normal,

Metastatic,
Meningioma,

Glioma&
Pitiutary
Class 2:

Grade II,
III & IV

Class 1: ACC 92.66%
Class 2: ACC 98.14%

[160] BraTS
2019

- Custom CNN
model

Astrocytoma,
Glioblastoma,

Oligodendrogloma,

Class 1: ACC 92.66%
Class 2: ACC 98.14%

[94] TCIA
cropping,
padding,
resizing,

normalization

VGG16 Grade II & III ACC 89%, SEN 87%, SPE 92%

1 Convolutional Neural Network based on Complex Networks, 2 Confidence Interval, 3 Automated Machine Learning, 4 Matthew’s
Correlation Coefficient, 5 Visual Geometry Group, 6 Deep Dense Inception Residual Network, 7 High Grade Glioma, 8 Low Grade Glioma.

7. Discussion

This paper presented a thorough survey of techniques used in brain tumor segmenta-
tion and classification. The survey encompasses several traditional machine learning and
deep learning-based methods with their quantitative performance. The conventional image
segmentation techniques, that is, region growing and unsupervised machine learning used
in brain tumor segmentation are presented in Table 3. The region growing with all other
conventional image processing segmentation techniques is the earliest approach applied
in brain tumor segmentation [161]. It is mainly affected by noises, poor image quality,
and initial seed point. To overcome these challenges, an automatic seed point selection
by optimization techniques and artificial intelligence-based seed point selection has been
proposed [162]. In addition, it has a limitation in segmenting tumors that appear scattered
across the brain. In the second generation segmentation techniques which are based on
shallow unsupervised machine learning, such as fuzzy c-means and k-means grouping
of pixels into more than one class has been achieved. However, these methods are also
highly sensitive to noise. Therefore, through incorporating additional information and
adaptively selecting the centroid, the segmentation performance of medical images can be
improved [6]. In addition, the inherent ambiguous boundaries between normal tissues and
brain tumors pose a significant challenge for conventional and clustering segmentation
techniques. Therefore, to address this challenge, pixel-level classification-based segmenta-
tion techniques using traditional supervised machine learning have been proposed [70].
These methods are often accompanied by feature engineering, where the tumor descriptive
pieces of information are extracted to train the model. Furthermore, the supervised machine
learning segmentation output is further improved through post-processing [71,76].

Nowadays, conventional image processing and shallow machine learning-based brain
tumor segmentation techniques are becoming obsolete due to the advent of deep learning-
based techniques. The deep learning-based approach performs an end-to-end tumor
segmentation by passing an MRI image through the pipeline of its building blocks. These
models often extract tumor descriptive information automatically and avoid the need for
handcrafted features. However, the need for a large dataset to train the models and the
difficulty in interpreting the models hinders their usage in medical fields [163]. In terms of
segmentation performance, it is evident from Tables 4 and 5 that the deep learning-based
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and supervised shallow machine learning-based with post-processing has comparable
performances. Asummary of the number of brain tumor segmentation techniques surveyed
in this is given on Figure 1.
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Figure 1. Number of brain tumor segmentation methods.

Aside from segmentation of brain tumor region from head MRI scan, classification
of tumor into their respective histological type has great importance in diagnosis and
treatment planning which actually requires biopsy procedure in today’s medical prac-
tice [158]. Several methods which encompass shallow machine learning and deep learning
have been proposed for brain tumor classification. The conventional shallow machine
learning algorithms often consist of preprocessing, ROI detection, and feature extraction.
However, due to the inherent noise sensitivity of MRI image acquisition, variations in the
shape, size, location, and contrast of tumor tissue cells, extracting descriptive information
is a challenging task. Therefore, nowadays, deep learning techniques are becoming the
state-of-the-art approach to classify different types of brain tumors, such as astrocytoma,
glioma, meningioma, and pituitary. Several brain tumor classifications have been discussed
in this survey, and a summary of the number of brain tumor classification techniques
surveyed in this paper are given on Figure 2.

Several brain tumor datasets that are collected by researchers datasets and those
that are available on repositories were used in the training and testing of brain tumor
classification models. The publicly available dataset provided by J. Cheng et al. [138],
which contains meningioma, glioma, and pituitary tumor in T1-WC MRI-images is one
of the most commonly used datasets in the training and testing classifier models. Using
this dataset, Gumaei, A. et al. [125] has achieved a classification accuracy of 94.23% using
a regularized extreme learning machine, while the Kokkalla, S. et al. [153] have reported
a classification accuracy of 99.69% using custom modified deep-dense inception residual
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network (DDIRNet). These results indicate that the deep learning-based model outweighs
the shallow machine learning-based techniques for this particular dataset.
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Figure 2. Number of brain tumor classification methods.

Challenges in Automatic Brain Tumor Segmentation and Classification

The development of autonomous brain tumor segmentation and classification models
using MRI images is still a challenging task. The challenges are due to several constraints
including the effect of different types of noises embedded in the brain MRI images [116–118],
motion and metal artifacts during image acquisition [164], low-resolution MRI images [165],
and lack of deep learning models interpretability and transparency [166,167].

One of the most common challenges in machine learning-based brain tumor segmen-
tation and classification is the noisiness of an MRI image. Therefore, noise estimation
and denoising MRI images is a crucial pre-processing task for improving the accuracy of
brain tumor segmentation and classification models. Therefore, several techniques have
been proposed for denoising MRI images, such as modified iterative grouping median
filter [118], Wiener filter and wavelet transform [168], non-local means [169], and deep
learning-based approaches [170,171]. However, a robust denoising technique for MRI
images is still challenging and the pursuit to obtain an efficient denoising technique has
been an active research area [170]. Similarly, motion, metal, and other artifacts are also a
source of challenge to the robustness of machine learning-based brain tumor segmentation
and classification. Recently, deep learning-based solutions for minimizing the effects of
these artifacts have been proposed [164,172]. MRI provides a high fidelity brain scan
image compared to other imaging techniques. However, post-acquisition image process-
ing techniques, including deep learning-based methods have been used to increase the
resolution of MR images so that the efficiency of autonomous brain tumor segmentation
and classification models improved[165,173]. The other major challenge is the lack of deep
models’ interpretability, and often they are perceived as black-box. As a result, attaining
any evidence regarding the process they perform is difficult. However, the transparency
and interpretability of deep learning techniques are crucial for the complete integration
into medical diagnosis [166].
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8. Conclusions

Automating the brain tumor segmentation and classification task has tremendous ben-
efits in improving the diagnosis, treatment planning, and follow-up of patients. Through
applying various techniques, including conventional image processing, shallow machine
learning, and deep learning techniques, undeniable progress have been achieved in au-
tomating brain tumor segmentation and classification tasks. However, building a fully
autonomous system that can be used on clinical floors is still a challenging task.

Compared to region-growing and shallow machine learning algorithms, automating
the brain tumor segmentation and classification using deep learning techniques have huge
benefits. This is mainly due to the powerful feature learning ability of deep learning tech-
niques. In addition, as can be shown in Figures 1 and 2, deep learning-based brain tumor
segmentation and classification techniques are becoming the most active research area. In
this paper, a comprehensive survey on region growing, shallow machine learning, and
deep learning-based brain tumor segmentation and classification methods are presented.
These methods are structurally categorized and summarized to give an insight to the
reader of the dataset used, pre-processing, feature extraction, segmentation, classification,
post-processing, and the reported model performances in the literature. Furthermore, the
pros and cons of the methods and the model evaluation metrics have been discussed.
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165. Sert, E.; Özyurt, F.; Doğantekin, A. A new approach for brain tumor diagnosis system: Single image super resolution based
maximum fuzzy entropy segmentation and convolutional neural network.Med. Hypotheses 2019, 133, 109413. [CrossRef]

166. Natekar, P.; Kori, A.; Krishnamurthi, G. Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty
Analysis. Front. Comput. Neurosci. 2020, 14. [CrossRef]

167. Saleem, H.; Shahid, A.R.; Raza, B. Visual interpretability in 3D brain tumor segmentation network. Comput. Biol. Med. 2021,
133, 104410. [CrossRef] [PubMed]

168. Zeng, Y.; Zhang, B.; Zhao, W.; Xiao, S.; Zhang, G.; Ren, H.; Zhao, W.; Peng, Y.; Xiao, Y.; Lu, Y.; Zong, Y.; Ding, Y. Magnetic
Resonance Image Denoising Algorithm Based on Cartoon, Texture, and Residual Parts. Comput. Math. Methods Med. 2020,
2020, 1–10. [CrossRef]

169. Heo, Y.C.; Kim, K.; Lee, Y. Image Denoising Using Non-Local Means (NLM) Approach in Magnetic Resonance (MR) Imaging: A
Systematic Review. Appl. Sci. 2020, 10, 7028. [CrossRef]

170. López, M.M.; Frederick, J.M.; Ventura, J. Evaluation of MRI Denoising Methods Using Unsupervised Learning. Front. Artif. Intell.
2021, 4. [CrossRef]

171. Kidoh, M.; Shinoda, K.; Kitajima, M.; Isogawa, K.; Nambu, M.; Uetani, H.; Morita, K.; Nakaura, T.; Tateishi, M.; Yamashita, Y.;
Yamashita, Y. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Magn.
Reson. Med Sci. 2020, 19, 195–206. [CrossRef]

172. Higaki, T.; Nakamura, Y.; Tatsugami, F.; Nakaura, T.; Awai, K. Improvement of image quality at CT and MRI using deep learning.
Jpn. J. Radiol. 2018, 37, 73–80. [CrossRef]

173. Kim, K.H.; Do, W.J.; Park, S.H. Improving resolution of MR images with an adversarial network incorporating images with
different contrast. Med. Phys. 2018, 45, 3120–3131. [CrossRef]

222



Journal of

Imaging

Article

A Computational Study on Temperature Variations in MRgFUS
Treatments Using PRF Thermometry Techniques and
Optical Probes

Carmelo Militello 1,*, Leonardo Rundo 2,3, Fabrizio Vicari 4, Luca Agnello 5, Giovanni Borasi 4, Salvatore Vitabile 5

and Giorgio Russo 1

��������	
�������

Citation: Militello, C.; Rundo, L.;

Vicari, F.; Agnello, L.; Borasi, G.;

Vitabile, S.; Russo, G. A

Computational Study on

Temperature Variations in MRgFUS

Treatments Using PRF Thermometry

Techniques and Optical Probes. J.

Imaging 2021, 7, 63. https://doi.org/

10.3390/jimaging7040063

Academic Editor: Reyer Zwiggelaar

Received: 28 January 2021

Accepted: 23 March 2021

Published: 25 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Molecular Bioimaging and Physiology, Italian National Research Council (IBFM-CNR),
Cefalu, 90015 Palermo, Italy; giorgio.russo@ibfm.cnr.it

2 Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; lr495@cam.ac.uk
3 Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
4 LAboratorio di Tecnologie Oncologiche (LATO), Cefalu, 90015 Palermo, Italy;

fabrizio.vicari.plus@gmail.com (F.V.); giovanni.borasi@gmail.com (G.B.)
5 Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo,

90127 Palermo, Italy; luca.agnello@gmail.com (L.A.); salvatore.vitabile@unipa.it (S.V.)
* Correspondence: carmelo.militello@ibfm.cnr.it

Abstract: Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up
in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently
emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves
can be used to increase the temperature inside the target solid tumors, leading to apoptosis or
necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS)
technology represents a valid application of this ultrasound property, mainly used in oncology and
neurology. In this paper; patient safety during MRgFUS treatments was investigated by a series of
experiments in a tissue-mimicking phantom and performing ex vivo skin samples, to promptly iden-
tify unwanted temperature rises. The acquired MR images, used to evaluate the temperature in the
treated areas, were analyzed to compare classical proton resonance frequency (PRF) shift techniques
and referenceless thermometry methods to accurately assess the temperature variations. We exploited
radial basis function (RBF) neural networks for referenceless thermometry and compared the results
against interferometric optical fiber measurements. The experimental measurements were obtained
using a set of interferometric optical fibers aimed at quantifying temperature variations directly in
the sonication areas. The temperature increases during the treatment were not accurately detected
by MRI-based referenceless thermometry methods, and more sensitive measurement systems, such
as optical fibers, would be required. In-depth studies about these aspects are needed to monitor
temperature and improve safety during MRgFUS treatments.

Keywords: MRgFUS; proton resonance frequency shift; temperature variations; referenceless ther-
mometry; RBF neural networks; interferometric optical fibers

1. Introduction

Image-guided thermal ablations are increasingly employed in minimally invasive
treatments in patients with cancer [1–4]. In the last decades, a large number of high-
intensity focused ultrasound (HIFU) [5,6] devices have been used in oncology to cover a
wide range of cancer types, such as prostate [7], bone metastases [8], liver [9], breast [10],
thyroid [11], uterine fibroids [12,13], liver and pancreas [14], and brain [15]; as well as
psychiatric disorders [16] and essential tremor [17,18].

Considering the imaging modalities that currently guide HIFU treatments, two pos-
sible methodologies are available: (i) ultrasound-guided therapeutic focused ultrasound

J. Imaging 2021, 7, 63. https://doi.org/10.3390/jimaging7040063 https://www.mdpi.com/journal/jimaging
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(USgFUS) [19,20], which uses the shift of the echo timing related to the temperature vari-
ation of the treated tissues [21]; and (ii) magnetic resonance-guided focused ultrasound
surgery (MRgFUS) [22], which leverages the intrinsic dependence of the temperature with
respect to some fundamental parameters, such as the apparent diffusion coefficient (ADC)
of water molecules, the spin-lattice relaxation time (T1), and the water proton resonance
frequency (PRF) [23].

In order to evaluate the incidence and severity of adverse reactions to the USgFUS
ablation of uterine fibroids, Chen et al. [24] performed a multicenter, large-scale retrospec-
tive study involving 9988 patients with uterine fibroids or adenomyosis. Even though all
the required procedures were applied, including skin preparation, 26 of the patients had
blisters or tangerine pericarp-like burns in their abdominal skin, and two of them required
surgical removal of the necrotic tissue. In [25], a preliminary report on bone metastasis
pain-palliation therapy with MRgFUS, an unusual second-degree skin burn occurred on
the body side opposite to the transducer position. The authors argued that this accident
occurred due to a series of energetically intense sonications that may not have been totally
included inside the patient’s body, causing a far-field energy accumulation at the air–skin
interface [26,27]. In the case of MRgFUS capsulotomy, safety and clinical efficacy need to
be carefully assessed by considering issues related to skull heating [16].

With particular interest in MRgFUS, automated techniques for uterine fibroid MR
image segmentation have been recently devised to improve treatment planning [28] and
evaluation [29,30], thus increasing the result repeatability and reliability [31]. Importantly,
the attention of manufacturers to MRgFUS treatment safety has increased in recent years;
therefore, multicenter studies have been performed to propose effective solutions. For
instance, a modified clinical MRgFUS fibroid therapy system, called Sonalleve (Philips
Healthcare, Vantaa, Finland), was integrated with a 1.5 T magnetic resonance imaging
(MRI) scanner (Achieva, Philips Healthcare, Best, The Netherlands). This system directly
relied upon a skin-cooling device for the treatment of symptomatic uterine fibroids [32]. In
the experiments conducted, involving eight patients, no adverse effects were reported when
this cooling device was integrated with the patient table to keep the transducer–patient
interface at a fixed temperature of 20 ◦C.

The aim of this work is to explore the sensitivity of MRI guidance to monitor the
temperature increase for patient safety [26,27]. In particular, we simulated the temperature
variations in a fibroid treatment on a tissue-mimicking phantom, acquiring temperature
measurements using thermal imaging provided by the operating console of the MRgFUS
ExAblate 2100 (Insightec Ltd., Carmel, Israel), as well as interferometric optical probes.
The temperature maps were obtained using classic PRF and referenceless thermometry
methods and compared against the measurements.

2. Materials and Methods

In our experiments, an Insightec ExAblate 2100 HIFU transducer integrated with
a Signa HTxt MRI scanner (General Electric Medical Systems, Milwaukee, WI, USA)
was used. The same clinical device is employed at the Foundation Institute “G. Giglio”,
Cefalù (PA), Italy, for uterine fibroid treatment and bone metastasis pain-palliative therapy.
This system exploits MRI to acquire temperature maps of treated tissues by quantifying
the phase variation resulting from the temperature-dependent changes in the resonance
frequency. The phase differences are proportional to temperature-dependent PRF shifts,
thus enabling the assessment of temperature rises [33]. Temperature maps derived from
MRI can be obtained using gradient recalled echo (GRE) imaging sequences. The console
operator monitors the temperature rise taking into consideration: (i) the thermal map of a
chosen slice (Figure 1a); and (ii) the temperature plots concerning the selected point (by
means of a crosshair cursor) and a small neighboring region (Figure 1b). These methods
were successfully used to model the thermal dose delivery [34] strictly related to tissue
thermo-ablation [35,36]. Any unwanted temperature increase outside the “target” is due to
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an energy accumulation, caused by acoustic impedance discontinuity in the ultrasound
wave-propagation path [37–39].

 

 

 

 
(a) (b) 

Figure 1. (a) Thermal map of a sonication during a treatment. The crosshair cursor, selected by the
operator, represents the point of interest for temperature trend control. (b) Temperature plot of a
single pixel (red line) and a small neighboring region around the crosshair cursor (green line).

2.1. MRgFUS Treatments

The experimental measurements were carried out using the ExAblate uterine-fibroids
protocol, considering a real fibroid treatment as reference.

Prior to MRgFUS treatments for uterine fibroid ablation, the patient was sedated to
minimize her movements, but nevertheless she could constantly provide feedback on the
perception of pain and heat during the treatment. The MR images were acquired to localize
the fibroid position and to plan the treatment with the most suitable ultrasound beam path,
and sonication size and number. The treatment was planned by software that analyzed the
region of treatment (ROT)—i.e., the region that will undergo the ultrasound beams—and
the limited energy density regions (LEDRs)—i.e., the regions containing the organs at risk
(OARs). Treatment planning aims to deliver the sonications in the entire ROT, making sure
that the ultrasound beam does not cross the LEDRs.

To verify the focus-position accuracy, a preliminary sonication at sublethal energy was
delivered. Some MR images were acquired to detect the temperature distribution in the
neighborhood of the focus point. Using an iterative procedure, the operator can modify
the wave characteristics to improve the target accuracy and the temperature increase.
As a result, the treatment was performed by delivering sonications with lethal energy.
Each sonication typically lasted 20–40 s, with a cooling time of 80–90 s between two
successive sonications.

At the end of the treatment, the patient, in the position she had during treatment,
underwent a diagnostic MR examination with gadolinium-based contrast medium, aimed
to evaluate the nonperfused volume (NPV), which was the uterine fibroid area covered
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by sonications. Moreover, the skin was examined to evaluate any side effects due to the
temperature increase during the treatment.

In this work, to quantify temperature increases in the interface area suffering from
acoustic impedance discontinuity in the ultrasound wave-propagation path, we used a
configuration composed of: (i) a standard phantom tissue mimicking the daily quality
assurance (DQA) routine, as previously proposed by Zucconi et al. [40]; (ii) an ex vivo
porcine skin sample placed under the phantom to simulate the patient’s skin; and (iii) a gel
pad (between the porcine skin and ExAblate bed). A set of interferometric probes was also
used to monitor the skin temperature, over the probes and gel pad (Figure 2). We assumed
that the porcine skin would respond to the temperature increases like the human skin.

 

Figure 2. The realized configuration: the daily quality assurance (DQA) phantom over a skin portion.
Although barely noticeable, the gel pad was placed under the skin to ensure acoustic coupling
between the ExAblate bed and skin. In the left area of the image, the two interferometric probes
are visible.

A ROT of 78.7 cm3 was defined inside the phantom and automatically covered by
the system with 56 sonications. Neglecting absorption and attenuation in the propagation
path [41], an average energy of 2353 ± 611 J can be attributed to the sonications emitted
by the 208 elements of the phased-array HIFU transducer [42], for an average duration of
20.0 ± 2.9 s (with an elongated beam geometry). The time cooling was set at 85 s and the
ultrasound frequency at 1.1 MHz.

The software distributed the sonications over the ROT, forming s-shaped paths, in
order to prevent local overheating.

2.2. Optical Thermometry

For continuous temperature monitoring during the MRgFUS sonications, an MR-
compatible instrumentation was required. The AccuSens interferometric signal conditioner
(Opsens Inc., Québec, QC, Canada) equipped with an OTP-M birefringent crystal sensor
was chosen. The main characteristics are reported in Table 1.
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Table 1. Characteristics of the AccuSens interferometric signal conditioner.

Characteristic Value

Temperature operating range 0 ◦C to 85 ◦C
Specific calibrated range 20 ◦C to 45 ◦C standard (other ranges available)

Resolution 0.01 ◦C
Accuracy (specific calibrated range) ±0.15 ◦C @ ±3.3 σ limit (99.9% confidence level)

Response time <1 s
Operating humidity range 0–100%

The bottom surface of the phantom was divided into two portions: a circular crown,
which was never crossed by the ultrasound, and an inner area covered by the HIFU. One of
the OTP-M probes was inserted into the middle of the circular region, and the tip of another
one on the boundary between these two regions (Figure 3). Using this configuration, a
mask for the relative positioning of sensors and phantom on the gel pad was designed.
Then, this mask was reproduced on a plastic drape included in the “patient accessory
set” necessary for the treatment, since this material did not introduce any acoustical
impedance discontinuity.

 
(a) (b) 

Figure 3. Probe positions relative to the ultrasound field. (a) 3D model with the two probes positioned; (b) schematics of
the positioning/coupling apparatus.

2.3. Signal-to-Noise-Ratio Estimation

In order to evaluate if there was an adequate signal within the interface region nec-
essary to quantify temperatures, the signal-to-noise ratio (SNR) was calculated according
to Gorny et al. [43]. The investigated areas were the phantom, the skin interface, and the
gel pad.

Some sample MR images were evaluated; in particular, the images of the phantom
relative to sonication 4 and 5 were examined. Each acquired region was characterized by
an overall thickness of 16 mm, and was acquired in different locations with respect to the
phantom size (circular base with a diameter of 105 mm, as shown in Figure 3).

As shown in Figure 4, the acquired region of sonication #4 (red area) ranged from
+35 mm to +51 mm, while the region of sonication #5 (orange area) ranged from −14.4 mm
to +1.6 mm.
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Figure 4. The MRI acquisition locations of sonications #4 and #5.

The images related to each region were acquired in subsequent temporal frames of
3 s, which allowed us to reconstruct the temporal trend of the temperature rise for each
acquired area. The SNR value was calculated according to Equation (1):

SNR =
0.655·μ

(
Signalobject

)
σ
(

Signalbackground

) , (1)

where the ratio between the mean signal value (μ) of the object (i.e., phantom, skin, and
gel pad) region of interest (ROI) and the standard deviation (σ) of an area that contains
only background noise (e.g., air) were considered. The 0.655 factor was due to the Rician
distribution of the background noise in a magnitude image, which tended to a Rayleigh
distribution as the SNR tended to zero [44].

The three ROIs investigated for the SNR estimation are represented in Figure 5. The
signal intensity of the phantom, the skin interface, and gel pad areas were compared to a
region where the signal was ideally zero (i.e., the background ROI).

Figure 5. The ROIs investigated for the SNR estimation. The different ROIs that were drawn were
the tissue-mimicking phantom (yellow), skin interface (green), gel pad (cyan), and background area (red).
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2.4. Referenceless Thermometry

Classical PRF shift thermometry—in which one or more baseline images are acquired
before the thermal therapy and then are subtracted pixel-by-pixel from the images acquired
during heating—is affected by artifacts, which could lead to unrealistic temperature in-
creases [13,45,46]. These temperature-independent artifacts are mainly due to movements
of the anatomical region undergoing MRgFUS treatments, or to magnetic field inhomo-
geneities. With the goal of reducing these issues, referenceless thermometry could be used,
thus allowing us to estimate the heating caused by an MRgFUS treatment without using a
baseline image as temperature reference.

With the goal of accurately estimating the temperature variations, referenceless ther-
mometry methods were developed; in particular, we devised an interpolation method
based on artificial neural networks (ANNs) to reconstruct the original baseline phase
image and reliably evaluate temperature variations in the sonication area [47,48]. In fact,
assuming that the phase image surrounding the treated region has a smooth trend (even
under the heated area), referenceless (or self-referenced) thermometry techniques estimate
the temperature variations by means of a set of smooth low-order polynomial functions
to the surrounding phase, or to a complex magnitude image with the same phase using
a weighted least-squares fit [49]. The extrapolation of the polynomial inside the heated
region is used as background phase estimation, which is subtracted from the actual phase
to evaluate the phase difference before and after heating caused by ultrasound sonications
and, successively, quantify the temperature increase.

In the referenceless phase estimation, an ROI has to be delineated around the area
to be heated. First of all, two regions (namely, outer and inner) must be selected in the
phase image to perform the interpolation. Figure 6 shows the phase map and the outer
baseline region around the sonicated area (after the removal of the inner ROI containing
the heated region). It is essential to choose the outer ROI outside the heated region because
the temperature changes within the ROI affect the reconstruction of the background phase.

The most straightforward computational approach to solve this problem is to fit the
data with a polynomial function [50]. However, an invertible system that uniquely defines
the interpolant is not guaranteed for all positions of the interpolation points, and often it
could show spurious bumps. The background phase in the frame ROI is reconstructed by
means of an ANN exploiting radial basis functions (RBFs) as kernel [51,52].

In particular, a 3-layer feed-forward ANN was designed (with 1 input layer, 1 output
layer and 1 hidden layer) in which each hidden node implemented an RBF. ANNs are
well-suited for interpolation purposes, especially if there are large areas of missing data,
and the RBF approximation method allows several advantages with respect to polynomial
interpolants: (i) the network training finds the optimal weights from the input to the hidden
layer, and then the weights from the hidden to the output layer are calculated; and (ii) the
geometry of the input points is not restricted to a regular grid.

Radial Basis Function Theory

Let f : Rd → R be a real valued function of d variables that has to be approximated by
s : R

d → R , given the values { f (Xi) : i = 1, 2, . . . , n}, where {Xi : i = 1, 2, . . . , n} is a set
of n distinct points in R

d called the interpolation nodes. We will consider an approximation
of the form:

s(X) = pm(X) +
n

∑
i=1

λi ϕ(‖X − Xi‖2), X ∈ R
d, λi ∈ R, (2)

where: pm is a low-degree polynomial that can be also omitted, ‖·‖2 denotes the Euclidean
norm, and ϕ is a fixed function from R to R. Thus, the radial basis function s(·) is a
linear combination of translations of the single radially symmetric function ϕ(‖·‖2), plus a
low-degree polynomial. We will denote with πd

m the space of all polynomials of degree m at
most in d variables. The coefficients λi, which represent the weights of the approximation
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s, are determined by requiring that s satisfies the interpolation conditions expressed in the
following Equation (3):

s
(
Xj

)
≡ f

(
Xj

)
, j = 1, 2, . . . , n, (3)

together with the side conditions:

n

∑
i=1

λiq
(
Xj

)
= 0, ∀q ∈ πd

m. (4)

(a) 

(b) 

Figure 6. (a) 3D plot of a phase map with sonicated area; (b) 3D plot of the outer region of the phase
map in (a) after removing the sonicated area.

Some typical conditions on the nodes under which the interpolation conditions (3) and
(4) uniquely specify the radial basis function (2) are given in Table 2. In this context “not
coplanar” means that the nodes do not all lie in a single hyperplane, or equivalently that
no linear polynomial in d-variables vanishes at all the nodes. The surveys presented in [53]
and [54] are excellent references to these and other properties of radial basis functions.
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Table 2. Conditions imposed on nodes for various radial basis interpolants.

Function Type
Spatial Dimension

d
Polynomial Degree

m Restriction on Nodes

linear RBF any 1 not coplanar
thin-plate spline 2 1 not coplanar

Gaussian any absent none
multiquadratic RBF any absent none

3. Results

The selected ROIs were propagated for all the temporal sequences and in all the
depths, so the SNR value was calculated on every acquired 3D volume. As depicted in
Figure 7, the MR images of the sonications #4 and #5 showed the impulsive noise in the
area surrounding the phantom, especially in the skin interface and in the gel pad.

The signal acquired using the thermometric MRI protocol can be acceptable for aque-
ous tissues (such as the regions treated with MRgFUS), but unsatisfactory for fatty tissues.
In fact, as widely stated in [55], the tissue-type temperature independence of the PRF shift
is almost true for aqueous tissues, while the dependence in adipose tissues is affected by
susceptibility effects. Consequently, the temperature sensitivity of fat is extremely low [56],
indicating that MRI-based thermometry inside fatty tissues (such as the skin interface taken
into account here) is difficult.

 
  

(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 7. Sonications #4 (first row) and #5 (second row) morphological and thermal map examples: (a) and (d) temperature
reconstruction; (b) and (e) morphological image; (c) and (f) temperature image overlapped on the morphological image. It
is possible to estimate the noise in the gel pad and in the skin interface by observing the low SNR in those areas.
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These insights also were confirmed by our experimental findings, which showed
that SNRs inside the area near the gel pad and the porcine skin were relatively low when
compared to the SNR inside the phantom. Figure 8 shows that the signal was globally low
in all three acquired MRI volumes. The phantom area showed a higher signal compared to
the skin layer and the gel pad, where the signal appeared very poor.

Figure 8. SNR values calculated for the phantom, skin, and gel ROIs. The phantom signal had the
highest SNR values, while the gel area and the skin-interface area had the lowest SNR values.

The treatment was performed in about 2 h. The interferometric probes under the
porcine skin, positioned according to the scheme on Figure 3, measured a large amount of
temperature data. Figure 9 shows the maximum temperature rise recorded by the probes
in all the sonications. This is a clear confirmation that the probes were actually placed as
planned: the first probe was in the middle of the phantom and received more heat than the
second one, which was in a more decentralized position than the ROT.

Figure 9. Maximum rise of temperature in each sonication for probe 1 (blue) and probe 2 (red).

In some sonications, temperature-rising measurements were weakly perceived (ΔT < 1 ◦C)
for the relative position along the hypersonic field; this was the case in the fourth sonication
(Figure 10a). In other cases, like the fifth sonication, the temperature rose about 16 ◦C
(Figure 10b).
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(a) (b) 

Figure 10. Temperature measured by the optical probe 1 (blue) and probe 2 (red) during sonications #4 (a) and #5 (b).

Our analysis, coupled with the PRF-based temperature quantification provided by the
ExAblate control console, was employed by considering referenceless thermometry on 2D
phase map data, by means of ANNs using different interpolants RBF kernels (i.e., linear,
thin-plate spline, and multiquadratic) [47]. In these cases, it also was not possible to detect
meaningful temperature increases.

RBF and polynomial interpolations were applied on the data set; the former showed
a “bump-like” tendency and the latter overestimated the temperature, because the ana-
lyzed area was characterized by a low signal intensity where the noise was a significant
component (Figure 11).

Figure 11. The interpolated temperature errors compared to PRF-based temperature measurements
(which does not show any significant temperature rise). The polynomial (green) line overestimated
the data, while the linear RBF (blue) and multiquadratic RBF (cyan) lines had a “bump-like” trend
caused by the presence of noisy data.

To show the differences measured by the two probes, a two-sided Wilcoxon signed
rank test on paired data [57] was performed with the null hypothesis that the samples
came from continuous distributions with equal medians. In all the tests, a significance level
of 0.05 was considered. More details are provided in what follows: (i) the distributions of
the temperature increases measured by the probes (Figure 9) were statistically significant
considering all the sonications (p = 1.719 × 10−10); (ii) the distributions of the temperature
measured over time by the probes (Figure 10) were statistically significant for sonications for
both sonications #4 (p = 2.095 × 10−24) and #5 (p = 6.601 × 10−44); and (iii) the polynomial
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interpolation (Figure 11) significantly overestimated the data (p = 0.031), while the linear
RBF and multiquadratic RBF interpolations were not statistically different from the PRF
shift data (p = 0.687 in both cases).

4. Discussion

Starting from the current issues concerning patient safety related to undesired temper-
ature variations that can cause skin burns, an MRgFUS fibroid treatment was simulated
using an ex vivo porcine skin and a DQA tissue-mimicking phantom. The treatment con-
sisted of 56 ultrasound sonications and a maximum temperature increment (ΔT = 17.78 ◦C,
given in the 43th sonication), as shown in Figure 9. Even if the temperature increase was
obtained intentionally through bad acoustic coupling and by considering the interference
of the probes, the obtained results showed how it is quite difficult for a clinical operator
to detect a possible (and naturally unwanted) temperature increase by relying only on
the operating console that displays MR thermographic images. According to the study of
Moritz and Henriques [58], the relationship between time and temperature for this sonica-
tion is not intense enough to cause a skin burn, but the authors showed how a repetition of
five times could lead to complete and irreversible epidermal necrosis. The same results
can be obtained using more recent model-based classification approaches [59]. PRF-based
temperature monitoring is not useful with this kind of tissue, which was also confirmed by
using referenceless thermometry with polynomial and RBF interpolation models. This can
be attributed to the small thickness of the skin in the axial and sagittal planes compared to:
(i) the spatial resolution of the acquired MR images, (ii) the difficulty of catching the skin
on a coronal slice in the low-quality (to guarantee the appropriate acquisition speed for
real-time temperature monitoring) MR images acquired during the treatment, and (iii) the
thermometry system developed for clinical applications that is not optimized for such a
purpose. Moreover, the bump-like tendency of the RBF interpolation errors (see Figure 11)
could be due to a low SNR in the analyzed area, where the noise represented a significant
component while the signal was practically negligible, as shown in Figure 8.

While attempts have been made to reduce temperature increases on patients’ skin
through the quantification of the near-field (between the ultrasound transducer and target)
heating [60], a real-time temperature monitoring could give a better control during the
treatment. It might be necessary to develop novel image-processing algorithms and
methods to enhance phase-map acquisition in PRF-based thermometry techniques, as well
as MRI sequences with a higher pixel resolution, to improve the temperature monitoring
and limit any unwanted hot spots.

5. Conclusions and Future Work

In this work, the potential side effects regarding patient safety due to temperature
increases that rarely affect MRgFUS treatments were assessed. Along with the classical
PRF shift thermometry, a novel approach that exploited a referenceless technique based
on the RBF interpolation was used to evaluate the skin temperature during sonications.
Moreover, in this study, we also used two interferometric probes to measure the reached
temperatures. In a simulation of a real uterine fibroid treatment, only the probes were able
to detect temperature increases, while no important temperature changes were revealed by
the used interpolation methods. The achieved results showed that these methods, based on
the PRF shift thermometry, could be unsuitable to detect temperature increases on the skin.

One of the issues to consider in our analysis is the low SNR value in the investi-
gated region. New hardware and software solutions need to be studied to increase the
temperature-detector sensitivity by rising the SNR in order to also enhance MRgFUS
treatment safety and effectiveness.

In the future, more temporal instants should be considered for temperature measure-
ments and increases. Multiple repetitions of the experiments will increase the statistical
robustness of the experimental findings.
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Moreover, the planned experiments could be designed to reliably simulate a configu-
ration for clinical environments. To address the issues related to the acoustic interference
generated by the optical fibers across the ultrasound propagation, other techniques that are
able to accurately measure the skin temperature in real time and with a good time resolu-
tion could be employed. For instance, thermoscanners have a high temperature accuracy
(±0.3 ◦C), a very high recognition speed (<300 ms), and a temperature range (25–45 ◦C)
that are sufficient to evaluate skin temperature increases in real time. Some systems could
be also optically coupled to monitor the skin’s irradiated area for all tests. After extensive
ex vivo tests, the developed systems could be employed during clinical treatments.
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Abstract: Malignant melanoma is the deadliest form of skin cancer and, in recent years, is rapidly
growing in terms of the incidence worldwide rate. The most effective approach to targeted treatment
is early diagnosis. Deep learning algorithms, specifically convolutional neural networks, represent a
methodology for the image analysis and representation. They optimize the features design task, essential
for an automatic approach on different types of images, including medical. In this paper, we adopted
pretrained deep convolutional neural networks architectures for the image representation with purpose
to predict skin lesion melanoma. Firstly, we applied a transfer learning approach to extract image
features. Secondly, we adopted the transferred learning features inside an ensemble classification
context. Specifically, the framework trains individual classifiers on balanced subspaces and combines
the provided predictions through statistical measures. Experimental phase on datasets of skin lesion
images is performed and results obtained show the effectiveness of the proposed approach with respect
to state-of-the-art competitors.

Keywords: melanoma detection; deep learning; transfer learning; ensemble classification

1. Introduction

Among the types of malignant cancer, melanoma is the deadliest form of skin cancer and its incidence
rate is growing rapidly around the world. Early diagnosis is particularly important since melanoma can be
cured with a simple excision. In the majority, due to the similarity of the various skin lesions (melanoma
and not-melanoma) [1], the visual analysis could be unsuitable and would lead to a wrong diagnosis.
In this regard, image processing and artificial intelligence tools can provide a fundamental aid to a step of
automatic classification [2]. Further improvement in diagnosis is provided by dermoscopy technique [3].
Dermoscopy technique can be applied to the skin, in order to capture illuminated and magnified images
of the skin lesion in a non invasive way to highlight areas containing spots. Furthermore, the visual effect
of the deeper skin layer can be improved if the skin surface reflection is removed. Anyhow, classification
of melanoma dermoscopy images is a difficult task for different issues. First, the degree of similarity
between melanoma and not-melanoma lesions. Second, the segmentation, and, therefore, the identification
of the affected area is very complicated because of the variations in terms of texture, size, color, shape
and location. The last issue and not the least, is the additional skin conditions such as hair, veins or
variations due to image capturing. To this end, many solutions have been provided to improve the task.
For example, low-level hand-crafted features [4] are adopted to discriminate non-melanoma and melanoma
lesions. In some cases, these types of features are unable to discriminate clearly, leading to results that are
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sometimes not very relevant [5]. Differently, segmentation is adopted to isolate the foreground elements
from the background ones [6]. Consequently, the segmentation includes low-level features with a low
representational power that provides unsatisfactory results [7]. In recent years, deep learning has become
an effective solution for the extraction of significant features on large data. In particular, the diffusion
of deep neural networks, applied to the image classification task, is connected to various factors such as
the availability of software in terms of open source license, the constant growth of hardware power and
the availability of large datasets [8]. Deep learning has proven effective for the management, analysis,
representation and classification of medical images [9]. Specifically, for the treatment of melanoma,
deep neural networks were adopted both in segmentation and classification phases [10]. However,
the high variation of the types of melanoma and the imbalance of the data have a decisive impact on
performance [11], hindering the generalization of the model and leading to over-fitting [12]. In order to
overcome the aforementioned issues, in this paper, we introduce a novel framework based on transfer deep
learning and ensemble classification for melanoma detection. It works based on three integrated stages.
A first, which performs image preprocessing operations. A second, which extracts features using transfer
deep learning. A third, including a layer of ensemble learning, in which different classification algorithms
and features extracted are combined with the aim of making the best decision (melanoma/not-melanoma).
Our approach provides the following main contributions:

• A deep and ensemble learning-based framework, to simultaneously address inter-class variation and
class imbalance for the task of melanoma classification.

• A framework that, in the classification phase, at the same time, creates multiple image representation
models, based on features extracted with deep transfer learning.

• The demonstration of how the choice of multiple features can enrich image representation by leading
a lesion assessment like a skilled dermatologist.

• Some experimental greater improvements over existing methods on different state of art datasets
about melanoma detection task.

The paper is structured as follows. Section 2 provides an overview of state-of-the-art about melanoma
classification approaches. Section 3 describes in detail proposed framework. Section 4 provides a wide
experimental phase, while Section 5 concludes the paper.

2. Related Work

In this section, we briefly analyze the most important approaches of skin lesions recognition literature.
In this field are included numerous works that address the issue according to different aspects. Some works
offer an important contribution about image representation, by implementing segmentation algorithms or
new descriptors. Instead, others implement complex mechanisms of learning and classification.

In Reference [13], a novel boundary descriptor based on the color variation of the skin lesion
input images, achieved with standard cameras, is introduced. Furthermore, in order to reach higher
performance, a set of textural and morphological features is added. Multilayer perceptron neural network
as classifier is adopted.

In Reference [14], authors propose a complex framework that implements an illumination correction
and features extraction on skin image lesions acquired using normal consumer-grade cameras. Applying a
multi-stage illumination improvement algorithm and defining a set of high-level intuitive features (HLIF),
that quantifies the level of asymmetry and border irregularity about a lesion, the proposed model can be
used to classify accurate skin lesion diagnoses.

While in Reference [15], authors, to properly evaluate contents of the concave contours, introduce
a novel border descriptor named boundary intersection-based signature (BIBS). Shape signature is a
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one-dimensional illustration of shape border and cannot contribute to a proper description for concave
borders that have more than one intersection points. For this reason, BIBS analyzes boundary contents of
shape especially shapes with concave contours. Support vector machine (SVM) for classification process
is adopted.

Another descriptor for the individualization of skin lesions is named high-level intuitive features
(HLIFs) [16]. HLIFs are created to simulate a model of human-observable characteristics. It captures
specific characteristics that are significant to the given application: color asymmetry—analyzing and
clustering pixels colors, structural asymmetry—applying the Fourier descriptors of the shape,
border irregularity—using morphological opening and closing, color characteristics—transforming the
image to a perceptually uniform color space, building color-spatial representations that model the color
information for a patch of pixels, clustering the patch representations into k color clusters, quantifying the
variance found using the original lesion and the k representative colors.

A texture analysis method of Local Binary Patterns (LBP) and Block Difference of Inverse Probabilities
is proposed in Reference [17]. A comparison is provided with classification results obtained by taking
the raw pixel intensity values as input. Classification stage is achieved generating an automated model
obtained by both convolutional neural networks (CNN) and SVM.

In Reference [18], authors propose a system that automatically extracts the lesion regions, using
non-dermoscopic digital images, and then computes color and texture descriptors. Extracted features are
adopted for automatic prediction step. The classification is managed using a majority vote of all predictions.

In Reference [19], non-dermoscopic clinical images to assist a dermatologist in early diagnosis of
melanoma skin cancer are adopted. Images are preprocessed in order to reduce artifacts like noise effects.
Subsequently, images are analyzed through a pretrained CNN which is a member of deep learning models.
CNNs are trained by a large number of training samples in order to distinguish between melanoma and
benign cases.

In Reference [20], Predict-Evaluate-Correct K-fold (PECK) algorithm is presented. The algorithm
works by merging deep CNNs with SVM and random forest classifiers to achieve an introspective
learning method. In addition, authors provides a novel segmentation algorithm, named Synthesis and
Convergence of Intermediate Decaying Omnigradients (SCIDOG), to accurately detect lesion contours in
non-dermoscopic images, even in the presence of significant noise, hair and fuzzy lesion boundaries.

In Reference [21], authors propose a novel solution to improve melanoma classification by defining
a new feature that exploits the border-line characteristics of the lesion segmentation mask combining
gradients with LBP. These border-line features are used together with the conventional ones and lead to
higher accuracy in classification stage.

In Reference [22], an objective features extraction function for CNN is proposed. The goal is to acquire
the variation separability as opposed to the categorical cross entropy which maximizes according to the
target labels. The deep representative features increase the variance between the images making it more
discriminative. In addition, the idea is to build a CNN and perform principal component analysis (PCA)
during the training phase.

In Reference [23], a deep learning computer aided diagnosis system for automatic segmentation and
classification of melanoma lesions is proposed. The system extracts CNN and statistical and contrast
location features on the results of raw image segmentation. The combined features are utilized to obtain
the final classification of melanoma, malignant or benign.

In Reference [24], authors propose an efficient algorithm for prescreening of pigmented skin lesions for
malignancy using general-purpose digital cameras. The proposed method enhances borders and extracts
a broad set of dermatologically important features. These discriminative features allow classification of
lesions into two groups of melanoma and benign.
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In Reference [25], a skin lesion detection system optimized to run entirely on the resource constrained
smartphone is described. The system combines a lightweight method for skin detection with a hierarchical
segmentation approach including two fast segmentation algorithms and proposes novel features to
characterize a skin lesion. Furthermore, the system implements an improved features selection algorithm
to determine a small set of discriminative features adopted by the final lightweight system.

Multiple-instance learning (MIL)-based approaches are of great interest in recent years. MIL is a
type of supervised learning and works by receiving a set of instances, named bags, individually labeled.
In Reference [26], authors present an MIL approach with application to melanoma detection. The goal
was to discriminate between positive and negative sets of items. The main rule concerns a bag that
is positive if at least one of its instances is positive and it is negative if all its instances are negative.
Differently in Reference [27], MIL approaches are described with purpose to discriminate melanoma from
dysplastic nevi. Specifically, authors introduce an MIL approach that adopts spherical separation surfaces.
Finally, in Reference [28], a preliminary comparison between two different approaches, SVM and MIL,
is proposed, focusing on the key role played by the feature selection (color and texture). In particular,
the authors are inspired by the good results obtained applying MIL techniques for classifying some medical
dermoscopic images.

3. Materials and Methods

In this section, we describe the proposed framework which includes two well known methodologies:
deep neural network and ensemble learning. The main idea is to combine algorithms of features extraction
and classification. The result is a set of competitive models providing a range of confidential decisions
useful for making choices during classification. The framework is composed of three levels. A first,
which performs preprocessing operations such as image resize and data balancing. A second, of transfer
learning, which extracts features using deep neural networks. A third level, of ensemble learning, in which
different classification algorithms (SVM [29], Logistic Label Propagation (LLP) [30], KNN [31]) and features
extracted are combined with the aim of making the best decision. Adopted classifiers are trained and
tested through a bootstrapping policy. Finally, the framework iterates through a predetermined number of
times in a supervised learning context. Figure 1 shows a graphic overview of the proposed framework.
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Figure 1. Overview of the proposed framework.

3.1. Data Balancing

Melanoma lesion analysis and classification is connected with accurate segmentation with purpose
to isolate areas of the image containing information of interest. Moreover, the wide variety of skin
lesions and the unpredictable obstructions on the skin make traditional segmentation an ineffective
tool, especially for non-dermoscopic images. Furthermore, the problem of imbalance, present in many
datasets, makes the classification difficult to address, especially when the samples of the minority class
are very underrepresented. In the case under consideration, to compensate the strong imbalance between
the two classes, a balancing phase was performed. The goal was to isolate segments of the image that
could contain melanoma. In particular, the resampling of the minority class is performed by adding
images altered through the application of K-Means color segmentation algorithm [32]. The application of
segmentation algorithms for image augmentation [33], and consequently to provide a balancing between
classes, represented a good compromise for this stage of the pipeline.

3.2. Image Resize

Images to be processed have been resized based on the dimension, related to the input layer, claimed
by the deep neural networks (details can be found in Table 1 column 5). Many of the networks require
this type of step but it does not alter the image information content in any way. This normalization
step is essential because images of different or large dimensions cannot be processed for the features
extraction stage.

Table 1. Description of the adopted pretrained network.

Network Depth Size (MB) Parameters (Millions) Input Size Features Layer

Alexnet 8 227 61 227 × 227 fc7
Googlenet 8 27 7 224 × 224 pool5-7x7_s1
Resnet18 18 44 11.7 224 × 224 pool5
Resnet50 50 96 25.6 224 × 224 avg_pool
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3.3. Transfer Learning and Features Extraction

The transfer learning approach has been chosen for features extraction purpose. Commonly,
a pretrained network is adopted as starting point to learn a new task. It is the easiest and fastest way to
exploit the representational power of pretrained deep networks. It is usually much faster and easier to
tune a network with transfer learning than training a new network from scratch with randomly initialized
weights. We have selected deep learning architectures for image classification based on their structure and
performance skills. The goal was to extract features from images through neural networks by redesigning
their structures in the final layer according to the needs of the addressed task (two outgoing classes:
melanoma and not-melanoma). The features extraction is performed through a chosen layer (different
for each network and specified in the Table 1), placed in the final part of the structure. The image will be
encoded through a vector of real numbers produced by consecutive convolution steps, from the input
layer to the layer chosen for the representation. Below, a description of the adopted networks is reported.

Alexnet [8] consists of 5 convolutional layers and 3 fully connected layers. It includes the
non-saturating ReLU activation function, better then tanh and sigmoid during training phase. For features
extraction, we have chosen a fully connected 7 (fc7) layer composed of 4096 neurons.

Googlenet [34] is composed of 22 layers deep. The network is inspired by LeNet [35] but implemented
a novel element which is dubbed an inception module. This module is based on several very small
convolutions in order to drastically reduce the number of parameters. Their architecture reduced the
number of parameters from 60 million (AlexNet) to 4 million. Furthermore, it includes batch normalization,
image distortions and Root Mean Square Propagation algorithm. For features extraction, we have chosen
global average pooling (pool5-7x7_s1) layer composed of 1024 neurons.

Resnet18 and Resnet50 [36] are inspired by pyramidal cells contained in the cerebral cortex. They use
particular skip connections or shortcuts to jump over some layers. They are composed of 18 and 50
layers deep, which with the help of a technique known as skip connection has paved the way for residual
networks. For feature extraction, we have chosen two global average pooling (pool5 and avg-pool) layers
composed of 512 and 2048 neurons, respectively.

3.4. Network Design

The adopted networks have been adapted to the melanoma classification problem. Originally, they
have been trained on the Imagenet dataset [37], composed of a million images and classified into 1000
classes. The result is a rich features representation for a wide range of images. The network processes an
image and provides a label along with probabilities for each of the classes. Commonly, the first layer of the
network is the image input layer. This requires input images with 3 color channels. Just after, convolutional
layers work to extract image features in which the last learnable layer and the final classification layer
adopt to classify the input image. In order to make suitable the pretrained network to classify new images,
the two last layers with new layers are replaced. In many cases, the last layer, including learnable weights,
is a fully connected layer. This is replaced with a new fully connected layer related to the number of
outputs equal to the number of classes of new data. Moreover, to speedup the learning in the new layer
with respect to transferred layers, it is recommended to increase the learning rate factors. As an optional
choice, the weights of earlier layers can be frozen by setting the related learning rate to zero. This setting
produces a failure of update of the weights during the training, and a consequent lowering of the execution
time as the gradients of the related layers must not be calculated. This aspect is very interesting to avoid
overfitting in the case of small datasets.
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3.5. Ensemble Learning

The contribution of different transfer learning features and classifiers can be mixed in an ensemble
context. Considering the set of images, with cardinality k, belonging to x classes, to be classified

Imgs = {i1, i2, . . . , ik} (1)

each element of the set will be treated with the procedure below. Let us consider the set C composed of
n classifiers

C = {β1, β2, . . . , βn} (2)

and set F composed of m vectors of transferred learning features

F = {Θ1, Θ2, ....Θm} (3)

the goal is the combination each element of the set C with the elements of the set F. The set of combinations
can be defined as CF

CF =

⎡
⎢⎣

β1Θ1 . . . β1Θm
...

. . .
βnΘ1 βnΘm

⎤
⎥⎦ (4)

each combination provides a decision i ∈ I{−1, 1}, where 1 stands for melanoma and −1 for not-melanoma,
related to image of the set Imgs. The set of decisions D can be defined as follows

D =

⎡
⎢⎣

dβ1Θ1 . . . dβ1Θm
...

. . .
dβnΘ1 dβnΘm

⎤
⎥⎦ (5)

Each dβiΘj value represents a decision based on the combination of sets C and F. In addition, the set
of scores S can be defined as follows

S =

⎡
⎢⎢⎣

P(i|x)dβ1Θ1
. . . P(i|x)dβ1Θm

...
. . .

P(i|x)dβnΘ1
P(i|x)dβnΘm

⎤
⎥⎥⎦ (6)

a score value, s ∈ S{0, . . . , 1}, is associated with each decision d and represents the posterior probability
P(i|x) that an image i belongs to class x. At this point, let us introduce the concept of mode, defined as the
value which is repeatedly occurred in a given set

mode = l +
(

f1 − f0

2 f1 − f0 − f2

)
× h (7)

where l is the lower limit of the modal class, h is the size of the class interval, f1 is the frequency of the
modal class, f0 is the frequency of the class which precedes the modal class and f2 is the frequency of the
class which successes the modal class. The columns of matrix D are analyzed with the mode, in order to
obtain the values of the most frequent decisions. This step is carried out in order to verify the best response
of the different classifiers, contained in the set C, which adopt the same type of features. Moreover,
the mode provides two indications. The most frequent value and its occurrences (indices). For each most
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frequent occurrence, modal value, the corresponding score of the matrix S is extracted. In this regard,
a new vector is generated

DS = {dsP(i|x)dβ1,...,nΘ1
, . . . , dsP(i|x)dβ1,...,nΘm

}, (8)

where each element ds contains the average of the scores that have a higher frequency, extracted through
the mode, in the related column of the matrix D. In addition, the modal value of each column of the matrix
D is stored in the vector DM

DM = {dmdβ1,...,nΘ1
, . . . , dmdβ1,...,nΘm

}, (9)

the final decision will consist in the selection of the element of the vector DM with the same position of
the maximum score value of the vector DS. This last step verifies the best prediction based on the different
features adopted, essentially the best features suitable for the classification of the image.

3.6. Train and Test Strategy: Bootstrapping

Bootstrapping is a statistical technique which consists of creating samples of size B, named bootstrap
samples, from a dataset of size N. The bootstrap samples are randomly inserted with replacement on
the dataset. This strategy has important statistical properties. First, subsets can be considered as directly
extracted from the original distribution, independently of each others, containing representative and
independent samples, almost independent and identically distributed (idd). Two considerations must
be made in order to validate the hypotheses. First, the N dimension of the original dataset should be
large enough to detect the underlying distribution. Sampling the original data is a good approximation
of real distribution (representativeness). Second, the N dimension of the dataset should be better than
the B dimension of the bootstrap samples so that the samples are not too correlated (independence).
Commonly, considering the samples to be truly independent means requiring too much data compared to
the amount actually available. This strategy can be adopted to generate several bootstrap samples that
can be considered nearly representative and almost independent (almost iid samples). In the proposed
framework, bootstrapping is applied to set F (Equation (3)) in order to perform the training and testing
stages of classifiers. This strategy seemed suitable for the problem faced in order to create a competitive
environment capable of providing the best performance.

4. Experimental Results

This section describes the experiments performed on public datasets. In order to produce compliant
performance, the settings included in well-known melanoma classification methods, in which the main
critical issue concerns the features extraction for image representation, are adopted.

4.1. Datasets

The first adopted dataset is MED-NODE (http://www.cs.rug.nl/~imaging/databases/melanoma_
naevi/). It was created by the Department of Dermatology of the University Medical Center Groningen
(UMCG). The dataset was initially used to train the MED-NODE computer assisted melanoma detection
system [18]. It is composed of 170 non-dermoscopic images, where 70 are melanoma and 100 are nevi.
The image dimensions vary greatly, ranging from 201 × 257 to 3177 × 1333 pixels.

The second adopted dataset, Skin-lesion (from now), is described in Reference [16]. It is composed of
206 images of skin lesion, which were obtained using standard consumer-grade cameras in varying and
unconstrained environmental conditions. These images were extracted from the online public databases
Dermatology Information System (http://www.dermis.net) and DermQuest (http://www.dermquest.
com). Of these images, 119 are melanomas, and 87 are not-melanoma. Each image contains a single lesion
of interest.
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4.2. Settings

The framework consists of different modules written in Matlab language. Moreover, we applied
pretrained networks available which are included in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [38]. Among all the computational stages, the features extraction process, described
in Section 3.3, was certainly the most expensive. As is certainly known, the networks are composed of fully
connected layers that make the structure extremely dense and complex. This aspect certainly increases
the computational load. Alexnet, Googlenet, Resnet50 are adopted to extract features on MED-NODE
dataset. Differently, Resnet50 and Resnet18 are adopted for Skin-lesion dataset. The choice is not random
but was made based on two criteria. Primarily, a study about the network specifications and characteristics
most suitable for the problem faced in literature and, secondly, the performance obtained. A different
combination did not provide expected feedback. In the Table 1, some important details related to the
layers chosen for feature extraction are shown. Networks were trained by setting the mini batch size to 5,
the maximum epochs to 10, the initial learning rate to 3 × 10−4 and the optimizer is stochastic gradient
descent with momentum (SGDM) algorithm. For both experimental procedures, in order to train the
classifiers, 80% and 20% of images are included in train and test sets, respectively, for a number of iterations
equal to 10. Table 2 enumerates classification algorithms included in the framework and related settings
(some algorithms appear more times with different configurations). For completeness and clarity, and in
order to demonstrate the best solution, both results of combinations adopted, even if they did not provide
the best performance, are indicated in Tables 4 and 5.

Table 2. Classification algorithms and related settings.

Algorithms Setting

SVM [29] KernelFunction:polynomial, KernelScale: auto
SVM [29] KernelFunction: Gaussian, KernelScale: auto
LLP [30] KernelFunction: rbf, Regularization parameter: 1, init: 0, maxiter: 1000

KNN [31] NumNeighbors: 3, Distance: spearman
KNN [31] NumNeighbors: 4, Distance: correlation

4.3. Discussion

Table 3 shows the metrics adopted for the performance evaluation, in order to provide a uniform
comparison with algorithms working on the same task.
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Table 3. Evaluation metrics adopted during the relevance feedback stage.

Metric Equation

True Positive Rate TPR =
TP

TP + FN

True Negative Rate TNR =
TN

TN + FP

Positive Predictive Value PPV =
TP

TP + FP

Negative Predictive Value NPV =
TN

TN + FN

Accuracy ACC =
TP + FN

TP + FP + TN + FN

F1-Score(Positive) FP
1 =

2 · PPV · TPR
PPV + TPR

F1-Score(Negative) FN
1 =

2 · NPV · TNR
NPV + TNR

Matthew’s Correlation Coefficient MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

Looking carefully at the table, it is important to focus on the meaning of the individual measures
with reference to melanoma detection. The True Positive rate, also known as Sensitivity, concerns the
portion of positives melanoma images that are correctly identified. This provide important information
because highlights the skill to identify images containing skin lesions and contributes to increase the degree
of robustness of result. The same concept is true for the True Negative rate, also known as Specificity,
which instead measures the portion of negatives, not containing skin lesions, that have been correctly
identified. The Positive and Negative Predictive values, also known as Precision and Recall, respectively,
are probabilistic measures that indicate whether an image with a positive or negative melanoma test
may or may not have a skin lesion. In essence, Recall expresses the ability to find all relevant instances
in the dataset, Precision expresses the proportion of instances that the framework claims to be relevant
were actually relevant. Accuracy, a well-known performance measure, is the proportion of true results
among the total number of cases examined. In our case, it provides an overall analysis, certainly a rough
measurement compared to the previous ones, about the skill of a classifier to distinguish a skin lesion
from an image without lesions. F1−Score measure combines the Precision and Recall of the model, as the
harmonic mean, in order to find an optimal blend. The choice of the harmonic mean instead of a simple
mean concerns the possibility of eliminating extreme values. Finally, Matthew’s correlation coefficient is
another overall well-known quality measure. It takes into account True/False Positives/Negatives values
and is generally regarded as a balanced measure which can be adopted even if the classes are of very
different sizes.

The Tables 4 and 5 describe the comparison with existing skin cancer classification methods
(we referred with the results which appear in the corresponding papers). The provided performance can
be considered satisfactory compared to competitors. In terms of accuracy, although it provides a rough
measurement, we have provided the best result for MED-NODE and the second for Skin-lesion (only
surpassed by BIBS). Differently, predictive positive value and negative positive value give good indications
on the classification ability. True positive rate, a measure that provides greater confidence about addressed
problem, is very high for both datasets. Otherwise, true negative rate, which also provides a high degree of
sensitivity related to the absence of tumors within the image, is the best value for both datasets. Regarding
the remaining measures, Fp

1 , Fn
1 and Matthew’s Correlation Coefficient, considerable values were obtained
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but, unfortunately, not available for all competitors. We can certainly attribute the satisfactory performance
to two main aspects. First, the deep learning features, which even if abstract, are able to best represent the
images. Furthermore, the framework provides multiple representation models that certainly constitute a
different starting point than a standard approach, in which a single representation is provided. This aspect
is relevant for improving performance. A non negligible issue, the normalization of the image size, with
respect to the request of the first layer of the neural network, before the features extraction phase, does
not produce a performance degradation. In other cases, normalization causes loss of quality of the image
content and a consequent degradation of details. Otherwise, the weak point is the computational load even
if pretrained networks include layers with already tuned weights. Surely, the time required for training
is long but less than a network created from scratch. Second, the classification scheme, which provides
multiple choices in decision making. In fact, at each iteration, the framework chooses which classifier is
suitable for recognizing melanoma in the images included in the proposed set. Certainly, this approach is
more computationally expensive but produces better results than a single classifier.

Table 4. Experimental results on the MED-NODE dataset.

Method TPR TNR PPV NPV ACC F p
1 Fn

1 MCC

MED-NODE annoted [18] 0.78 0.59 0.56 0.80 0.66 0.65 0.68 0.36
Spotmole [39] 0.82 0.57 0.56 0.83 0.67 0.67 0.68 0.39
Barhoumi and Zagrouba [40] 0.46 0.87 0.70 0.71 0.70 0.56 0.78 0.37
MED-NODE color [18] 0.74 0.72 0.64 0.81 0.73 0.69 0.76 0.45
MED-NODE texture [18] 0.62 0.85 0.74 0.77 0.76 0.67 0.81 0.49
Jafari et al. [24] 0.90 0.72 0.70 0.91 0.79 0.79 0.80 0.61
MED-NODE combined [18] 0.80 0.81 0.74 0.86 0.81 0.77 0.83 0.61
Nasr Esfahani et al. [19] 0.81 0.80 0.75 0.86 0.81 0.78 0.83 0.61
Benjamin Albert [20] 0.89 0.93 0.92 0.93 0.91 0.89 0.92 0.83
Pereira et [21] ght/svm-smo/f23-32 0.45 0.92 - - 0.73 - - -
Pereira et [21] ght/svm-smo/f1-32 0.56 0.86 - - 0.74 - - -
Pereira et al. [21] lbpc/svm-smo/f23-32 0.49 0.93 - - 0.75 - - -
Pereira et al. [21] lbpc/svm-smo/f1-32 0.58 0.91 - - 0.78 - - -
Pereira et al. [21] ght/svm-sda/f23-32 0.66 0.83 - - 0.76 - - -
Pereira et al. [21] ght/svm-sda/f1-32 0.66 0.86 - - 0.78 - - -
Pereira et al. [21] lbpc/svm-isda/f23-32 0.69 0.83 - - 0.77 - - -
Pereira et al. [21] lbpc/svm-isda/f1-32 0.65 0.88 - - 0.79 - - -
Pereira et al. [21] ght/ffn/f23-32 0.63 0.84 - - 0.76 - - -
Pereira et al. [21] ght/ffn/f1-32 0.63 0.84 - - 0.76 - - -
Pereira et al. [21] lbpc/ffn/f23-32 0.64 0.83 - - 0.75 - - -
Pereira et al. [21] lbpc/ffn/f1-32 0.66 0.86 - - 0.77 - - -
Sultana et al. [22] 0.73 0.86 0.77 0.83 0.81 - - -
Ge, Yunhao and Liet al. [23] 0.94 0.93 - - 0.92 - - -
Mandal et al.[41] Case 1 0.61 0.65 0.74 0.87 0.65 - - -
Mandal et al.[41] Case 2 0.80 0.73 0.74 0.87 0.71 - - -
Mandal et al.[41] Case 3 0.84 0.66 0.68 0.86 0.71 - - -
Jafari et al. [42] 0.82 0.71 0.67 0.85 0.76 - - -
T. Do et al. [25] Color 0.81 0.73 0.66 0.85 0.75 - - -
T. Do et al. [25] Texture 0.66 0.85 0.75 0.79 0.78 - - -
T. Do et al. [25] Color and Texture 0.84 0.72 0.70 0.87 0.77 - - -
E. Nasr-Esfahani et al. [19] 0.81 0.80 0.75 0.86 0.81 - - -
Resnet50+Resnet18 0.80 1.00 1.00 0.83 0.90 0.88 0.90 0.81
Resnet50+Googlenet+Alexnet 0.90 0.97 0.97 0.90 0.93 0.93 0.94 0.87
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Table 5. Experimental results on the Skin-lesion dataset.

Method TPR TNR PPV NPV ACC F p
l Fn

l MCC

Texture analysis [17] 0.87 0.71 0.76 - 0.75 - - -
HLIFs [16] 0.96 0.73 - - 0.83 - - -

BIBS [15] 0.92 0.88 0.91 - 0.90 - - -
Decision Support [14] 0.84 0.79 - - 0.81 - - -
Color pigment boundary [13] 0.95 0.88 0.92 - 0.82 - - -
R. Amelard et al. [43] Asymmetry FC 0.73 0.64 - - 0.69 - - -
R. Amelard et al. [43] Proposed HLIFs 0.79 0.68 - - 0.75 - - -
R. Amelard et al. [43] Cavalcanti feature set 0.84 0.78 - - 0.82 - - -
R. Amelard et al. [43] Modified FC 0.86 0.75 - - 0.72 - - -
R. Amelard et al. [43] Combined FMC FHLIFS

A 0.91 0.80 - - 0.86 - - -
Resnet50+Resnet18 0.84 0.92 0.91 0.85 0.88 0.87 0.88 0.76
Resnet50+Googlenet+Alexnet 0.87 0.65 0.71 0.84 0.76 0.78 0.73 0.54

5. Conclusions and Future Works

The challenge in the discrimination of melanoma and nevi has resulted to be very interesting in
recent years. The complexity of the task is linked to different factors such as the large amount of types of
melanomas or the difficulties for digital phase acquisition (noise, lighting, angle, distance and much more).
Machine learning classifiers suffer greatly these factors and inevitably reflect on the quality of the results.
In support, the convolutional neural networks give a big hand for both classification and features extraction
phases. In this context, we have proposed a framework that combines standard classifiers and features
extracted with convolutional neural networks using a transfer learning approach. The results produced
certainly support the theoretical thesis. A multiple representation of the image compared to a single
one is a high discrimination factor even if the features adopted are completely abstract. The extensive
experimental phase has shown how the proposed approach is competitive, and in some cases surpassing,
with respect to state-of-the-art methods. Certainly, the main weak point concerns the computational
complexity relating to features extraction phase, as it is known, takes a long time especially when the
data to be processed grows. Future work will certainly concern the study and analysis of convolutional
neural networks still unexplored for this type of problem, the application of the proposed framework to
additional datasets (such as PH2 [44]) and alternative tasks from the melanoma detection. Finally, also
interesting are different dataset balancing approaches, such as proposed in [45] where all the melanom
images are duplicated by including zero-mean Gaussian noise with variance equal to 0.0001.
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