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WELCOME FROM THE GENERAL CHAIR

Traditionally the APRS has organised a technical meeting every year since its inception in 1990 — a
major 3-day refereed conference (DICTA) in odd numbered years and a workshop in even numbered
years. This tradition was broken last year when we delayed DICTA by two months to run back to back
with ACCV2002. This workshop is therefore what would have been the “even year” meeting, again
slipped by a few months. Our plans are to run the next DICTA before the end of 2003, so that we are
resynchronised.

After DICTA2002, a membership poll was conducted to determine whether members wanted the
workshop to meet the same reviewing standards as DICTA, so that papers receive full academic credit.
This motion was overwhelmingly supported, so WDIC2003 was run as an internationally peer
reviewed conference with electronic submission, reviewing and publication.

The theme for the keynote address and first oral session is “Medical Applications of Image Analysis.”
Papers that are of general interest to the Pattern Recognition and Computer Vision Community appear
in the other sessions.

We received a very large number of submissions despite the late advertising and registrations are also
strong. As per APRS tradition, registrants at WDIC2003 are given one-year membership of the APRS
which includes the newsletter and discounts on APRS and IAPR technical events. I look forward to an
exciting technical program and to meeting you all at the workshop.

Finally, I would like to take this opportunity to thank Anthony Maeder and Clinton Fookes for their
excellent support in organising this event. I would also like to express my gratitude to the members of
the Technical Committee for their very speedy responses to my reviewing requests just before
Christmas.

Hope you enjoy WDIC2003!

Brian Lovell
General Chair of WDIC2003
President of the Australian Pattern Recognition Society
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FOREWORD FROM THE TECHNICAL CHAIR

WDIC2003 is the sixth in a series of bi-annual specialist workshops organised by APRS, intended to
focus on current work-in-progress in topical areas of interest amongst our members. In keeping with
the APRS aspirations for broad coverage of topics relevant to pattern recognition and engagement with
a variety of application areas, WDIC2003 was established with a central theme of Medical Imaging,
but submissions in other related areas were also invited. It is pleasing to note that the result is an event
where the chosen theme is strong and yet is counterbalanced by a similar volume of coverage of other
topics. In this way we hope that interests of most members can be addressed at the event.

The theme of Medical Imaging is one that is very popular in the international arena, with major annual
meetings run by SPIE, ACR and many others. In Australia, APRS has been associated with previous
workshops in this topic run in Ballarat (1998) and Gold Coast (1999), under ARC sponsorship. At these
meetings, a network of contacts was established between researchers in university, government and
health sectors, and much information was shared on current work and projects. We hoped that
WDIC2003 provides an opportunity to maintain some of those links.

The acceptance of papers for WDIC2003 followed a rigorous process to comply with DEST category
E1 requirements. All papers were submitted in full for independent review by 3 referees, chosen for
their membership of the technical committee according to the relevance of their expertise to the
workshop. They were drawn from a wide range of institutions, both within Australia and overseas, and
are nationally recognised as qualified experts in their areas. An overall acceptance rate approaching
90% of submissions was achieved, and comments from reviewers were returned to authors where
appropriate to allow improvements to be made to their papers for final publication. The resulting
proceedings present a nationally significant body of work, with authors from 4 different states
represented.

The decision to produce the full proceedings on CD only for this workshop is a new step for APRS, in
line with intentions to boost our electronic media and web presence for further outreach to the
academic and industry communities. The expedience of this process allowed a short timeline for review
and publication to be achieved, and I must thank both the authors and the reviewers for their
cooperation and patience in complying. I must also acknowledge the role of Clinton Fookes in assisting
with the compilation of the final copy, alongside his active role as publicity coordinator.

Finally, I would like to pay tribute to the leadership of Brian Lovell in conceiving and promoting this
event: his dedication to maintaining the active presence and impact of APRS in Australia is to be
admired.

Anthony Maeder
Technical Chair of WDIC2003
Ordinary Member of APRS National Executive Committee
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Segmentation of Brain MR Imageswith Bias Field Correction

Seung-Gu Kim
Sangji University
Department of Applied Statistics

Wonju, Gangwon, 220-702, Korea
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Geoffrey J. McLachlan
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Abstract

We consider a statistical model-based approach to the
segmentation of magnetic resonance (MR) images with
bias field correction. The proposed method of penalized
maximum likelihood is implemented via the expectation-
conditional maximization (ECM) algorithm, using an ap-
proximation to the E-step based on a fractional weight ver-
sion of the iterated conditional modes (ICM) algorithm. A
Markov randomfield (MRF) is adopted to model the spatial
dependence between neighouring voxels. The approach is
illustrated using some simulated and real MR data.

1. Introduction

Medical magnetic resonance imaging (MRI) has the ad-
vantages of being able to penetrate bony and air-filled struc-
tures with negligible attenuation and artifact. The modality
has proven to be a very useful noninvasive medical imag-
ing technique because of the ability to render high anatom-
ical resolution of soft tissues with imaging in any arbitrary
plane. Tissue-segmentation of magnetic resonance (MR)
images of the human brain has a large potential to facili-
tate an imaging-based medical diagnosis, providing an aid
to surgery and treatment planning [10]. Accurate estima-
tion of the tissue parameters, including their volume sizes,
will help to monitor changes in brain haemodynamics and
metabolism resulting from neuronal activity [4], and so will
assist in the diagnosis and treatment of neurogenerativedis-
ease such as Alzheimer's disease. MRI is also useful in
providing anatomical information about the location of po-

Shu-Kay Ng
University of Queensland
Department of Mathematics
Brisbane QLD 4072, Australia
skn@maths.ug.edu.au

Deming Wang
University of Queensland
Centre for Magnetic Resonance
Brisbane QLD 4072, Australia
deming.wang@cmr.uq.edu.au

tential discontinuitiesin the Positron Emission Tomography
(PET) image [17] and an opportunity to monitor the human
brain activation effects to stimuli at relatively high spatial
resolution [15]. Such tissue segmentation of MR images
is often achieved by applying statistical classification tech-
niques to the signal intensities [5, 21, 29], in conjunction
with post-processing operations to remove acquisition arti-
facts [7, 12, 18]. A comprehensive review on MR image
segmentation methods is provided by [6].

We consider here a statistical-based approach whereby
the intensities on each voxel is modelled by a mixture of
a finite number, say g, of normal distribution [19, 21]. In
the latter, the expectation-maximization (EM) agorithm [8]
is adopted to segment MR images and estimate the tissue
parameters. An approximation to the E-step of the EM al-
gorithm is employed based on a fractional weight version
of Besag's iterated conditional modes (ICM) algorithm [2].
The prior (spatial) distribution of different tissue types is
modelled by ahidden Markov Random Field (MRF) so asto
incorporate spatial continuity constraints on the tissue seg-
mentation. We refer to this model as GMM-HMRF (Gaus-
sian Mixture Model with Hidden Markov Random Field).
However, theintensity inhomogeneity of MR images dueto
acquisition equipments, severely degrades intensity-based
segmentation of MR images [14, 30]. This low (spatial)
frequency artifact known as the bias field arises from in-
homogeneitiesin the radio-frequency (RF) field. LetY =
(W1, -yn)T and Y* = (yi,...,y5)T be the observed
and the ideal log-transformed intensities of a given image
of n voxels, respectively, where the superscript 7' denotes
vector transpose. The degradation effect of the bias field at



the jth voxel can be expressed by an additive model as

(G=1,...,n), D

where b; isthe biasfield at the jth voxel. It is noted that (1)
implies that the observed MRI signal intensity is modelled
as a product of the ideal intensity and a spatially varying
factor (exponential of b;).

In this paper, we extend the GMM-HMRF model by al-
lowing the segmentation of MR images with bias field cor-
rection. Based on a penalized likelihood approach, we show
how the estimation of the bias field and tissue parameters,
and segmentation of the MR images can be obtained simul-
taneously viaapartia version of an expectation-conditional
maximization (ECM) algorithm [24].

Yi =y; +b;

2. Segmentation of MR Images for Gaussian
Mixture Model with HMRF

Suppose that a continuous MR image is partitioned into
a set of digoint voxels labelled 1 to n, and that each voxel
is assumed to belong to one of ¢ distinct tissue types. This
assumption is tenable because MR images have a spatial
resolution at the range of the voxel size [19]. For notational
convenience, we consider univariateintensity of each voxel,
where the observed log-transformed intensities are denoted
by aone-dimensional (1D) array Y = (y1,...,¥n)". Also,
we let the g groups G, . .. , G, represent the g possibletis-
sue types. Further, welet zq, ..., z, denote the unobserv-
able group-indicator vectors, where the ith element z;; of
z; is taken to be one or zero according as to whether the
jth voxel does or does not belong to the ith group. We put
z=(2T,...,2z)T.

A parametric mixture model approach [22] is adopted to
represent the marginal distribution of Y of a given image
of n voxel, where the bias field b4, .. .,b,, are considered
as unknown parameters. We assume that, unconditionally
with respect to the group of origin, y; (j = 1,...,n) has
the finite mixture form of

9
p(ys165,0,8) = D _p(eis = 1B)p(yslz5 = 1,05,0) (2)

=1

where 3 is the parameter in the prior probability function
of Z and @ is the vector containing the tissue parameters.
Suppose that the ideal log-transformed intensity of a voxel
belonging to the ith group is normally distributed around a
certain mean p;, with avariance a,?. Then, we have

p(yjlzi; = 1,05,0) = éo, (y; — i — bj), ©)

where ¢,, (-) denotes a zero-mean normal distribution with
variance o7 [28,30] and @ = (u1,03, ..., uy,02)7 isthe
vector containing the tissue parameters.

For the segmentation of MR images, the problem of in-
ferring the vector z can be viewed as an incomplete-data
problem, which can be approached by the application of
the EM algorithm. This line of approach was undertaken
by Kay and Titterington [16], who related some of the re-
laxation algorithms for image analysis with methods in the
literature on the statistical analysis of incomplete data. The
complete-data vector is given by (y7, z7)T.

We consider a penalized complete-datalog likelihood as

IOg LPc(b> Oa /3) = log Lc(ba 05 B) - %szglb (4)

= log p(y|z, b, 0) +logp(z|B)
T —
—1p"%; b,

where b = (by,...,b,)7T, log L. is the complete-data log
likelihood, and £, = LLT, where L is a pre-defined low-
pass filter [30]. In (4), The latter term can be viewed as
a penalty term to stabilise the ML solution and to pro-
mote piecewise smoothness in the resulting segmentation
and the bias field estimation. Thus, (4) can be regarded as
aregularization method based on a penalized likelihood ap-
proach [13, 25]. It will be seenin Section 4 that this penalty
term improves the segmentation and the bias field estima-
tion.

Markov random fields are commonly employed in im-
age processing problems to reflect the extent to which spa-
tially neighbouring voxels belong to the same group [ 2, 11].
Theincorporation of such spatial information on theimages
plays an important role in the estimation of z [5, 19]. The
Hammerdley-Clifford theorem states that the MRF prior can
be specified using a Gibbs distribution [2, 11]

p(z|B) = exp{-U(2|B)}/C(B), ©)

where C'(8) is a normalizing constant known as the parti-
tionfunctionand U (z|8) isthe energy function specified by
the neighbourhood system for theimage. Because of the ex-
istence of theterm C(3) on theright-hand side of (5), there
will be a stumbling block with the M-step with respect to
B. Although the parameter 5 of afairly general MRF can
be estimated using Besag's pseudo-likelihood method [2],
good estimates of 3 do not necessarily result in good seg-
mentation [1]. We assume henceforth that 5 is specified a
priori; see aso the discussion in [3]. Besag [2] settled on
B = 1.5 empirically. For the segmentation of MR images,
the usage of such large value of 5 might, however, fail to
detect small patches of voxels of one group surrounded by
voxels of another group.

It will be seen that the E-step requires the calculation
of 71 = E{Z;; | y, ™}, which unfortunately cannot
be computed exactly under a HMRF mixture model [27].
McLachlan et al. [21] considered an approximation to the
E-step based on a fractional weight version of the ICM al-
gorithm. In the next section, we extend their GMM-HMRF



model to simultaneously estimate the bias field and the tis-
Sue parameters, viaan ECM algorithm.

3. An ECM Algorithm for Penalized ML Esti-
mation

Concerning the probability density function of Y given
z and b, acommon assumption in image analysisis to take
Y ; to be independently distributed given the group mem-
bership and bias field. Thus, with (3), the first term of (4)
can be expressed as

g n
= E Z zij 108 @, (y;

i=1 j=1

log p(y|z, b, 0) — p; — bj). (6)

Let ¥ denote the vector of al the unknown parameters
in the elements of b and 6. On the (k + 1)th iteration of the
EM algorithm, the E-step requires the calculation of

Qp(w; ®h)
= E{log Lp.(b,0,8) | y, #®}

g n
=3 E{Z; |y, ¥} log ¢, (y;

i=1 j=1
+E{logp(2|B) | y, W} - b7, ()

which is the conditional expectation of the penalized
complete-data log likelihood given Y = y, using the cur-
rent fit &%) for ¥. On the M-step of the (k + 1)th iter-
ation, the intent is to find the value of ¥ that maximizes
Qp(T; "), which gives ¥**+V) | The E- and M-steps
are then alternated repeatedly until the penalized log likeli-
hood changes by an arbitrary small amount, assuming con-
vergence of the sequence of the penalized likelihood values.

E-step: We follow the approximation to the E-step con-
sidered in [21] by specifying the current conditional expec-
tation of Z;; giveny and &%) as

— pi — bj)

k
A0

E{Zij |y, ¥V}

B{Z; |y, W), 2y, = y‘@fl’}

= pr{Z; =11y, 9" 2y, =5}
Wz(f)%igk) (yj — Ngk) b;k))

- Yhot Wf(:;)%;p (y; — my) — b§-’“’)’ ©®

R

where N; is some specified neighbourhood of the jth
voxel, containing s voxels, labelled ji, ..., j;, and zn; =
(2],,...,2,.)" isthe vector containing the group labels of
these s voxelsin N;. In (8), n(k) =pr{Zy =1|2n; =

I(f 1)} is the probability that the jth voxel belongsto the
ith group G; given the group membership of its specified

neighbours as implied by zj(\',“ Y Asin [21], we adopt the
MRF model

log ¥ ocﬁ(%zzk Yy, Zz(k Vs 3 21y,
NG

where the summations in (9) are, respectively, over the
prescribed first-, second-, and third-neighbours of the jth
voxel. The parameters 7, ,y2, and 3 control the spatial
relatedness between neighbouring voxels [5]. In the third-
order model adopted by [19] for 3D MR images, 1, v=2, and
3 are set equal to 1, 1/+/2, and 1/+/3, respectively. In the
calculatlonofvr( ) in (9), wefollowed McLachlanetal.[21]

and replaced £ Zim (i-1) , which is zero or one, by 1.(,’,“1 Y. This
modification av0| dsthe discretization in counting the neigh-
boursof the jth voxel and effectively avoids premature clas-
sification of the voxel with insufficient neighbourhood in-
formation. It can be viewed as a fractional weight version

of the ICM algorithm [26]. Initially, we calculated log 7,
by using z(o) in the right-hand side of (9).

M- step The M-step involves the maximization of
Qp(; ¥™) with respect to b and @. Thismaximizationis
implemented using a conditional approach, and the result-
ing algorithm can be viewed as an ECM agorithm. With
the application of the ECM algorithm here, the M-step is
replaced by two conditional maximization (CM) steps. The
first involves the calculation of b *%) by maximization (7?
with @ fixed at 6F). The second CM step calculates 9+
by maximization (7) with b fixed at b*+1).

On the (k + 1)thiteration, the first CM-step yields

b(k+1)
= arg mlz;mx Qp(b, o ; b*) , B(k))

9 n
—argmax{zzn )10g¢ w (5 = u —bj)

i=1 j=1
—leXflb}
= argmax {bT ~16"D®p — %szglb} . (10)
where, forj=1,...,n,

( )
= (r®); —Z ( (k)’ ) (11)

and D™ is adiagonal matrix with the diagonal elements

Z 7 (1 /02(’“’) (12)

Letting I denote the n. x n identity matrix, it follows from
(20) that we have

plk+1)

P = (@®),

(D® 4 21~ 1pk)



(2, D® 4 1) 1xr®

(LL"D® + 1)'LLTr® | (13)

which coincides with result of Wells et a. [30]. To speed
up the estimation of the bias field, we adopted in our im-
plementation for (13) a computationally efficient lowpass
filter proposed by Wells et al. [30], which is characterized

asfollows:
(k+1) (Lr(k)) (Lr(k))j (14)
J (k) (k)
(LD'"'1); (Ld )j
forj =1,...,n, wherel = (1,1,...,1)7. The linear

transformation Ld in (14) is implemented by convolution
of the point spread function (psf) ¢ and the 3D image ma-
trix A corresponding to L and d, respectively [14]. The
convolutionZ ® A is operated repeatedly by 20-30timesin
order to increase its lowpass filtering effect. An alternative
filtering operation using Gaussian convolution may also be
adopted [9].

With b fixed at b1 in (7), the second CM-step yields

o(k+1)
= arg méa,x Qp(b(k+1) ,0; b B(k))

= arg max {Z Z (k) log ¢, (y

i=1 j=1

- b§-’““’)} , (15)
which can be carried out in closed form as

e+ Z P9 (g5 — BHDY 3 7

j=1

(16)

and

lc+1) (k+1)

Z (k) (y] 22

fori=1,...,9.

The ECM agorithm preserves the appealing conver-
gence properties of the EM algorithm. It thus has reliable
global convergencein that it monotonely increases the pe-
nalized likelihood after each iteration, no matter what start-
ing value is used. A detailed account of the convergence
properties of the EM and ECM algorithms can be found
in [20, 23]. In our proposed algorithm, we do not update
the bias field (low frequency degrade) estimate b in every
CM cycle. This approach speeds up the algorithm as the
computational cost using an iterative lowpass filtering for
a 3D MR image can be enormous. In addition, as the bias
field is estimated using a more accurate estimate of z and
0 by more frequent update, it avoids the oscillations of the
bias field estimate and hence improves the final segmenta-
tion and the bias field estimation, as demonstrated in Sec-
tion 4. Our algorithm is summarized as follows:

b(k+1)) /Z (k) (17)

1. Obtain initial estimates of 5, 8 and z(®.

2. E-step: Calculate the posterior probabilities ri(].’“) based on
(8).

3. CM- SeP 1: Estimate the bias field 5**Y) based on (14),
given ;1) and 9%,

4. DoT cycleswith b fixed at b*+1):
4.1 E-step: Calculate 7"/ based on (8),

4.2 CM-Sep 2. Calculate 8%+ 4/7) pased on (16) and
17),

wherether " */*) and %+ /) denote the posterior prob-

abilities and the value of @, respectively, after the tth cycle
onthe (k + Lthiteration(t =1, ..., T).

5. Repeat from 2 until parameter sequences converge.

Asnot al the CM-stepswere performed in every CM cy-
cle, werefer to our algorithm asa*“ partial” ECM agorithm.
As an E-step is performed before each CM-step, the algo-
rithm correspondsto a“multi-cycle ECM”, whereacycleis
defined by one E-step followed by one CM-step [24]. It can
be seen that (10) and (15) imply

Qp(b(kﬂ), 0(k); b("’), 0(k)) > Qp(b(k), g(k); b(’“), g(k))
and

Qp(b*+1 gkt plkt1) (k)
> Qp(d* 1,01+, gt),

It follows that the penalized log-likelihood

L(y;b,0) — 1675, 'b
increases at each cycle and thus increases at each iteration
monotonically if an exact E-step were used.

Asin [14, 28], we set initialy the bias field 5*) to be
zero. The initial estimates 8 and z(©) can be obtained
by performing the “noncontextual” segmentation of the MR
image [21]. That is, the segmentation of the voxelsis pro-
ceeded by ignoring all the spatial characteristics (5 = 0)
and the bias field estimation step (14). Van Leemput et
al. [28] refer to this method as the independent model.

4. Experimental Results

We now demonstrate the use of the partial ECM algo-
rithm for the fitting of the GMM-HMRF model with bias
field correction. Thefirst exampleisasimulated three-class
image obtained by adding the true image y* and true bias
fieldas

y; = (1 —d)y] +db,
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Figure 1. Simulated data: (From left to right)
Top: thethree groups; Middle: thetrueimage,
the true bias field, and the combined images
with d=0.05, 0.12, and 0.20; Bottom: the inten-
sity profile for each image

where0 < d < 1isaconstant governing the amount of bias
field contamination. The true image simulates 256 gray-
leveled brain MR image. The intensities for the white mat-
ter, gray matter, and the CSF are 150, 120, and 10, respec-
tively. Gaussian noise with variance of 20, 14, and 12 is
added to the three groups, respectively, before scaling by
256. The bias field simulates Gaussian-distributed function
varied from zero (dark) to one (bright). Figure 1 presents
the smulated data and the contaminated images. It can be
seen that the image is heavily contaminated with bias field
when d = 0.20. In this smulation experiment, we consid-
eredg = 3,8 = 0.9,andT = 3. Theresultsfrom fitting the
GMM-HMRF model via our ECM algorithm are displayed
inFigure2 for d = 0.20.

==

Figure 2. From left to right: the three groups
segmented, estimated bias field, and the re-
stored image. Top: GMM-HMRF model with
bias field correction; Bottom: GMM-HMRF
model without bias field correction

For comparison, we present also in Figure 2 the results
obtained by the GMM-HMRF model without biasfield cor-
rection. It can be seen that the GMM-HMRF algorithm fails
to segment correctly. This result indicates how the segmen-

tation is affected by the contamination of bias field. With
the modification of GMM-HMRF model with biasfield cor-
rection, it can be seen that amost perfect segmentation is
obtained.

The second example is a real MR image of the human
brain. The data set was a dice of a 3D T;-weighted MR
image, where the acquisition matrix was 256 x 256 x 256.
In this example, we considered g = 3 corresponding to the
white matter, gray matter, and CSF. We adopted § = 0.3
and T = 3. Theresults are displayed in Figure 3. It can be
seen that the three tissue types, brain-white matter, brain-
gray matter, and CSF are well separated using the proposed
GMM-HMRF model with bias field correction. For com-
parison, the segmented image from the GMM-HMRF algo-
rithm without bias field correction is aso given in Figure
3. It can be seen that white matter at the upper half of the
brain is misclassified as gray matter, whereas the result is
much better when the biasfield correctionisincluded in the
algorithm.

Figure 3. From left to right: Top (GMM-HMRF
with bias field correction): Segmented white
matter, Segmented gray matter, Segmented
CSF; Bottom: Original image, Segmented im-
age (with bias field correction), Segmented
image (without bias field correction)

5. Discussion

For the segmentation of MR images with bias field cor-
rection, Wells et al. [30] have developed a mixture model-
based approach via the EM agorithm to estimate the bias
field and segment the images. Guillemaud and Brady [14]
further refined this technique by introducing the extratissue
class “other” and initializing the EM algorithm automati-
caly for a given number of classes. Both methods assume
statistical independence of the voxel intensities (that is, the
noiseinthe MR signal is spatially white). Moreover, the pa-



rameters of each tissue class are required to be pre-defined
or estimated in advance of applying the algorithm. Re-
cently, Zhang et a. [31] proposed a hidden MRF model to
alow for the spatial continuity of image intensities and the
bias field correction simultaneously. This model adopts the
ICM agorithm [2] to sequentially update each z;;, which
are zero or one, by local minimization of the conditional
posterior probability. A maximum a posteriori (MAP) ap-
proach is applied to estimate the bias field, and the tissue
parameters are estimated by maximum likelihood. How-
ever, this algorithm fails to segment correctly when the bias
field contamination is heavy.

The EM agorithm is a popular tool in statistics for car-
rying out ML estimation because of its simplicity of im-
plementation and reliable global convergence [20]. Here
we have been able to develop an extension of the EM al-
gorithm which can handle penalized ML estimation for the
present problem, while still preserving the desirable prop-
erties of the EM algorithm. The extension of the GMM-
HMRF model with bias field correction is justified using
some simulated and real MR data, as shown in Section 4.
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Abstract snake” (GVF) [11, 12]. Instead of directly using image gra-
dients as an external force, it uses a spatial diffusion of the
An extension of the gradient vector flow snake (GVF gradient of an edge map of the image. GVF snake was pro-
snake) is presented. The method is based on combining two posed to address the traditional snake’s problems of short
other external forces. First, the adaptive balloon force has capture range and inability to track at boundary concavity.
been devel oped to increase the GVF snake’s capture range But GVF still may not be able to capture object contours
and convergence speed. Then, a dynamic GVF forceisin- in some medical image segmentation. Efforts at improving
troduced to provide an efficient evolution-stop mechanism. the original GVF snake’s performance have been published
In this way, we prevent the snake from breaking through the recently. Xuet al. combined GVF force with a constrained
correct surface and locking to other salient feature points. balloon force to segment gyri in the cortex [10]. Although
Preliminary segmentation results demonstrate the potential this combination works well on this case, its requirement of
of our approach in comparison with the original GVF snake ana priori knowledge of the region of interest may restrict
method. its application. Yuet al. proposed to compute the GVF

using a polar coordinate representation instead of cartesian
coordinates [13]. In this way, the method can perform better
than the original GVF snake in areas of long thin boundary
concavities and boundary gaps. But the capture range of

this improved GVF does not seem larger than the original
There has been a substantial amount of research on segmethod.

menting images with deformable models in recent years [4].
Notably active contours, known as “snakes”, have been
widely studied and applied in medical image analysis, their
applications including edge detection, segmentation of ob-
jects, shape modeling and motion tracking [7, 11]. Snakes

were first introduced in 1987 by Kassal. [5]. They gen- q luti S dl d ic GVF f g
erally represent an object boundary as a parameter curve opPeed-up evolution. secondly, a dynamic &V Torce IS in-
troduced to provide an evolution-stop mechanism. With this

surface. An energy function is associated with the curve, = " " .
so the problem of finding an object boundary is cast as an gblllty, the located contours are less sensitive to local min-

energy minimisation process. Typically, the curves are af- ima.

fected by both an internal force and external force. A snake  This paper is organized as follows. First the mathe-
can locate object contours well, once an appropriate initial- matic foundation of active contour models, including con-
isation is done. However, since the energy minimisation is ventional snakes and GVF snakes, are introduced in sec-
carried out locally, the located contours can be trapped by tion 2. We detail in section 3 the different aspects of our
a local minimum. A number of methods have been pro- improved GVF snake using an adaptive ballon model and a
posed to improve the snake’s performance [8, 1]. A balloon dynamic GVF. In section 4, we present some preliminary re-
model was introduced by Cohenal. to enlarge the snake’s  sults of tumour segmentation on brain MRI and compare the
capture range [2, 3]. Recently, Xat al. have proposed performance of our approach with the GVF snake. Finally,
a new deformable model called the “gradient vector flow we propose several avenues of research for future work in

1. Introduction

In our paper, after presenting the properties of the GVF
shake, we propose a new approach to enhance the GVF
snake performance on segmentation. The method consists
of two major parts. First, an adaptive balloon force is incor-
porated into internal forces to increase capture range and



section 5.

2. Active Contour Models

In this section, we review the mathematic formulation of

they have difficulties in progressing into boundary concavi-
ties.

2.2 GVF snakes

conventional snakes and GVF snakes. We also describe the xy et al. have proposed a new GVF snake to achieve

strengths and weakness of each method.
2.1 Snakes

In 2D, a snake is a curv€(s) = (z(s),y(s)) where
s € [0,1]. The curve moves through the image domain to
minimize a specified energy function. In traditional snakes,

the energy is usually formed by internal forces and external

forces as:

1)
Einternar tends to elastically hold the curve together
(elasticity forces) and to keep it from bending too much
(bending forces). This energy is defined in equation (2),
whereC, andC,, represent the first and second derivative

Esnake = Einternal + Eea:ternal

respectively. We can control the snake’s tension and rigidity

by the coefficientsx andg.

1 1
Einternal = 3 /a|Cs|2dS + - /,Blcss|2d8 (2)
2 Js 2 /s

Eevterna intends to pull or push the curve towards the
edges. Typically, the external forces consist of potential
forces. This energy is defined in equation (3), whggg, g¢

represents the negative gradient of a potential function. This
energy is generally the image force as defined in equa-

tion (4) wherel denotes the image and = x(z,y) =
[zy]".
Eerternal Z/Eimage(c(s))ds (3)

Eimage(x) = —|VI(x)[? (4)

Using variational calculus and the Euler-Lagrange dif-

ferential equation, we can solve equation (1). Then, the

solution of this force balance, as defined in equation (5),

represents the snake final position. The differences in the

ways the energy function is established will result in differ-
ent snakes.

aCss - /BCssss - V-Ez'mage =0 (5)
Although the traditional snakes have found many appli-

cations, they are intrinsically weak in three main aspects:

better object segmentation [12]. The basic idea of the GVF
shake is to extend influence range of image force to a larger
area by generating a GVF field. The GVF field is computed

from the image. In detail, a GVF field is defined as a vector

field V = V(x) that minimizes the energy function

Q= [[wPV+IVIPIV - ViPax @

where f is the edge map which is derived by using an
edge detector on the original image convoluted with a Gaus-
sian kernel, ang is a regularization parameter. Using vari-
ational calculus, the GVF field can be obtained by solving
the corresponding Euler-Lagrange equations.

Similar to equation (5), the force balance equation of
GVF snake can be expressed as

aCss - BCsss + 'YV =0 (7)
wherey is a proportional coefficient. GVF snake’s larger

capture range and concavity tracking ability are attributed to
the diffusion operation shown in the above equation. When
|V f| is small, the energy is dominated by the sum of the
squares of the partial derivatives of the vector field, resulting
a slowly varying yet large coverage field. Whereas when
|V f| is large, the second term dominates the integral.

In applying the GVF snake on real data such as medi-
cal images, the capture range of the active contour did not
seem as large as we expected. This is mainly because in the
case of medical data, images often contain a lot of textures.
Unfortunately, the GVF field is very sensitive to these vari-
ations and the active contour does not converge to the ideal
solution. Another observation was that the GVF snake was
sensitive to the shape irregularities. In these cases, the GVF
force could not properly push the snake to the right contour.

To deal with these problems we have developed an im-
proved GVF snake. This new method is presented in detail

in the following section.

3 Improved GVF snake

The improvement we propose is to add new external
forces, including an adaptive balloon for¢g, and a dy-

First, they are very sensitive to parameters. Second theynamic GVF force, defined as a vector fiéld;,,,. Then, we
have small capture range and the convergence of the algopropose a new scheme to integrate these external forces in

rtihm is mostly dependent of the initial position. Finally,

the snake mathematic formulation.
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3.1 Adaptiveballoon force
aCss - ,BCssss + 'Yden + /\fpa =0 (9)

Vayn is defined in equation (10) as a dynamic gradient
vector flow force. Letx; be a point on the current snake

In the balloon model proposed by Cohetral., a pres-
sure forcef, (s) is added to snake force as a second external

force to push the curve outward or inward [2, 3]. In this way, ndx. its possible next position in the evolution Process
the curve is considered as a balloon that has been inflated of ' 2 'S P : P . 'p '
(' defines the consistency angle and is proportional to the

deflated. Equation (8) represents the pressure force, where
ﬁ(s) is the(?lormal L(m)it vgctor to the le)rve at poiiits). angle between the GVF vectorssat andx,. Ty represents

the cut-off angle: based in our experimerifg, = 20° is a

fo(s) = k.7 (s) ) good threshold.
P — K.

The balloon force is considered to increase the image )
v {V if Cy > Ty
dyn =

—aC“+5Sss“_>‘fP“ otherwise

potential force capture range. This is a proper consider-
ation given that the snake can be set to start evolving in-
side the object. Unfortunately, balloon force introduces un-

predictability to the performance of the active contour and ~ The new dynamic gradient vector flow force will be the
make it more sensitive to the value of its different parame- same as conventional GVF if the snake point moves towards

ters. the contour. But when the snake point tries to cross over an

To overcome the unpredictability problem introduced by €edge, the dynamic gradient vector flow force will stop the
the balloon force, this force is applied in an adaptive way. Point from moving. The thresholfl, will decide when this
The main idea is to give the balloon force bigger weight €evolution-stop mechanism will be triggered.
compared to the GVF force at the early stage of the evo-
lution, and to give the balloon force smaller weight at the 4 Experiments
later stage. In this way, the speed of the convergence is in-
creased, and the snake can be correctly pushed toward th
surface even if it starts far away with less chance of being
over-pushed.

(10)

%rain Tumor Segmentation Database. In validating the
performance of the proposed method, we used the SPL
and NSG Brain Tumor Segmentation Database [6, 9].
The database consists of magnetic resonance images
of several anonymous brain tumor patients, as well as
segmentations of the brain and tumor from these scans (MR
A dynamic GVF force is introduced to provide a unique T1-weighted image in the sagittal plane, 256 x 256 x 124,
evolution-stop mechanism as well as all the characteristics0.9375x0.9375x 1.5 mm3). Manual segmentations
owned by the original GVF force.The evolution-stop mech- obtained by neurosurgeons and automated segmentations
anism is needed to prevent the snake from breaking throughobtained by the method of [6] and [9]. In figure 3, we
the correct contour and locking to other feature points. The present the manual segmentation alibma on the MRI
breakage can happen in areas where two objects or organgf the patientt in the database, the sligé is presented.
are very close each other. The introduction of the dynamic
GVF force is inspired by a property of the GVF field. That validation criteria. Our validation criteria of tumor seg-
is, when the GVF field passes a contour, its direction will mentation is based on both subjective and quantitative anal-
change. Figure 1 shows an ellipse and its correspondingysjs. For subjective aspect, the contours drawn by ex-
gradient vector flow. perts (figure 3) and by automatic segmentation were com-
It can be easily observed that the field vector changes di-pared (figure 4). For quantitative analysis, three validating
rection at the ellipse boundary. Therefore, a consistency de-parameters are defined. In defining the parameters, the ac-
gree is incorporated into the new dynamic GVF force. The curacy of the snake results is checked against the manual
force varies according to the consistency. If the evolution of segmentations done by four experts.

the snake will cause the Change of GVF force direction, itis To evaluate the resu":S, we propose to use three values
said inconsistency has occured and the snake is not allowedyhich we will denote byC,, FPN andFNN.

3.2 Dynamic GVF force

to evolve to the new position. C, is defined as the ratio between the area considered as

tumor by both the snake and at least three experts and the

3.3 New scheme area considered as tumor either by the snake or at least three
An

experts. It is expressed 8§ = T — whereA;
capt,As
With these two novel inclusions, the proposed force bal- is the area confined by snaké,,,; is the area considered
ance equation can be expressed as: as tumor by at least three of the four experts andis the

11
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Figure 1. An ellipse and its corresponding GVF forces.
area overlapped betweeh, and A.,,;. We can note that | parameteryl o [ B8 [ 7 ]
C, is a normalized value, € [0, 1]). Test 1 0.05/0.1|0.3
FPN is defined as the area considered as tumor by Test 2 005|011 05
s_nake, but as non-tumor by at least 3 experts (False Posi- Test 3 005/ 01101
tive Number). Test 4 0.1 |0.2]0.3

FNN is defined as the area considered as non-tumor by
snake, but as tumor by at least 3 experts (False Negative
Number).

Table 1. Parameters set for the four experiments.

Results. To investigate the performance of our segmenta-

tion method and compare it with original GVF snake, we and 3 presents the values@f, FPN and FNN of both
have designed four experiments using four different sets of the original GVF snake and our improved GVF snake.
parameters. For each experiment, both original GVF snake

and our improved GVF snake have the same values, of Analysis. Based on the figures and tables, two main points
B and~, we alse the initial position for the curve. Fig- can be drawn as to the performance comparison. One
ure 2 shows the original image and the initial snake position point is that in terms of subjective criteria the original GVF
drawn in white curve. snake’s capture range is far from enough to locate the tumor
and it easily became stuck on unwanted features and failed
on most of the cases, whereas the proposed approach suc-
ceed in locating thglioma in most cases. The other point

is that, according to quantitative analysis, our approach re-
sulted more preferable results than the original GVF snake
in most cases. One point we want to note is that in some
particular cases the original GVF snake presented some bet-
ter validating values, however, by analysis all the validating
values for each case we can state that our method is still
more preferable.

Based on figure 4, we can see that the original GVF can
not correctly locate thglioma and is stuck at the top part
of the tumor. For quantitative analysis, by observing the
C. values of the original GVF snake and our approach, we
can see that the original GVF snake gives favorable value
of 0.8127 comparing td).7783 of our approach. This does
mean that in this case the area located by the original GVF
snake is more likely aglioma than the area located by our

Table 1 summarizes the parameters set for the fourapproach. However, if we check t#&PN and FN N val-
experiments, we choose = 0.2 for our method. Table 2  ues, we can see that our method presented much less false

00

50 200 230

Figure 2. Theoriginal MRI slice 35 of patient 4 and
theinitial snake position drawned in white.
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| Original GVF || Test1 | Test2 | Test3 ] Test4 |

Cr 0.7931| 0.8127| 0.1388 | 0.2055
FPN 129 235 0 37
FNN 307 278 1278 | 1179

Table 2. Valuesof thethreecriteriausingtheoriginal
GVF snake.

| Improved GVF| Test1 | Test2 | Test3 | Test4 |

C 0.8455| 0.7783 | 0.6274 | 0.7871
FPN 259 407 2 389
FNN 67 55 553 46

Table 3. Values of the three criteria using the im-
proved GVF snake.

negative number. This is ideal from the viewpoint of a neu-
rosurgeon.

5 Conclusion

In this paper, we have presented a new method using

(2]

(3]

(4]

(5]

(6]

(7]

(8]

&

Gradient Vector Flow and Balloons. We introduced an [10]

adaptive balloon force to increase GVF snake’s capture
range and speed up evolution. Then we proposed a dynamic
GVF force to provide an efficient evolution-stop mecha-
nism.

Based on experiments on segmenting a tumor in real
brain MRI data, it has shown that the proposed method is

(11]

e . L. . 12
robust to the variation in initial position and efficient in pre- [12]
venting the snake from breaking through correct contour
and locking to other feature points. [13]

A current limitation of the method is that GVF is com-
puted independently slice by slice (2D version). As a con-
sequence, we do not take into account the interslice spatial
continuity of the gradient, or the possible anisotropy of the
voxels. Such error of segmentation might be reduced by
putting spatial constraints to the reconstructed structure.
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Figure 3. Manual segmentation by four different experts of a glioma on the MRI.

Figure 4. Automatic Segmentation of the glioma, using two different techniques with four sets of parameters; Top:
orignal GVF snake; Bottom: our improved GVF snake.
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Abstract

Structural texture measures are used to addressthree as-
pects of early detection of breast cancer in screening mam-
mograms. detection of microcalcification, detection and
classification of clustered microcalcification as benign or
malignant, and the detection of invasive lobular carcinoma.
Theuse of structural texture featuresreplacesthetask of ini-
tial detection of complex and poorly modelled image struc-
tures such asmasses or clustered microcalcifications by ini-
tial detection of primitive image structures.

Receiver operating characteristic (ROC) analysis yields
high performance scores for detection of microcalcification
(A, = 0.945) and for classification of clusters as benign
or malignant (A, = 0.858). In the case of invasive lob-
ular carcinoma, cancer was detected in half of the images
with no false positive detections. In these cases, no evi-
dence of cancer could be found by visual inspection of the
mammogram, thus demonstrating the potential of structural
texture measures to encompass diagnostically useful infor-
mation not accessible to the human expert observer.

1. Introduction

In the last fifteen years, a plethora of papers have ap-
peared in the literature on the use of computer agorithms
for improving early detection of breast cancer in screening
mammograms. A number of review papers have also ap-
peared [2],[4], [12]. Currently, nearly all screening mam-
mograms are film mammograms and, in order to implement
computer algorithms, images must be digitised. Although
commercia systemsfor computer assisted reading exist that
accept film mammograms asinput, wide spread use of com-

puter aided screening awaits the impending switch to direct
digital acquisition. The technology for direct digital mam-
mography is just emerging and thus the motivation to fur-
ther improve algorithms for detection is greater than ever
before.

Algorithms reported in the literature for detection of
breast cancer are designed to search for signs of cancer
such as masses, clustered microcalcifications, and stellate
patterns. These are the same signs of cancer used by radiol-
ogiststo eval uate screening mammograms. Detectionisdif-
ficult because the anomalies due to cancer are complex and
are only subtly different from patterns arising from normal
tissue. To overcome this problem, many algorithmswork in
two stages. In the first stage, regions of interest (ROI) are
identified that resemble one of the signs of cancer and in
the second stage, RIO are analysed more carefully to sep-
arate cancer from normal tissue. In the first stage, many
false positive detections are accepted with the understand-
ing that the second stage will separate these from true can-
cer. In the second stage, additional features are measured
on the ROI. Some of these features reflect the experience
of radiologists, and some, including image texture features,
are not based on known manifestations of cancer in mam-
mograms. Texture measures have been shown to contribute
positively to discrimination between cancerous and normal
tissue[6],[8],[9], [11],[12].

Although many good results have been reported, there
are inherent weaknesses in this general approach.

1. Initial detection is focussed on complex signs of can-
cer.

2. Training studies for developing detection algorithms
require accurate information regarding the location of
anomalies (truthing). This information is often not
available. In the case of detecting clustered microcal-
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cifications, for example, nearly al algorithmsinitialy
detect individual calcifications. To train such an algo-
rithm, the location in the image of every calcification
must be known. Many calcifications are “obvious’ but
the greatest interest is in subtle calcifications. The er-
ror rate in assigning these is large and leaves open the
possibility that information, not apparent to visua in-
spection, is omitted in the anaysis.

3. Texture analysisis applied only to ROI, leaving open
the possibility that better initial detection could be ac-
complished if texture information is used throughout
the process. Measuring texture features over the entire
image for the purpose of initial detection is often not
feasible due to computational 1oad.

1.1 Structural texturefeatures

Structural texture refersto statistical distributions of im-
age structures such as lines, edges, or bumps [5]. In con-
trast, statistical texture refers to statistical distributions of
individual pixel values and includes measurements of the
local mean, variance, higher order moments, run length
statistics, and co-occurrence matrices.

Structural texture analysis provides a means to address
the difficulties listed above.

1. Initial detection isfocussed on simple structural prim-
itives rather than complex manifestations of cancer.

2. Since statistics are computed over regions, only the
disease state of regions (or the entire breast) isrequired
for training.

3. Statistics are computed over image structures rather
than pixels. The number of structuresisusually at least
two orders of magnitude smaller than the number of
pixelsin theimage.

The structures considered in this paper are domains as-
sociated with local image intensity extrema. Their useisil-
lustrated by three tasks in automatic detection of breast can-
cer: the detection of individual microcalcifications, detec-
tion and classification of clustered microcalcification, and
the detection of invasive lobular carcinoma.

1.2 Clustered microcalcifications

Clustered microcal cifications appear in mammograms as
groups of bright dots. Clustered microcalcifications are an
important sign of cancer in mammograms, but their detec-
tionisnot, initself, a great achievement. The reason is that
a very large percentage of normal breasts also show some
signs of calcification. Although there are severa forms of
clusters associated with cancer and several forms associated
with benign processes, there are some general differences

between benign clusters and ones associated with cancer.
Individual calcifications in clusters associated with cancer
tend to be more irregular in shape and more varied in terms
of contrast and size than those associated with normal tis-
sue. Also, some benign clusters, particularly those associ-
ated with calcified blood vesseals, can be distinguished based
on the shape of the cluster itself [10].

In training algorithms for detecting clustered microcal-
cifications or for classifying clusters as benign or malig-
nant, it is not possible to know with certainty, exactly which
bright spots represent true calcification and which are mani-
festations of normal tissue such as crossing filaments. From
histopathology reports, it is possible to know, with a great
deal of certainty, the disease state of the tissue associated
with the cluster. This provides motivation for using struc-
tural texture measures.

Our implementation of structural texture involves com-
puting three features for every local image intensity maxi-
mum in the image: the radius of the bump associated with
the local maximum, the height of the bump above back-
ground, and a measure of the symmetry of the bump. Detec-
tion of clustersis based on local distributions of these three
features. In thisway, the issue of identifying individual cal-
cificationsis bypassed. If there are very small calcifications
or other disturbances in the tissue that are associated with
cancer but cannot be discerned visually, this information is
potentially incorporated into the detection process.

1.3 Invasivelobular carcinoma

The use of structural texture, and in particular the focus
on local image intensity bumps, for detecting microcalcifi-
cations is natural given the visual appearance of microcal-
cifications in mammograms and guidance provided by the
criteria used by radiologists during visual assessment. In
contrast, there is no basis for using these structural textures
detecting invasive lobular carcinoma, except by default.

Invasivelobular carcinomaisaform of breast cancer that
isnot visible at screening much more often than other forms
of breast cancer. This form of cancer is not usually asso-
ciated with the appearance of clustered microcal cifications
and in many cases the growth pattern of the tumour is such
that masses often are not seen in the mammogram.

Hence, there is no guide by which to select image fea
tures that are likely to lead to useful detection algorithms,
except that visually obvious features need not be consid-
ered. Thisleavesspatially small and low contrast features as
the only likely candidates. As afirst attempt, image inten-
sity minimawere selected as candidate structure features.
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2 Methodsand materials
2.1 Data

Images used for these studies were digitised at 50 . m
spatial resolution and 12 bit depth using a Lumisys Lumis-
can 150 laser digitiser. A number of image pre-processing
steps were used to reduce the non-linear response of the
film and digitiser system, to identify the breast region in
the image, and to remove patient information, and sub-
tract the background. These steps have been described el se-
where[3].

Images were included as examples of cancer only if the
presence of cancer was confirmed by the pathology report
and images were included as examples of normals only if
no evidence of cancer was found in three years.

2.2 Featureextraction

In each image, local maxima (in the case of detecting mi-
crocalcification) and local minima (in the case of detecting
invasivelobular carcinoma) were found by comparing pixel
values with those of its 8-connected neighbours. For each
local extrema point, p, the average pixel value on each con-
centric ring about p was found. In the case of image max-
ima, the average ring values form an initially decreasing
function of thering radius. In the case of image minima, the
ring valuesform an initially increasing function. Theradius
at which these functions ceased to be strictly decreasing or
increasing was taken to be theradius, R, associated with the
local extremum. Theregion bounded by thering of radius R
was used to compute the net height, H, the volume, V, and
the background level, B, associated with local extremum.
The symmetry, S was taken to be the (? difference between
the image values on the disk of radius R centred at p and
the function obtained by revolving the average ring values
about p. This latter function can be viewed as the ideally
symmetric surface having the same height radius, volume,
and average profile asthe image intensity surface centred at
p. Hence small values of .S correspond to symmetric image
features.

3 Experimental studies
3.1 Study 1. Detecting individual calcifications

Although the benefit of using structural texture features
lies in detecting clusters without initial detection of indi-
vidual microcalcifications, a study was conducted to deter-
mine the suitability of using the structural texture features
described aboveto separate known microcal cifications from
other image anomalies [3].

A total 107 individual microcalcifications were marked
by aradiologist with experience in mammography. Using
thefeatures R, S, V, and H, and linear discriminant analy-
sis, the detection rate was 90 percent at the operating point
of 10 percent false positiverate. The areaunder the receiver
operating characteristic (ROC) curvewas A, = 0.945.

This study does not confirm that structural texture fea-
tures surpass other methods for detecting microcalcifica-
tion. In fact, techniques for detecting microcalcifications
are sufficiently mature, that thereis very little room for im-
provement. At the recent I nternational Workshop on Digital
Mammography (IWDM, Bremen, June 2002) a panel of ra-
diologists with experience in using commercial systems for
automatic detection of microcalcifications agreed that cur-
rent systems essentially do not miss clusters of diagnostic
interest. However, many clusters not associated with caner
are also detected by these systems. Hence, work on algo-
rithmsfor classifying clusters as benign or malignant is still
important.

This study does confirm that, in principle, structural tex-
ture features identify information relevant to distinguishing
microcal cifications from other anomalies.

3.2 Study 2.
clusters

| dentification and classification of

This study comprised 85 images, including 40 images
containing clusters of microcalcification associated with be-
nign clusters and 45 images containing clusters associated
with cancer. The structura texture features R, S, V, and H
were used for initial detection of clusters[7].

The algorithm identified many clusters not marked by the
radiologist and assigned separate small clusters within gen-
era regions marked by the radiologist as a single cluster.
This result cannot be used to measure the accuracy of the
algorithm for identifying clusters for two reasons. First, ra-
diologists usually note only the general region of the breast
where a cluster or clusters occur and are not in the habit
of delineating the spatial extent of individual clustersin de-
tail since, in visua assessment of the mammogram, there
is no benefit in doing so. Once a single cluster or region
is found in an image that warrants calling the woman back
for further tests, other regions are often not be noted even if
further evidence of cancer is visible. Second, it is possible
that clusters of subtle calcification are present that are not
detectable by visual inspection.

The goal of the study was to assign each image as con-
taining benign clustersonly or as containing at least one ma-
lignant cluster. Accordingly, the performance of the entire
system was measured in terms of the correct assignment of
images as containing a malignant cluster or not. This pro-
cess involved the initial detection of clusters as described
above plus the extraction of statistical texture features from
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these regions. In this particular study, classification of the
image as cancer or non-cancer was based on the statisti-
cal texture features measured on the clusters rather than the
structural texture features used for initial detection of the
clusters|[7].

The classification of test data resulted in an area un-
der the ROC curve of A, = 0.858 if examples of duc-
tal carcinoma in situ (DCIS) comedo type were excluded
and A, = 0.701 for al types together. The reason for the
discrepancy is that DCIS comedo type calcification is not
well characterised by the structural texture features consid-
ered here. Thistype of calcification formslarge, linear, and
branching structures (the calcium fills ducts and acquires
their shape) rather than round spots. The failure of this al-
gorithm to detect these clusters is not important since they
are easily discovered by visua assessment of the mammo-
gram or by a separate algorithm designed specifically for
detecting DCIS comedo calcification [3].

3.3 Study 3. Detection of invasive lobular carci-
noma

A preliminary study was conducted to test the feasibility
of detecting invasive lobular carcinomain screening mam-
mograms [1]. For this project, 24 images with invasive |ob-
ular carcinoma were obtained from 12 women. In each of
these cases, the screening mammogram had been judged to
show no evidence of cancer, but cancer was discovered by
other methods within 28 months. The sizes of the tumours
ranged from 15 mm to 100 mm in diameter. The mean di-
ameter was 35 mm. As part of normal policy, these mam-
mographically occult cases were reviewed by radiologists
with expertise in mammography. Each image was judged
to show no evidence of cancer in retrospect. In addition, 24
normal images were included in the study.

In the case of detection and classification of microcal cifi-
cations, classification was based directly on the statistics of
R, H,V,and S valuesin local neighbourhoods. In the case
of invasive lobular carcinoma, the locations of the tumours
in the training data were not well known and so it was nec-
essary to classify entire images as containing evidence of
cancer or not. The volume feature, V', was not used in this
study, but the local background statistic, B, was used.

First, attention was restricted to two regions within the
RHS B feature space. Five images with cancer and five
normal images were selected randomly. The H, R, S, B
values for al loca minima in these images were plotted
as points in the four-dimensional feature space. Visual in-
spection showed that, the great majority of points from the
two classes of images formed an indistinguishable glob in
the feature space. This was expected since large portions
of the images with cancer correspond to normal tissue, and
noise characteristics of cancer tissue and normal tissue are

the same. However, one portion of the feature space was
occupied nearly entirely by points from cancer images only.
This portion of the feature space was divided into two sets.

0 ={H>19,R=1,5 <150, B > 2100}
Qy = {H > 38, R=2,5 <200, B > 2100}
Second, two image features were defined by
Ny, = |4|/N and Ny = [Qs]/N,
where N is the total number of local minimain the image.

Normalisation by [V was used to compensate for breast size.
Classification was based on these two image features.
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Figure 1. Scatter plot for detection of invasive
lobular carcinoma. “0” - normal images, “+”
- invasive lobular carcinoma. Approximately
half of the carcinoma images cannot be dis-
tinguished from the normal images, but the
other half are well separated from the nor-

mals.

An agorithm for detecting invasive lobular carcinoma
must produce very few false positive detections. This is
because the radiologist cannot verify a detection by visual
inspection of the mammogram and the decision to call the
woman back for further tests must be based on the algo-
rithm’s finding alone. For this reason, the results for de-
tection of invasive lobular carcinoma should be reported in
terms of the number of detections at the operating point of
zero false positives rather than in terms of A, scores.
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In this study 50 percent of theimageswith invasivelobu-
lar carcinomawere correctly detected with no false positive
reports.

4 Discussion

Computer algorithms will not replace human interpreta-
tion of screening mammograms in the foreseeable future.
Current commercia systems for computer assisted screen-
ing mammography focus on bringing suspicious regions of
the mammogram to the attention of the radiol ogist and serve
mostly to catch evidence of cancer that is missed by the ra-
diologist due to inattention. These systems only detect ev-
idence of cancer that could have been detected by the radi-
ologist.

It is reasonable to conjecture that more information re-
garding the presence of cancer is present in mammograms
than can be extracted by visual interpretation. A viable god
isto develop algorithms that complement and extend thein-
formation available to the radiol ogist rather than mimic this
information.

Structural texture measures provide a class of features
that are not based on the experience of radiologists but are
well suited for embodying information of diagnostic inter-
est. They offer a computational advantages since image
segmentation is focused on simple structures, local image
extremain this study, instead of complex structures such as
masses, stellate patterns, or clustered microcal cification.

The results on detection and classification of clustered
microcalcification indicate that simple structural texture
features are useful in identifying known signs of cancer in
mammograms. Unfortunately, it has not been possible to
compare our classification performance with other studies
since there are no public databases available that are both of
sufficient resolution and contain a repertoire of both benign
and malignant clusters.

Invasive lobular carcinoma represents approximately 8
percent of breast cancer. At screening, roughly half of these
cases can be detected by visua inspection. Thus 4 per-
cent of breast cancer cases are not be detected at screening
because they are examples of occult invasive lobular carci-
noma. In our study, half of these occult cases were detected
indicating apotential improved detection rate for breast can-
cer of 2 percent.

The structure features used in the detection of invasive
lobular carcinoma were not motivated by models or by the
experience of radiologists. The only guidance was that
these carcinomas could not be seen in the mammograms by
radiologists and thuslarge or high contrast features could be
neglected. Loca extrema were chosen mostly because al-
gorithms for characterising these structures were available
from previous studies. The results obtained were surpris-
ingly good considering that these features were largely un-

motivated and were the first ones tested for this purpose.
Unless these choices were very fortuitous, this implies that
other structure features may well supply equal or greater
discriminatory power for detecting invasive lobular carci-
noma.

The study on detection of invasivelobular carcinomawas
based on only 48 images and should be regarded as a pre-
liminary study.
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Abstract

Previously the development of a cell nucleus segmenta-
tion algorithmhad been eval uated by eye by the author. This
is an impractical method when attempting to evaluate and
compare many algorithms and parameter setson very large
data sets. For thiswork, a dataset of 20,000 cell nucleusim-
ages was annotated by hand by three non-expert assistants.
This paper concentrates on comparing the previous inter-
active approach to evaluating a segmentation algorithm to
automated techniques using this annotated data.

1. Introduction

We have previously reported work on using a dynamic-
programming algorithm for cell nucleus segmentation [1].
In that work, almost 20,000 cell images were segmented
and the output judged as either a pass or a fail by the au-
thor (where any deviation from the perceived boundary was
declared afail). Then, an attempt was made to tune the al-
gorithm parameter over a subset of the data using the same
evaluation method.

This is clearly an extremely time consuming and sub-
jective process. In fact, of the arguments encouraging
more evaluation in computer vision [2], it seems that find-
ing a better method than eye-balling results over the large
datasets required to develop real systems is the most com-
pelling! This is especially so if many algorithms and pa-
rameter sets are to be compared thoroughly.

The ultimate method of evaluating segmentation algo-
rithms is to use the final outcome of the complete vision
system as the performance metric [3]. Unfortunately thisis
very difficult except in the simplest of cases. Thisis due
to the fact that there may be many processes, each with
their own sources of variability and complex interactions,
between the segmentation output and final measure[4], thus
requiring very large datasets in order to perform a robust
experiment. Attempts at evaluation therefore either evalu-
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ate individual componentsin isolation or consider the final
outcome of the system [6].

Image segmentation is a module that is generally evalu-
ated in isolation. Thisis either done by eye, via annotated
examples or via some other goodness measure that does not
rely on ground truth (e.g. inter-region contrast). This lat-
ter method is generally the only available option to those
workingin general recovery [2] work exemplifiedin[7]. Of
the methods that employ annotated examples (Zhang's em+
pirical discrepancy methods [8]), either the segmentation
masks are pixel-wise compared or features extracted from
those masks are compared. The latter method has been crit-
icized asit is possible to obtain good agreement for a fea-
ture where the masks do not agree well [9] (trivial example:
area). Also extracted features can be very sensitive to small
differences in masks, complicating the detection of signifi-
cant differences[5].

The difficulties associated with empirical discrepancy
evaluation have been summarized to be [9]

o difficulties in defining measures/metrics,
e standardizing evaluation protocols, but mostly

e determining and acquiring ground truth data.

It is well known that image segmentation is a highly
application-dependent task. Previous approaches to eval-
uation, which are briefly summarized in the following two
sections, seem to show that this task is also more applica
tion dependent that one may expect. Selected techniques
are then applied to the task of verifying results previously
obtained by eye for cell segmentation [1].

2. Error Measuresand Metrics

A framework for evaluating segmentation methods has
recently been proposed where the measure was trained us-
ing examples of failure [10]. The error value measured
edge-detection type errors (bits - false positive edges, and



holes - false negative edges) that were assembled into pat-
terns and then rated by human observers. The individual
errors were weighted by a number of parameters and the
measure trained to match the observers' score. This mea-
surewas classified as bel onging to agroup termed low error
models, i.e. suited only to problemswhere the segmentation
is aready very near the final solution (and was tested upon
synthetic images).

We investigated the failure modes for a number of al-
gorithms in [1] and found that they generally either failed
quite dramatically or performed an acceptable job (little or
no perceived delineation error). Thus we are initialy more
interested in employing a measure that is capable of mea-
suring large differences.

Zhang [8] reviewed a number of simple measures of
which only two are applicable here: the number and po-
sition of misclassified (segmented) pixels. Also reviewed
were methods for measuring over- and under-segmentation.
These errors, and those of Roman-Roldin [10], are of less
interest in thiswork asawell-formed mask isapre-requisite
to accepting the segmentation. Thuswe assume that a mask
for the object of interest isthe final output of the segmenta-
tion stage (including all pre- and post-processing). A sim-
ple method of error checking, for this application, isthen to
evaluate the Euler number of the mask image. If it is not
equal to one, then the mask is rejected outright and afailure
assigned to that segmentation - the failure need no longer
be quantitatively evaluated. This may be seen as first-step
goodness measure that requires no ground truth.

More recently Chalana [9] employed the Hausdorff dis-
tance and average distance between human and computer
boundaries. The Hausdorff distance is an attractive met-
ric for this application as segmentation algorithms gener-
ally tend to fail in onelocalized position around the nuclear
border - an error that may become masked when using nor-
malized or average values [11]. The Hausdorff distance is
defined to be the maximum of the set of shortest distances
between corresponding points of two shapes.

3. Evaluation Protocols

Algorithms are generally evaluated using either the raw
measures to establish how close competing algorithms (and
different parameters sets) get to the annotated (observers’)
data or by thresholding the measuresin order to obtain per-
centage success rates which are then compared. Chalana[9]
used both methods and a number of observers datato de-
termine whether the computer boundary differed from the
observers boundaries as much as the observers' bound-
aries differed from one another. This was evaluated using
a modified Williams' index and a percent statistic. The
Williams' index, I’, divides the average number of agree-
ments (inverse disagreements, D ; ;) between the computer
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(‘observer’ 0) and n — 1 human observers (j) by the average
number of agreements between human observers (eg. 1).

n
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If the upper value of the confidenceinterval of the result is
greater than one, then it is concluded that the computer is
a reliable member of the group of observers. The percent
statistic measures the percentage of cases where the com-
puter boundary lies within the inter-observer range.

Finally Everingham [12] has recently suggested an in-
teresting method for combining large sets of results into
an ROC type curve, where only the best performing results
contribute to the final outpuit.

I D

4. Method

Although no ground truth exists for cell segmentation,
the images do not necessarily require expert annotation.
Figure 1 shows an example image and three correspond-
ing non-expert annotations. This is quite a deviation from

Figure 1. Example from dataset and corre-
sponding observers’ boundary

other imaging modalities where inter- and intra- observer
variance can be very high, but valid (e.g. ultra-sound [9]).
It is however desirable to obtain anumber of interpretations
so that inter-observer variability may be nonetheless inves-
tigated.

A Wacom PL400 pen-and-tablet was used to input the
data. This device enabled almost immediate use by the
observers to delineate the cell nuclei. The observers were
instructed to draw a continuous line between the nucleus
and background (cytoplasm), i.e. on the transition region
[13] of the edge. Due to the low pass filtering effect of the
optics used to capture the images, this covers a number of
pixels and is readily identifiable in the majority of exam-
ples. However the exact area for delineation was not overly



specified and left to the individual. Three observers were
employed to annotate the entire 20,000 image dataset. The
nucleus images are of the order of 128x128 pixels. The
PL400 LCD screen has square pixels of pitch 0.264mm. By
displaying the images at the native screen resolution there-
fore produced cell nuclei of approximately 1-2cm diameter
on screen. This was found to be too fiddly and handshake
became a problem. Thus the images were first upsampled
to twice the original dimensions using a nearest-neighbour
algorithm. The pen line thickness on the screen was made
equal to one pixel at the original image resolution (i.e. four
pixels on screen). This also assisted to reduce handshake.

There has been considerable work in improving the im-
plementational performance of the Hausdorff metric for the
more general problem of comparing shapes under transfor-
mation [14]. Here, we have implemented a rapid and sim-
ple routine to obtain the maximum distance between corre-
sponding points, d s 4x , 0N two binary masks by

1. Obtaining the distance transforms, A o and Bpr, of
the perimeter of the mask images, A and B.

2. Obtaining the pixel-wise maximum of A pr and Bpr
to produce ABpr.

3. Obtaining the XOR of the mask images, AB xor
4. Using ABxor to mask ABpy to produce ABpask

5. Obtaining dy; 4x asthemaximumvaluein AB a5k -

These steps areillustrated in figure 2. The average distance
between the masks was also computed. Chalana[9] used an
iterative technique to evaluate the average distance between
two curves, which yielded an average curveasaresult. Here
we implemented a rapid method of evaluating the average
distance, d sy, as the average value in AB s asx. These
two measures can be obtained very rapidly using operations
for which implementations are widely available.

The above data and measures were then used to confirm
the results reported in [1]. This was done by comparing
the algorithm performance against its (regularisation) pa-
rameter, \. The Williams' index was first computed, us-
ing darax as the discrepency measure D j/, over half of
the data over the full range of permissible [1] values of A
(€ [0,1]) at increments of 0.1. Figure 3 shows an exam-
ple distribution of the Williams' index for A = 0.2. This
plot shows a group of (normally distributed) values near
the observers' boundaries with a mean value near 1.0. In
addition, there are a number of out-lying counts between
0.0 and roughly 0.5. These correspond to the failed seg-
mentations. Thus rather than compare performance versus
A using summary statistics, as in [9], the Williams' index
was thresholded in order to determine the percentage of cor-
rect segmentations at that threshold. However the selection
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Figure 2. Steps for deriving the maximum dis-
tance between two binary masks. (a) and (b)
are the two masks to be compared. (c) is
the pixel-wise maximum of the distance trans-
forms (DT) of the perimeters of (a) and (b). (d)
is the result of the XOR operation on the two
masks. (e) shows the final masked DT, the
maximum value of which is the desired value,
corresponding to the length of the protrusion
in the mask (b).

of such a threshold is at this stage an arbitrary process -
what constitutes a correct segmentation? Therefore algo-
rithm performance was plotted over the natural range of the
Williams' index, i.e. € [0,1]. At avalueof 0, the computer
boundary is infinitely far from those of the observers. At
a value of 1 the computer boundary is as close to the ob-
servers as they are to each other. Values above 1 are of less
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Figure 3. Distribution of the Williams index for
A=0.2

interest - this can be understood to occur when one of the
observers disagrees with the other two more than the com-
puter does. Therefore all values greater than 1 are treated
as a correct segmentation. Figure 4 is a convenient nor-
malised and bounded representation to view segmentation
algorithm performance against multiple observersin a sin-
gle output. As a measure of overall performance at each
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Figure 4. Plot of cumulative percentage suc-
cess segmentation versus Williams Index for
values of .

value of A, the area under this curve was computed and is
represented in figure 5. The maximum value of these area
valuesis 95.16% which occursat A = 0.5.
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Figure 5. Plot of area under curves of figure 4
against \.

5. Conclusion

We have considered methodologies for evaluating cell
segmentation using annotated examples in an automated
fashion. We found that recent approaches to segmentation
eval uation have concentrated on low error modelswherethe
measures and metrics for segmentation error, in addition to
the evaluation procedures, were unsuitable for this applica-
tion. The shape of the graph in figure 5, the optimal value
of algorithm parameter \ and the overall performance rate
all agree well to the results reported in [1]. However, they
were attained using a far more satisfactory and repeatable
method.

Thiswork representsavery early part of agreater project
to thoroughly evaluate cell segmentation methods using an-
notated examples. The next stage is to attempt to compare
other algorithms for this task. In addition, individua mod-
ules may be evaluated in isolation. For example marker ex-
traction algorithms may be evaluated using the same data
but measures that detect whether an inner marker is com-
pletely within the desired object. This work will then be
expanded to include the original scene images from which
the nucleus images were captured, representing a different
segmentation task. Also, methodsthat use annotated datato
obtain edge and region models, enabling the improvement
or design of agorithms[15] will eventually be investigated.
Finally, once a small number of discrepancies in the ob-
servers' data have been fixed (i.e. where the Williams' in-
dex is significantly greater than onel), this dataset will be
made publicly available.
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Optimal Geodesic Active Contours: Application to Heart Segmentation

Ben Appleton
Intelligent Real-Time Imaging and Sensing Group, ITEE
The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract of theleft ventricle[18]. However their approach required a
high level of user interaction to prevent contour leakage. To
We develop a semiautomated segmentation method to assvercome the problem of contour leakage Ho et. al. used
sist in the analysis of functional pathologies of the left ven- acompetitivelevel set framework demonstrating significant
tricle of the heart. The segmentation is performed using improvement. They applied their approach to segment brain
an optimal geodesic active contour with minimal structural tumoursin 3D magnetic resonance images[10].
knowledge to choose the most likely surfaces of the my- A rangeof optimal active contour methods have been de-
ocardium. The use of an optimal segmentation algorithm veloped which avoid the problems of the variational frame-
avoids the problems of contour leakage and false minimawork. In the last decade numerous shortest path algorithms
associated with variational active contour methods. The have been applied to locate curvilinear image features in-

resulting surfaces may be analysed to obtain quantitative cluding road and valley detection from satellite images and

measures of the heart’s function.

We have applied the proposed segmentation method to

crack detection on borehole cores [5, 6, 14].
In object segmentation the topology of the problem de-

and efficiency of this scheme as well as its robustness tocongidered the problem of segmenting nuclei in cell mi-

noise and background clutter.

1 Introduction

The segmentation of organsin medical imagesis achal-
lenging problem due to the high geometric variation com-
mon both between subjects and within asingle subject. Lo-
cal feature based methods are unable to account for geo-
metric and structura properties and often yield unreliable
segmentations. Rigid templates are rarely applicable how-
ever deformable templates and active contours have more
prospect for success.

Classical active contoursincluding snakes[11] and level
sets [15, 1] have shown promisein a range of medical im-
age segmentation problems. The relatively recent geodesic
active contour framework has been shown to be simple, ef-
ficient and relatively accurate [7, 9]. These methods typi-
cally use avariational framework to obtain locally minimal
contours by gradient descent of an energy functional. As
a result the final segmentations are dependent upon their
initialisation, requiring a simpler and less reliable segmen-
tation as input. They also have a tendency to leak through
gaps in object edges due to noise or indistinct boundaries
and may become caught in irrelevant local minima.

Zhukov et. al. applied a 3D snake to segment the cavity

croscopy. They computed shortest paths across a polar trel-
lis with the added restriction that the endpoints of the path
met. The problem of shortest paths with connected end-
points was solved to optimality by Appleton and Sun [2]
who used a branch and bound search to efficiently obtain
the shortest closed path on trellises.

These approacheswere recently unified by Appleton and
Talbot to give an optimal form of geodesic active contour
[3] . The resulting segmentations demonstrate superior
quality to classic geodesic active contours for similar com-
putational effort. This method isideal for the segmentation
of deformable objects characterised by homogeneous fea-
tures making them attractive for medical image segmenta-
tion.

Our driving application is to assist the analysis of func-
tional pathologies of the left ventricle in the human heart.
The goa of this project is to provide quantitative mea-
sures of the heart’sfunction, including the muscle thickness
throughout the LV wall, the internal volume and the mus-
cle volume, and the ejection fraction. Data is obtained in
the form of multislice magnetic resonance images. Slices
are acquired in adouble oblique planeto the body along the
long axis of the heart with 10mm separation. The pixels
composing each siceare 1.4mm x 1.4mm.

The aim of this paper is to present a segmentation
method for this data modality which will robustly and accu-
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rately extract the epicardium and the endocardium of theleft
ventricle. The resulting surfaces may then be analysed to
compute quantitative measures of the myocardial geometry.
Due to the large separation between the dices and the lack
of registration three-dimensional segmentation techniques
are not considered. Instead we propose to independently
segment each dlice to form a layered collection of contour
lines which may be suitably interpolated to approximate the
myocardial surface.

2 Optimal Geodesic Active Contours

Our method utilises an existing algorithm for the seg-
mentation of homogeneous objects under the geodesic ac-
tive contour energy functional due to Appleton and Talbot
[3]. Thisalgorithm gives the simple closed curve of glob-
ally minimal energy which isrequired to contain aspecified
internal point pjn. Thisinternal point selects the object of
interest and may form the only input parameter to the algo-
rithm, yielding a highly automated optimal object segmen-
tation scheme.

The image to be segmented is represented as a Rieman-
nian space S with ametric g induced by the image content.
The metric quantifies the local homogeneity of the image.
Using this space segmentation is achieved by locating the
minimal closed geodesic containing pj,t. A key feature of
this approach is the separation of the segmentation problem
into local feature extraction and global geometric optimisa
tion.

The minimisation objectiveis the energy functional

B(C) = /c 0(C(s)ds )

where C is the segmentation contour and g is the metric.
Locally minimal contours C' are known as geodesics For
images composed of objects characterised by homogeneous
intensity we choose a positive scalar metric of the form

1 1
= — _— 2
I=5 (1+|VGU*I|” +5) 2

where p = 1 or 2 and r is the distance from p;;. Here
G, isaGaussian of variance o2 such that the denominator
is ameasure of the local intensity discontinuity at scale o.
€ > 0 isan arc-length penalty which implicitly smooths the
contour. Here we alter the metric typically used in geodesic
active contours[7, 9] by including an inverse radial weight-
ing. Thisintroduces scale invariance into the energy func-
tional rendering it suitable for global minimisation.
Geodesics are computed on the discrete grid using
Sethian’s fast marching method [16, 8]. For the computa-
tion of closed geodesics we form a space S identical to the
Riemann surface for the natural logarithm relation by aug-
menting the image plane IR2. This space naturally embeds

the information of whether a closed contour contains pjn¢
without restricting the contour in any way.

Minimal closed geodesics are located efficiently using a
best-first branch and bound search tree adapted from work
by Appleton and Sun on circular shortest paths [2]. The
optimal closed contour partitions the image into the object
and the background such that the total similarity across the
partition border is minimised.

This algorithm has been applied to the segmentation of
microscope, X-ray, magnetic resonance and cDNA microar-
ray images [3]. The resulting segmentations have been
shown to beisotropic and demonstrate robustnessto gapsin
object boundariesaswell aslow sensitivity to the placement
of the interior point pj,¢. They have been successfully ap-
plied to concave and convol uted boundaries, demonstrating
theflexibility of thisapproach. The new approach compares
quite favourably with the classic curve evolution approach
of Caselles et. a. [7], achieving more reliable and accu-
rate segmentations with very similar computational effort.
However as opposed to classic geodesic active contoursthe
segmentation is restricted to be a simple closed curve.

3 Adapting Optimal GAC

Due to the fact that the left ventricle is the major sys-
temic pump for the cardiovascular system it has an approxi-
mately circular cross-section[13]. Theinternal cavity of the
left ventricle appears brighter than the surrounding tissue
asitisfilled with blood. The myocardium appears darker
than most of the surrounding tissue, with the exception of
the cavity of the right lung. We therefore compute a ra-
dia gradient for each dlice relative to the internal point,
which is placed toward the centre of the LV. Strong nega-
tive gradients are likely to correspond to the intensity drop
across the endocardium between the blood-filled LV cavity
and the muscle of the myocardium, while strong positive
gradients are likely to correspond to an intensity increase
across the epicardium from the myocardial muscle to the
generally brighter surrounding tissues.

From the radial gradient we generate apair of metricim-
ages, gepi and genqdo. Each metric should be low on points
which are deemed likely from local features to lie on the
epi- or endocardial surface respectively, and high on points
which are unlikely to lie on the surface of interest. This
inspires the following pair of metrics:

1 1 + €)
Ieri = U\ T+ u(VG,y x1) [VGy 1| © ©

—1( ! +> 4)
Jendo = L\ T4 u(—VGy 1) [VGy # 1] ©

whereu isHeavyside'sfunction [12].
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Figure 1. A snapshot of the user interface.

Segmentation is then performed independently on each
metric image using the optimal geodesic contour algorithm
of Appleton and Talbot[3].

4 User Interface

A prototypical user interface has been designed using the
FLTK cross-platform GUI builder [17] in order to develop
the segmentation scheme (Figure 1). The graphical inter-
face allows users to view each slice in turn, alter ssgmenta-
tion parameters such as the scale of Gaussian blurring and
the contour regularity, and specify a point inside the left
ventricle for the segmentation. An optional cropping box
may be used to restrict the range of the segmentation con-
tour and increase the speed of the segmentation. Segmenta-
tions may be performed on the entire dataset with common
parameters or on individual sicesfor greater control.

5 Results

Figure 2 depicts a segmentation of an 8-slice dataset with
common parameters. The subject was part of a research
project aimed at measuring myocardia viability and had
had a heart attack within the last six months. No contrast
agent was used.

Observe that this segmentation method does not require
that the slices be registered; the fifth and sixth slices are

Figure 3. A single-slice segmentation at
higher resolution (300 x 220). This slice is
taken in the coronal plane and is rotated by a
half circle with respect to the slices of Figure
2.

clearly misaligned by 14mm in the vertical. Despite this
perturbation to the placment of pj the epicardium and en-
docardium are still correctly segmented.

Theepicardia surfaceisnot easily distinguished by local
edge strength alone due to the presence of the dark cavity in
the right lung. This dark cavity produces weak edges along
the heart-lung interface. Unlike classic geodesic active con-
tourswhich are prone to leak through weakly defined edges
the optimal geodesic active contour framework is able to
correctly segment thisinterfacein al dices.

The segmentation of the endocardia surface in the sec-
ond, third and fourth slices shows a weakness of this seg-
mentation technique. In these dices the segmentation con-
tour follows astrong edge corresponding to a papillary mus-
clejust interior to the superior surface of the LV cavity, in-
stead of correctly tracking the less distinct edge of the en-
docardium. As a result the segmentation overestimates the
thickness of the superior portion of the myocardium. This
may be solved using prior structural knowledge of the heart
or morphological preprocessing to remove small linear fea-
tures such as papillary muscles.

All segmentations were performed on a 700MHz P-111
Toshiba laptop with 192MB of RAM under the Linux op-
erating system. The segmentation routines have been im-
plemented in C and C++. Each dice of Figure 2 took 0.3
seconds to segment including all pre- and post-processing.

Figure 3 depicts the segmentation of a single dice at
higher resolution. The increased resolution affords a bet-
ter segmentation, however the computational |oad is greatly
increased at 6.0 seconds per slice. A multiscale approach
may be warranted to reduce the computational load at high
resolutions.
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Figure 2. A multislice segmentation of the epi- and endomyocardial surfaces of the left ventricle.
Segmentation is performed within an 80 x 75 crop box.

6 Conclusions

We have devel oped an automated method to assist in the
analysis of functional pathologies of the left ventricle of the
human heart. To do so we propose an active contour based
method for segmenting multislice heart MR data. First we
compute a pair of metric images which encapsulate local
knowledge about the presence of the myocardial surface.
Then we apply an optimal geodesic active contour algo-
rithm to choose the most likely closed curvesin each dice
corresponding to the myocardium of the left ventricle. The
resulting surfaces may be analysed to compute quantitative
measures of the left ventricle’s function such as myocardial
thickness, internal and muscle volumes and gjection frac-
tions. In addition we designed a graphical interface to facil-
itate the use of this segmentation scheme and the analysis
of the resulting contours (see Figure 1).

We have applied the proposed segmentation method to
amultislice dataset and a higher resolution single-slice im-
age. Theresults have shown that this schemeisreliable and
efficient, and that it performs well in the presence of indis-
tinct boundaries and background clutter (see Figures 2 and
3). It was shown to be confused by theinclusion of papillary
muscle fibers interior to the LV, suggesting the addition of
prior structural knowledge or morphological preprocessing
to avoid overestimating the thickness of the myocardiumin
these regions.

We are currently considering ways in which an ex-
pert user may interact with the segmentation. Soft spatial
weightings may be used to bias the contour optimisation to-
ward user-specified contour points without forcing the seg-
mentation contour to pass through an inaccurately placed
point, combining the knowledge of the expert with the pre-
cision of this segmentation method.
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Abstract

The Polartechnics SolarScan is an Australian medical
instrument designed to help physicians diagnose melanoma.
It has been in development in Sydney since 1994 and has
now entered its commercial phase. Because of IP issues
many aspects of theimage analysis subsystems could not be
discussed openly until recently. In this paper we describe
some of the algorithm designs that makes this instrument
powerful and reliable.

1. Introduction

Melanoma is the most deadly form of skin cancer. About
1000 Australians die each year as a result of melanoma.
As melanoma can readily spread through the whole body it
must be detected and treated early for best survival chances.
Most Australians go to their GPs for skin checkups, how-
ever not all GPs can be trained to diagnose early melanoma,
and as it is a relatively rare skin condition, most GPs will
only see a handful of melanomas in their entire career. To
err on the side of caution, a lot of benign skin lesions are
also needlessly excised.

The idea of the Solarscan instrument is to allow clinics
to have access to a reliable diagnostic aid that will lower
error rates. This instrument needs to be relatively cheap,
fast, accurate, give reproducible results, be able to follow
up patients and above all have a low error rate.

The result of a collaboration between Polartechnics Ltd,
The Sydney Melanoma Unit at Royal Prince Alfred Hospi-
tal and CSIRO-MIS, the Solarscan instrument is one of a
few such instruments that could fit the above description.

In this paper we present an overview of the image analy-
sis algorithms that makes this instrument useful.
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2. Instrument design

The Solarscan instrument consists of a video capture de-
vice connected to a standard PC running Microsoft Win-
dows NT. The video capture device is a special-purpose
designed camera with a 3-CCD 760x560 captor, self-
contained flat illumination and surface microscopy (epi-
luminescence) optics. The front cover of the camera is
changeable and can be replaced to take standard non-
microscopy pictures, for example to save the location of
moles on the body in the patient database for future ref-
erence.

“ %'
."'
= [ﬁ
i 1 v
3 ) (b)

Figure 1. The SolarScan instrument: (a)
global appearance, (b) camera, (c) user in-
terface.

All captured images have 4 colour swatches in each cor-
ners for colour calibration.
The diagnosis system has two main components:

e The image analysis pipeline. Its aim is to segment the
lesion from the image and to provide feature extrac-
tion.



e The diagnosis model. Its aim is to provide diagnosis
aid to the physician. It can simply be a probability of a
lesion to be a melanoma in the case of a full diagnosis
system, or it can provide significant numbers that are
in tune with the physician’s training (ABCD rules for
example [5, 8]).

3. Image analysis pipeline

In this section we describe in more detail the image anal-
ysis pipeline leading to feature extraction.

3.1. Image calibration

All images taken with the SolarScan instrument contain
four swatches of known reflectance which can be used to
calibrate images between session and between instruments.
The aim is to be able to refer all pixels to a known fixed
colour space such as CIE XYZ.

A standard uniform gray background is also imaged
from time to time to provide background illumination cor-
rection.

3.2. Artifact removal

Surface microscopy involves a layer of oil between the
lesion and the optics. Air bubbles can be trapped in this
layer. Additionally, hair is frequently present on images of
skin. Because of the danger to the lesion it is not usually
shaved and must be detected and masked out.

The procedure to detect air bubbles involves taking a
top-hat filter on the lightness component of the calibrated
image, together with strong edges detected with a morpho-
logical gradient [11].

Hairs are detected using a more complex procedure in-
volving the algebraic closing consisting of the intersection
of a series of closings by linear structuring elements [13].
The artifact detection is illustrated in Fig. 2

Obviously the calibration patches within the field of view
are also masked out.

3.3. Lesion segmentation

An accurate lesion segmentation is critical to the whole
procedure and has been subject to a significant body of re-
search [15, 9]. The procedure is difficult because of the
large variation in skin colour in the population and the
equally large variation of lesion appearance.

For reliability an entirely automated procedure based on
seeded region growing [1] is first run. If the result is judged
unsatisfactory by the operator a semi-automated procedure
is tried next, based on colour clustering.
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Figure 2. Artifact removal on subset of lesion
image: (a) lightness component, (b) air bub-
bles, (c) lesion hair.

In both approaches, a principal component analysis of
a representative sample of calibrated images is peformed.
PC1 and PC2 are the first and second principal components,
respectively.

3.3.1. SRG-based procedure

The main difficulty in an SRG-based procedure is to find the
seeds. In this case the lesion seed is obtained from the PCA
analysis. PCL1 is roughly equivalent to lightness,the lower
20% of which are used as a seed for the lesion, assumed to
be darker than the rest of the image. The brightest 20% are
assumed to be skin. A standard SRG algorithm is run on the
calibrated data with these seeds.

3.3.2. Colour clustering

This approach is based on clustering the bivariate histogram
PC1 vs. PC2 of the PCA transform of the calibrated image.
The clustering technique is based on finding peaks in the bi-
variate histogram and segmenting by watershed with a tech-
nique similar to that described in [12]. The colour clusters
are then ordered on the basis of increasing lightness, which
yields an ordered series of image segmentations, from dark-
est to lightest. To limit the number of boundaries to a rea-
sonable number, skin and lesion statistics are used from the
previous SRG procedure.
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Figure 3. Example of lesion segmentation.

3.4. Lesion border analysis

Clinical analysis of the border of a lesion has been shown
to be significant [7]. A number of researchers have pub-
lished automated methods of boundary analysis [2, 10].
In this project we systematically reused all available pub-
lished methods including fractal analysis [4], notch analy-
sis, symmetry analysis and more. One of the most signif-
icant variables in subsequent statistical analysis turned out
to be the lowly area measurement (i.e: larger lesions were
more likely to be melanomas than smaller ones).

Novel methods were also developed. As an example we
present our method for determining edge abruptness. Clin-
ical studies have shown that the sharpness, or abruptness of
the transition between the lesion and the surrounding skin
is diagnostic: melanomas tends to have sharper transitions
than benign lesions. To extract the edge profile around the
boundary, a distance function (DF) is computed from the
edge of the lesion (in both directions, inside and outside).
From each point on the boundary a profile is run towards
the inside of the lesion and towards the outside, following
the upstream [6] of the DF, recording the lesion and skin
intensities respectively. This allows the reconstruction of a
reliable surrogate for the gradient of the border, as shown
on Fig. 4.
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Figure 4. Edge abruptness measure.

3.5. Colour segmentation

Colour analysis is also significant for the melanoma di-
agnosis. Melanomas tend to be more colourful than benign
lesions. Both absolute colour (i.e: calibrated colours) and
relative colour (variation in colours within a given image)
measures were derived.

3.5.1. Absolute colours

An RGB cube of calibrated colours derived from a signif-
icant subset of images was classified into various clusters.
Several methods were used for this, including a complete
watershed-based segmentation of the cube, which resulted
in a fixed 3D look-up table. Applying this LUT to any cal-
ibrated colour skin image results in a pixel-wise classifica-
tion. From the statistics of the classified regions various
measures were derived, such as relative areas of colours,
presence or absence of particular colours, etc.

3.5.2. Relative colours

For this an automated clustering of the first two PCA
components of individual lesions was performed, resulting
again in pixel classification. Because these regions do not
correspond to known colours, the resulting regions were
used as input for a categorical symmetry analysis (symme-
try analysis between regions) based on simple Euclidean
distances between clusters. Various other inputs were used
for categorical symmetry analysis, such as 1-D histogram
segmentation (in all 3 channels) and the absolute colour
classification.
Figure 5 shows a sample absolute colour segmentation.



(b)

Figure 5. Lesion absolute colour segmenta-
tion. (a) original image, (b) colour segmenta-
tion.

3.6. Textureanalysis

Some malignant lesions are not colourful, but can still be
distinguished from benign lesions by texture analysis. More
precisely melanomas tend to have less regular textures and
less symmetry than benign lesions. However defining regu-
larity and symmetry in skin lesions is challenging [14]. To
capture the notion many different features were extracted.
We present a few examples:

3.6.1. Simple measures

Relatively obvious measures were obtained, such as the to-
tal intensity variance in lightness or in each of the colour
channels. Some extension of symmetry measurements ap-
plied to the binary mask of the lesion were also extended
to grey-level and colour, such as the flip and rotation mea-
sures. These consist of finding the axes of symmetry of
the lesion (by moment-based methods), and then measuring
the amount of correspondence between parts of the lesions
on each side of the axes. This can be done by flipping the
lesion about each axis and measuring the average absolute
pixelwise difference over the overlap.
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Figure 6. The flip symmetry measures.

3.6.2. More complex measures

Standard unsupervised texture classification methods
(Wavelet, Gabor, etc) were too slow and did not appear to be
suitable to the particular kind of biological texture found in
skin lesions. However we did persist with some FFT-based
texture measures with mixed results.

A number of ad-hoc texture measures were also devel-
oped. These measures were designed to match patterns of-
ten found in lesions, often labelled as “network”. The as-
sociated measures correspond to a coverage percentage of
a lesion. The idea being that if a single particular texture
covers a large area portion of a lesion, it is probably regular.

3.6.3. Specific features

Some malignant lesions can only be diagnosed as such by
looking at some specific visual features that need to be
looked for. A list of such significant features can be found
in [7].

An example of those are the border spots, which are
small dark spots on the boundary of a lesion correspond-
ing to melanocytes in malignant stage. Such features can be
extracted by black top-hat restricted to the boundary of the
lesion, as seen on Fig. 8

4. Feature extr action and selection

Many more features were extracted and measures de-
rived than can be presented here. As an overview, the fea-
tures not already present in the literature (the vast major-
ity) were designed in collaboration with an expert specialist
clinician. The idea of the design phase was not necessarily
to come up with features that by themselves were correlated
to malignancy, but which reasonably matched something
that the clinician could see and was in some way related
to the highly visual human diagnosis procedure.

The feature selection was made by letting the data itself
drive the selection. The set of all measures was fed to a



Figure 7. Example of network extraction: (a)
lesion with network, (b) network coverage.

series of classification methods, from logistic regression to
regression trees. After culling a number of models were
built using cross-correlation.

The database of images used for building these mod-
els grew during the length of the project. It started rela-
tively small with about 30 melanomas and a few hundred
atypical benign lesions but now contains several hundred
melanomas and several thousand both typical and atypical
benign lesions.

At some point in the research the number of extracted
features grew to over 600, but was later reduced to about
80. Fewer than a dozen are typically needed for a model.

4.1. Diagnostic features

Not much detail can be given here, but it has become ap-
parent that relatively simple measures are often more valu-
able than complex one. Simple measurements such as le-
sion area often appear at the root of the model. These mea-
sures have the advantage of being robust and highly repeat-
able whereas more complex one can give signficantly differ-
ent answers under relatively slight changes in image capture
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Figure 8. Example of border spot segmenta-
tion.

conditions.

However we have found it impossible to build an accu-
rate model without some of the more advanced measures,
especially those that look for specific features in lesions.

4.2. Accuracy

The SolarScan instrument was originally designed to be
a diagnostic instrument, however it is now being marketed
simply as a diagnostic aid which gives several indications
to the operator rather than operate as a black box giving a
single probablity or yes/no answer. As such it is not possible
to give a concise accuracy figure for this instrument.

However early in the development of the instrument,
with only some of the features now being collected and a
much smaller image database, this instrument obtained a
cross-validated sensitivity (ability to diagnose a melanoma
correctly) of 92% and specificity (ability to diagnose a non-
melanoma) of 62% [3], which is comparable to an inex-
perienced skin specialist and better than most GPs. 1t is
presumed that the numbers for the present instrument are
higher.

5. Conclusion

The Polartechnics SolarScan melanoma diagnosis assis-
tance system is an innovative Australian instrument which
has followed the difficult road from research to commercial-
isation thanks to a unique collaboration between research
organizations and a private company. Image analysis is a
key component of this complex system. In this paper we
were able to describe parts of the design of the image anal-
ysis subsystem.



The proof of the validity of this research will be if the
instrument becomes successful as a commercial product,
keeping in mind that the final objective of such instruments
is really to save lives.
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Abstract

In this paper we investigate the possibility of improving the
overall perception of image quality by preferentially coding
certain regions of interest (ROI) in an image. Experiments
are conducted utilising an automated algorithm for visual
attention (VA) to detect the primary ROI(s) in an image,
and then encoding the image using the maxshift algorithm
of JPEG 2000. The results from a 2 alternative forced
choice (2AFC) visual trial show that, while there is no
overall preference for the ROI encoded images, there is an
improvement in perceived image quality at low bit rates
(below 0.25 bits per pixel). It is concluded that a perceived
increase in overall image quality only occurs when the
increase in quality of the ROI more than compensates for
the corresponding decrease in quality of the image back-
ground (i.e., non ROI).

Keywords
JPEG 2000; Region of Interest Coding; Image Quality.

Introduction

With the introduction of third generation (3G) mobile
devices there will be an increasing demand for the efficient
transmission of multi-media data, such as speech, audio,
text, images, and video. Of these multi-media data types
image and especially video data will provide the toughest
challenges because of their high bandwidth and user expec-
tations in terms of high quality of service. Therefore, to
enable the successful adoption of the multitude of 3G appli-
cations, the transmission of multi-media data must be at
high compression ratios and be of a perceptually high qual-
ity. In this paper we shall investigate the suitability of the
region of interest (ROI) coding feature provided by JPEG
2000 (JP2K) to improve the perceptual quality of com-
pressed images, where the ROI has been automatically ex-
tracted from the image by using an algorithm that simulates
visual attention (VA).

JPEG 2000 (JP2K) is the emerging image and video
compression standard developed by the International Or-
ganisation for Standardisation/International Telecommuni-
cations Union (ISO/ITU-T). JP2K has been designed to
complement the current JPEG standard by providing im-
proved compression performance and a rich set of new
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functionalities [7]. JPEG 2000 Part I, the core-coding algo-
rithm, became an international standard in December 2000
and further work is ongoing to tailor the standard to specific
applications, such as medical imaging and video coding.
JP2K provides, in a single bit-stream, a broad set of func-
tionalities, such as: progressive transmission by resolution,
quality, component, or location; random access; lossless to
lossy compression; and error tolerance [3]. The specific
functionality investigated in this paper is the ability of JP2K
to encode a region of interest (ROI) in an image with more
detail than the background. In this paper JP2K ROI coding
is used in combination with an algorithm for visual atten-
tion (VA) [5, 6], to provide a progressive bit-stream where
the regions highlighted by the VA algorithm are presented
first in the bit-stream. This results in an interest ordered bit-
stream where any valid bit-stream termination results in an
image where the ROI is coded to a higher quality than the
background. The efficacy of this technique is then evaluated
using a visual trial to determine under what conditions it
provides an increase in overall perceived image quality
compared to conventional JP2K at the same bit-rate.

As has been demonstrated in previous rate distortion
experiments [1], it is important to reduce the overhead as-
sociated with ROI coding in order to ensure maximum cod-
ing efficiency. Briefly, this can be achieved by:

1. Ensuring the ROI is < % of the area of the whole
image;

2. Reducing the number of regions of interest (to two
or less); and

3. Ensuring region boundaries are reasonably regular
(smooth).

The first constraint ensures that there are enough avail-
able bits in the background to be able to preferentially en-
code the foreground ROI. Whilst the last two constraints
ensure that the overhead associated with ROI coding is
minimised, e.g., for maxshift coding it minimises the num-
ber of code-blocks that contain coefficients from both the
ROI and the background. The algorithm for processing the
VA map produced by [5, 6] to meet the above constraints is
detailed in [2]. An example image, with the ROI selected by
the VA algorithm highlighted, is shown in Figure 1.



Figure 1. Cycles image with VA ROI highlighted.

Experimental Methodology

As discussed in [1] selection of the most appropriate
JP2K ROI encoding methodology for a particular applica-
tion is dependent upon a number of factors: the desired bit-
rate; relative ROI/background importance; the shape and
size of the ROI; and whether the ROI is fixed or is to be
selected by the user. For client/server applications it is es-
sential to be able to extract any ROI from an encoded im-
age, in which case code-block selection is the best method
to use [4]. However, in the type of applications we are con-
sidering the ROI can be calculated directly from the image
and is fixed. Therefore, it is desirable to have the ROI em-
bedded in the bit-stream using coefficient scaling [1]. In
addition, the ROI is assumed to be of primary importance
and so we desire to receive it as early as possible in the bit-
stream. Therefore, we shall use the method of coefficient
scaling provided in Part I of the JP2K standard, the max-
shift algorithm. In addition, we shall tailor the JP2K ROI
coding to our particular requirements by using: small
(16x16) code-blocks for fast ROI refinement; a 5 level irre-
versible (bi-orthogonal spline 9/7) wavelet transform for
high compression (lossy) efficiency with the lowest level of
the DWT defined to be part of the ROI; and an increased
quantisation step size (of 0.03125 which is four times the
default) to prevent ROI over-coding.

The visual trial was based upon six images, namely:
boat, cycles, beach, helicopter, land, and road sign. These
images were chosen to have a reasonably varied content,
whilst still containing one or two primary objects that could
be considered to be more important (visually interesting)
than the background. The images selected for the visual
trial are not intended to be representative of any particular
potential application, but were chosen solely to judge the
efficacy of ROI coding in JP2K.

The purpose of the visual trial was to directly compare
images encoded to a specified bit-rate using standard JP2K
and JP2K ROI coding, where the ROI is determined using
the VA algorithm [2]. The comparisons were made at four
logarithmically spaced bit-rates (and hence varying image
qualities) of 0.125, 0.25, 0.5, and 1 bits per pixel (bpp). A
two alternative forced choice (2AFC) methodology was
selected because of its simplicity, i.e., the observer views
the two images and then selects the one preferred, and so
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there are no issues with scaling opinion scores between
different observers. There were ten observers (8 male and 2
female) all with good, or corrected, vision and all observers
were non-experts in image compression. The viewing dis-
tance was approximately 40cm (i.e., a normal PC viewing
distance) and the image pairs were viewed one at a time in
random order. The observer was free to view the images
multiple times before making a decision, however a buzzer
sounds after 20 seconds to indicate that they should make a
decision. In addition, a blank mid-grey image is shown be-
tween each image (for 2 seconds) to prevent observers
switching between the two images to find insignificant dif-
ferences. Each image pair was viewed twice, giving
(6x4x2) 48 comparisons, which means that each observer
takes approximately 10 minutes to view all of the images.
Images were viewed on a 12.1” Thin Film Transistor (TFT)
display, in a darkened room (i.e., daylight with drawn cur-
tains). The test images were displayed on a mid-grey back-
ground to a maximum size of 410x600 pixels. Prior to the
start of the visual trial all observers were given a short pe-
riod of training on the usage of the visual trial software and
they were told to select they image they preferred assuming
that it had been downloaded over the internet or wireless
network.

Figure 2. Boat image and VA ROI mask.

Figure 3. Beach image and VA ROl mask.

Results

Table 1 shows the overall preferences, i.e., independent
of (summed over) image and bit-rate, for standard JP2K
and JP2K ROI coding with the ROI determined using the
VA algorithm. Table 1 also shows the standard errors asso-
ciated with the preferences assuming a Gaussian approxi-
mation to the Binomial distribution. From Table 1 it can be
seen that standard JP2K is preferred over ROI coding ap-
proximately 65% of the time. This shows that standard
JP2K produces good quality images over a wide range of
bit-rates and indicates that ROI coding may not be suitable
as a general-purpose image coding technique. Therefore,
we will have to examine the results in more detail to iden-



tify the conditions to which the ROI JP2K coder is best
suited.

Table 1. Overall preferences (independent of image and

bit-rate)
Compression Number of
Method Preferences Standard Error
JP2K 311 +123
JP2K ROI 169 123

Figure 4 shows that preferences vary both across the
image set (independent of bit-rate) and with bit-rate (inde-
pendent of image). Standard JP2K is shown with red stan-
dard error bars (on the left) whilst JP2K ROI coding is
shown with blue standard error bars (on the right). From
Figure 4 it can be seen that there is a large variation in pref-
erences across each of the images in the test set. For exam-
ple, standard JP2K is preferred at every bit-rate on the boat
image, whilst the two methods are equivalent on the cycles
and beach images (within 1 standard error). However, the
second, and more important, trend that can be observed in
Figure 4 is an increase in preferences for ROI coding as the
bit-rate decreases. At the lowest bit-rate tested (0.125 bpp)
the preferences for ROI coding are 68, with a standard error
of +£ 5.8, and 52 (+ 5.8) for standard JP2K. This indicates a
clear preference (i.e., statistically significant) for the JP2K
with ROI coding at this bit-rate.
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Figure 4. JP2K (left) and ROI JP2K (right) preferences
for each image (independent of bit-rate) and prefer-
ences at each bit-rate (independent of image).

Note: the decrease in preferences for standard JP2K at
1 bpp in Figure 4 is due to the two methods producing im-
age that look increasingly similar. Therefore, preferences
between the two methods will tend to random (i.e., 50/50)
selection.
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Discussion

As illustrated in Figure 4, there are two main sources of
variation that can explain the differences in preferences:
variation with image and variation with bit-rate (variation
with observer being indicated by the standard errors in the
results). The variation across the images in the test set
shows that for an image that has an ROI and a background
of little importance, such as the beach image (see Figure 3),
the ROI coding works well. However, for an image that has
an ROI and also some visually important contextual details
in the background, such as the boat image (see Figure 2),
the ROI coding works less well. The increase in preferences
for the ROI coding as bit-rate decreases, illustrated in Fig-
ure 4, is undoubtedly the most significant and consistent
effect observed in the visual trial (being apparent in 5 of the
6 images in the test set).

It is worthwhile noting that the performance of ROI
coding on the boat image was degraded by the fact that the
ROI found did not enclose the whole region of primary
interest. However, in general it is probable that most images
that have a primary ROI will also have some important con-
textual details in the background and so ROI coding is
unlikely to provide an overall improvement in image quality
at all bit-rates.

Figure 6. Cycles image JP2K ROI (1bpp).

At low bit-rates (< 0.25 bpp), having the ROI encoded
first in the bit-stream can significantly improve the visual
quality of the ROI compared to standard JP2K. In addition,
the background (non-ROI) areas are not of significantly
poorer visual quality and are often of preferable visual qual-



ity as they contain less (wavelet) compression artefacts. At
the low bit-rates the background regions tend to contain
only coefficients from the lowest level of the wavelet trans-
form rather than sporadic coefficients from higher levels of
the DWT (as in standard JP2K). This results in a back-
ground that is uniformly blurred, which is often preferable
to a less blurred background that also has wavelet artefacts.

At the higher bit-rates (> 0.25 bpp) the ROI is often not
of significantly better visual quality than standard JP2K.
This combined with the fact that the background areas are
often more blurred and pixelated than standard JP2K results
in lower preferences (see Figures 5 and 6). This effect
should come as no surprise as once the ROI is coded to a
visually acceptable level it takes a significant number of bit
refinements (of the high entropy least significant bits) to get
a visible improvement in image quality. In addition, be-
cause small code-blocks were used at all bit-rates for the
ROI coding (16x16 compared to 64x64) there is a reduced
compression efficiency, especially with the entropy coding
of the code-blocks. This reduction in compression effi-
ciency is particularly apparent at the higher bit-rates due to
the increased number of significant coefficients [1]. How-
ever, using small code-blocks reduces the ROI coding
overhead and therefore ensures that the complete ROI ap-
pears as early as possible in the bit-stream.

Another reason for the reduction in preferences at bit-
rates > 0.25 bpp is due to the inherently uneven image qual-
ity in the majority of ROI coded images. This results in
images that do not appear natural as the ROI is in sharp
focus, whilst the background appears blurred. A more grad-
ual change in image quality between ROI and background
would, however, increases the size of the ROI, which has a
negative impact on ROI coding efficiency.

There is an anecdotal explanation for the reduction in
preferences at bit-rates > 0.25 bpp by considering the rule
of thumb that to observe a significant increase in the visual
quality of an image you have to (approximately) double the
bit-rate. This means that the ROI has to be coded to twice
the bit-rate of the background to observe a significant im-
provement in perceived visual quality. Therefore, if we
assume the ROI is 4 of the image area, then to code an im-
age to the same (target) bit-rate as standard JP2K, the back-
ground can only be coded to half the target rate to allow the
ROI to be coded at twice the target rate. For example, if the
target bit-rate is 0.5 bpp, then we can either code to this bit-
rate using standard JP2K, or code the ROI to 1 bpp and the
background to 0.25 bpp using JP2K ROI coding. Therefore,
ROI coded images will invariably have an ROI that looks
better, but a background that looks worse, than standard
JP2K images coded to the same bit-rate. Results observed
in this visual trial indicate that the ROI encoded images
only score an overall improvement in image quality at tar-
get bit-rates less than 0.25 bpp (i.e. 0.125 bpp). At bit-rates
greater than 0.25 bpp the increase (if any) in quality of the
ROI does not compensate for the decrease in background
quality when observers judge overall image quality.
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Conclusions

Results from the visual trial indicate an overall preference
for standard JP2K independent of image and bit-rate. How-
ever, the proposed VA ROI JP2K coding method was
clearly preferred at the lowest bit-rate tested (0.125 bpp).
This indicates that, when observers judge overall image
quality, it is only at this bit-rate that the visible increase in
quality of the ROI more than compensates for the decrease
in quality of the background. Therefore, it can be concluded
that ROI coding in JP2K will only produce an overall in-
crease in perceived image quality when: the image contains
a small number (< 2) of regions of interest; these regions
are relatively small (< % of the total image area); and the
bit-rate is low enough to produce visible compression arte-
facts (< 0.25 bpp).
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Abstract

Training a Hidden Markov Model (HMM) to maximise
the probability of a given sequence can result in over-fitting.
That is, the model represents the training sequence well,
but fails to generalise. In this paper, we present a possi-
ble solution to this problem, which is to maximise a linear
combination of the likelihood of the training data, and the
entropy of the model. We derive the necessary equations for
gradient based maximisation of this combined term. The
performance of the systemis then evaluated in comparison
with three other algorithms, on a classification task using
synthetic data. The results indicate that the method is po-
tentially useful. The main problem with the method is the
computational intractability of the entropy calculation.

1 Introduction

eters of the resulting HMMs. The reported results indicate
that the averaging method offers an improvement over the
basic Baum-Welch algorithm.

This paper presents another method of HMM parameter
estimation which is intended to overcome the over-fitting
problem. The method herein was mentioned by Brand in
1998, with reference to combinatorial optimisation prob-
lems [1], however the approach does not appear to have
been investigated for the task of HMM parameter estima-
tion.

2 Background Theory
21 HMM Preliminariesand Notation

An HMM can be described as a probabilistic function of
a Markov Chain. For the case of HMMs with discrete out-

In recent years, the HMM has become one of the main puts and discrete states, we can assume that the underlying

tools for spatio-temporal pattern recognition, especially in Markov Chain hasV statesg;, go, . . .

,qn. Such a Markov

the area of speech recognition [8]. In 1983, Levinson, Ra- chain can be specified in terms of an initial state distribution

biner and Sondhi described a method of estimating HMM vector,m = (71,72, ...,

mn), and a state transition proba-

parameters from multiple training sequences in the maxi- bility matrix, A = [a;;],1 < 4,5 < N. Here,n; is the
mum likelihood sense, via a special case of the expectation{robability ofg; at time timet = 0, anda;; is the probabil-
maximisation algorithm. This method, known as the Baum- ity of transiting to statey; given that the current state gs,

Welch algorithm, has been widely used, however it is well thatisa;; = p(g; attime t + 1|g; at time §. In the previ-

known that it is susceptible to the problem of “over fitting”.

ous expression and the remainder of the pagier) is to be

Several attempts have been made to deal with the overtaken as the probability of occurrence of event

fitting problem.

In 1998, Brand described an effective

Each of the Markov states have an associated random

method involving maximum likelihood parameter estima- process which provides a probabilistic mapping to the out-

tion, but with the additional constraint of an “entropic prior”
[1]. That is, an a priori assumption was made regarding M possible outputsy;,vs, ..

put of the HMM, which is drawn from an alphabgt of
.,vp. These probabilistic

the probability distribution of the HMM parameters them- mappings from hidden state to observed output can be col-

selves.

lectively specified by another stochastic matBx=[b;]

Recently, Davis et al have explored [2] the possibility (the “observer matrix”) in which fol < 5 < N and
of using parameter averaging, as suggested by Mackay inl < k < M, b;; is the probability of observing symbol
1997 [6]. This method involves training a separate HMM wv;, given that the current state ¢g, that is,b;, = p(vs at
for each training sequence, and then averaging the paramtime t|g; at time 1.
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2.2 Entropy of a Random Variable

Consider a random variabl&, with N discrete out-
comes,ry, xa2,...,xN. The “information” of outcomer;
is [4]:

I(w;) £ —logp(X = z;)

The entropy ofX is the expected information [4]:

N

— > p(X =) log(p(X = ;)

i=1

H(X)

2.3 Entropy of an HMM

From the equation of Section 2.2, the entropy of a se-
guence of lengti” produced by HMMA\ can be written as:

H\T)=— > p(O\)1ogp(O|\)
vOeOr

(1)

WhereOr is the set of all sequences of lengththat
can be produced by. For a symbol alphabet siz&{,
|Or| = MT, so the computation in equation 1 is intractable
for largeT.

24 Maximum Entropy Parameter Estimation

Let X be a random variable taking on values
1, To,. .., T, With an unknown probability mass function
(pmf), pr = p(X = xx). Suppose we would like to esti-
mate thepmf of X given only the expected value of some
functiong(X) of X:

Z g(@r)pr = c

k=1

()

For example ifg(X) = X thenc is the mean ofX.
Since Equation 2 does not, in general, specify gh# of
X uniquely, we must apply further constraints in order to
solve for thep,. One additional constraint that is com-
monly applied [4, 3] is that of “maximum entropy”. That
is, we seek the@mf that maximises the entropy subject to
the constraint in Equation 2. This is intuitively appealing,
since the maximum entropy solution is that which satisfies

3 Maximum Entropy HMM Parameter Esti-
mation

In its most fundamental form, HMM parameter estima-
tion proceeds as follows [5]. First of all, the source which
is to be modelled is sampled one or more times, to pro-
vide “training data” for the parameter estimation. An HMM
topology is then chosen, and an HMM is initialised ran-
domly within the chosen topology. The HMM parameters
are then adjusted so as to maximise the likelihood of the
HMM producing the training sequence(s). This is known as
“maximum likelihood” parameter estimation. For the case
of HMMs, maximum likelihood parameter estimation is in
itself a difficult problem: in general only locally optimal
solutions can been found. A well known problem with the
maximum likelihood approach is that of “overfitting” to the
training data. That is, the model fits the training sequences
too well, thereby failing to generalise.

In 1998, Brand proposed a means of dealing with the
overfitting problem [1]. The method is essentially Bayesian
inference with an “entropic prior”. That is, maximum a pos-
teriori (MAP) parameter estimation using an a priori distri-
bution over parameter space. Formally, the method seeks
the parameter sétwhich maximises the posterior

Pe(0]) o p(x|0)pe(0) 3)
wherez is the observed (training) data, apd ) is the
entropic prior:
Pe(0) x e HO) 4)
whereH (0) is the entropy of the model. A detailed ex-
planation of the method can be found in [1].

The method proposed in this paper is similar to that of
Brand [1], in that the generality of the model (as measured
by its entropy) is accounted for during the training process,
however the knowledge of model entropy is used in in a
different way. Following the same approach as the classical
maximum entropy method, we would like the model to have
high entropy as well as to match our knowledge of the data.
This leads to the following idea: rather than maximising
the probability of the training sequences, maximise a linear
combination of the likelihood and the model entropy. For-
mally, we seek to maximise the following “objective func-
tion™:

C =blogp(O|N) + (1 —=b)H(N\,T) (5)
Whereb € [0, 1], the “balancing parameter”, is the free

our known constraints, while asserting as little as possible parameter that sets the desired “generality” of the model,

about the nature of the underlyipgif. The maximum en-

andO is our training sequence. For examgles 1 results

tropy parameter estimation can be set up as an optimisatiorin normal maximum likelihood learning, whereas= 0
problem and in some cases solved using classical methodgnores the training data and maximises the entropy of the

such as Lagrange multipliers [4, 3].

model.
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In equation 5,logp(O|A) is maximised rather than 4.2 Partial Derivatives of Likelihood with respect
p(O|\) to ensure that we are comparing equivalent units toHMM Parameters
of likelihood and entropy — log of probability is informa-
tion, and entropy is expected information, so the units are  This is our own derivation of the partial derivatives of
comparable. If théog is to base, then the units are “bits”,  [ikelihood with respect to HMM parameters. An alternative
while a natural log has units “nats”. derivation is available in [5]. From [5] we have the proba-
In the next section we begin describing how the model bility in terms of the forward variabley:(n):
can be optimised according to the objective function above.

Before proceeding, however, it is worth making a few com- N

ments regarding the parameter of Equation 5. The inclu- p(O[A) = Z (7
sion of the parameter can be justified by the following ar- n=1

gument. In an extremely “data poor” training problem in N

which we have only one training sequence, it may be possi- app1(n) = Z (M) @by (O41) (8)
ble to find a deterministic (zero entropy) HMM that fits the m=1

data perfectly in the maximum likelihood sense, however

this would obviously be of no value for either regression or ai(n) = mnby(O1) ©)

classification tasks. By applying domain knowledge, itmay  \where0; is thet-th observation symbol in our training
be possible to sensibly choossuch that a useful modelis  sequence(. From equation 7 we get:

obtained. The necessity for the free parameter is a symptom
of the inherent difficulties of all inductive inference tasks — Ap(O|N)
as is well known, logical induction is a flawed process, and
one that requires the assumption of some prior knowledge
in order to reach a conclusion [7].

4 Gradient Descent Equations

To maximise the objective function in equation 5, we can om; et omi
perform gradient descent w.r.€/. To do this we need the
partial derivative ofC w.r.t. an arbitrary HMM parameter,
0. This follows directly from equation 5:

From equations 8 and 9 we get, faf;:

N

3} _ 0
aé%l”(n) = Oét(Z)bj(OH_l) + Z amnbn Ot+1) aata( . )
oC b 0p(O[N) L (1—0) O0H(\,T) K m=1 B
20  p(O|A) 96 00 Do (n)
=0
We now proceed, in a top-down approach, to relate the Oaij
above expression back to all of the specific HMM model  for b;(k),
parameters.
O (n)
4.1 Partial Derivativesof HMM Entropy with re- 8Z+1k Z (Vk, Ot+1)0 (4, 1) @ v (M) +
spect to Model Parameters (k) =1
. . o . . dayy (m)
Taking the partial derivatives of equation 1 with respect bn(Or41)amn ab, (%) )
to an arbitrary parametérwe get, I
86‘2‘1((;‘)) = 1,0(01,v4)8(j, m)
OH(A,T ap(O|A !
HOT) __ > PO )(1 +1ogp(O[A))  (6) and forr;:
00 ot 00
€0r
80&t+1 aat(m)
- mn Tl O
Next we need the expressions @(@o‘)ﬁ_ S om Z ¢ 1) om;i
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5 ¢ fon Performance Averaged Over 252 Experiments of the transition matrix by choosing uniformly random (in
the range|0, 1]) transition probabilities, then adding 3 to
the long diagonal and normalising eagtmf to satisfy the

70 stochasticity constraint. Structure was also added to the ob-
server matrix by similarly biasing a single randomly chosen
probability from the observatiopmf of each state. From

True Models

65| each of these two “true” or “generating” models, 5 training
and 500 testing sequences of length 4 were randomly gen-
Mackay Model Combination erated. The sequences were chosen to be so short, and the
sor ot Welkh Entiopic MAP number of states so few, due to the exponential time com-

plexity the entropy calculation (see Section 2.3).

The training set of each model was then used to esti-
& o mate an HMM with the same topology as that of the ini-
Entropy-Likelihood Combination . . . .. .

tial models, using the following training algorithms: Baum-
Welch maximum likelihood [5], Mackay model averaging
%% o1 02 03 o 05 06 o7 o8 0s 1 [2], Brand’s entropic prior [1], and finally the maximum
b Value of Entropy-Likelihood Combination A . .
entropy method presented in this paper. For the maximum
entropy method, thé value of Equation 5 was varied from
0 to 1 with a step size of 0.05. Following this, the test set
was then classified by all of the pairs of learnt models, and
also by the “true” models. This entire procedure was re-
peated 252 times with different random seeds. The mean
classification performance over the 252 trials is shown for

Classification Performance (Percent Correct)

Figure 1. Mean classification performance for
various model pairs.

day (n)

5 =0;(01)6(i,n) each model pair in Figure 1.
Ur
In the abovej(z, y) is the Kronecker delta function: 6 Discussion
1 ifz=y, S . . -
oz, y) = herwi (10) Before considering the information presented in Figure
0 otherwise 1, it should first be noted that the amount of data used to

construct the curves is somewhat insufficient. For exam-

The equations above provide a recursive means of com- i )

. : o o le, the sign test shows that the hypothesis “Mackay Model

ting th rtial derivat f probability, w.r.t. model pa- P 2 .
puting the partial derivatives of probability, w odelp Combination is no better or worse than Brand’s entropic

rameters, for a given observation sequence. The time com- o S
plexity of the calculation is linear w.r.tT". This and the MAP" is correct to the significance level < 0.796, how-

. () ever the true models are significantly better than all others,
results of set_:t|on 4.1 allow us to calcula‘igw for all and the entropic MAP and Mackay model averaging meth-
parameter$, ie. a;;, b; (k) andm;. Unfortunately the com-

lexitv is th tial wr i thatis. th tion h ods are better than Baum Welch at the 90% significance
plexity’ls tnen exponentia W'rf - (NALIS, IN€ Operation NAs eye|. with these considerations of statistical significance
time complexity of orde©O (M ™).

. / o in mind, we proceed to discuss those features Figure 1 that
Since we now have the partial derivatives of both entropy : I
4 likelihood with t 10 all of the HMM i are likely to be significant.
and likelinoo W'C respectto al ot tne parameters, The first thing to notice is that there are indeed improve-
we can calculat% using Equation 4, and so we can max-

imiseC usi tandard hill climbina/aradient d tb dments to be made over the Baum Welch algorithm. Next,
Imiset using standard hiff cimbingigradient descent based | geq that the “Entropy-Likelihood Combination” method
numerical optimisation.

is no better or worse than random foe= 0 — this is to be
expected sincé = 0 corresponds to pure entropy maximi-
5 Results sation, which gives an HMM equivalent to the independent
sampling of a random variable with uniforpmf. As b in-
The performance of the method has been tested in a clasereases, so does the performance of the maximum entropy
sification task with the following methodology. An HMM  models, untilb = 0.2. This may seem to be a surprisingly
topology of two hidden states and two observation symbols small value for optimund, but this is partly due to the fact
was chosen, with a “feed forward” structure (upper trian- that in our implementation of the training method, the log-
gular in the transition matrix). Two HMMs were then ran- likelihood term of Equation 4 is in fact the sum of the log-
domly initialised subject to the topology and structure con- likelihood for each of the five training sequences used in
straints above, and a bias was placed on the long diagonathe test. This results in the likelihood term effectively being
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increased in magnitude by a factor of five. Our conjecture, [3] E.T. Jaynes.Papers on Probability, Statistics and Sa-
however, is that the optimal value féiis a function of the

en

tropy of the generating source, which in most practical ap- [

tropy of the generating HMM (or more generally, the en-

plications will not be an HMM). If this conjecture is correct,

then it may well be possible to determine the correct value

tistical Physics. Kluwer Academic Publishers, 1989.

4] Alberto Leon-Garcia. Probability and Random Pro-

cessesfor Electrical Engineering. Addison Wesley, 2nd
edition, May 1994.

of b for a given application, based on the statistics of known [5] S.E. Levinson, L.R. Rabiner, and M.M. Sondhi. An in-

se

is
tio

culation exists. It may be possible to use an ad-hoc func-
tion that is similar to entropy, however it is unclear whether [6]

thi
tie

guences.
The main problem with the algorithm in its current form
the computational intractability of the entropy calcula-
n. Unfortunately, it is unclear whether an efficient cal-

s will be effective. To illustrate some of the difficul-
s, imagine that our ad-hoc “approximation” Hf(\) is

Ha(X) + Hp()\), whereH 4 () is the entropy of the states
given the transition matrix and initial stapenf, and Hz ()

is

Now consider the pathological case in which all of the ob- 8]

se
on

obtained when the transition matrix always transitions (with [9]

the sum of the entropies of the observer mapinf s.

rverpmfs have zero entropy except one, then by varying
ly the transition matrix, the maximum entropy HMM is

probability 1) to the state with the non-zero observaponfi
—thatis, wherH 4 (\) = 0! Nonetheless, there may exist a
function that performs well, for example the “variance” of

an

7

HMM as defined in [9].

Future Work

Some possibilities for the continuation of the work are

the following:

o Attempt to find an efficient calculation fdf (A). Fail-
ing that, prove the hardness of the problem.

e Examine the performance of the system using various

easily calculated ad-hoc alternativesHg\).

e Investigate the relationship between the optimal
value (of Equation 5) and the entropy of the generating
source.
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Abstract

This paper describes our experiments to quantify the inher-
ent information content in images as a means to optimally
present images where display pixels are limited. Such low
image quality applications include visual prostheses, or
“bionic eyes’, where implant electrodes are limited in
number. Results from subjective tests with 225 normally
sighted viewers are compared to predictions made with a
metric for information content.

Keywords
Information content, image presentation, low quality images

INTRODUCTION

Ideally image displays should be of highest spatial resolu-
tion for adequate human perception. However in cases
where size or manufacturing constraints limit the number of
display pixels possible, intelligible perception is still de-
sired from these low quality coarse images. One exampleis
the developing area of visua prostheses, or “bionic eyes’,
where implanted electrodes in contact with nerve cells in
the visual pathway are stimulated by electric pulses. Elec-
trode array sizes of current prototypes include 25x25 [1]
and 10x10 [2] which result in significant information loss.

We are reviewing image processing methods to efficiently
use limited display pixels. Previously we have determined
the impact of several novel image processing techniques on
object recognition [3]. The concept of importance mapping
was found to improve recognition of low quality images.
Importance mapping aims to predict where the human eye
will fixate in an image, ie. what are the salient areas or re-
gions of interest in an image.

In this paper we propose an improved model which maxi-
mizes the information content in the resulting final sali-
ency/importance map. We describe the Importance Map
concept and then introduce the concept of Visual Informa-
tion Content. Our psychophysical experiments to quantify
this term are outlined along with the development of our
metric for information content in images. Results of subjec-
tive visual information are compared to metric predictions.
Finally we show that subjective information content is cor-
related with object recognition and is thus a suitable meas-
ure to use to optimise image presentation.
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IMPORTANCE

Several region-of-interest algorithms which predict where
the human eye fixates on an image are reported in the litera-
ture (eg. [4-7]). When compared against subjective tests
using eye-tracking machines or similar attention-recording
devices, the region-of-interest algorithms correlate highly.
An extension of these algorithms is the concept of assigning
an importance score or weighting to each area in an image
to generate an “importance map” [5,7]. This importance
ranking has previously been applied in visualy lossess
compression, where improved compression ratios have
been achieved with high perceived image quality.

Several image features are known to influence attention in
the human viewer, including motion, location, contrast, size
and shape. Feature maps/images are developed represent-
ing each feature and then combined to form an overal im-
portance map. Several combination strategies have been
attempted, ranging from linear summation of features (all
weighted equally) [4,5] to weights selected in accordance
with eye-tracker data[7]. We propose a new method where
feature map weights are selected iteratively to maximise the
information content in the resulting importance map. Thus
there is a need for defining the concept of information con-
tent.

QUANTIFYING INFORMATION CONTENT

We have conducted experiments to attempt to quantify the
amount of inherent visual information in images. In the
experiments images were compared with each other to ob-
tain aranking from most to least visually informative.

There were 9 image quality classes tested. Original images
were 256x256 pixels representing arange of scenetypes. A
decreasing image quality scale was presented using spatial
resolutions typical of visua prosthesis designs (25x25,
16x16, 10x10) and reducing the grey levels from full grey-
scale to binary. It was aso of interest to expose the struc-
ture of an image by presenting image edges.

A Metric for Information Content

Reduced quality image sets were prepared for each of the
images shown in Figure 1. A visual information metric was
developed from analyzing the subjective scores of subjects
ranking the images.



Figure 1 — Visual Information Metric obtained from 7
images representing a range of scene types.

Participation was on a voluntary basis and comprised 271
Year 11 students and 11 mature age respondents. 57 ques-
tionnaires (21%) were rejected due to invalid data. Thus
the final sample size was 225, representing sample sizes of
25 for each of the 9 image quality classes.

Participants had no prior knowledge of theimages. Booklet
instructions stated that a range of high quality and low qual-
ity images could be expected, and although the low quality
images might just appear as a range of blocks, they may be
similar to what a blind person might see with a bionic eye.
Viewing conditions for the experiment were not controlled.

Two questionnaire-based methods were used:
1) Seven images presented all on one page

The following instruction was presented with the images:

Rank the images shown on each page for visual infor-
mation. Place a number in each box beside theimage.

Rank the images for how much visual information they
contain:

1 = contains most visual information
7 = contains least visual information

2) Paired comparison (binary decision) questionnaire test

Subjects were presented with an image pair and the instruc-
tion:

WHICH IMAGE APPEARS TO CONTAIN MORE
INFORMATION?

Which image could you answer the most questions
about? (eg. What is the scene? How many objects?)

If you had to rely on only one of the images to perform
a task which would it be?

Subj ect response was measured on a 5-point scale:

Box 1 = left image has much more information than right image
Box 2 = left image has slightly more information than right image
Box 3 = images have same amount of visua information

Box 4 = right image has slightly more information than |eft image
Box 5 = right image has much more information than |eft image
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Both methods gave similar results for ranking of subjective
information content. For example, when considering the
ranking for all quality classes (n=225) both methods gave
the following near identical ranking order:

Face > Flower > Tree > Buildings > Lighthouse/Capsicum > Balloon.

Subjective rankings have been used to propose a metric to
quantify visual information that is stable across all image
quality classes (not just the ones used in these tests). 15
image attributes were considered for the visual information
metric:

filesize

standard deviation

maximum standard deviation in 4 image quadrants
variance

maximum variance in 4 image quadrants

entropy

number of edges

number of segments

fractal dimension

© © N O A~ ®WDPRE

10. 11. 12. image interna similarity measures
13. 14. 15. image symmetry measures

Three measures were used for image internal similarity (ex-
act match across x and y axes) and image symmetry (mirror
match across x and y axes):

* exact pixel match - no sub-block analysis (same result
operating on big or small block)

» shaded pixel difference between blocks - 5 level sub-
block analysis (objects might be in a different position
within a block)

e average pixel value - 5 level sub-block analysis

Stepwise regression was used to search for the optimum
subset of variables. The procedure was based on sequen-
tialy introducing variables into the model one at a time and
testing the significance of al variables at each stage. The
most stable performance was found to be from a metric
consisting of the number of image edges alone.

ie. Information Content = f(edges)

This is an interesting result considering Marr’s emphasis of
zero crossing (edge) detection in producing images of the
external world [8]. Thisincludes their rolein the formation
of aprimal sketch to derive shape information from images,
and biological mechanisms for detecting oriented zero-
crossing segmentsin retinal ganglion cells.

This metric is now validated against additional data col-
lected in the experiment.



Validating the Information Content Metric

A number of additional aspectsldimeng’ons were exp| ored Predictive performance of the information content metric is
to provide data to validate the metric and also determine tested against these results. The additional dimensions ex-
what impact (if any) they had on perceived information plored are shown below in Figure 2. Low quality image
content. These issues were assessed by comparing sets of 3 sets were developed for the images and subjects were asked

images against each other. to rank the images for the amount of visual information they
contain.

1. No. of Objects 4. Closeness between Image Objects

x

3 images of increasing object number. 3 images of different couples with decreasing

closeness between the couple.
2. Angle of Object

5. Image Detail
o

3images of afruit bowl at 90, 45 and O degrees.

3 images of the same face with different
3. Distance to Object edge detail (phone and second face).

LN
m R . 6. Contrast between Objects & Surround
N W A
e | § ) i /& ‘
3 images of a couple on a bicycle with decreasing @ ’
distance to the couple's faces. =

3 images of capsicums with varying contrast

7. Variety of Object Types

o Ueo @ )\ @

3 images comparing different object types
(orange, sunglasses, scissors, mug).

Figure 2 — Visual Dimensions used to validate the metric

53



Results

63 visual information rankings were obtained (7 fac-
tors/dimensions x 9 image quality classes). Dominant pat-
terns (ie. the most frequently specified ordering in terms of
perceived information content) were identified for each
case. The strength of the dominant patterns (ie. the fre-
quency with which that pattern was specified by observers)
ranged from 96% (24 of 25 respondents ranking images in
that order) to 28% (only 7 of 25 respondents). The number
of cases for each ten percentile class is given in the first
column of Table 1.

Table 1 — Metric Performance

Strength and Frequency Frequency
number of cases of image of exact
for dominant with highest | ranking
viewer patterns info content | being pre-
(63intota) being pre- dicted by
dicted by metric
metric
- - 0,
STRONG 90-100%: 3 100% 100%
80-89%: 4 75% 75%
70-79%: 1 100% 100%
. 60-69%: 12 67% 25%
Dominant
50-59%: 6 83% 50%
patterns
40-49%: 16 38% 19%
30:39%: 19 32% 21%
20-29%: 2 100% 100%
10-19%: 0 - -
WEAK 0-9%: 0 - -

The performance of the Information Content metric in pre-
dicting subjective dominant viewer patternsis also shown in
Table 1. Out of the 63 test cases examined, three cases had
90% or above consensus from subjects viewing the sample
set. For each of these cases, the metric successfully pre-
dicted not only which of the 3 images had the highest in-
formation content (2™ column above) but also the ranking
order chosen by subjects (3" column above). Metric per-
formance at weaker subject consensus levels are aso
shown.

It was of interest to further examine strong dominant viewer
patterns in the data. Eight of the 63 rankings had 70% or
above consensus among viewers. Five of these related to
the number of objectsin the scene.

Strong viewer preferences are shown in Figure 3.

Number of Objectsin Scene

5 image quality classes: 16x16_Binary (88%),
25x25_Binary (92%), 256x256_Edges (84%),
256x256_Binary (96%), 256x256 (96%b)

Highest —P»  Lowet

S s .,._y*“:\' h 7).

All 5 cases predicted by metric?: Yes
Closeness between image objects

1 image quality class: 25x25greyscal e set (80%)

Case predicted by metric?: Yes

Image Detail
1 image quality class: 16x16greyscale set (80%)
Highest _—> Lowest

Bl

Case predicted by metric?. No

(Metric prediction: phone > 2 faces > single face)
Contrast between Objects & Surround

1 image quality class: 256x256_Edge set (72%)

Highest —»  Lowest

Case predicted by metric?: Yes

Figure 3 — Strong viewer preferences (70% or above
consensus among viewers) showing images ranked
from highest to lowest perceived information content

Four conclusions can be drawn from Figure 3:

1. the more objects in the scene, the higher the visua in-
formation

2. the closer the objects in the scene, the higher the visual
information

3. a simple face with no surrounding clutter was most
visually informative at low resolution levels

4. drong edges, arising from high intensity contrast, cor-
respond with high perceived information content



The visual information metric predicted 7 of the 8 strong
viewer preferences (70% or above consensus level). View-
ers of the 16x16 greyscale Image Detail set ranked asimple
face as containing most visual information, while the metric
ranked the image of the phone and two faces ahead of the
single face. The familiarity and strong recognition of the
human face at low levels of image quality may cause view-
ers to select it over others containing unrecogniseable
blobs.

The metric was found to work best with binary images,
which are expected from at least early prototype designs.
(Limited greyscale may be possible by modulating stimulus
amplitude, frequency and pulse duration [9]). The number
of ranking cases where the metric was able to predict the
image with the highest information content is shown in Ta-
ble 2 below. There are a total of seven ranking cases for
each image quality class, corresponding to each visual di-
mension explored.

Table 2 — The number of correct metric predictions of
images with the highest information content

10x10 Binary set - 4/7 10x10 Greyscale set — 1/7

16x16 Binary set - 6/7 16x16 Greyscale set — 1/7

25x25 Binary set - 4/7 25x25 Greyscale set — 3/7

256x256 Binary set - 6/7 256x256 Greyscale set — 3/7

256x256 Edge set - 6/7

This may be another reason why the metric prediction for
the 10x10 greyscale Image Detail set did not agree with the
ranking chosen by 80% of viewers. Table 2 shows that for
16x16 greyscale images, the metric was successful in pre-
dicting the image with the highest information content in
only 1 out of 7 cases. However for 16x16 binary images,
the metric prediction was correct for 6 out of 7 cases. It
should be remembered that the strength of dominant pat-
terns on which metric performance is assessed range from
96% to 28%. At high levels of viewer consensus, the met-
ric is accurate in predicting images with the highest infor-
mation content, and is thus considered acceptable for this
application.

It is useful to now show that this measure for information
content is an adequate pointer to how well an image might
be recognised.
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CORRELATIONS BETWEEN RECOGNITION RATE
AND PERCEIVED INFORMATION CONTENT

We wished to determine if there was any relationship be-
tween recognition rates and the amount of visual informa-
tion as perceived by viewers.

The experiment also included a component where recogni-
tion ability was assessed. Subjects were presented with
images shown in Figure 1 and the following instruction:

CAN YOU TELL WHAT ISSHOWN IN EACH IMAGE.

Write a word under each image to describe the main object or
content of the scene.

Put a circle around the images that you are confident about.

There were no clues provided as to the context of the image
(ie. an open-ended guess). Relationships between correct
object recognition and subjective information content
scores were obtained for each image quality class (for ex-
ample, Figure 4 shows the relationship for 25x25 binary
Paired Comparison experiments).

Recognition Rate vs Information Content

[N

o
©

o
o
*

I
»

Recognition Rate
PS4

% subjects correctly

identifying object (n=25)
o
N
*

o

50 100

o

150

Subjective Score for Visual Information Content

Figure 4 — Example relationship between recognition
and information content (25x25 Binary Paired Compari-
son data)

We then assessed the significance of these relationships.
Linear regression models for each quality class were devel-
oped for two series of data:

1. whereimages were presented at one time
2. paired comparison data

The significance of the models and correlation coefficients
appearsin Table 3 over.

There was some evidence for correlation between ranked
information content and recognition rates with significance
levels ranging from P=0.05 to P=0.1 for al but the 10x10
greyscale image set. Thus the concept of visual information
content can be considered an adequate measure to optimise
in importance map generation to enhance recognition.



Table 3 — Correlation coefficients between recognition
rate and perceived information content

Images presented at one Paired Comparison
time
Image R Significance R Significance
8“‘”" ity Correla- | Furaptest | Corrdla | Fpzyg) test
as tion tion
Coeff. Coeff.
10x10 Binary 0.76 0.05 0.76 0.05
10x10 G.S 0.54 0.21 0.36 0.43
16x16 Binary 0.69 0.09 0.71 0.07
16x16 G.S 0.70 0.08 0.61 0.15
25x25 Binary 0.90 0.01 0.85 0.01
25x25 G.S 0.75 0.05 0.81 0.03
256x256Edge 0.70 0.08 0.66 0.10
256x256 Bin 0.69 0.09 0.73 0.06

CONCLUSIONS

In thefield of low quality vision, thereis a need for deliver-
ing maximum scene information to a limited number of
display electrodes/pixels. In this paper we have proposed a
method to enhance recognition using importance maps
weighted to maximise the “information content” in the re-
sulting importance map. We have described our experi-
ments to quantify this term. The number of edges in an
image was found to be the best statistic out of a 15-variable
multiple regression analysis, to correlate with subjective
rankings of visual information. The metric was tested on
additional data and found to be appropriate in assessing
information content. Finally we showed that subjective
information content was significantly related to object rec-
ognition. We are applying this now to generating improved
importance maps which will be compared to other predic-
tive algorithms and eye-tracker data.
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Abstract

Recently there has emerged a need to compute mul-
timodal non-rigid registrations in a lot of clinical ap-
plications. To date, the viscous fluid algorithm is per-
haps the most adept method at recovering large local mis-
registrations that exist between two images. However, this
model can only be used on images from the same modal-
ity as it assumes similar intensity values between images.
This paper presents a solution to this problem by propos-
ing a hybrid non-rigid registration using the viscous fluid
algorithm and mutual information (MI). The Ml isincorpo-
rated via the use of a block matching procedure to gener-
ate a sparse defor mation field which drives the viscousfluid
algorithm. This algorithm is compared to two other popu-
lar local registration approaches, namely Gaussian convo-
lution and the thin-plate spline warp. Results show that the
thin-plate spline warp and the MI-Fluid approach produce
comparable results. However, Gaussian convolution is the
superior choice, especially in controlled environments.

1. Introduction

Non-rigid image registration is an essential tool required
for overcoming the inherent local anatomical variationsthat
exist between images acquired from different individuals or
atlases. The majority of these non-rigid algorithms assume
the existence of similar intensities between images, restrict-
ing their use to intra- or mono-modality registrations. Re-
cently, however, there has emerged a need to compute mul-
timodal non-rigid registrations in a lot of clinical applica-
tions. The most prominent application of thisisin the reg-
istration of pre-operative and intra-operative images. This
alows the display of pre-operative anatomical and patho-
logical tissue discrimination in the interventional field [7].

An important concept that arouse in the computer vision

field during the mid 1990’s was an entropy-based measure
known as mutual information (MI). This measure has its
roots in information theory and has demonstrated its power
and robustness for use in multimodality registration in the
rigid domain repeatedly. The strength of this measure lies
in its simplicity as it does not assume the existence of any
particular relationship between image intensities. It only
assumes a statistical dependence.

M1 has been incorporated into a non-rigid registration by
several researchers. The main distinction between the pro-
posed methods lie in the way the M1 is calculated. This
is accomplished either globally or locally [4]. However, to
date M| has never been incorporated with a physical contin-
uum model, (such as the elastic or viscous fluid algorithm).
The viscous fluid algorithm is a popular approach which
is capable of recovering large local mis-registrations. It
also ensuresthat the deformation field is physically smooth.
However, like most other non-rigid registrations, it assumes
similar intensity values between images.

This paper proposesanovel hybrid non-rigid registration
using the viscous fluid algorithm and MI. This new tech-
nique is also compared to two other popular non-rigid reg-
istration approaches, namely Gaussian convolution and the
thin-plate spline warp. All three methods rely on the exe-
cution of a block matching procedure to generate an initial
sparse deformation field. However, the way in which this
sparse deformation field is propagated to the rest of theim-
age depends on the technique utilised.

The outline of the paper is as follows. Some MI pre-
liminaries are outlined in Section 2. Section 3 introduces
non-rigid image registration in general, while Section 4 de-
scribes the techniques examined by this paper. This in-
cludes a general block matching approach, Gaussian con-
volution, thin-plate spline warps, and the new hybrid algo-
rithm incorporating M| and the viscous fluid a gorithm. Re-
sults are presented in Section 5 and conclusions are drawn
in Section 6.
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2. Mutual Information Preliminaries

MI is an information theoretic measure and was pro-
posed for use in image registration by two independent
groups, Viola et a. [10] and Collignon et al. [3], in 1995.
The basic concept behind the use of this measureisto find a
transformation, which when applied to an image, will max-
imise the M| between the two images.

The M| formulation used by the techniques described in
this paper is based on the Kullback-L eibler measure [9] and
isgiven by,

I(X,Y)=> pxy(z,y)log <1%%) @

where the densities are estimated by normalisation of the
2D frequency histograms. MI is a measure of the degree
of dependence of the random variables X and Y. When
formulated using the Kullback-L eibler measure in Equation
1, the M1 measures the distance between the joint distribu-
tion px y (z,y) and the distribution associated with com-
plete independence, i.e. px(z).py (y) [8]. This measure
is bounded below by complete independence and bounded
above by one-to-one mappings.

3. Non-Rigid Image Registration

A rigid registration is composed solely of a rotation
and trandlation and literally preservesthe ‘rigid’ body con-
straint, i.e. abody isrigid and must not undergo any local
variations during the transformation. This type of registra-
tionisdistance preserving and is adequate for many applica-
tionsin medical imaging including multimodality and intra-
patient registration. However, for inter-patient registration
or patient-atlas matching, non-rigid algorithmsare required.
In a non-rigid approach, the ‘rigid’ body constraint is no
longer acceptable as it does not account for the non-linear
morphometric variability between subjects [6], i.e. there
exists inherent anatomical variations between different in-
dividuals resulting in brain structures that vary in both size
and shape. These non-rigid algorithms allow one image to
deform to match another image, thus overcoming any local
variations.

A non-rigid registration defines a deformation field that
gives atranslation or mapping for every pixel in the image.
Thisis generally described by the following relationship.

IfoT(x) = Iy(x —u(x)) = I @)

In the above expression, ¢ isreferred to as the floating im-
agethat is undergoing the deformation while I,. isthe refer-
enceimage. T' denotes the non-rigid transformation which
equates to a tranglation of every pixel x in the floating im-
age by a certain displacement defined by the displacement
field u(x).

4. Description of Techniques

There are many ways of estimating the required dis-
placement field u(x) in Equation 2. This includes de-
formable models, optical flow, elastic and viscous fluid
models, spline warps, truncated basis function expansion
methods, and aso loca registration approaches [4]. The
type of method employed will also determine what con-
straints are imposed on the deformation field. Generally
speaking, the constraints are used to ensure the existence of
a smooth and continuous deformation field.

The techniques that will be described here however, are
al based on a loca registration approach referred to as
block matching. Thismethod is quite popular asit easily al-
lows the incorporation of the M| measure into the non-rigid
registration. This approach is described below, along with
the three techniques which are used to propagate the sparse
deformation field to the entire image. They are Gaussian
convolution, the thin-plate spline warp, and a new hybrid
algorithmincorporating M| and the viscous fluid algorithm.

4.1. Block Matching

Non-rigid registration can be made possible through lo-
cal registration approaches and several methods exist to
accomplish this. One common method, known as block
matching, iswhereagrid of control pointsare defined on an
image which are each taken as the centre of asmall window.
These windows, which usually overlap their neighbours, are
then translated to maximise alocal similarity criterion. Ml
is used as the similarity measure in order to obtain a robust
multimodality non-rigid registration.

The location of the maximum can then be found through
an exhaustive search or with the use of local optimisation
strategies. The location of the maximum then represents
the existence of a corresponding window in the second im-
age, the centre of which being the homologue point of the
corresponding grid point defined in the first image. Thus,
this block matching approach can be used to generate two
corresponding sets of control points (or landmark points)
between two images. This information can then be used
to generate a sparse deformation field with the trandations
known at each of these grid points. An example of a sparse
field generated using block matching procedures is shown
in Figure 1.

4.2. Gaussian Convolution

As described above, the execution of a block matching
procedure results in the generation of two corresponding
sets of control points. By using these control points with
known deformationsin a non-rigid registration, constraints
are being imposed on the space of possible deformations.
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Figure 1. Sparse deformation field calculated
using a block matching procedure.

This has been described as a static constraint problem [5],
or an interpolation issue as the problem then becomes one
of how to interpolate the deformations at these known lo-
cationsto the rest of the image. Several techniques exist to
accomplish this.

One of the simplest approachesisto convolvethis sparse
deformation field with a 2D Gaussian kernel (Gaussian
smoothing), to propagate the deformationsto the rest of the
image. It has been described in[6] that Gaussian smoothing
is equivalent to solving a heat or diffusion equation. Thus,
thisapproach equatesto an oversimplified version of aphys-
ical model-based algorithm (such as the elastic or viscous-
fluid model). Asmodel-based techniquesare solvedin anit-
erative process, the two choices essentially become whether
to perform Gaussian smoothing on either the final or in-
cremental deformation field. The first choice equates to
an oversmplified elastic transformation while the second
choice equates to an oversimplified viscous fluid transfor-
mation [6].

4.3. Thin-Plate Spline Warp

Another popular approach very suited to the propaga-
tion of a sparse deformation field is the thin-plate spline
warp. In this method, an image is represented as a thin
metal plate which undergoes certain deformations at se-
lected points, defined by the sparse deformation field. The
thin-plate spline has an elegant algebra that expresses the
dependenceof the physical bending energy of the thin metal
plate to these point constraints[1].

For 2D image registration, two 2D thin-plate spline
warps are used to describe an interpolation map from R? to
R? relating two sets of landmark points, (one for the defor-
mation in the = and y-directions respectively). The funda-
mental basis function used by the thin-plate spline is given
by the following expression,

2(z,y) = —U = —r’logr? 3

where r isthe distance /(22 + y?) from the Cartesian ori-

gin. Thefunction U (r) also satisfies thefollowing equation.

2 2\ 2
52U = (% + aa_yz> U oo 4)
Thus, U is afundamental solution of the biharmonic equa-
tion A2U = 0, the equation for the shape of a thin metal
plate verticaly displaced as a function z(x,y) above the
(z,y)-plane. Notethat thisbasisfunction isthe natural gen-
eralisation to two dimensions of the function |=|* which de-
scribes the common 1D cubic spline[1].

A thin metal plate which is subjected to vertical displace-
ments at selected pointswith any arbitrary spacingwill min-
imise the 2D bending energy of the metal plate. Thisis
equivalent to minimising the following expression.

9?z\° 92z \’ 922\’
/1. ((@) 2 (ay) +(5) )dxdy
®)

The minimisation of this energy represents a smoothness
criterion which imposes constraints on the deformation
field, ensuring that the deformation in between the known
landmark points varies smoothly. Note that this processis
repeated twice - for the deformation in the = and y direc-
tions respectively.

4.4. A New Hybrid M1-Based Fluid Algorithm

To date, the viscous fluid registration algorithm is per-
haps the most adept method at recovering large local mis-
registrations that exist between two images. Thisis due to
the internal restoring forces which relax as the image de-
forms over time. This method ensures that the deformation
field is physically smooth. However, like the elastic model,
the viscous fluid model can only be used on images from
the same modality asit assumes similar intensity values be-
tween images.

In the viscous fluid model, the instantaneous velocity
field v(x,t) is linked to externa forces by the Navier-
Stokes viscous fluid partial differential equation which is
shown below [2],
aViv(x,t) + (a4 B)V(VT - v(x,t)) + b(x,u(x,t)) =0

(6)

where v(x, t) is the instantaneous vel ocity of the displace-
ment field u(x, t) at time t. Theterm b(x, u(x,t)) repre-
sents the applied forces and the parameters e and 3 are the
viscous fluid coefficients. This equation is solved at each
time step and the driving forces are derived from image dif-
ferences and intensity gradients.

The main motivation behind the creation of a hybrid al-
gorithm was to incorporate the strengths of both the viscous
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fluid algorithm and an information theoretic measure such
asMI. Thiswould allow the execution of afluid registration
on multimodal images. In the original viscous fluid algo-
rithm described above, the driving forces are formulated in
the most possible local manner, i.e. the force acting at a
particular voxel is derived from the intensity difference and
gradients of apoint, not aregion. However, in the approach
of the hybrid algorithm, these driving forces are replaced
with those derived from the M1 block matching scheme.
As mentioned in Section 4.1, the block matching is used
to produce two sets of corresponding point sets with known
deformations at each point. MI is the similarity criterion
used in order to allow for amultimodal registration. The M|
is also formulated using the frequency histogram approach
and Equation 1.

The forces derived from the sparse deformation field are
then fed into the viscous fluid algorithm which are used as
the driving potentials instead of the original image differ-
ences and gradients. The significant difference however,
lies in the manner in which the forces were calculated. In-
stead of utilising the intensity difference and gradients of a
point, the block matching approach estimates the displace-
ment field and hence the driving forces of a point by in-
corporating information that is contained in a small region
around the point.

5. Results

The three local registration approaches were tested on
a pair of simulated multimodal images with known defor-
mations. The simulated multimodal images were gener-
ated from a single MR image and a deformed version of it-
self. Theintensities of the reference image were also trans-
formed using I* = sin(/ x 5Z=) to smulate images from
different imaging modalities. These images are shown in
Figure 2, along with arescaled difference image. This dif-
ferenceimage however, was computed without the intensity
transformation in order to display more meaningful results.
Thisis aso the case for other difference images displayed
later.

Theresults of theregistration are shownin Figure 3. The
letters (a), (b), and (c) are used to represent results com-
puted with Gaussian convolution, the thin-plate splinewarp,
and the MI-Fluid algorithm respectively. The numbers (1),
(2), and (3) are used to represent the final image after reg-
istration, the rescaled difference image, and a histogram of
the intensity differences respectively. Quantitative results
areshownin Table 1. Thisincludesthe SSD (sum of square
differences) and SAD (sum of absolute differences) mea-
sures, and the mean i and standard deviation o of the error.
These results are a so shown for the two images before reg-
istration described by the term ‘pre-reg’.

From the rescaled difference images shown in Figure

3, it appears that all three agorithms have reduced lo-
cal anatomical differences quite considerably when com-
pared to the differences before registration. However, these
rescaled difference images can be a little misleading as the
intensities representing the differences are scaled to fit into
the range {0 — 255}, no matter how large the actual differ-
ence. Thus, the histogram of intensity differencesis aso
presented as another helpful avenue for evaluating the re-
sults.

| Method | SSO | SAD | Erorpu [ Erroro |
Pre-Reg 1.21 x 107 [ 2.19 x 10° | 0.389 [ 185.21
GaussConv | 4.16 x 10* | 1.17 x 10* | —0.003 | 0.64
TPS 2.52 x 10° | 9.43 x 107 | 0.099 38.48
MI-Fluid 2.82 x 10° | 6.49 x 107 | 0.109 42.98

Table 1. Quantitative error measures of regis-
tration results.

From the histograms, it can be seen that all methods
have errors concentrated around the origin. However, Gaus-
sian convolution has a much lesser spread of its errors than
the other two approaches. This is also illustrated in Ta
ble 1. The Gaussian convolution method also has signifi-
cantly lower SSD and SAD scores, as well as a mean error
closer to the origin, and a much smaller error standard devi-
ation. The MI-Fluid algorithm has alarger SSD score than
the thin-plate spline warp, yet it has a smaller SAD score.
This suggests that overall, the MI-Fluid approach produces
less errors than the thin-plate spline warp. However, MI-
Fluid has more errorsin the outer regions which carry more
weighting in the SSD measure, resulting in a higher SSD
score than the thin-plate spline warp. Other results between
these two methods are comparable.

6. Conclusion

This paper has proposed a hybrid non-rigid registration
algorithm using M1 and the viscous fluid algorithm. The M1
isincorporated viathe use of ablock matching procedureto
generate a sparse deformation field which drives the vis-
cous fluid algorithm. Results show that the hybrid approach
issuccessful in recoveringlocal deformations between mul-
timodal images. However, it is susceptible to interpolation
artifacts which prevent the estimation of sub-pixel transla-
tions. Thus, the estimated deformation field will not vary
smoothly, instead it will vary with integer valued steps.

This algorithm was also compared to two other popular
local registration approaches, namely Gaussian convolution
and the thin-plate spline warp. Results showed that the thin-
plate spline warp and the MI-Fluid approach produced com-
parable results. However overall, simple Gaussian convolu-
tion was significantly superior. The main drawback of using
Gaussian convolution is that appropriately sized variances
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Figure 2. Manually deformed simulated multimodal images. (a) Reference image with intensity trans-
formation I* = sin(I x 5Z), (b) Deformed floating Image, (c) Rescaled difference image.

255

and window dimensions must be selected for the Gaussian
smoothing functions. The size of the variance will deter-
mine the extent of the deformation and its region of influ-
ence. In controlled environments, these variances can be
manually selected for good results, as was the case in this
paper. However, for situations where the amount of defor-
mation involved and the spacing of control points in the
block matching are unknown, then variance selection can
have a much greater impact on final results.

From theresultsit is concluded that the thin-plate spline
and hybrid MI-Fluid approach would be appropriate for
multimodal applications that reguire a coarse-to-medium
registration. However, these two methods do not rely so
heavily on parameter selection. This suggeststhat thesetwo
methods may be the optimal choice in unknown situations.
Overall though, if conditionsare known, then Gaussian con-
volution is the better selection as it can be tailored to a sit-
uation, is simpler and also computationally faster than both
the thin-plate spline and the MI-Fluid approaches.
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Figure 3. Registration results. Letters (a), (b), and (c) represent results computed with Gaussian
convolution, thin-plate spline warp, and MI-Fluid algorithm respectively. Numbers (1), (2), and (3)
represent the final image after registration, the rescaled difference image, and a histogram of the
intensity differences.
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Abstract

This paper presents an edge-based ball detection system
for use in RoboCup robots. The algorithm can be economi-
cally coded for real-time operation in integer maths digital
signal processing units. It allows colour dependencies in
existing ball detection algorithms to be relaxed. This work
is undertaken as part of the world-wide RoboCup project
which aims to stimulate robot development by investigat-
ing difficult test problems.

1 Introduction

The international RoboCup competitions stimulate
development in mobile robots that function collec-
tively and incorporate a team approach to problem
solving. While the RoboCup challenge is only part
way towards its stated 2050 goal of achieving au-
tonomous humanoid robots that can defeat humans
in soccer, the existing systems are relatively complex
and display team cooperation. A hierarchical view of
the RMIT University robot system shows a top-level
strategy module which coordinates the operation of
robot team members using sensory inputs such as vi-
sion and touch, and implements strategies via actua-
tor outputs including motor control, steering, and ball
kicking systems.

This paper presents research done at RMIT Univer-
sity to enhance the vision system of its middle league
(F2000) robots. In particular, the strict colour depen-
dency of previous ball detection systems has been re-
laxed by developing an adaptive arc identification and
location system that processes image data containing
edge information. Analysis of arc parameters such as
radius, location, and recent trajectory is then used in
revised ball identification schemes.

Examples are presented for a number of edge ex-
traction techniques applied to colour image field data,
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and the adaptive arc detection scheme is shown ap-
plied to a ball in full view and also a ball obscured by
a (worst case) curved object.

This paper provides a brief description of the exist-
ing image processing system in order to set the context
for the arc-based scheme. Some preprocessing algo-
rithms used to generate edges are described, includ-
ing schemes with simplified computation to assist in
real-time application, and finally the edge tracking al-
gorithm is presented with field images.

2 Visual Environment

In current competitions, the robot environment is
tightly controlled so that robots can interact with
a world that can be understood with very limited
knowledge. The field lighting levels are specified so
that robots do not need to handle significant dynamic
lighting effects. In addition, the ball and each goal
region may be uniquely coloured to simplify robot
orientation and target acquisition. The dependency
of current robots on the use of colour in identifying
objects is highlighted by the need, in some tourna-
ments, to remove coloured items from spectators be-
cause they can confuse the vision systems.

Following the Melbourne 2000 event, a RoboCup
rules debate suggested the possibility of increasing the
complexity of the environment in which the robots
must compete, through such changes as removal of
field walls and unique colour schemes. This debate
has lead to the current work which attempts to in-
corporate additional shape information into ball iden-
tification while reducing the relative importance of
colour.

2.1 Overview of Existing System

The existing vision system [UVD,SBK] uses a Pul-
nix 1/3” CCD colour analogue camera attached to



a custom interface board that connects a Brooktree
video capture device to a Texas Instruments DSP
(TMS320C6211).

Figure 1 shows the

Redio LAN information flows in the
I three processing stages.
The first stage accepts
a video signal from
Aims and the camera, digitises it,
and reduces the video
Strategy resolution by coding
Modd of the digital data to 16
bits/pixel to allow more
World efficient pixel data pack-
ing in DSP memory. In
Object Table the second stage, the
enhanced direct memory
dsp Image access (EDMA) con-
. troller provided by the
Andysis DSP is programmed to
be a state machine which
Packed Data  retrieves image frames
from the video capture
Custom device at a rate of 25
. frames/second and an
i/face brd image size of 450x450
pixels with little CPU

Video Si gnal intervention.

The DSP analyses the
image data and creates
an object table with
attributes of type (line,
solid, etc.), colour, and

Video Camera

Figure 1. System

Information Flows image coordinates to
describe each element.
Field information is

based on straight line edges detected by a modified
Hough transform using integer maths. Information
relating to other robots and the ball is derived from
colour information.

The ball detection system analyses image scans and
detects colour transitions. Regions that match the
colour of the ball are then analysed and an estimate
of center and diameter are generated. If these param-
eters are within suitable limits, a ball detection occurs.

To reduce computation, the estimated diameter is
obtained from the widest horizontal scan segment
with the desired ball colour. If a closer object obscures
either side of a ball, then the estimate of center and
diameter will be incorrect. Ideally, both the largest
vertical and largest horizontal dimension should be
used to derive diameter estimates. However, the use
of overhead lighting systems in competition venues
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may cause shadows which make the detection of the
bottom edge of the ball unreliable.

The final stage is implemented by interfacing the
DSP output to a robot-mounted laptop which pro-
cesses aims and strategies, and estimates range in-
formation based on the vertical position of an object
within an image. The laptop also handles the other
sensor inputs such as proximity detectors, and out-
puts such as motor controller commands.

2.2 Deployment of Image Analysis Algorithms

The system was developed by incorporating a
shape-based ball identification algorithm into the ex-
isting colour-based ball detection scheme. The new al-
gorithm initially provides an additional test of results
from the previous ball detection system.

3 Edge-based Arc Detection

Arc detection is used to determine the ball center
and diameter as a full circle is not available when
the ball is partially obscured. Because there are po-
tentially many other arc sources in a field, additional
information such as dimensional constraints, relation-
ship to previous ball sightings, and colour is used to
filter out spurious responses.

To detect arcs, edges in the image are enhanced
and a contiguous set of straight line segments is con-
structed between adjacent pixels that may form an
edge. By interpreting the straight line segments as
chords of an arc, perpendicular projections from each
chord are used to identify the centers of these poten-
tial arcs. A cluster of centers will then confirm and
identify an arc.

3.1 Edge Detection

The edge information is obtained by applying a
spatial differentiation operator to the image — see for
example [SBA] . For colour independence, this oper-
ator can be fed a preprocessed image such as image
energy i.e. an Ly norm is applied to the raw image, or
the absolute value of the pixel i.e. an L; norm is ap-
plied to the raw image. An advantage of preprocess-
ing with an L; operator before applying the spatial
differentiation operator is a reduction of computation.
The application of these operators is now detailed.

Figure 2 shows an ideal ball image sampled hor-
izontally, an image energy curve, its first derivative,
and its second derivative.

Any rapid changes in image energy I across a small
region give rise to higher peak values in the differen-
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tiated image. An approximation to a one-dimensional
differential operator at position z = iA is ¥ ~
W, where A is the spatial sample interval in
the x direction. Extending this to two dimensions

gives
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E(I(e+1,)+I(i—1,5)+1I(i,5+1)
+I(i,j — 1) —4I(i, 7)) ; k = constant.

Applying this operator to the typical field view
of a robot soccer field as shown in Figure 3(a) gives
the result shown in Figure 3(b). Previous research in
[ERD,UVD] shows that binarisation of RGB compo-
nents of the image, in an image preprocessing stage
prior to differentiation, leads to an enhanced edge dis-
play as shown in Figure 4(a). This provides the added
benefit of data reduction.

A further improvement in edge definition may be
possible for a typical field view if the preprocessing
includes: a band-pass filter centered on the target
colour; and a norm operator to generate monochrome
image data where the maximum output corresponds
to the target object’s colour. Preprocessing is then
completed with binarisation and differentiation to
yield the image in Figure 4(b). In effect, this recog-
nises that typical field objects have a colour that is
clearly different to the target. Note that if the target
has a colour that matches one of the dimensions used
to represent colour, e.g. red, green or blue in an RGB
format, then further computation reductions present
themselves.

3.2 Radius Projection
Given a region of interest, our algorithm chooses as

a reference a pixel in the edge enhanced image with
significant energy' i.e. point p0 in Figure 5. Then,

In off-line testing, the initial pixel may be chosen as the largest
value in the edge enhanced image for comparison purposes.
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a nearby pixel pl with significant energy is located
such that the two points form a chord of length > [.
A perpendicular projection through the mid-point of
chord p0-p1 indicates potential locations for the cen-
ter of the arc p0O-pl. This process is then repeated for
a sequence of pixels pairs located on the potential arc,
and the intersections between the sequential projec-
tions leads to a cluster of potential center points. This
example shows two chords p0-p1 and p1-p2 with pro-
jections intersecting at a potential arc center.

The minimum length constraint [ is imposed on
each chord because the location of each point is spa-
tially discretised based on the pixels in the sampled
image, and so very small length chords would intro-
duce excessive error in the calculation of centers.

When this algorithm is applied to an unobscured
ball image, the result shown in Figure 6(a) is obtained.
In this example, the algorithm has been run a num-
ber of times with slightly different starting points, so
that a larger number of projections have been pro-
duced. The clustering of intersections between suc-
cessive projections gives the location of the center of
the arc (or in this case, circle).

Note that, while we have highlighted the projec-
tions in this image, the actual system is only con-
cerned with the intersection point of pairs of equa-
tions that are illustrated by the projections from pairs
of adjacent chords.

An advantage of this algorithm is that it can func-
tion on obscured balls. In Figure 6(b), a number of
irregular objects are covering parts of the right hand
side of the ball which is also slightly distorted verti-
cally. A number of potential centers are identified, in
rough proportion to the size of the corresponding arc.
In this example, an arc associated with the ball is a
dominant image feature so the ball center is correctly
found. If the ball is mostly obscured, then the result
is unpredictable without additional information. The
algorithm is now described in detail.

3.3 Arc Location Algorithm

As mentioned previously, the points located on the
potential arc or circle have a minimum spacing of !
enforced. The algorithm starts from the initial point
identified for the largest edge image pixel, and then
generates a sequence of points along the potential arc
or circle.

1. Obtain edge image via application of two-
dimensional differentiation operator or similar
transform,;

2. Find the magnitude of the maximum pixel €4,



(a) Typical RoboCup Field (b) Differentiated Image (smaller
after processing)

Figure 3. Field Views

(a) Binarised & differentiated (b) 1-colour, binarised & differentiated

Figure 4. Field Views with Preprocessing
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(a) Test Circle Detection

(b) Obscured Circle

Figure 6. Projections for Center Location

in edge image, and choose a such that threshold
e; = aemae can be used as a lower bound to iden-
tify significant peak values e > e;. In our work,
we typically use o = 0.9;

. Designate the first point py = {x¢,yo} where
e(pO) = €maxs

. Find the next point, p1 = {z1,y1}, where e(p1) >
er and |[p1 — pol|? > 12, by conducting a localised
horizontal and then vertical scan for a pixel with
significant energy in the next search region found
by extending the current chord (illustrated in the
274 stage of Figure 5). Note that calculation of a
square root to ensure adequate spacing of points
p; is avoided by testing distance squared;

. Identify the chord mid-point ¢o = {(z1 +
20)/2, (y1 + yo)/2}. The perpendicular projection
from point gy to r¢ is defined in terms of a vector

dot producti.e. rg — qo.p1 — po = 0;

. Repeat the previous two steps to generate the

point sequences {po,p1,p2,---}, {qo,q1,92;---},
and a set of equations for {rg, r1,72,...};

. Choose to solve for intersection equations for
{ri,rit1} i.e. sequential projections, to generate
potential center locations c¢;. Solving for intersec-
tion of adjacent projections also minimises stor-
age of point data;

. Finally, an average of the coordinates of potential
center locations c; gives an estimate of the arc (or
ball) center. For more complex field views, the
image may be segmented and the average ¢; in a
segment suggests a localised arc center.
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The potential center locations c; can be interpreted as
a vote for a potential arc center and therefore a vote
for the presence of a ball. An additional filtering stage
under development is to reject ¢; values that are lo-
cated more than a specified distance from a potential
center, in order to obtain a more tightly bound clus-
ter that is not influenced by outliers. For the current
robots, an ad-hoc filtering stage rejects a potential cen-
ter that fails to have 60% of its center estimates within
+20 pixels of the horizontal center or 60% of its cen-
ter estimates within 430 pixels of the vertical center.
However, this scheme needs to be recast in relation to
the object size.

Where ambiguous results are obtained, additional
information must be used to clarify the location of a
single ball. For the RMIT University systems, this arc
detection algorithm is being used to enhance reliabil-
ity of other ball location schemes.

3.4 Algorithm Tuning

The size of [ can be found by testing the algorithm
on the top and bottom arcs of a test ball, and then on
the far left and far right arcs of a test ball. The smaller
[ is, the better tracking is obtained for the edge. How-
ever, projection errors due to the spatial discretisation
due to horizontal and vertical (scan) image sampling
become significant if / is made too small. For the range
of ball sizes encountered when viewing a ball at a
range of distances, [ is chosen so that the chord sub-
tending each arc is approximately 10 or more pixels
long.

The threshold selection parameter « is chosen so
that a suitable number of preprocessed edge peaks are



generated — if « is too small, the edge tracker can be
confused by noise while if « is too high, any arcs may
be undersampled. It is possible to add a feedback loop
that adapts o up or down in order to achieve a rea-
sonable number of peaks. However, the effect of «
is not unduly sensitive in typical field lighting condi-
tions due to the use of preprocessing stages (binarisa-
tion and differentiation).

4 Conclusion

We have presented an edge tracking algorithm and
arc location scheme that has been successfully ap-
plied to RoboCup field images. A number of image
data preprocessing strategies have been discussed,
with features such as data reduction and colour-
centered edge enhancement. The edge tracking al-
gorithm provides a means of locating arcs and cir-
cles to identify the soccer ball. In the implementation
on the TMS320C6211 DSP, the actual chord and as-
sociated perpendicular projection equations were im-
plemented with minimal transcendental function calls
because this DSP does not have a floating point unit.

The availability of alternative ball detection algo-
rithms allows comparison testing and also focusses at-
tention on benchmarking. Previous RMIT RoboCup
systems have concentrated on getting a single algo-
rithm working for each critical stage so comparison
testing was not possible. In the current robot archi-
tecture, target tracking is performed at higher levels
so comparisons will apply to the processing of indi-
vidual image frames with the assumption that a re-
cently acquired target allows analysis to be restricted
to smaller parts of an image over a short time interval.

As the whole system must operate in real-time, it
is desirable that partial results obtained in the sam-
ple time be of use — the algorithm proposed here can
identify a ball before all of the visible circumference
has been traversed if a suitable number of potential
centers has been found i.e. an early result is possible
without identifying all chords or processing all signif-
icant edge pixels.

We acknowledge the RMIT University RoboCup
teams of 1999 and 2000, and specifically thank Mark
Makies, Duy Khuong Do, Sy Quang Dinh, Karl Fan-
tone, Alan Harvey, and Shereene Jesurajah. We thank
Colin Lemmon (JCU) and the anonymous reviewers
for improving this paper.
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Abstract

This paper presents an object tracking technique based
on the Bayesian Multiple Hypothesis Tracking (MHT)
approach. Two algorithms, both based on the MHT
technique are combined to generate an object tracker.
The fire MHT algorithm is employed for contour
segmentation (based on an edge map). The second MHT
algorithm is used in the temporal tracking of a selected
object from the initial frame. An object is represented by
key feature points that are extracted from it. The key
points (mostly corner points) are detected using
information obtained from the edge map. These key
points are then tracked through the sequence. To confirm
the correctness of the tracked key points, the location of
the key points on the trajectory are verified against the
segmented object identified in each frame. The results
show that the tracker proposed can successfully track
simple identifiable objects through an image sequence.

Key words: Objed traking, Key points, Multiple
Hypothesis Tradking, Contour segmentation, Edge

grouping.

1 Introduction

The primary purpose of this paper is to trak a seleded
objed (as oppcsed to a singe point feaure) from the
initial frame through the image sequence. The processis
an attempt to extend the point feature tradking introduced
in[13, 14] to ohjed tracking. In this case, key points from
the objed are seleded using a airvature scade space
technique [11] to represent that objed. The key points are
temporaly tradked and are validated against the objed
contour (obtained by grouping edge segments) in ead
frame. The tracking technique involves applyingthe MHT
agorithm in two stages. The first stage is for contour
grouping (objed identification based on segmented
edges) and the second stage is for temporal tradking of
key fedures (from the objed of interest). For the wntour
grouping process we amployed the dgorithm developed
by Cox et a [6], and for the key point tradking procedure
we used the tracker introduced by the authors in [13].
Both agorithms combine to provide an objed tradcer.
The set of image contours produced by objeds in a
scene, encode important information about their shape,
position, and orientation. Image ntours arise from
discontinuities in the underlying intensity pattern, due to
the interadion of surface geometry and illumination. A
large body of work, from such areas as model-based
objed recognition and contour motion flow, depend
criticdly on the reliable extradion of image @ntours.
Reliable image @ntours are necessary to identify an
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objed with certainty, which in turn is necessary for
tracking the objed over a period d time in a sequence of
images. We use the term ‘objed’ for a group of edge
segments that form a recognisable objed (identified as
belonging to the same objed). The objed will be
identified by an enclosed (or nea-enclosed) contour.

This paper is organised as follows: Sedion 2 gives a
brief description of the Multiple Hypothesis Trading
(MHT) approadc relating to edge segmentation. Sedion 3
shows how the multiple hypothesis approach can be used
for objed recognition. In sedion 4 we briefly show the
process to extrad key points from an objed, and the
MHT approach for tradking key point feaures throughan
image sequence Sedion 5 provides the objed-tracking
framework employed using methods described in sedion
3 and 4 Sedion 6 gives results obtained from
experiments. Sedion 7 gives a general discusson, and
finally sedion 8 provides the @nclusion.

2 Multiple Hypothesis Framework for Contour
Grouping

This wdion briefly describes the multiple hypothesis
approach in relation to contour segmentation. The detail s
of which are discussed in [6-8].

Fig. 1 outlines the basic operation of the MHT
algorithm for contour grouping. At ead iteration, there
are a set of hypotheses (initialy nul), ead one
representing a different interpretation of the elge points.
Eadch hypothesis is a olledion of contours, and at eadh
iteration ead contour predicts the location of the next
edgel as the dgorithm follows the ntour in unt
increments of arc length. An adaptive seach region is
creaed about ead of these predicted locaions as $rown
in Figure 2 [6]. Meaurements are extraded from these
surveill ance regions and matched to predictions based on
the datisticd Mahalanobis distance This matching
process reveds ambiguities in the asgnment of
measurements to contours. This procedure provides an
asociated ambiguity matrix (Q) for ead doba
hypothesis from which it is necessary to generate aset of
legal assgnments. As a result, the hypothesis tree grow
another level in depth, a parent hypothesis generating a
series of hypotheses eat being a posdble interpretation
of the measurements. The probability of eah new
hypothesis is cdculated based on assumptions described
in [6, 8]. Finally, a pruning stage is invoked to constrain
the exponentially growing hypothesis tree This completes
oneiteration of the dgorithm.

In the following sedions we briefly describe the
contour-grouping algorithm employed, and the key point
seledion and trading process used. Both these methods
are based on the multi ple hypothesis approach.
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Figure 1. Outline of the multiple hypothesis algorithm for
edge grouping
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Figure 2: Predicted contour locations, a surveillance
region and statistical Mahalanobis (elliptical) regions for
a situation with two known contours (t1 and t2) and three
new measurements (z1, 22 and z3).

3 Object Recognition

3.1 Contour Segmentation

The ntour grouping problem examined in this paper,
involves assgning edge pixels produced by an edge
detector [4, 5] to a set of continuous curves. Associating
edge points with contours is difficult becaise the input
data (from edge detectors) is noisy; thereis uncertainty in
the position of the elge, there may be false ad / or
missng points, and contours may intersed and interfere
with one another. There ae four basic requirements for a
successul contour segmentation agorithm. First, there
must be amecdhanism for integrating information in the
neighbourhood d an edgel to avoid making irrevocable
grouping dedsions based on insufficient data. Seacond,
there must be aprior model for the smoacthness of the
curve to base grouping dedsions on. This model must
have a intuitive parameterisation and sufficient
generality to describe abitrary curves of interest. Third, it
must incorporate noise models for the elge detedor, to
optimally incorporate noisy measurements, and deted and
remove spurious edges. And finally, since interseding
curves are ammon, the dgorithm must be ale to handle
these @ well. The dgorithm due to Cox et.al. [6-8] isone
which has a unified framework that incorporates these
four requirements, and we will use this algorithm for
contour segmentation.

The ntour grouping is formulated as a Bayesian
multi ple hypothesis ‘tracking problem (as in [12]). The
algorithm has 3 main components. A dynamic contour
model that encodes the smoaothness prior, a measurement
model  that  incorporates  edge-detedor  noise
charaderistics, and a Bayesian hypothesis tree that
encodes the likelihood d ead possble edge assgnment
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and permits multiple hypothesis to develop in paralel
until  sufficient information is avallable to make a
dedsion.

A key step in asdgning probabiliti es to segmentation
hypothesis is the computation of the likelihood that a
given measurement originated from a cetain contour.
This likelihood computation depends on two things. a
dynamic model that describes the evolution of the airve
in the image, and a measurement model that describes
how curves produce algels. In this formulation, the airve

date vedor is [X X Y y]T(where (x, y) ae the

position in a Cartesian coordinate) and its dynamics are
described by a linear noise-driven acceleration model
common in the tracking literature [1, 2]. The
autocorrelation of the white Gaussian acceleration noise
can be varied to model curves of arbitrary smoothness.
Thus the tip (end point) of the contour as a function of arc

length, u, is (X(u),y(u)) and has tangent
(X(u), y(u)) . Since many edge detectors provide
gradient information, it is assumed that the entire state
vector is available for measurement (a good edge detector
such as Canny [5], Boie-Cox agorithm [4] etc. which
provide both position and coarse gradient information
(horizontal, vertical, and two diagonals) is employable for
this application). A Kaman filter is then employed to
estimate curve state and predict the location of edgels.
These predictions are combined with actual measurements
to produce likelihoods.

IS
al w\n| o «
X
=
al w| o] o a
IS

/

Figure 3: A contour, its survellanceregion (labelled 1—
5) andits validation region.

Once the location of a given curve has been predicted by
the Kalman filter and discretized to image coordinates, a
surveillance region is employed to extract measurements.
A surveillance region is an adaptive variable sized
window that travels with the tip of the contour and is used
to extract measurements from the edge map. Every
iteration, each contour searches for edge pointsin a series
of circles of increasing diameter centred at the predicted
contour endpoint. The search halts as soon as at least one
measurement is found, or the maximum search radius is
reached. The size of the surveillance region determines
the distance the curve must travel in that time period, and
is reflected in the step size for the curve. The use of a set
of windows of increasing size ensures that no more than
one measurement from the given contour will be found in
asingle time period.

The search for measurements takes place after the
prediction phase of the state estimator generates an
extrapolated endpoint location, (x, y), for the contour.
This location determines the discrete image coordinates,
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(xi, y;), at which the surveillance region is centred. If there
is no edge at the predicted location, concentric circles

(see Fig. 3), of radius 1,,/2,2,+/5, are searched for

edgels (the radii define discrete pixel neighbourhoods).
These surveillance regions are labelled 1 to 5in Fig. 3 (It
should be noted that the surveillance region of a contour
is not equivalent to its validation region, which is defined
by the Mahalanobis distance and is depicted in Fig. 3 as
an édlipse). It is these measurements that form
segmentation  hypothesis whose probabilities are
computed. See [6] for details.

3.2 Contour Merging

The grouped contours resulting from the above mentioned
process ill might have breaks and gaps between
segments of the same object. A further refinement process
can be employed to merge segments to form identifiable
objects. A merging technique is employed by using a
distance test (eg: Mahalanobis distance) applied to the
end points of contours (assuming a non-closed contour).
In this case the multiple contours can be merged to
recover the correct segmentation, compensating for the
incorrect initial conditions. Two contours with state

estimates X; and X; at common boundary are merged if
axi T dXij <0, where dXij =X - X]-. T.

j Is the

covariance, and O is obtained from )(2 tables or set

appropriately as a threshold. This test is applied after the
agorithm produces an initiadl segmentation. The
procedure resolves many ambiguities left by the contour
segmentation algorithm. A simpler algorithm can also be
used simply by using the end-point positions and
derivatives of the end-point positions of each curve
(produced by the edge detector) which can be quicker.

4 Temporal Tracking of Key Feature Points

In this section we discuss the process to extract key points
from the object of interest and we aso discuss the
procedure to track them temporally.

4.1 Extracting Key Feature Points from Objects

In order to temporally track the object of interest, key
points from the object are extracted to represent the
object. The key point extraction method should ensure
that only true corner points (or any clearly identifiable
and definable points) are extracted. Extraction of multiple
points within a small region should be avoided (eg: in a
curved object, idedly only 1 point should be selected
from the curved portion) for good tracking. Since contour
grouping (discussed in the previous section) is based on
an edge-map, it is desirable that key points should also be
selected from the same edge map. Such a process will be
efficient and will eliminate the requirement to employ a
separate corner detection algorithm. Because of these
limitations, we cannot effectively use any of the standard
corner extraction algorithms [11] (these calculate corner
values directly from the raw image). Instead we have
employed a method called the curvature scale space
technique [11], which selects key points directly from an
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edge map efficiently. In the next section the curvature
scale space technique is discussed in brief.

4.2 The Curvature Scale Space Algorithm (CSS)
The CSS technique is suitable for recovering invariant
geometric features (curvature zero-crossing points and /
or extrema) of a planar curve at multiple scales. To
compute it, a curve [ is first parameterised by the arc
length parameter u:
T (u) = (x(u), y(u))

An evolved version ', of I' can then be computed. I,
is defined by:

(W) =(X(u,0),y(u,0))
where

X(u,0)=x(u)dg(u,0)  y(uo)=yu)dgo),

where [ is the convolution operator and g(U,0)

denotes a Gaussian of width o (o is also referred to as the
scale parameter). The process of generating evolved
versions of [T as o increases from zero to infinity is
referred to as the evolution of [. This technique is
suitable for removing noise from, and smoothing a planar
curve as well as gradual simplification of its shape. In
order to find curvature zero-crossings or extrema from
evolved versions of the input curve, one needs to compute
the curvature accurately and directly on an evolved

version [, . Curvature k on [, isgiven by [11]:
K(U,0) = Xu(u,a)yuu(u,cz) _XUU(U’ZU)/Z(U’U)
(. (u,0)? +y(u,0)?f

where

Xu(uo)=x(u)g,(uo)  Xu(u,0)=x(u)g,(uo)

Vo(uo)=yu)DOg,(uo)  Vu(uo)=yudg,(uo)

4.3 CSSKey Point Detection M ethod

431 Brief Overview

The corners (key points) are defined as the local maxima
of the absolute value of curvature. At a very fine scale,
there exist many such maxima due to noise on the digital
contour. As the scale is increased, the noise is smoothed
away and only the maxima corresponding to the real
corners remain. The CSS detection method finds the
corners at these local maxima.

As the contour evolves, the actua locations of the
corners change. If the detection is achieved at a large
scale the localisation of the corners may be poor. To
overcome this problem, local tracking is introduced in the
detection. The corners are located at a high scale Oyign,
assuring that the corner detection is not affected by noise.
o is then reduced and the same corner points are
examined at lower scales. As aresult, location of corners
may be updated. This is continued until the scale is very
low and the operation is very local. This improves
localisation and the computational cost is low, as
curvature values at scales lower than oyg, do not need to
be computed at every contour point but only in a small
neighbourhood of the detected corners.
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There are local maxima on the evolved contours due to
rounded corners or noise. These can be removed by
introducing a threshold value t. The curvature of a sharp
corner is higher than that of a rounded corner. The final
stage to the candidate corner declaration is that each local
maximum of the curvature is compared to its two
neighbouring local minima. The curvature of a corner
point should be double the curvature of a neighbouring
extremum. This is necessary since if the contour is
continuous and round, the curvature values can be well
above the threshold value t and false corners may be
declared.

432 CSSDetedion Process

The CSS key point detection process can be given by the

following steps:

1. Utilise an Edge detector (such as Canny [5] or Boie-
Cox [4] etc.) to extract edges from the original
image.

2. Extract the edge contours from the edge image:

- Fill gaps in the edge contours
- Find the T-junctions and mark them as T-corners

3. Compute the curvature at highest scale Opg, and
determine the corner candidates by comparing the
maxima of curvature to the threshold t and the
neighbouring minima.

4. Track the corners to the lowest scale to improve
localisation.

5. Compare the T-corners to the corners found using the
curvature procedure, and remove corners which are
very close.

The details of the CSS process can be found in [11].

4.4  Tracking Point Features

The MHT-IMM (MHT coupled with a multiple model
Kalman filter, as discussed in [13]) algorithm can be
applied for tracking key point features through an image
sequence. The measurements for the tracking filter in this
case will be the key features extracted (from and near the
object of interest) from every frame of a given image
sequence (key points are searched within a region of
interest surrounding the estimated object centroid). The
object centroid position is initially calculated in the first
frame by taking the mean of the sum of object key point
positions. In the subsequent frames the object centroid is
estimated using the MHT-IMM tracker. The extracted
measurements are then matched to predictions based on
the Mahalanobis distance.

The advantage in using the key point tracking
algorithm is that we can verify each of the temporally
translated key points on the object (selected) against the
likely contour of that object in every frame. By doing so,
we examine to see whether the object as a whole is
tracked correctly (the process for doing this is explained
in the next section). In the next section we give the
procedure involved in combining the point feature
tracking algorithm and the contour grouping algorithm for
object tracking.
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5 Objeda Tracking

This section shows how the contour grouping and key
point feature tracking procedures combined can be
applied for object tracking in image sequences. One cycle
of the algorithm recursion is displayed in Fig. (4).

For every frame in an image sequence we first apply
the contour segmentation algorithm. This process will
group segments of edges that are likely to be from the
same object. The result of such a process applied to our
test sequences are given in colour Figures 5(a) — 7(a). The
procedure as seen from these figures, fail at high
curvature contour regions, or is unable to bridge a gap in
edgels extracted. As a result, contours from the same
object are often broken or separated. To overcome this
limitation we applied the contour merging algorithm,
which resulted with recognisable object contours (colour
Figs. 5b — 7D).

Once the object contours are categorised separately,
we can now track a selected object (selection of object
can be automated by using a shake type algorithm (eg:
Gsnake [9, 10]) or any other suitable algorithm) from the
initial frame through the sequence. To track the selected
object, we first select some key features (points) from the
object (these are selected using the edge map information
and then applying the CSS algorithm) as discussed section
4).

The key features of the object are extracted in every
frame and the object centroid calculated (this is the mean
position of the sum of key points of the object contour).
The key points (and the centroid) from the first frame are
now tracked through the sequence using the MHT-IMM
algorithm (as discussed in [13, 14]). The tracking process
is achieved by predicting the object centroid position in
the following frame, and then searching a region of
interest surrounding the centroid to look for the key
points, this process is followed by matching the key points
to a grouped object contour within that region. This
procedure will provide trajectories for every key point of
the object. Each trajectory point is validated against a
grouped contour in each frame. By imposing a distance
threshold between the tracked key points and the key
points on the segmented contour (in each frame), we can
verify whether the points have been tracked to an
acceptable level of precision. If an acceptable number of
key points tracked are identified to lie on or near the
object contour (that is passing the threshold test) in each
of the frames, we conclude that the object has been
tracked successfully. If a key point fails the threshold test,
then that point will not be considered as part of that
feature trajectory any further.

6 Results
Image Number Attempted Featurestracked
Sequence of key number of for more than
(frames points points tracked 2/3's of the seq.
length) seleded (& percentage) length
UMASS (11) 8 8 100 % 8 100 %
PUMA (30) 4 4 100 % 4 100 %
Outcones(20) 12 10 83.3% 10 100 %
Table 1: Object tracking statistics for the 3 test image
seguences considered.
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The 3 sequences considered give a variety of scenariosto
test our algorithm. In all 3 cases the trading results are
promising (see Figures 5 — 7). Table 1 provides
guantitative performance values for the objed trader. For
the UMASSIab sequence 100% of the key-points sleded
as forming the objed (posters) in the first frame ae
succesqully tradked for the entire sequencelength.

Seled the objedt of interest
(eg: using asnake, gsnake
etc)

Edge detect (use Canny,
or Boie-Cox etc.)

MHT for Contour
Grouping
(using edge map)

Deted Key Points of the Objed
(CSStechnique, based onthe
edge map)

Predict Key Point Positions
from Previous Frame (k-1)
Trac Key paints using MHT-
IMM agorithm
A

Search andidentify objedsin framek
(use merged contour and key points [«
tracked to identify object)

Yes No
Object Tracked in Frame k ? Exit

Figure 4: Overview (1 cycle) of the object tracker.

Merge Grouped Contour
to form Objea

v
Estimate object
centroid in frame k-

Label and Separate
Grouped Objeds

Similar observations can be made for the PUMA
sequence. Finaly, a multiple objed example is
demonstrated. For the outdoar cone sequence, 4 cones are
considered as part of an objed. As the result suggests, 10
out of the 12 key corner feaures are tradked successully
for more than 2/3's of the sequencelength.

(©) d)(
Figure 5: UMASSIab sequenceresult.
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Figure 7: Outdoar cone sequenceresult.

Figures 5-7 (colour figures): (a) Contours grouped by
appying the ntour segmentation dgorithm based on
the elge map ohkained (one frame of the sequence is
displayed). Each segmented contour (grouped edges) is
shown with a dfferent colour. (b) Result after the
apgication d segment merging dgorithm (observe that
the segments that are identified as forming the same
objed are merged together in most instances). (c) The
trajedory of the keypoints by appying the MHT-IMM
algorithm. The ‘X' shows the start of the trajedory while
the littl e white drcle indicates the end d trajecory. (d)
The identified oed trajedory. The white cntours
(identified as belongng to the same objed in each frame)
are superimposed on the first frame of the sequence to
show the motion o the objed.
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7 Discussion

Colour figure 5(a) — 7(a) shows the result of applying the
contour segmentation algorithm. It can be seen that the
segmentation algorithm fails to group segments of the
same alge aound sharp curves. Since the dgorithm scans
the edge image by “walking” along the wntours, it may
encounter a new contour at any point aong its length.
When tradking begins in the interior of a airrve, it is
usually partitioned, erroneously into two o more
segments daring common boundary points. As a result
of this, contours belonging to the same objed can be
grouped as sparate objeds. To overcome this limitation
we gplied the mntour-merging algorithm (as described
in sedion 4) which provided better results (colour figures
5(b) - 7(b)). It can be dealy seen that most of the
segments belonging to the same objed have now been
grouped together succesfully (the quality of the
segmentation also depends on the thresholds that are used
for bath algorithms [6-8]).

For the PUMA sequence, the window on the top left
corner of frame 1 (seeFigure 6) was tracked through the
sequence. The result of the tradking is given in Figure
6(d) and the arresponding trajedories of the key points
are given in Figure 6(c). From visual inspedion the
results are promising. Similar results are observed for the
UMASS lab sequence (Fig. 5(c, d)), despite the short
irregular trandation of the posters (top right corner of
frame 1). The qudlitative results are suppated by
quantitative results presented in Table 1.

Figure (7) shows the result of the outdoar cone
sequence. In this case, multiple objeds are tracked (4
cones on the right). Each cone is treded as a separate
entity, while dl 4 cones combine to form a ‘grouped-
objed’. Each of the key points from the 4 cones are
tracked and matched to the segmented shape (the 4
cones). Apart from the last frame, where the cne in the
front gets segmented with the road, 83% of the key points
have been tracked corredly, thus suiccessully tracking the
4 cones.

8 Conclusion

In this paper we have shown how the multiple hypothesis
technique can be used for rigid ojed tracing in image
sequences. The @ntour of objed tradked is achieved by
first applyingthe MHT approach to group segments of the
same objed. This process is followed by applying the
contour merging algorithm to identify recognisable objed
contours. Then by seleding key point feaures of this
objed, tempora tracking (matching) of key points is
adhieved by using the MHT again. The validity of the
trajedory of the key points is verified by inspeding
whether the key points were lying on or nea the cntour
of the trakked oljed (seached within a region of
interest). The results are promising for objeds that are not
ocduded and can be recognised clealy in every frame.
One of the main drawbadks of the system is that the
contour grouping process can bre&k down due to
ocdusion of the objed being tradked. The MHT can
predict possble trgjedory for the key points despite the
ocdusion [7] and thus retain the trajedory (as $own in
[13, 14]). But the contour segmentation and grouping
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process will fail, as it considers only the edge map to
group contours. As a result the objed tradker fails in its
primary purpose. The tradking processpresented may also
fail for deforming objeds. This is becaise the key point
traking phase will not be robust enough to track
unexpeded deformation of objed contours.

Remgnising and tradking objeds using point feaures
as presented in this paper is possble for relatively smple
objeds (as demonstrated in the results). For complex
objeds the processis inefficient, and can leal to errorsin
objed identification and tradking. A more versatile
method d objed trading will require an objea contour
to be represented using a parameterised curve, such as
using Snakes, Deformable templates, or using B-splines
(see[3, 9, 10]).
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Abstract

This paper asseses the question, given a arbitrary point
in IP3, can it be reconstructed by a given camera orbit? We
show that a solution to this problem can be found by inter-
secting the view frustums of the cameras in the sequence
creating a polyhedron that bounds the area in IP? observed
by all cameras. For a projective set of cameras this can be
considered as an expansion of the cheiral inequalities. We
also show an exception to this basic principle is encoun-
tered when the point in P2 is occluded. Thus giving a weak
condition for occlusion of an arbitrary point in 3.

1 Introduction

Thiswork addresses the motivation to find the regionsin
IP3 observed by two or more cameras in a given sequence.
We will refer to this common region as the feasible region
for the given set of cameras, it represents the part of space
where depth fusion may occur throughtriangulation. Thisis
an expansion of the basic theory of cheirality [3], wherein
this case the inequalities are expanded to constrain a point
to lie with the view frustum of each cameraof interest. This
work is also partly inspired be the treatment of polyhedral
models in the computer graphics literature [5]. The follow-
ing subsections introduce the basic concepts and notation
maintained throughout the rest of the paper.

1.1 Set Notation

Thefeasibleregion for n views (a, . .., a,) will be de-
noted as the set S~ of points (where S ¢ P3)
that project (un/occluded) into each of the n-images. The
problem of finding the feasible region for a sequence of

n-images has strong analogues with the set of the rele-
vant subproblems of finding the intersection of 2 or more
views ay,...,ap € {a1,...,a,}. Where a,,...,a, de
picts the choice of 2 < k < m unique views from the
set of n, there are (7) such choices. The notation for the
() subsets of S@1 e is given as S31 % . Feasible re-
gions and their (}) subregions have the inclusion relation
e C 83U,

We can now answer our initial questions with the set
notation. Firstly, which set of pointsin P? can be recon-

structed by the given camera orbit?

g
U  sue (1)
permy(aa,...,ap)
2<k<n
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Secondly, which set of pointsin P? can be reconstructed
using all the given views from the camera orhit?

SA

I
-

Sa @

Section 2 will explore the inequalities that bound these
sets and section 3 will present a rudimentary algorithm to
compute the bounds for an arbitrary camera orbit in pro-
jective space. Section 4 discusses some applications of the
feasible regions.

1.2 Projective Geometry of Linear Featuresin P2
and P?

This section will outline the notation and the basic build-
ing blocks for the representation of linear featuresin P2 and
P3. The development of the ideas in this section is heavily
influenced by the notation and stucture of the linear features
presented in [6], also drawing some similarities to the ori-
ented matching constraintsin [7].

77


Dan Moradian
 


Thefirst consideration when dealing with the multi-view
geometry of linear features is their notation. Consistantly
we will refer to features as any type of geometric object
observed in a scene, be this points, lines or planes.

Table 1 summarises the notation and degrees of freedom
(DOF) for the group of linear featuresin the projective plane
([4, B,C] € P?).

Hyperplane | P? P2 DOF
Points z?
Lines z!4P]

24T = eapox™ = Z[BC] 2

2ABl = EABC:CAB =zc 1

Table 1. Linear features and there duals in P2

Similarly, Table 2 summarises the notation and the DOF
for linear featuresin projective space ([a, b, ¢, d] € P3).

Hyperplane | P? P3 DOF
Points ¢ ol = e peqr® = Tlbed) 3
Lines gl | gl = ey g2 = 21y 2
Planes glovel | glabel — ¢ pobe = g, 1

Table 2. Linear features and there duals in P3

These tables demonstrate the process of dualization for
linear feature types via the antisymmetrization operator
[...]- The antisymmetrization operator should be consid-
ered as a determinantal method to generate the algebra for
linear features, by performing an aternating tensor contrac-
tion over the space/s to which the operator is applied [?, ?].
The tensor notation will aso convert directly into a compu-
tational scheme to eval uate the geometric entity in question.

An important aspect of the tensor notation, is the ease at
which linear features can be manipulated to form geometri-
cally intuitive combinations of each other. The tables given
above demonstrate this concept clearly, wherelines are con-
structed from two points and planes (in P?) are constructed
from 3 points or aline and a point. This facet of the ten-
sor notation (Grassmann-Cayley algebra) greatly increases
it efficacy in solving for complex geometric configurations.

2 Feasible Regions

In this section we will introduce the basic camera model
(pinhole camera) and describe the process of projectingit’s
boundaries to form the view frustum. We will then discuss
the general intersection problem for 2 or more view frustum
and give bounds for the number of differentally oriented
solutions (cheirality), of which we will only be concerned
with the positively oriented solutions.

We will round-off this section by discussing the weak
condition for occlusion of an arbitrary point in P3. We
call this condition weak because it not geometrically based,
rather it is based on alack of the observation of the point in

the image, when the feasible region suggests that the point
should be observable within the view frustums.

2.1 CameraModd and View Frustum

The pinhole cameramodel is the standard for modelling
perspective distortion in image sequence. Perspective dis-
tortion is most prolific when a small focal length thus a
greater Field of View (FOV), isemployeed to model ascene
that is both close to the camera and with a high depth vari-
ation.

Firdlty, we must consider the projection operator (P ') or
camera matrix that denotes the projection of linear features
from the scene to the image plane (Pg : P? — P?). Table
3 summarises the range of projection operators for linear
features.

Hyperplane P3 P3*
Point z? ~ PAz® -
. A a c pd
Line B~ P[[a Pb’f]ac[ | zpey ~ P[[BPc]]I[cd]
Plane - xa ~ Plag

Table 3. Projection operators for linear fea-
tures

Generally it may be stated that Az® = Pgx”, where X
is an arbitrary scale factor. The form of Pg for a regular
point-to-point projectionis,

P§ = [R| - Ro,t"] 3

where RS, is rotation from the center of the world reference
frame to the orientation of the cameraand ¢t isthelocation
of the camera in the world reference frame. This depiction
of the camera (3), is defined in a Euclidean metric and also
assumes calibration of the internal parameters. The more
general projective uncalibrated model differs according to
an affine (K ;i“) and projective collineation (H &) [1]. Thus,
the calibrated model for point projectionis,

P} ~ KAPAH? (4)

where K4 representsthe internal parameters of the camera
in an affine collineation,

ag s A
Ki=| 0 ap Bo (5)
0 0 1

a4,/ encorporate the focal length f into scale factors for
conversion between metric distances (mm) and pixels, s is
the skew of the CCD imaging array and Ao and B, are the
coordinates of the cameras principal point [4].
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From this point, no assumptions will be placed upon
whether the cameras are un/calibrated. Instead, we will im-
plicitly assume that problems dealing with calibrated cam-
eras will present image coordinates as they would be read
from the image plane (A € [0,cols] and B € [0,rows])
and uncalibrated cameras present normalised image coordi-
nates in a square centered fashion (A € [-1,1] and Be
[—1,1]) [2]. The ranges given for pixel coordinates typify
the bounds for the camera. The projective (uncalibrated)
assumption removes the ability to measure metric distances
but can be madeto preservethe orientation of an point-plane
pair which we will see is the only requirement needed to
build a proper view frustum.

The view frustum for the camerais found by an inverse
projection of the bounds of the camera into the scene. That
is, aprojection of the lines that bound the image plane, into
their corresponding planes in the scene. Figure 1 demon-
strates the labelling of the vertices and edges for the stan-
dard camera.

L | - va

Vil
L3

[}

Wil Va

Figure 1. The labelling of the boundaries of
projection for the standard view frustum.

Moving clockwise from the top left of the camera, the
verticesVy, V5, V3 and V), represent the corners of theim-
age plane and V, is assigned to the cameras optical center
(for finite camerasthisisfound as the nullvector of the cam-
eramatrix P2 or e spc P PP P§ eved). The polyhedron
formed by the planes passing through V and the joins of
ViAVa = Ly, Vo AV = Ly, V3 AVy = Lz and V4 A V) =
Ly, gives a set of boundary conditions for a point in P3,

where L., = Lle«ts] = Vlea70s] grethe lines (edges) join-
ing the vertices of the image plane. A further set of inequal-
ities should also impose the image plane (although thisis a
largely redundant constraint) as another boundary and the
cheiral inequalities (x’s). These boundary conditions are
expressed as a set of algebraic inequalities for agiven point
z% € P3, cameracenter V4 and plane-at-infinity lab<l,

Ay Llarb2 o]
A Llazbs €0 ]
Ag Llasbay/eogdl
Ay Llaabryeozd]
AsV0arybzyes gdl
* Agmrlabegdl
* /\771'[‘“’6‘/‘101 >
The scalars (\,) ensure the cheirality (orientation) of each
plane with respect to the view frustum. Thisis achieved by
making sure each point in the view frustum has a positive
projective distance from the camera (only the signisimpor-
tant). The last two inequalities (x’s) in (6) can be omitted
from the boundary conditions if the scene points and cam-
erasare know to be correctly oriented. Figure 2 shows some
randomly generated positively oriented view frustums that
have been clipped for display purposes. Note that not all of
the cameras in this configuration are positioned to view the
same part of space.

(6)

VVVYVYVYV
cooc oo oo

Figure 2. Four randomnly generated posi-
tively oriented view frustums for a square
camera with a focal length of 1.
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2.2 FeasibleRegionsand Cheiral I ntersections

This section will move the discussion onto the case of
multiple (n) cameras. Running out of meaningful indices,
our first step will beto rewrite (6) in a symoblic vector no-
tation, feeling comfortable that we have an effective means
to compute the various vectorsin the inequalities.

Alepln > 0
Xz PP > 0
Agl‘TPgL > 0
Mz PR > 0 ©)
/\5pr61 > 0
x Xz'm > 0
* )\7%”Tﬂ' > 0

The superscript on the vectors denotes the image number
and the subscript reflects the labelling (Figure 1) of the
planes (Pg), points (V') and plane-at-infinity (7) where
P} isthen'® image plane. Theinequalities givenin (7) can
now be considered to represent a valid set of pointsin the
feasible region for the n-view reconstruction problem (S 2)
and the entire set of points that are reconstructable (S )
can be found as the union of the (}) subproblems (where
2 < k<n.

This definition of the feasible regions for the n-view
reconstruction problem is tractable, however we are com-
pelled to find a more definitive statement for the regions
that capturestheir geometric structure more precisely allow-
ing visualisation, volume calculations and a more compact
representation. This is where we introduce the language of
polytopes.

Polytopes [8] allow us to represent the feasible regions
asaconvex hull of vertices (points), edges (lines) and facets
(planes) in IP3, thus providing a bounding polyhedrafor the
various linear programming problems implied by the ap-
plication of the inequalitiesin (7). Since al planar inter-
sections occur either before the plane-at-infinity or at the
plane-at-infinity (for parale planes) we will strip the last
two inequalities (’s) along with the 5t* (to cut down com-
putation) from (7) leaving just the boundary conditions for
the outer planesin the view frustums.

The bounding polyhedrawill be constructed from thein-
tersection of pairs of the four remaining planes from each
camera (ie. lines V' A V7' for cameran thereis (;) such
lines for each camera) with the set of four remaining planes
in each other camera (P where a # n). In the genera
case there are two different ways that a line can intersect
aplane. Firstly, if the points on the line and the plane are
coplanar then their intersection will be the origina line, or
if the line and the plane are not coplanar then their inter-
section will result in a point. The points resulting from the
line-plane intersections will form the vertices of the bound-
ing convex hull representing the feasible region for a given

set of cameras.

In summary we can consider the upper and lower bounds
for the number of line-plane intersections for n-views (n,,)
to be,

!
0§0n§4x<§>xﬁ ©)
the lower bound is the case of n-views with the same inter-
nal camera parameters all lieing in the same position with
the same orientation, this is clearly a critical configura-
tion where no depth can be recovered. The upper bound
is formed by the general case given by n-views of aregular
pinhole camerawhere the set of four linesfrom each camera
must intersect each plane from each other camera. Thein-
tersection points will be positively and negatively oriented
(ie. liein front of the cameras and behind).

Of the collection of intersection points formed in the
planes, only acertain number will bevalid (feasible) points.
Valid points are those that conform to the inequalities given
in (7). Thisis to say that we are only interested in posi-
tively oriented intersection points that lie on the boundary
of the n-view feasible region. An algorithm to find the in-
tersection points that construct the bounding polyhedrawill
be considered in section 3.

2.3 A Weak Condition for Occlusions

The formulation for the feasible region given above will
determineif a point lies within the intersection of the view
frustums for the camera involved. However, this provides
no indication as to whether the point of interest is occluded
by some other object in the scene.

Thisisbrings usto consider a statement about whether a
point that liesin avalid feasible region for a set of cameras
is observable or not. Firstly, a strong statement of observ-
ability requires a precise model of the scenein question and
typical ray casting process (analogous to a image-to-world
graphics engine) can resolve geometrically whether there
exists a clear line of site from the point in the scene to the
image.

Unfortunately, this strong statement of observability as-
sumesthat a complete 3D model has already been obtained.
This is prohibitive for the purpose of building a 3D model
from images, see we must seek another statement without
this prerequisite.

The weak statement of observability requires that the
assumed texture surrounding the point in the scene is ob-
servable in the expected location in image. This statement
is clearly less precise, but practically quite an acceptable
means to determined whether a point has been occluded.
With the discussion of the feasible regions above and this
statement of observability arobust method to locate the im-
ages where afeature is present ensues.
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3 An Algorithm to Compute the n-view In-
ter section Polytope

We present arudimentary algorithm to find the bounding
polytope containing the set of points SZ for n-views. The
algorithmis geometrically intuitive, but far from optimal for
task. For an optimal approach refer to [?7].

The algorithm will follow along the lines of the discus-
sion giveninthe previoussection for isolating the line-plane
intersection points. Then, application of the first 4 inequal-
ities in (7) will reveal the superfulous intersection points
which are not feasible. Of the remaining points which will
now lie on the convex hull of the feasible region’s polyhe-
dra, edges must be selected to intersect points that lie only
on a common plane of one of the view frustums. The pro-
posed algorithm is given in Table (4).

Algorithmfor the polyhedra bounding S%

1 Find the n,, intersections, wherek = 2,...,n
11 Findthe vertices => €apea® = Wiy, Yes 2d,.]-
2. Store the vertices that fulfill the first 4 inequalities (6).

3. Find the edges from z“» and the joins of £ in each plane.

Table 4. Proposed algorithm for calculating
the bounding polyhedra for S%

4 Applications

This section discusses some of the perceived applications
of the concept of feasible regions in computer vision. It
should be noted that this concept is very new and the authors
are till considering the scope and application of the theory.

4.1 Object Querying

The motivation here is to be able to query a sequence of
images of a static scene (and the corresponding 3D recon-
struction of the scene) to seeif afeaturelies within the view
frustum of a given cameraor a given set of cameras.

Principally, we feel that this process may enhance the
regular Structure From Motion (SFM) pipeline [?] with the
ability to relocate lost or occluded tracks based on an ex-
pectancy for when they will return into the camera's field
of view. Another related application would be to retrospec-
tively update the tracking profile of afeaturefoundinimage
« to al the previous images where the feature was observ-
able.

This process could be used to great effect in the SFM
pipeline for long sequences, where the camera completes a
loop (ie. viewing the same area of the scene multiple times
with some seperationin the exposure) which wewill refer to

as sub/sequence closure. In this case a very valuable align-
ment of the same set of features can be achieved to correct
any drift in the egomotion estimation up until that point.
This philosophy has been used with great successin closed
turntabl e sequences.

4.2 Path Planning

Another perceived application of feasible regionsis an
autonomous robot fitted with either one or multiple cam-
eras. If the robot is equipped with the mechanism to recog-
nise certain objects in the scene (for our purpose we will
imagine that these are polytope models), then the feasible
region will alow the robots to plan a path around the ob-
ject whereby the entire object of interest remains within the
feasible regions of the cameraat each time instant.

Complex polyhedral objects can be represented as the
convex hull of vertices encompasing the poylhedra, if each
of the vertices is visible un/occluded in each view of the
cameralsviewsthen the robot has maintai ned a suitabl e per-
spective on the object.

A robot fitted with cameras could then be instructed to
model an entire area (at its own pace) making sure that it
has gathered an adequate amount of information to fulfill
the accuracy requirements of the mission.

4.3 Building Voxel Volumes

The final application we have considered is building an
arbitrary indexed voxel volume given a sequence of camera
motions. Currently, the authors are yet see an application of
voxel volume modelling where the voxel space has not been
predesignated to house the object of interest. We fedl that if
the voxel volume 3D reconstruction techniqueisto reachits
full practical value, the voxel spaces must be defined purely
by the path of the camera, not placed at a point in space as
apriori to reconstruction.

Furhermore, information about the number of views that
afeature is observable in and whether there are occlusions
of the feature for a given path of the camera, is invaluable
for the construction of the metric space and the subsequent
optimisation problem for the building of the voxel volume.

5 Conclusions and Future Work

We have presented a novel idea that sets the boundary
for points in space that are reconstructable by an arbitrary
camera path. We have considered which points are recon-
structable in the general case and which points are observ-
ablein every image. We have also shown that this formula-
tion leads to aweak condition for occlusions.

Asamatter of future work the authorswould like to con-
sider the quality of observation for a point and the subse-
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quent quality of reconstruction for a point given multiple
observations. The envisaged formulation is to consider the
expected error in the observation of a feature in the image
and the projection of this error into space forming a cone.
The intersection of multiple error cones gives something
akin to a set of geodesic probability surfaces, representing
the likelihood of the corresponding 3D featurelieing in this
part of space.

The introduction of such a concept would lead to a so-
phisticated method to determine the overall quality of re-
construction for the scene given a specific camera orbit.
Then, points that are positioned poorly in the scene for re-
construction purposes can treated with agreater caution.

In this manor the quality of reconstruction can be set as
an input parameter to the SFM pipeline and made to repli-
cate the average depth fusion for human vision. This can be
considered as the ideal quality of reconstruction for visual-
isation with VR glasses.

The authors are also looking into optimal algorithms to
intersect the view frustums and create the resulting polyhe-
dron.
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Abstract

Hidden Markov Models have many applications in signal
processing and pattern recognition, but their convergence-
based training algorithms are known to suffer from over-
sensitivity to the initial random model choice. This paper
focuses upon the use of model averaging, ensemble thresh-
olding, and random relative model permutations for im-
proving average model performance. A method is described
which trains by searching for the best relative permutation
set for ensemble averaging. This uses the fit to the training
set as an indicator. The work provides a simpler alternative
to previous permutation-based ensemble averaging meth-
ods.

1 Introduction

The work of Davis and Lovell [1] focused upon Hid-
den Markov Model (HMM) ensemble learning using the
well-known Baum-Welch procedure [2, 5, 6] for individual
sequences and then averaging the resulting HMM ensem-
ble parameters. It was demonstrated that this is a superior
method to the standard method of converging a single model
using the multiple sequences simultaneously [4, 2] in per-
forming approximations to sequence distributions, and also
for performing classification tasks. Thresholded Winsoriza-
tion in which the best sub-ensemble is used was also shown
to provide further improvements.

This paper investigates the potential for still further im-
provements on these methods based on searches through
random relative permutations of the nodes of the ensem-
ble of models, prior to ensemble parameter averaging. The
methods investigated were based on varying the random
permutation probability and the number of node transpo-
sitions applied to each member of the ensemble.

By relabelling states, it is easy to show that many differ-
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ent models can achieve the same probability despite large
differences in configuration. The possibility of finding
equivalently good models with large structural differences
argues against the parameter averaging method to obtain
improved models. In other words, it is quite possible that
the average of two good models may be a very poor model
in the same way that that the point midway between two
mountain peaks is quite often a valley. This was the moti-
vation for the method of searching through relative random
node permutations.

Levinson, et al. (see [3], appendix B) first proposed that
an approximation to bipartite graph matching be used for
permutating an ensemble of trained models to achieve a
good permutatation match, and good parameter estimates
through averaging the permutation-aligned ensemble. This
paper demonstrates that simpler randomised methods can
be used with good results for node matching when the best
method is selected according to the overall fit to the training
data set.

2 Permutations of representations of Hidden
Markov Models

The focus of this paper is on methods for permuting the
alignment of models in an ensemble of models with the
same structure.

A hidden Markov model ([2] chapter 6) consists of a set
of n nodes or states, each of which is associated with a set
of m possible observations (the structure of the model). The
parameters of the model include an initial state = which de-
scribes the distribution over the initial node set, a transition
matrix a;; for the transition probability from node 7 to node
j conditional on node ¢, and an observation matrix b;(Oy,)
for the probability of observing symbol Oy, given that the
system is in state 4. Rabiner uses A = (A, B, ) to denote
the model parameters.

This paper is based around the method of ensemble aver-



Node alignment in permutation averaging
Output symbols are ommitted for clarity.
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Figure 1. lllustration of the permutation aver-
aging method for two different permutations.

aging suggested by Levinson et al. [3] and tested in [1]. The
method is as follows. Consider an ensemble of N HMMs
{M = (A, B,m);k = 1... N} which are each trained
using the Baum-Welch method to a specific observation se-
guence in a set of training sequences. Select an alignment
of nodes across all N models, and then form a single model
A by averaging the matrix elements of the ensemble, using
the selected node alignment (see figure 1).

In this paper we focus upon permutations which only af-
fect those nodes with zero entries in the starting matrix .
These permutations will be termed 7-free permutations.

Theorem. Random =-free permutations S = {Si}
of HMM ensembles A {A\x} trained using multi-
ple Baum-Welch convergence have the same parameter-
averaged model performance as unpermuted ensembles.

Proof. For every model A\, partition the set IV of nodes
into nodes @ with non-zero 7 values and a subset R with
zero w-values. w-free permutations only act on R. Since
initialisation of the BW procedure randomly selects =-free
nodes, then the Baum-Welch process produces models for
which the nodes in R are randomly permuted. Therefore,
a permutation of these nodes after convergence will not
change the result of the method.

This result means that the insertion of relative random
permutations at any stage of the process does not affect the
model performance. This paper concentrates on the poten-
tial for improvement in the model performance when a good
permutation (as measured by its P,;; score on the training
set) rather than a random permutation is applied.

In cases where a permutation might involve a node with
a very small starting probability, it is not possible to use the
above proof. Permutations involving () as well as R are less

- c
aa

cb
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easy to analyze and will not be tackled here. However many
models of interest have a well-defined, small starting node
set.

3 Classesof permutationsin HMM ensemble
averaging

All methods investigated involve the use of the joint
emission probability P,;; to quantify the model quality, and
also to select the permutation which maximises this func-
tion. P, is defined as the product (over all sequences in an
ensemble) of the probability that the model generated those
sequences individually. This is used both in the training en-
semble and in the test ensemble for final evaluation of the
method.

The algorithms are all based upon the following set of
main design components:

e Winsorization threshold level search based on P,;.

e Permutation fraction: the fraction of models in the en-
semble being permuted which actually receive a per-
mutation prior to averaging

Number of transposition: the number of nodes being
transposed in a given permutation in each model prior
to averaging

Type of permutation: excluding certain types of per-
mutations from the set being considered, such as per-
mutations involving the starting nodes in 7 or permu-
tations which would change the transition structure of
the resulting average model (from left-right to ergodic,
for example)

There are many different ways in which these features may
be combined, so we restrict ourselves to those which seem
to represent the most important aspects of the ensemble per-
mutation idea.

The following different permutation methods were eval-
uated:

e VariableProbPerm - this method scans through a
probability scale from 0 to 1 representing the proba-
bility that a given model will be permuted in the en-
semble.

NumTrans - this method scans through the number of
random transpositions applied to each model. This is
limited by the size of the model, as applying too many
relative interchange operations per model in the search
has no extra benefit.

The ensemble used in both cases is a Windsorised ensemble
- with the fraction of models used being determined before
these trials were run. Code for training HMMs using these
methods is available [7].



4 VariableProbPerm trial

Davis and Lovell [1] gave an empirical study of the fol-
lowing idea (initially suggested by Levinson et al. [3]): In
HMM ensemble averaging, because the individual Baum-
Welch convergence runs are all initialized to a set of random
model parameters (random seeds) then applying another set
of random permutations to the models, either before or after
training to the observation sequence, will have no effect on
the final model formed using parameter averaging.

The next step is to investigate the effect of other, more
refined random permutation schemes. A similar strategy to
the Winsorization approach will be studied in which a small
set of relative permutation sets is compared in terms of the
performance of the ensemble-permuted average model on
the training data, as measured by P,;;.

Methodology. In this trial of the VariableProbPerm
method, a set of 20 test and 20 training sequences was gen-
erated from an initial generating model. The models were
randomly generated left-right models with 5 nodes and 4
observation symbols. P,;; values for the training data were
used to compare permutation sets. The best permutation
averaged model from those considered was selected. This
selected model was then evaluated on the test data. The
trial was repeated for 100 initial generating models. Permu-
tations were ensured to be m — free as they did not involve
the left-right model.

Results. The performance of the variable probability of
the small permutation method VariableProbPerm presented
in the previous section was investigated and the results are
displayed in figure 2. It shows the performance on 20 test
sequences of the average of ensembles in which each mem-
ber of the ensemble is permuted. The method shows steady
improvement up to 90% permuted. Clearly there are signifi-
cant improvements to be obtained by varying the probability
of permutation of models in the ensemble and selecting the
best fraction.

5 Trial of NumTrans

This trial of the NumTrans method was designed to in-
vestigate the best scale of permutations. The major issues
of interest were:

1. Is it worth probing the entire range of relative permu-
tations, and

2. Are there any gains to be made by looking at large
numbers of transpositions?

Methodology. In this trial of the NumTrans method, a
set of 20 test and 20 training sequences was generated from
an initial generating model. P,; values for training data
were used to compare permutation sets. Permutations of
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Model permutation fraction study on Windsorised Threshold models
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Figure 2. Small permutations are applied to a
variable fraction of models in the ensemble.

the ensemble were constructed using a VariableProbPerm
method with a 50% probability of permuting a given model.
The parameter under investigation was the number of trans-
positions applied per model, when that model was selected
for permutation. The number of transpositions ranged from
1 to 15. It was anticipated that large numbers of transpo-
sitions would not show any benefit over small numbers be-
cause of the existence of permutation inverses (so a large
number of interchange operations is equivalent to its inverse
operation, which can consist of a small number of inter-
change operations).

The best permutation averaged model from those consid-
ered was selected. This selected model was then evaluated
on the test data. The trial was repeated for 100 initial gen-
erating models.

Results. The performance of the variable probability of
the small permutation method NumTrans presented in the
previous section was investigated and the results are dis-
played in figure 2. It shows the performance on 20 test se-
guences of the average of ensembles in which each mem-
ber of the ensemble is permuted. As can be seen from the
results of figure 3 transposition searches with more trans-
positions can be superior to smaller searches. Importantly,
the best performance was found when the number of ran-
dom transpositions was set to the number of states in the
model. There was not a very clear trend in this instance.
However we can deduce that applying large numbers of rel-
ative transpositions is not particularly helpful. This is due
to the following:

1. the models already have highly random relative per-
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Figure 3. A variable number of permutations
is applied to each member of the ensemble.

mutations due to the random initial seed choice

2. itis counterproductive to apply large numbers of trans-
positions to all models as it is the relative permutation
which matters (so smaller numbers will give superior
performance)

3. As the number of transpositions approaches the size of
the model, performance will be similar to that in the
case of small numbers of transpositions.

That said, searches using more permutations do have a
slightly superior search ability. However, unless a high level
of computing power is available, it seems best to only use
permutations of one or two transpositions, in combination
with the VariableProbPerm search method.

6 Conclusions

We have demonstrated that substantial gains in averaging
can be made using either of two very simple random per-
mutation alignment schemes, VariableProbPerm and Num-
Trans. These are simpler alternatives to the more complex
scheme proposed by Levinson et al. in [3].

There are clear benefits to be found by applying ran-
dom permutations of the ensemble, using both methods. A
search is necessary to locate the best permutation size. In
general, the gains obtainable by varying the probability of
permutation are greater than the gains obtainable by varying
the number of permutations.
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The use of the joint emission probability P,; for the
training set is a useful indicator in selecting the best per-
mutations.

It may be possible to construct more advanced schemes
based upon the findings of this paper. For example, a
gradient-descent method in which good permutations are
retained as the process continues may be a faster way of
locating the best ensemble permutation set.

A madification of this technique to include permutations
involving non-zero 7 vector elements may be possible, but
is likely to be more complex. From the success of this
method however, it seems a promising avenue for further
investigation.
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Abstract ity map [8, 21, 22]. Taking advantage of the epipolar con-
straint, which enables the search area to collapse from a
We propose what we believe is a new approach to 3D 2-dimensional image to 1-dimensional epipolar lines, along
reconstruction through the design of a 3D voxel volume, with the ordering [28], uniqueness and continuity constraint
such that all the image information and camera geometry [18], algorithms have been proposed which compute the
are embedded into one feature space. By customising thealisparity map to sub-pixel accuracy. However, when fac-
volume to be suitable for segmentation, the key idea that wetors such as noise, lighting variation, occlusion and per-
propose is the recovery of a 3D scene through the use ofspective distortion are taken into account, stereo disparity
globally optimal geodesic active contours. We also presentalgorithms are still challenged to model accurately discon-
an extension to this idea by proposing the novel design oftinuities, epipolar line interactions and multi-view stereo
a 4D voxel volume to analyse the stereo motion problem in[6, 11].

multi-view image sequences. Roy and Cox [22] and more recently Kolmogrov [15] de-
veloped an algorithm for solving the multi-view stereo cor-
respondence problem. By stacking the candidate matches
1. Introduction of range disparity along each epipolar line into a cost func-
tion volume, maximum flow analysis and graph cuts are
The reconstruction of a dynamic, complex 3D scene Used in order to determine the disparity surface. While
from multiple images is a fundamental problem in the field these approaches to stereo analysis provide a more accu-
of computer vision. While numerous studies have been con-fate and coherent depth map than the traditional line-by-line
ducted on various aspects of this general problem, such a$tereo, these methods remain dependent on and sensitive to
the recovery of the epipolar geometry between two stereothe uniqueness and the accuracy of the matching correspon-
images [10], the calibration of multiple camera views [30], _dence stage. _Although the opti_misation of the cost functipn
stereo reconstruction by solving the correspondence probdS Performed in a three-dimensional space, the computation
lem [24], the modelling of occlusions [9], and the fusion of ©f @ disparity surface remains only a 2.5-D sketch of the
stereo and motion [14], more work needs to be done to pro-Scene [18].
duce a unified framework to solve the general reconstruc- While the aforementioned techniques operate in 1 or 2D
tion problem. space, there also exists a class of stereo algorithms that op-
Given a set of images of a 3D scene, in order to re- erate in 3D scene space. Introduced by Collins [5] and Seitz
cover the lost third dimension, depth, itis necessary to com-and Dyer [23], these algorithms, instead of using dispar-
pute the relationship between images through correspon-ty to compute the depth of an image point, directly project
dence. By finding corresponding primitives such as points, each image into a 3D volume, such that the locations of 3D
edges or regions between the images, such that the matchworld points are inferred through analysis of each voxel's
ing image points all originate from the same 3D scene point, relationship in 3D space. Kutulakos and Seitz recently pro-
knowledge of the camera geometry can be combined in or-posed the Space Carving Algorithm aimed at solvingNhe
der to reconstruct the original 3D surface. view shape recovery problem [17]. The photo hull, the vol-
One approach to the correspondence problem involvesume of intersection of all views, is determined by comput-
the computation of a disparity map, where each pixel in ing the photo-consistency of each voxel through projections
the map represents the disparity of the matching pixelsonto each available image. While these approaches produce
between two images. The optimisation of a cost func- excellent outcomes, apart from the fact that they require a
tion is a common approach in order to obtain the dispar- vast number of input images, improvements can be made
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by imposing spatial coherence, replacing the voxel-basednally, section 4 will provide a summary of the proposed
analysis with a surface orientated technique. techniques and directions for future research.
Classical active contours such as snakes [12] and level
sets [1] have mainly been applied to the segmentation prob-
lem in image processing. The recent introduction of fast 2. 3D Reconstruction
implicit active contour models [16], which use the semi-
implicit additive operator splitting (AOS) scheme intro-
duced by Weickert et al. [26], is an improved version of A common approach to stereo reconstruction is the opti-
the geodesic active contour framework [4]. Given such ad- misation of a cost function, computed by solving the corre-
vancements in active contour analysis, multi-dimensional spondence problem between the set of input images. The
segmentation is becoming not only more robust and accu-matching problem involves establishing correspondences
rate, but computationally feasible. The application of sur- between the views available and is usually solved by setting
face evolution and level set methods to the stereo prob-up a matching functional for which one then tries to find the
lem was pioneered by Faugeras and Keriven [7]. Although extrema. By identifying the matching pixels in the two im-
Faugeras’ approach is limited to binocular stereo and theages as being the projection of the same scene point, the 3D
epipolar geometry, their novel geometric approach to the point can then be reconstructed by triangulation, intersect-
stereo problem laid the foundation for a new set of algo- ing the corresponding optical rays. Our proposed method
rithms that can be used to solve the 3D reconstruction prob-differs from this approach by projecting all the images into
lem. a common space prior to analysing the correspondence be-
In this paper, we will present two new techniques for tween the images. The matching problem is then solved
3D scene reconstruction. Firstly, we propose a new ap-notas a correspondence problem between images, but as a
proach to 3D reconstruction through the use of globally op- Matching functional, computed for each voxel in the vol-
timal geodesic active contours. In order to formulate the Ume. This functional is optimised through segmentation to
3D reconstruction problem suitable for segmentation anal-ecover the 3D structure of the scene.
ysis, we explicitly describe the design of a 3D voxel fea-  Prior to the construction of the 3D voxel volume, the
ture space, which integrates all the information available camera geometry of the images needs to be computed
from each camera view into one unified volume for pro- through camera calibration. Knowledge of the camera ge-
cessing. Rather than solving the correspondence problemometry not only enables the construction of the projection
between the images by computing disparity and matchingmatrix, but also allows the computation of the polyhedral
feature primitives, and instead of using photo-consistencyintersection of the camera views. Although solving the
constraints to determine the colouring of each voxel, our bounding region of interest of the images is similar in idea
approach projects and integrates all the feature informationto solving the space carving problem, our proposed method
about each image into one voxel volume. By collapsing the differs greatly from space carving. Rather than deciding on
voxel space into a metric space, segmentation algorithmsthe likelihood of a photo-consistent match for each voxel in
can then be applied to directly reconstruct the complex 3D 3D space, our method does not perform any computation at
scene. the projection stage. Instead, all the feature information is
Secondly, we propose a new approach for the recoverystored inside each voxel and is dependent on the solution
of 3D models and its motion from multi-view image se- to the segmentation problem in order to decide on the 3D
quences. While there are many studies in the area of steresurface of the scene.
and motion analysis from stereo rigs, we propose the use Assuming a pinhole camera model, the 3D voxel volume
of a 4D voxel volume to recover not only 3D and motion s created by projecting all of the images into a 3D polyhe-
information from stereoscopic image sequences, but an aldron, such that each voxel contains a feature vector of all
gorithm capable of processing multi-view image sequences.the information contained in each camera view. For exam-
By augmenting the design of our 3D voxel feature volume ple, the feature vector can include the RGB values of the
to a 4-D feature space, we present a novel approach to theoxel’s projection into each camera image, the gradient of
analysis of stereo motion for the reconstruction of dynamic the image, and even information relating to the projected
3D scenes. pixel's neighborhood. A metric volume can then be derived
Section 2 of this paper will explain in detail the design of from this voxel space to become the input to the segmen-
the 3D voxel volume and how segmentation can be used totation stage. Cost functions such as the variance between
compute the 3D scene. Section 3 will further describe how the projections or even a probability density function can be
the 3D voxel volume can be extended to solve the stereoused. Furthermore, by altering the resolution of the voxel
motion problem. The application of 4D reconstruction to volume, the segmentation can output either a dense or a
analysis multi-view image sequences will be presented. Fi-sparse reconstruction of the 3D scene.
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Figure 1. Multi-View Projection. 3D point Py is
projected onto Images I, I, Is. (Image cour-
tesy of S. Roy and I. J. Cox, Figure 1 [22])

2.1. Voxel Volume

We briefly present the well-studied general framework
of projective geometry required in the construction of the
3D voxel volume [10]. A set of: input images!y, ..., I,
of a 3D scene are projected fromcameras’,...,C,,
as depicted in Figure 1 with = 3. In our formulation, we

images. In other words, given the 3D voxel volume, all the
processing and analysis can be achieved without the need
of the original images. We define 4 matrices to describe
the projection from a voxel in the volume to a pixel in the
image.

Given a volume of\/ voxels, each voxel will be indexed
by its voxel coordinatesy,, = [va, vy, ve, 1]7, Wherev,, vy
andwv, will range from 1 to the dimensions of the volume.
The extra parameter appended at the end of the voxel coor-
dinate is for consistency with the augmented homogeneous
coordinate in projective space. To transform from voxel co-
ordinates to 3D world coordinates, we compute

I3k tv

P,=Vu,
o7 1 ]

andI; is the3 x 3 identity matrix,t,, the translation vector
for specifying the world coordinate of the voxel volume’s
origin, andk = [k,, ky, k|7 is the stride in each voxel
dimension, i.e. the number of units between each voxel in
3D world space. The choice &fandt, is dependent on the
resolution desired for the voxel volume and the origin of the
volume of interest respectively.

From world coordinates, the classicak 4 perspective
projection matrix,PP, can be applied to obtain the projection
of the 3D world point in image coordinates. In the case
where we define the optical centre of the base cantéya,
to coincide with the origin of the world coordinate system,

where
V- [

will assume a pinhole camera model and that all surfaces ardn€ projection matrix will be simplified to be

Lambertian (i.e. the intensity of a 3D point is independent
of viewing direction). The projective coordinate of a 3D
point P, in world space is expressed with homogeneous
coordinates as

P, :[ Tw Yw Rw 1 ]T

while the projective image coordinate of a pixel in imdge
is

pi=la yi =]t
such that the corresponding pixel coordingtef the pro-
jected pointp; can be obtained by applying a homogenising
function H where

Given the volume of interest of the 3D space for recon-
struction, we can obtain each voxel’s feature vector by pro-
jecting everyP,, in the 3D volume onto each of theim-
ages available. Witlf features for every pixel in the image,
each voxel will contain arf x n matrix, such that the col-
lection of all voxels will contain all the information all the

x/z
y/z

@)

H(|y )
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Py =

subsequently, we can define a transformation maarix
R; ]

OT
with rotation R; and translatiort; to define the position
and orientation of camer@; relative to the base camera,
Cy. The relative positions and orientations of each camera
1 is determined by a calibration procedure. Thus@grthe
projective projection matrix will be

P; = PoW;

t;

e

From the image coordinates, the pixel coordinates of a
projective point can be recovered up to a scaling factor,
given knowledge of the internal parameters of the camera.
Neglecting radial distortion from calibration, a matrix of in-
trinsic parameters can be computed such that

—fz 0 Ox
A= 0 _fm/a Oy
0 0 1



wheref, is the focal length in effective horizontal pixel size 2.3. Segmentation
units, o the aspect ratio (i.e. the vertical to horizontal pixel
size), ando,, o) the image centre coordinates.
C_:omblr_ung all thg desprlbed matrl_ces, eachvoxelcanbe The development of algorithms that can provide glob-
projected into each imageoy computing ally optimal solutions to segmentation problems makes its
application in image processing very attractive. By design-
pi = AP; Vv, . . - .
ing a volume appropriate for maximum-flow analysis, the
From the obtained projective pixel coordinates, the ac- Minimum-cut associated with the maximum flow can be

tual pixel coordinates can be obtained by applying the ho- Viewed as an optimal segmentation. While Roy and Cox

mogenising function described in Eq. 1. have demonstrated a version of maximum-flow to analyse
stereo images, a more computationally feasible method was
2.2. The Correspondence Problem recently proposed by Sun [24]. A two-stage dynamic pro-

gramming (TSDP) technique was introduced to obtain effi-
The construction of the voxel volume is purely based on €iently a 3D maximum-surface, which enables the compu-

image projections and thus does not require the solution to@tion of a dense disparity map.

the correspondence problem in order to produce a dense re- In our voxel volume formulation, since our projected
construction. Unlike algorithms that use disparity maps to volume enables us to work directly in true 3D coordinates,
guide the 3D reconstruction, dense feature correspondenceve aim to output a 3D surface representative of the com-
or area-based matching of every pixel is no longer neces-plete 3D scene rather than using a disparity map to ob-
sary. However, while the computation of the 3D volume tain a 2.5-D sketch of the scene [18]. Formulating the
does not require dense correspondences, feature correspoBD reconstruction problem as a segmentation problem has
dence is needed in establishing the camera geometry anehany advantages over the use of the classical dynamic pro-
for the purpose of camera calibration. The accuracy of thegramming technique. In segmentation, optimisation is per-
projections and the reliability of the volume are highly de- formed along a surface rather than along a line. This sub-
pendent upon robust and accurate camera calibrations. Asequently provides segmentation methods with the advan-
noted by Medioni [19], in multi-view stereo, there is an tage of outputting contours that wrap back on themselves,
imperative need for camera calibration and consistency ofwhile dynamic programming will have difficulty following
matches between multiple-views. Therefore full calibration these concave surfaces. Rather than reformulating dynamic
information needs to be provided with the image set or tech- programming or similar techniques in order to model occlu-
niques similar to [31] must be used to obtain the calibration sions and concavity, we propose the use of segmentation to
parameters. approach 3D reconstruction from a new point of view.

The construction of our voxel volume is similar to the .
Active contours have been demonstrated to be a useful

concept proposed by Kimura, Saito and Kanade [13] in re- tool in the segmentation problem. Geodesic active contours

covering the 3D geometry from the camera vIews. Th_el_r that use a variational framework have been shown to obtain
method is, however, restricted to three images since it is - L .
locally minimal contours [4]. Fast implicit active contour

ereqdent on_dense feature correspondences between thrﬁodels, that use the semi-implicit additive operator splitting
input images in order to model the 3D surface and can-

. . (AOS) scheme introduced by Weickert et al. [16, 26], and
not overcome the problem of occlusion since there are no

matching points in those regions. Algorithms that depend shortest path algorithms [3], have been used to avoid the

e variational framework producing optimal active contours.
on dense feature correspondence have much difficulty mod- . . :

. : .~ By formulating a volume appropriate for 3D segmentation,
elling occlusions. Our proposed method overcomes this

roblem by redefining the problem. USING & new a roachwe propose the use of a form of geodesic active contours
P y ning P » using W app recently introduced by Appleton and Talbot [2] which has
that does not depend on pixel to pixel feature correspon-

dence. One of the advantages of our approach is that Oc_been demonstrated to be globally optimal. By choosing a

. - itiv lar metri h th n r
clusion does not need to be explicitly modelled. Occluded positive scalar metricg, such t atg car bg assured to be

. C o C : . always greater than zero, the minimisation of the energy
regions visible in a limited number of images are still pro-

. ) . . . . functional E/, can be formulated to describe the segmenta-
jected validly into 3D space for analysis, with the major g

difference being that less images project to that region. Thetlon

occluded regions, however, can still be modelled, only that

the 3D reconstruction for those region depends on less data. E(C) = / g(C(s))ds
This scheme subsequently also allows for occluded region ¢

to be iteratively improved as more images of the occluded

scene are available. whereC is the segmentation contour.
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3. 4D Reconstruction Subsequently, the shortcomings of this method are related
to its sensitivity to errors in camera calibration and projec-

The fusion of stereo and motion has been recognised bytion. However, with the many developments and studies
many researchers as a means of providing additional infor-completed in this area, the error can be minimised. The
mation that were not previously obtainable through their accuracy of this method also increases as the number of in-
independent analysis. Waxman and Duncan pioneered thé@ut images increases, making this approach well suited for
analysis of stereo motion by considering binocular image analysing multi-view image sequences.
flow [25]. Many studies have subsequently tackled this  The size, shape and location of the voxel volume is also
problem through the use of Kalman filtering, optical flow currently manually estimated. Although a difficult and com-
and feature tracking [14, 20]. While these methods have plex problem, a dramatic improvement to the algorithm will
demonstrated reasonable success, they are limited by probPe the direct computation of a polyhedral volume of in-
lems inherent in the correspondence problem, as describederest. Similar to solving the space carving problem, the
in section 2.2. Similar to our proposed approach in the usepolyhedral volume can be obtained by computing the inter-
of segmentation, rather than reformulating optical flow or sections of all camera’s field of view. Assuming a pinhole
Kalman filtering to model stereo motion, we propose the camera model, each camera projection will be a rectangular
use of a 4D voxel volume in order to analyse the stereo dy-pyramid, thus the bounding polyhedron will be the solution
namics in stereoscopic image sequences. to the problem of intersecting multiple rectangular pyramids

By embedding the design of our 3D voxel feature vol- Of varying orientations.
ume into a 4-D feature space, we present a novel approach The design of a multi-dimensional voxel volume also
to the analysis of stereo motion for the reconstruction of lays the foundation for 3D or even 4D recognition. A ball
dynamic 3D scenes. Given a set of images captured ovefor example in 3D space would occupy a spherical volume,
different time frames, we can compute the camera geometrywhile a ball in trajectory can be recognised as a cylindri-
and projection parameters for each image through the use otal tube with hemispherical ends in 4D space. Previous
the many calibration techniques developed, such as Zhang'svorks by Xu [27] have attempted to unify stereo, motion
four point algorithm for stereo rig analysis [29]. From the and object recognition into one approach by observing their
set of projection matrices computed, we can construct acommon use of feature correspondence. Using our new pro-
voxel volume for each time frame. Since geodesic active posed approach, feature correspondence is replaced with a
contours can be applied to segment multi-dimensional vol- voxel volume that contains all feature information. Thus,
umes, similar to the analysis of our 3D voxel volume, we through the analysis of a multi-dimensional feature volume,
can compute a segmentation in 4D in order to produce ait is possible to design a unified framework for multi-view,
3D surface in time. The use of this 4D voxel volume also motion and object recognition.
has the advantage of not only recovering the 3D and mo-
tion information from stereoscc_)pic image sequences, but isAcknowIedgements
capable of processing multi-view image sequences. The
computational feasibility of multi-dimensional segmenta-
tion makes this 4D approach to stereo motion an attractive
alternative to the analysis of dynamic, complex 3D scenes.
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Abstract

In this paper we present an investigation into the
computer vision problem of tracking humans in
digital video. The investigation domain is digital
tennis footage and the aim is to track the tennis
player and recognise the strokes played. The
motivation behind this investigation is to eventually
automate the task of digital tennis footage
annotation so that metadata, such as the time codes
and a description of the strokes played, are
automatically appended to the video. This then
enables a number of compelling applications, from
simple search facilities for the home viewer, to more
complex analysis tools suitable for a tennis coach.
The system developed solves the problem of tennis
player tracking and stroke recognition using
relatively simple, and well known, image processing
operations constrained by an a priori knowledge of
the image capture conditions, the background scene,
and the application domain.

Keywords: Player Tracking; Video Annotation;
Metadata; Digital Tennis Video.

Introduction

Automatic human tracking is a computer vision
problem. It is the problem of getting a computer to
analyse the digital video stream of a scene, detect
when a person enters that scene, and then to
subsequently track that person’s movement through
the scene. There have been many investigations into
this research topic and for various applications:
From systems designed to track a single person and
find their body parts, e.g., Pfinder [1] or W* [2], to
systems designed to track multiple people and
monitor their interactions, e.g., Computers Watching
Football [3].

A computer capable of tracking humans would be
useful for a wide range of applications from
automated tracking for security or TV cameras, to a
vision-based human-computer interface. A different
type of application for this technology is to automate
the task of annotating digital video with metadata
that denotes the presence, and a description of the
actions, of people in the video. With the increasing
use of digital multimedia there is a corresponding
increase in the need for tools that enable the fast and
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efficient indexing, querying, and browsing of
multimedia databases. Emerging standards, such as
the MPEG-7 audiovisual format, will support this
concept by providing a standard language for
metadata description schemes for multimedia
content.

Annotating digital tennis footage with metadata such
as time codes and a description of the strokes played
would provide easy access to digital tennis footage
in a video archive. A tennis coach, for example,
would benefit from this by being able to easily
retrieve training footage of certain strokes of his/her
protégé in order to track their improvement over
time, or more importantly, to analyse match footage
of an opponent to identify their weaknesses. Another
possible application for tennis player tracking and
stroke recognition is the automation of statistics
tallying to provide match commentators or home
viewers with direct access to current match statistics.

The System

The aim of this research was to develop a computer
vision system for tracking tennis players and
recognising their strokes. This aim is the tactical
precursor to the automatic annotation of digital
tennis footage with metadata. The approach taken
was to build an entirely software-based system and
to work ‘off-line’ with digital video in the standard
uncompressed AVI format. In this way, the work
was focused on algorithm development rather than
an efficient real-time implementation.

Some specific assumptions were made in order to be
able to realistically achieve the aim. The most
significant assumption is that the camera is
essentially fixed in position with no panning or
zooming used (although camera jitter is accounted
for). Further, the only people on the court are
assumed to be the two players and their shadows are
considered to be part of the player. Finally, the
tracking system requires some initialisation in the
form of capturing the background scene with no
players present. Identification of the key frames, i.e.,
the frames when a stroke is actually played (when
the racquet makes contact with the ball), is supplied
by monitoring the audio stream for the distinct
sound of the impact. In addition, the raw footage is
manually edited into the individual points (rallies)



and the system only attempts to track a single
forecourt player.

As the tennis domain is very predictable, these
assumptions are clear-cut, and can be relaxed one at
a time by adding complexity to the system at a later
stage.

The Algorithm

The algorithm is broken down into three units:

1. Player Finding: The player to be tracked is
identified using a model of the background
scene, standard image processing operations,
and various a priori size and colour constraints.

2. Player Tracking: The player is tracked from one
frame to the next by utilising the size and
position of the player being tracked and their
movement between consecutive frames.

3. Stroke Recognition: The key frames are
identified as those frames where the racquet
makes contact with the ball. These key frames
are then further analysed to classify the tennis
stroke as either: A forehand or backhand ground
stroke, a volley, a smash, or a serve. Stroke
recognition is performed using a three-stage
algorithm based on the player’s position in the
court, finding the position of the player’s
racquet, and finally by finding the racquet arm
of the player.

The structured and predictable nature of the tennis
domain lends itself to exploitation similar to the
notion of “closed-worlds” as applied to the football
domain by Intille & Bobick [3]. That is, the visual
processes that will be used to find the players are
tailored using tennis domain knowledge and
information that has already been learned about the
player from previous processing. Furthermore, the
complexity of the actual tracking problem is greatly
reduced by some simple domain knowledge, e.g.,
that there are only two moving players, in two
spatially distinct regions of the frames, i.e., we can
expect them not to interact at all.

Player Finding

The traditional conceptual approach for tracking
humans is to build and store a model of the scene,
and then segment the humans in video by watching
for variations from the scene model. In the tennis
domain, the scene is the tennis court and the humans
are the tennis players. A reference frame of the
tennis court without any players present can be
thought of as the simplest possible background
model. Given a reference frame and a single frame
from the tennis footage, the aim of the player finding
unit is to derive, by visual means, the coordinates of
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the bounding box that encapsulates the player being
tracked. Looking for large variations from the
background, confirmed by the expected size and
colour of the player, are used to achieve this.

The basic method for identifying large regions of
variation is to first low-pass filter both the
background frame and the current frame to remove
random noise and reduce spatial detail. Then the
pixel-by-pixel absolute difference is taken between
them. The histogram of the difference image will
exhibit a large dominant mode near zero
(representing the static background pixels), and a
smaller mode at a higher level (primarily
representing the variation due to the player). Thus,
by thresholding the difference image we can
separate the player from the background by using a
global threshold value found from the following
equation:

threshold = mean + standard deviation / PSI.

Here PSI (Player Size Index) is a constant that is
assigned based on the expected size of the player in
the frame. In this way, the required percentage of
pixels will be assigned to the player region after
thresholding. The PSI has a limited number of
values that relate to possible player sizes, e.g., when
in the forecourt, on the baseline, or appearing or
disappearing from the scene. If the player falls into a
particular size range, the corresponding PSI is
designated to that frame and used as the initial
estimate for the next frame. The actual PSI values
are calibrated manually for a given set-up.

Once the binary image has been obtained via
thresholding morphological opening and closing
operations, with square (4 x 4) structuring elements,
are then used to remove small areas of noise. Then a
connected component analysis is performed on the
resulting image to identify the binary large objects
(blobs) present. Finally, the blobs found are iterated
through to find the one that is of the correct
dimensions to be the player.

When the player is found in the first frame, a colour
sample is taken as the average of a 5 by 5 grid of
pixels from the centre of the player bounding box.
Therefore, when more than one candidate player
blob is identified (often the case when the player and
their shadow are identified as two separate blobs)
colour matching can be used to confirm the player
blob. Colour matching is implemented as the sum of
the absolute difference in each colour channel —
sometimes referred to as a city-block distance [6].
The blob with the minimum distance to the initial
colour sample of the player is then considered to
represent the player. The operation of the three steps
involved in the player finding unit are illustrated in
Figure 1.



Figure 1: From left to right; the difference image produced from the pixel-by-pixel difference of a frame
with the background reference frame. The difference image after thresholding and morphological
filtering. The original frame with the player’s position confirmed by identifying the bounding box of the
blob that represents the variation in the difference image due to the player.

Player Tracking

Given the background scene image and a set of
sequential frames of tennis footage, the aim is to be
able to track the forecourt tennis player. That is,
knowing at all times whether the player is present,
and following their movement from frame to frame
by maintaining the coordinates of their bounding
box while they are present. The player finding unit is
deployed to find the coordinates of the player’s
bounding box in each frame. While the player
tracking unit, described here, applies robust inter-
frame tracking techniques that further improves the
reliability of the player finding unit.

Tracking requires a manual initialisation step for
each point (rally) in the form of simply confirming
the approximate position and size of the player
found in the first frame. A flag indicating whether
the player is present is then set accordingly, and
maintained throughout. The player presence flag is
only changed if the player disappears from, or re-
appears into, view. The player is considered to have
disappeared if the player finding unit reports the
player as not being present in the current frame and
the player bounding box had one side lying on the
edge of the frame in the previous frame. Similarly,
the player is said to have re-appeared if the
coordinates of the player bounding box have one
side lying on an edge of the frame and the player
was not present in the previous frame.

The mid-point of the player bounding box is
considered to be a good representation of the
player’s current position. Therefore, when the player
is present, the bounding box found is confirmed by
the player tracking unit if its mid-point has moved
less than a pre-set distance between consecutive
frames.
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Stroke Recognition

Given the original set of blobs found by the player
tracking unit for a key frame, i.e., a frame known to
correspond to a tennis stroke, and the coordinates of
the already confirmed player position, the aim of the
stroke recognition unit is to make an elementary
attempt at recognising the stroke played. Five
different generic stroke types are defined in the
current system, although there are many possible
variations. Currently, the classified stroke types are:
Forehand ground stroke; backhand ground stroke;
volley; smash; and serve. On a conceptual level the
player size, racquet orientation, and stroke timing
can all be used to recognise these generic stroke

types.

The stroke recognition unit utilises a three-stage
algorithm. Initially, the player’s relative size and
position within the frame is used to distinguish the
volleys from any other stroke (as a volley, by
definition, is the only stroke played at the net).
Hence, if the player’s PSI is in the small size range
and the player is at the net, the stroke is considered a
volley. Next, if the stroke is not a volley, an attempt
is made to find the position of the racquet head
relative to the player’s position. There are three
distinct possibilities considered here: Above, to the
right, or to the left, of the player. Assuming that we
are tracking a right handed player and that we are
looking at the forecourt player from behind, if the
racquet head is found to the right of the player, the
stroke must be a forehand ground stroke; if the
racquet is found to the left of the player, the stroke
must be a backhand ground stroke; and if the racquet
is found above the player, the stroke must either be a
smash or a serve. Finally, the timing of the stroke
within a point is used to distinguish a serve from a
smash; a serve being the only shot that is played at
the beginning, or with the first few frames, of a point
starting.



Figure 2: Left: The maximum possible racquet head size just fits into the square bounding box in red. A
maximum allowable radius from the mid-point of the player is illustrated in blue. The green right-angled
triangle formed from the mid-points of the player and the racquet is used to calculate the distance of the
racquet from the player. Middle and right: A blob representing the racquet is found on the left of the
player, thus the stroke is recognised as a backhand ground stroke.

The robust determination of the racquet position is
the crux of reliable stroke recognition. This is
achieved through further image processing on the
already segmented binary difference image. It is
expected that the disturbance created by the racquet
head would often have been disconnected from the
player’s disturbance during previous visual
processing. Thus, the first approach for finding the
racquet is to look for a separate blob that could
possibly represent it. As the time of a stroke is
defined as the instant the racquet makes contact with
the ball, it frequently happens that the disturbance of
the racquet and the ball coincide, in fact, the ball’s
disturbance is often more solid and distinctive than
that of the moving racquet. Hence, the racquet blob
found is likely to be a somewhat blurred
combination of the racquet, ball, and the court
background.

The problem of finding the racquet blob is similar to
that of finding the player blob. The full list of blobs
present in the image is iterated, eliminating those
that either contain less than a minimal number of
pixels, or are too large (in either dimension) to be
the racquet. These size criteria, which are easily
established, discount most small noise blobs and
other large disturbances (such as the net). In
addition, to the size criteria, blobs beyond a pre-
determined distance from the mid-point of the player
can also be eliminated. These visual criteria are
illustrated in Figure 2. The final stage for confirming
a racquet blob is to take a 3 x 3 colour sample from
the centre of each blob and to compare them to a
known colour sample of a racquet. A blob is
considered to be a match in colour only if all three
channels are within a required range. If a blob is
found to match, it is regarded as representing the
racquet head. The mid-point of the racquet relative
to the mid-point of the player is then used to classify
the stroke played.

If none of the remaining blobs are found to be a
good colour match, then it is assumed that either the
racquet is contained within the player blob, or its
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disturbance is too distorted or discoloured. In this
case, the stroke recognition unit undertakes further
analysis of the player blob in order to find the arm
holding the racquet. The player blob is first further
morphologically closed through another iteration
each of a dilation and erosion with a large, 7 x 7,
structuring element. Then the player blob is
skeletonised, using the Skeleton Zhou algorithm [4],
to derive a ‘stick figure’ of the player, an example of
which is shown in Figure 3. The major assumption
used here is that the longest branch originating from
a node in the top half of the player’s skeleton (which
discounts branches representing legs and shadows)
represents the arm holding the racquet. Thus, the
end-point is a good representation of racquet
position relative to the player and so the stroke can
be classified.

There were a few different approaches that could
have been used for interpreting a player skeleton,
such as the Hough Transform [5]. However, a more
simplistic approach was used here and was found to
be robust. The end-points of the skeleton are found
by looking for pixels that have exactly one
connected neighbour. Nodes are pixels with three or
more connected neighbours. The length of the
branch for each end-point is measured by counting
pixels while iterating through to the closest node. If
this node is in the upper half of the player, this
branch is considered as possibly representing the
player’s arm holding the racquet. Once all of the
branch lengths have been found, the longest branch
is selected as the end-point representing racquet
position.

The mid-point of the racquet blob, or end-point of
the player skeleton, is therefore used to represent the
position of the racquet. When compared to the mid-
point of the player, using the heuristics described
earlier, the stroke can be classified as a forehand,
backhand, or overhead. The five generic strokes can
thus, in the majority of cases, be recognised,
especially when they are played clearly and in
textbook style.
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Figure 3: A frame where the racquet’s disturbance was unable to be confirmed as all candidate blobs
failed colour matching. The skeleton of the player is instead analysed in an attempt to find the arm
holding the racquet. The top right branch was identified, and thus the position of the racquet relative to
the player was found, helping identify the stroke as a serve.

Discussion

The stated aim of the work has been achieved, albeit
under some restrictive assumptions. The forecourt
player in the available footage was tracked quite
robustly, even when exiting from, or re-entering
into, view. The generic strokes were correctly
recognised for the majority of examples tested.
However, the algorithm indeed mis-recognised a
stroke when either of the two assumptions broke
down, i.e., that the colour sample used to match the
racquet blob is accurate and representative; and that
the skeleton’s longest branch originating from the
upper half represents the arm holding the racquet.
However, as a first attempt the system served well in
bringing to light the issues to be considered in future
research.

It is believed that through further work to relax the
necessary assumptions, the system would be capable
of working well on real tennis training or even
match footage. Thus, the algorithms described here
could form the core technology of a system used for
automatic tennis archive annotation. Significant
further work is also required to improve the
computational performance of the system so that it
works in real-time. However, the methods used and
described here are well studied and so there are a
number of hardware and software solutions already
available for this task.

The system’s limitations are easily identified, and
thus able to be addressed. To achieve more dynamic
and reliable tracking, accounting for shadows,
tracking both of the players, and handling non-
players should be addressed. To be able to work
with match footage the system should be able to
work under camera movement, such as pan and
zoom, and quickly and adaptively build up the
required background scene image. To be more
useful for annotation and statistics tallying, the
system would be required to be capable of selecting
the best key frame of when a stroke is played and
preferably be able to distinguish between a greater
variety of strokes than the five used in this study.
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Conclusions

The point of departure for this research was the
knowledge that current computer vision technology
can be used to analyse a digital video stream to find
a human moving in a scene. One possible
application of this technology is to perform the
useful, real-world, task of automatically annotating
digital video streams with metadata that can then be
used to search or summarise the video content. This
research has demonstrated that for video footage of a
single forecourt tennis player, captured and analysed
under certain constraints, it is possible to solve this
computer vision problem and hence to develop these
types of applications. This was achieved by breaking
the problem down into conceptual parts, solving
these parts one by one by the application of
relatively simple image processing techniques and
some domain specific knowledge.
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Abstract ages containing simple geometric objects. This approach
has been used to retrieve images of tools and CAD geomet-
Searching for an object in a general image collection us- ric objects [13] and also medical images [10]. For most
ing current image retrieval systems, is still a problem. The other types of images, such as images containing people,
retrieval results contain many unrelated images. In pro- sceneries, etc, object recognition techniques are infeasible.
viding an effective and robust image database, objects in  To pursuit the complexity of these images, researches
an image need to be extracted. Since the number of storedhen employed statistical indexing based on colour and tex-
images can be very large, automation is an important as- ture [7], [3]. Images can be retrieved by specifying a com-
pect. Image indexing is a technique that extracts objectsbination of RGB colour values, textural measures, and more
in an image automatically. The aim of this research is to recently using other features such as shapes and spatial rela-
propose a new object based indexing system based on extions between regions in the image [4], [11], [12]. Colour is
tracting salient region representative from the image and a low level feature, and by itself cannot adequately describe
categorising an image into different types. objects in images. To enable objects to be extracted and in-
Different image has different characteristics and often dexed within the image, image segmentation technique are
require different image processing techniques. Currently, used [9]. However, segmentation results of general images
most content based image retrieval (CBIR) systems oper-are noisy and contain too many regions. Thus, this approach
ate on all images, without pre-sorting these images into dif- are still limited to simple objects, and thus for general im-
ferent types. This resulted in limitations on retrieval per- ages currently do not provide a meaningful object based
formance and accuracy. Categories described here are ofrepresentation.
statistical and syntactical descriptions rather than semanti-  Techniques used by general CBIR systems are generic
cal. By analysing which features are dominant in an image, and aimed to handle all types of images. This is not op-
two outcomes will be obtained: category for that image and timal, since different images have different level of com-
salient object. ldentifying salient object further reduce the plexity and may require different features and analysis tech-
retrieval results into relevant images. nigues. For example, shape retrieval is not suitable for im-
ages containing mostly textures or irregular shapes, such
as landscape images. Currently, most content based image
1. Introduction retrieval (CBIR) systems operate uniformly on all images,
without pre-sorting these images into different types. This
has resulted in limitations on retrieval performance and ac-
curacy.

Tools available for searching for an image within a col-
lections are still far from satisfactory. General images,
such as ones found in the internet can be very complex.
Currently, standard internet image searching tools such as2. Proposed System
Google use image filenames as indexing attributes. This
result shows that a search keyword “mango” can results in  Rather than matching the whole image, it is more sensi-
a large number of retrieved images, mostly do not containble to firstly categorisehe image into different types. This
the fruit mango. To index an image using its content, there is performed by finding the dominant characteristics of the
are currently three general approacheiject recognition,  image, such as how much texture, how complex the shapes
statistical analysisndimage segmentatiorObject recog-  are, and the presence of a dominant region. This strategy
nition techniques are limited to specific domains, e.g., im- is supported by psychophysical evidence showing that hu-
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Category Name Feature Characteristics I L, =

Landscape Colour = green and blue A - cacegory
Spatial relation = vertical layer g I eecore

People Colour = human skin e
Shape = oval S

Shape dominant | Number of regions = small = I —
Shapes = non complex W Gzmes mermm
Figure/background image = yes

Colour dominant | Number of regions = large | Features | adexed rmage

Colour distribution = smooth
Texture dominant | Number of regions = large

Colour distribution = non smooth ) zencure _wwase |
Structure dominant Number of regions = large 5
Shapes = complex

¥ colour

shape

Table 1. Image Categories

Figure 1. Category Indexing Tool
mans holistically classify visual stimuli before recognising
the individual parts [6].

Based on the above intuition, the following approach to
index images using categories is proposed. To provide im-
age retrieval in the internet, this system can be implemented
in two steps. Firstly, images are retrieved using filename 4. structure dominan(othe_r more complex images, containing
such as using Google’s image searching tool. Google search ~ Structural and geometric regions)
engine is used as an example as it index a large collections If by “mango” the user interest means a picture of a sin-
of images in the internet. Results from this search will then gle mango fruit, she/he would select the shape dominant
be classified into four different general and two semantic category. However, if mango refers to a mango tree, the tex-
categories, shown in Table 1. ture dominant category is more relevant. In many cases the

Typical indexing system using the proposed category categories may coincide with different semantic meanings
is illustrated in Figure 1. The dialog box shows the fea- of the search term. In searching fpeople colour dom-
tures extracted from an image and the measured categorynant (of skin colour) may be the most relevant category,
for that image. The category is obtained automatically by whereas in searching forteouse structure dominant may
analysing the composition of colour, texture and structure be the most relevant.
from the main regions. The regions are produced using The features described in Table 1 involves colour his-
the perception-based image segmentation system [14]. Bytogram, size and location of regions, number of regions and
implementing perceptual grouping, the results achieved aretextural descriptions. Using this classification, the image
clean and only containing significant regions. Some seg-shown in Figure 2(a), can be classified &adour dominant
mentation results using this technique are illustrated in Fig- image, because of the appearance of large areas of smooth
ure 2 (different colour indicates different region). colour. Figure 2(b) will be classified adandscapémage

Using this image categorisation, a large retrieval results with the large tree areas. Figure 2(c) will be classified as a
can be organised into groups that are based on the featureBeopleimage with the appearance of skin colour region.
of the image content. This would make navigation of re-  Since images are segmented into a set of meaningful re-
sults easier. The sheer number of uncorrelated retrieval re-gions, retrieval results can be further pruned by performing
sults makes the searching task difficult and tedious. Usingobject based query. In the example above, if the search for a
the category, a user could exploit the organisation of images‘mango” aimed to retrieve all images that contain (a) mango
into categories to locate images of interest. The meaning offruit(s), the user initially is given six different groupings of
each category will be explained in Section 3.4. For exam- retrieval results. To retrieve all images that contain a single
ple, searching for the image “mango” would result in the or a collection of mango fruit(s), further object based query
following categories. can be performed by firstly select the shape dominant group
to choose images that have a single mango object. The user
can then select the individual mango region from the image
2. colour dominant(images containing smooth areas, such as as the query object. The matching will then be performed to

mango slices, some mango fruits)

3. texture dominan{images containing textural areas, such as
mango trees)

1. shape dominantimages likely containing a mango fruit)
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Figure 2. Indexing Results using Perception- Figure 3. Proposed Image Indexing System
Based Segmentation Technique

e Over segmented results, containing noisy regions at
objects’ boundaries and textural areas.

all images that have similar shape and colour combination
of the selected region. This will result in retrieval images e The demarcation of regions do not always follow per-
containing not only a single mango fruit but also images ceptual intuitions
containing (a) mango(s) within other objects. Additionally,
within each groupings, further classification can be made, e Results are very sensitive to threshold and requiring
creating a so called “parse-tree” query. manual tuning

Selecting the best segmentation technique is an impor-
tant issue. The difficulty in providing a meaningful seg-
) ) ~mentation is due to the non-correlation of existing colour

Based on the above considerations, the proposed objecjjsiances with human perception of objects. Properties of
based image indexing system is descnb.ed in F|gure.3. Thispatural images are too complex, requiring new perceptually
system consists of the following stages: segmentation andpitive metrics, which can adapt to intensity variations.
grouping stage, dominant region extraction and category aggitionally, since each object in an image consists of a
generation. An input image is firstly segmented. The seg-pjerarchical composition, the segmentation process needs
mentation results are then grouped together, using the techg, e performed hierarchically. Some perceptual measures,
nique proposed in [14]. After this process, both low level herefore, should be added to improve the segmentation re-
and high level features are extracted from each region andgjis.
by analysing these features, a category and dominant re- 1, ovide some perceptual foundations to the image
gions will be obtained for that image. To determine which goqmentation implementation, the use of HVC-based region
region is dominant, some heurlstlc_s will be generated_. A growing segmentation has been proposed, as reported in
re"?"a”ce feedback such as used in [5], can be used |nter[15]. This segmentation approach uses adaptive threshold
actively by users to change the chosen object and categoryy, ;g ejiminates the need for manual tuning. This is per-

3. Methodology

within the selected retrieved images. formed by dividing an image into blocks, at each block,
) the presence of a strong edge indicates pixels requiring
3.1 Image Segmentation high threshold value. This value is then used as a thresh-

old for all pixels in that block. To avoid missing any re-

Although image segmentation techniques have beengions, the threshold is increased by a small amount to pro-
studied extensively, there are still some drawbacks and is-duce a slightly over-segmented results. It was perceived
sues that need to be solved. One of the drawback is the qualthat it is better to have an over-segmented image than
ity of the segmentation results for natural images. There areunder-segmented results. Most of the noisy regions will be
various complexities in natural images that need considera-grouped later in the region grouping stage. Example of re-
tion, such as variation of texture and lighting, and complex sults from this segmentation technique is shown in Figure 4.
object shapes. Results from existing techniques have theThis approach will be used in the proposed image indexing
following properties: system.
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data abstraction than the standard image segmentation tech-
niques.

3.3 Dominant Region Extraction

(a) Parrotimage  (b) Claire Image  (c) AI‘exis Image

It is difficult to know which object is of interest. An
image can contain background objects which may look the
Figure 4. Segmentation Results same from the computer’s point of view with the regions
that belong to main objects. There might also be multiple
objects. However, generally, there is a process of selection
K N of important from less important objects in an image in hu-
f&e’(g L] man perception. Often the selection is not always based on
lﬁf"iﬁ é‘iﬁ% semantic reasonings. Syntactical relations between regions,
] "g@gﬁiﬂ : such as difference in size and texture can create a point of
(a) Parrot Image (b) Casalmage  (c) Alexis Imageinterests. A small house in the forest as depicted in Figure 3

is an example of region of interest. In Gestalt principles, this
is described as figure-background principle (smaller figure
Figure 5. Size Grouping Results against bigger surrounding objects).

The aim of dominant region extraction is to eliminate
background, non-important regions, producing the most es-
sential region. The reduction of non useful regions are
required to reduced the matching and expensive structural

Gestalt laws state that visual elements that belong to theanalysis. The background will be eliminated by apply-
same object, have the properties sifilarity, proximity,  ing the figure/background principle of Gestalt laws. By
good continuation, closure, common fate, surrounded-nessanalysing that the largest region surrounding other objects
and relative size, and symmefy}. In the area of psychol-  entirely can conclude that this region is the background thus
ogy, these principles have been accepted as the perceptualiminated. Similar idea was also used in the form of Re-
grouping laws. For this reason, Gestalt principles are usedgion of Interests (ROI), used in a CBIR system proposed
as the basis for the region grouping stage. The principleshy Moghaddam et. al. in [8]. In this system, however, the
of proximity, similarity and good continuation can be used regions are extracted manually by users.
to group segments into regions. The principles of closure, | the proposed system, dominant region will be ex-
common fate, symmetry and surrounded-ness, however, caiacted automatically by analysing the size (largest), loca-
be used for higher level grouping. This high level group- tjon (center) of the regions and appearance of interesting
ing is applied to find relationships between regions or ob- shapes and structures. Interesting shapes will be judged on

jects’ components. This was then translated into a groupingine region shape regularity and its geometric properties.
hierarchical formation. The issue would then how should

the grouping operation should be performed? What are the3 4 Cat G f
grouping algorithm and rules required? To solve this issue, ™" ategory -eneration

three different features were considergzkture, colouand

line continuation[18]. The first grouping performed is the Category generation is then responsible to assign an im-
size grouping. The aim of this grouping is to merge noisy age type. Image type is aimed to provide sufficient group-
areas (region whose size is less than 100) using the simiings of images with similar characteristics. The issue would
larity of region HVC means. Example of results from this then be: “What are the succinct category that can capture
grouping stage is shown in Figure 5. different image characteristics?”

The next grouping stage is the colour histogram group-  To categorise images without performing object recogni-
ing. This is performed by comparing the similarity of two tion, the classification shown in Table 1 is used. It is based
region colour histograms. This is then followed by line con- on the strength of different features that can be exploited
tinuation grouping. Regions are grouped based on com-from different image type. For example, images with tex-
paring line continuation surrounding regions. Examples ture dominant can be handled more effectively with a ro-
of final grouping results is shown in Figure 2. At each bust texture matching, whereas images under shape domi-
grouping step, the number of regions are reduced at eactant can concentrate on good shape matching.
stage of grouping, finally leaving only significant compo- Shape dominant category is for images containing a
nents. These results are more meaningful and provide moresmall number of regions. These regions also have simple

3.2 Region Grouping
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and regular shapes. Images categorised under colour dom- [~
inant contains large number of smooth (non-textured) re-

gions with less regular shapes. Texture dominant images
are images that contain a large number of textural regions.
There are many ways in detecting and describing texture.

Using results from image segmentation, textural areas can
be defined as neighboring regions whose size are small and
spurious. These regions were marked as texture map and
have been used successfully in segmenting texture for gen-
eral images as reported in [16]. By measuring how many

regions from segmentation are spurious regions, we can es-
timate whether the image is texture dominant. Using this Figure 6. Image structure describes using re-
texture map, texture dominant images can be classified as |ational tree

images containing mostly textural regions.

Images used here is assumed to be general whose s¢

mantic are unknown a priori. However, out of these im- QOuery | Search _l i
ages, many of them contain images which have distinct fea- using filenames ‘_
tures, whereby from these features, semantic meaning ca : |
be derived. Such example of images are landscape image
and images containing people. Landscape images usually
contain large regions of sky (certain blue colour) and grass
or trees (certain green colour). Using the colour combina-

tion, it has been proven successful in retrieving landscape| 1,7 doabase 1 | Group Seloct
images. Images containing people can be indexed and re
trieved by analysing the presence of skin colour in the im-
age. Since the ultimate goal is to perform image classifi-
cation, using both facts another categories listed in Table 1
are added under classification of people and landscape. It

would be possible to add further classification to domain Figure 7. Retrieval System Implementation
specific images, such as botanical data, museum artefact,

etc, whose retrieval has been demonstrated in systems suc
as [10].

Resul
Category Indexer ; L

Internet search engine

Object Select
& Query

Object Based Results

E.S Query Interface

Each of the different category is derived based on the There are many types of queries in CBIR, such as us-
analysis of the features extracted, described above. To aling keyword (semantic), or graphical descriptions (query
low such classification, each dominant region extracted isby example, sketch, etc.). In this system, both queries are
analysed for its various features. Both statistical and struc-combined. Figure 7 shows the design prototype. The sys-
tural features will be used. This will include colour, texture tem will be implemented to retrieve images in internet. The
and shape. For each shape some measures will be genesearch starts with query by keyword. The system will then
ated such as number of corners, degree of curvedness, et&ends this query to standard internet search engine such as

to distinguish between regular and complex shape. Googleimage search tool to retrieve all images based on
image filenames The system will download all the links

Another new contribution in this project is the use of ob- as well as all the thumbnails to be analysed. The analysis
ject structure [17]. Researches in psychology stated thatwill group the retrieval results into 6 different categories de-
classification of a scene may remain valid as long as thescribed previously. Users can then prune the searching, by
relative relationships between the image regions remain thenavigating the classification and selecting an object from an
same [2]. In the category dftructure dominantthe ex- image. Since each region is segmented in the imalgject
istence of certain “interesting” or “prototype” structure will based quergan then be performed, reducing further to im-
be used to represent an image and used for matching. Ratheages that relates to the batémantic keywordndgraphical
than matching the whole image or even the whole object descriptions
(since same object can appear differently in different im-  Currently, segmentation and feature extraction stages
ages), regions and their relations can be used instead. Arhave been performed and the overall retrieval system is cur-
example of a relational tree extracted is shown in Figure 6. rently being developed.
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4. Conclusions

In order to retrieve images from large collections, a ro-
bust object based CBIR is crucial. This research aims to

develop an image retrieval system that is based on extract-

ing the dominant figure / region in the image, which subse-

quently placing an image into one of the proposed generic [12]

categories. The indexing information consists of not only
low level but high level features. Images will be classified

into a set of types. An indexing template will be generated [13]

automatically for each type, based on visual observation of
which combination of features occurs for that type of im-

age. Such template will be used to match images against

the query information. We need to investigate the suitable
and succinct set of features for each type of template.

This research will provide a new image retrieval system
that provides users with the ability to further classify the
content of an image. The impact from this method is more

accurate retrieval results. An image will be represented by [16]

rich descriptions that relate directly to the content of the
image.
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Abstract

In order to develop a method for classifying masses in
digitised screening mammograms as benign or malignant,
260 image texture features were measured on 43 images of
known malignant masses and 28 images of known benign
masses. A genetic algorithm was used to select the opti-
mal subset of & features based on A, scores where k is a
natural number. The leave-one-out A, score for the opti-
mal % features ranges from 0.80 to 0.95 for k& = 2,3, ...12.
Since feature space reduction can result in optimistic esti-
mates of classifier performance, the statistical significance
of these scores were estimated by computing the empirical
distribution of A, scoresin the context of the experimental
parameters. For k = 6,7, 8, the A, scoreswere found to be
significant at thep = 0.05 level.

1. Introduction

In thefield of computer-assisted diagnosis, many authors
have demonstrated that the texture of image intensity sur-
faces of screening mammograms provides information re-
garding the disease state of tissue [3, 4, 5]. Generally, these
texture features are ones that are not seen by radiologists
during visual inspection of the mammogram and are not
based on models of the appearance of cancer in mammo-
grams. Accordingly, the nature of texture features that are
likely to provide positive predictive power is not well con-
strained. The result is that researchers are obliged to search
far afield in order to discover optima combinations of fea

tures. In addition, obtaining large numbers of training im-
ages on which to base the devel opment of algorithmsis not
trivial and so a natural consequence is that studies comprise
relatively small numbers of training images compared to the
dimension of the feature space [2, 4].

Classification based on large number of features and a
small training set can be optimistically biased. It can be
shown that if the dimension of the feature space is greater
than, or equal to, one less than the number of training im-
ages, then for any assignment of the training images into
two groups, there exists a hyperplane which separates the
two groups perfectly. Moreover, the hyperplane can be cho-
sen so that the distance between an image in the feature
space and the hyperplane (magnitude of the discriminant
score) is the same for each training image.

One way to overcome this problem is to extract from the
original feature space, a low-dimensional subspace that is
realistic with respect to the size of the training data set. Se-
lecting an arbitrary low-dimensional subspace defeats the
purpose of considering many features, so the natural choice
is a subspace that is optimal in some sense with respect to
distinguishing between benign and malignant cases. How-
ever, the performance of the selected subspace in terms of
classification is bound to be high. Thisis because in order
to find the optima subset, many different combinations of
features are tested. It is expected that some of them will
have a performance higher than average while others below
average. From this collection, the feature combination that
has the highest performance is selected, hence the perfor-
mance will be high. The question is: is the performance of
the optimal feature subspace selected greater than could be
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expected by chance?

The above question can be answered by performing a
significance test. Thiswill require knowledge of the distri-
bution of the maximal performance scores obtained by re-
peating the selection process described above many times
for data where there is no difference between the two
groups. The distribution of these maximal A, scoresis not
known and so was estimated using simulations.

Here we report on an experiment in which 260 tex-
ture features were measured on 71 training images. A ge-
netic algorithm was used to select the k-dimensional fea-
ture subspace that is optimal with respect to A, score for
k = 2,...,12. The significance of the A, score was mea-
sured by constructing empirical distributions of A, scores
for each k based on the full feature selection process.

2. Methods and materials
2.1 Dataset

The data set comprises a total of 71 screening mammo-
grams of which 43 contain malignant masses and 28 contain
benign masses. The mammograms were obtained from the
archives of BreastScreenSA, the South Australia branch of
the National Screening Program in Australia. All malig-
nant masses were biospy proven and the benign cases had a
three years elapse time showing no sign of malignance. As
the primary objective of the project isto assist diagnosis of
clinically difficult cases, only the recall cases wereincluded
in the data set.

Electronic copies of the selected mammograms were ac-
quired with a Lumisys Lumiscan 150 laser digitiser. The
resulting images have a spatial resolution of 50 pm and
a depth resolution of 12 bits (4096 gray-level resolution).
The images were reviewed and annotated by a radiologist
experienced in mammography. Corresponding to the radi-
ologist’s annotation, regions of interest (ROIs) with a cen-
tering or near-centering mass were located. Thesize of each
ROI is1024 x 1024 pixelsat full spatial resolution.

2.2 Texture measures

A total of 260 texture features were measured. These
included 12 features based on image energy (see below), 8
based on gradients, and 240 based on co-occurrence matri-
ces.

2.2.1 TexturesBased on Co-occurrence Matrices

The co-occurrence matrix at distance d and direction 6 is
the array, P, where P(i,7) is the joint probability that a
pixel has image intensity value ¢ and that the pixel at dis-
tance d in direction # has value j. In addition to a choice of

direction and distance, a co-occurrence matrix also requires
a choice of quantisation of image intensity values. If the
range of image intensity values is quantised to ¢ bins, the
co-occurrence matrix will be of size ¢ x q.

Co-occurrence matrices were constructed for distances
d = 11,15,21, 25,31, directions = 0, 7/2 and quantisa-
tion resolutions ¢ = 400, 100, 50 for 40 x 40 haf overlap-
ping blocks in the straightened border region. The straight-
ened border region, also called the rubber band straightened
image, is an 80 pixel wide ring about the mass [4]. The di-
rections # = 0, w/2 were chosen because they represent the
directions perpendicular and parallel to the boundary of the
mass. Radia structures near the mass boundary are known
signatures of malignant masses. These 30 co-occurrence
matrices were computed on two versions of the straight-
ened border region. Thefirst, called the polygon method, is
found by connecting user defined points by line segments.
The second, called the threshold method is found by finding
athreshold for the ROl semi-automatically [2]. Hence ato-
tal of 60 co-occurrence matrices were constructed for every
40 x 40 block. The number of blocks varied from image
to image depending on the size of the straightened border
region, which, in turn varied according to the size of the
mass.

For every co-occurrence matrix, the inverse distant mo-
ment (IDM) was computed according to the following for-
mula,

g—1lqg—1

IDM =3 >+ " (7,/1_ e P(i, j) €y

i=0 j=0

For fixed values of d, 6, q, and choice of boundary method,
the distribution of IDM valuesfor all the 40 x 40 blocksin
the straightened border region was recored. The first four
moments of this distribution were recorded as features on
which to base classification. Hence there were a total of
240 features based on co-occurrence matrices.

2.2.2 Intensity Gradient Features

The mass border was determined in each ROI using a poly-
gon method. Background subtraction was performed. The
geometric center of the polygon was used to define an 80
pixel wide annulus containing the border of the mass. The
ROI was subsampled by afactor of 5 reducing the size from
1024 x 1024 to 204 x 204. The directional derivatives of
the image intensity surface were computed in the directions
both normal and tangential to the mass boundary. The first
four moments of the distributions of the magnitudes of these
directional derivates result in eight gradient features.
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2.2.3 Local Image Energy Features

The local energy image y was computed from the image x
by

1 n m )

Yol T @m D)0+ 1) h;n k;m T (@)
For the region within the mass, the values m = n = 12
were used to produce an energy image restricted to the mass
region. Two energy images were derived from the straight-
ened border region. One with valuesm = 3 and n = 10,
and the other with valuesm = 10 and n = 3. These choices
were made to enhance features normal to the mass bound-
ary in the first case, and tangential to the boundary in the
second case.

For each of the three resulting energy images, the first
four moments of the distribution of energy values were
recorded resulting in a total of 12 image energy features
on which to base classification and an over all total of 260
features from all three classes of features combined.

2.3 Genetic algorithm

A genetic algorithm [1] was used for feature subsets se-
lection. The fitness criterion is based on the area under
the receiver operating characteristic (ROC) curve, A, com-
puted using the trapesoidal rule. (Technically, A, referred
to the area under a binormal ROC curve.) The genetic al-
gorithm was initialised with a population of 1000 and is al-
lowed to evolve over 500 generations. The mutation rate
was set to 0.1. For each generation, the chromosomes with
A, score higher than the average A, score of the current
generation were retained in the parent pool. The remaining
chromosomes were deleted from the population.

3. Classification results

The classification performance was eval uated using ROC
methodology and the area under the ROC curve A, was
measured. As the optimal number of features & is not
known a priori, classification using a range of feature num-
ber was performed. Figure 1 shows the training and the
leave-one-out cross-validated A, scores corresponding to
k = 2,3,...12. Thefeature subsets correspond to the leave-
one-out A, scores are shown in Table 1. None of the opti-
mal feature subsets include intensity gradient features, and
therefore, these are not shown in Table 1.

4. Statistical significance estimation

In estimating the statistical significance of the classifica-
tion results, the null hypothesis was that there is no differ-
ence between the two groups with respect to the & selected
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Figure 1. The classification results, both train-
ing and cross-validated A, scores, are plotted
against the number of features k. The cross-
validated A, scores are shown with error bars
of one standard deviation.

features. The null hypothesisimpliesthat the observed clas-
sification results are no better than would be expected by
chance. An empirical distribution of the maximal A, scores
based on the null hypothesis was simulated for each k. This
was done by using a bootstrap method to generate 500 dif-
ferent 260 dimensional feature spaces with 71 data points
and randomly assigning the data points to one group of 28
and the other of 43. For each of the 500 feature spaces,
the genetic algorithm was used to search for the optimal
k-dimensional subspace where & = 3,4,...10, and the as-
sociated optimal A, scorewas recorded. Figure 2 showsthe
training maximal A, distributions for £ = 3 and k£ = 10.
For k = 4,5, ...9, the distributions were intermediate to the
ones shown in the figure.

The statistical significance of the cross-validated A,
scores are the ones of interest since the cross-validated A,
scores provide a better (less biased) estimate of the classi-
fication performance. In order to estimate such statistical
significance, the cross-validated A, scores should be com-
pared to the cross-validated A, score distributions. Unfor-
tunately, the cpu time needed to compute the cross-validated
A, score distributions was prohibitively large. Instead, the
training A, distributions were used. This gives a conser-
vative estimate of the significance because A, scores based
on training data are positively biased when compared to the
leave-one-out A, scores. The statistical significance esti-
mates of the leave-one-out A, scores k& = 3,4,...10 are
shown in Figure 3. For k = 6,7,8 the A, scores were
found to be significantly larger than predicted by the null
hypothesisat thep = 0.05 level.
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Figure 2. The empirical distributions of the
training A, score for £k = 3 and 10. Each dis-
tribution consists of 500 data points.

5. Discussion and conclusion

Drawing conclusion regarding classification experiments
comprising data sets that are small in size relative to the
dimension of the feature space is always tenuous. Merely
reporting the classification scores without incorporating the
bias originating from the optimisation steps used to arrive
a these scores does not provide sufficient information to
judge the classification. Reporting confidence intervals for
the classification performance score still does not acknowl-
edge the bias of the method used to arrive at the score. This
isborne out by the fact that the A, score for some values of
k were high but not significant. For example, for £ = 10,
A, = .9286 but the p-value was near 0.3. By generating
an empirical distribution of classifier performance values, it
is possible to address the question of the significance of the
classification performance measured experimentally.
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Table 1. Optimal feature subsets corresponding to the leave-one-out A, scores in Figure 1. Table
entries are the values of & for which that feature appeared in the optimal k feature subset. @, d
and 0 are parameters of the co-occurrence matrices where @ is the gray-level scale quantisation,
d is distance in pixels and ¢ is the direction measured anti-clockwise with 0 pointing vertically
downward. M1, M2, M3 and M4 are the first 4 moments of the distribution of the inverse difference
moment measured on co-occurrence matrices. Local images A,B and C are mass center region 25
x 25 pixels, straightened border regions 7 x 21 pixels and 21 x 7 pixels, respectively. m1, m2, m3
and m4 are the first four moments of the distribution of the energy values.

Co-occurrence matrix based features Local image energy features
Border region by Border region by
threshold method polygon method
Q | d 0 M1 M2 M3 M4 M1 M2 | M3 | M4 mL| m2 | m3 | m4
400 | 31| O 3 4 || A 7-12 | 9-11
/2
25| 0 8,10,12
/2
211 0 24-12 | 3 2
/2
15 0 12 11 8-10
/2 | 6-7,12
11 0
/2 4
100 | 31| O 5-10,12 B
/2
25 0 6-7,9
/2 11 11
21 0 12
/2
15 0 12
/2 | 811 5
11 0
w/2 | 810 11 5-7,12
50 |31 O 11 1 || C 12
/2 3 4
25 0 11
w/2 | 810 | 57,12
21 0 12
/2 10
15 0
/2
11 0
/2
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Abstract

Most cursive script recognisers, segment the words into
characters, either prior to recognition or during
recognition. Whole of word recognition removes the
needs for segmentation of the word into characters,
eliminating problems associated with poor placement or
missing segmentation points. The clear problem with
this is that instead of a finite alphanumeric A-Z, 0-9
vocabulary, an unbounded word vocabulary is needed
for the unrestrained case. However, in many cases, the
application context means that there will be a strictly
finite number of words in the application vocabulary.
Therefore word recognition becomes feasible. Some
examples are signature recognition and the words
indicating the dollar amount on a cheque.

This paper examines the current methods of whole word
or holistic word recognition methods giving special
attention to useful features in recognition algorithms.
Some useful features mentioned in the literature are
ascenders, descenders, holes, loops, near loops, number
and direction of strokes, the direction and orientation of
the outer contour of the word, endpoints, cross points,
and word length.

An attempt is made to introduce a new feature, 1D word
profile, based on horizontal average of the word image.
Method is tested with a sample of 72 machine printed
cursive words and the results are compared with
existing holistic features. Applying the technique for
handwriting is under evaluation.

Current Word Recognition Methods

According to a survey on off-line cursive word
recognition by Steinherz, Rivlin and Intrator [1],
features useful in recognition of off-line segment-free
recognition of cursive word recognition can be classified
into three categories based on representation level, ie:

1. low level

2. medium level

3. high level
Low level features include, smoothed traces of the word
contour, pieces of strokes between anchor points, edges
of the polygonal approximation etc.
Medium level category is an aggregation of low level
features to serve as primitives. Medium level features
are continuous in nature in contrast to low level features.

High level features are holistic or global features such as
ascenders, descenders, loops, i dots, t strokes etc.
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The paper summarises the different algorithms proposed
for off-line cursive word recognition. They include
minimum edit distance calculations based on dynamic
programming, Hidden Markov Models or other
specialised methods.

Govindaraju and Krishnamurthy [2] presents an
algorithm which uses temporal information derived from
off-line word images in the form of uptrends and
downtrends of each stroke for the holistic recognition of
off-line cursive words. This method basically applicable,
only to cursive words and small lexicons. Method
represents the off-line cursive word as a set of strokes.
Each stroke is traversed to extract global contour
features relating to the upstroke and downstroke
movements of the pen. First the binarised word image is
skeletonised using a standard thinning algorithm. Then
the image is subdivided into three zones: Upper, Middle
and Lower [Fig. 1]. For the recognition process, an array
of inception and terminal points of each stroke is
generated. A feature vector [Fig 2] is created using the
peak and valley points identified along the word contour.
The attributes of the feature vector subset of each stroke
piece between two feature points are as follows:

1. Orientation (Up or Down)

2. Slope of Stroke

3. Length of Stroke

4. Stroke piece start zone (Upper, Middle and

Lower)
5. Stroke piece end zone (Upper, Middle and
Lower)

To minimise the Influence of ligatures, components of
the vectors, which have the same start and end zones and
the slope that is almost zero are deleted.

U —»—= —
% ,.l'f. '!f.l"iII
L f

U — Upper zone
M — Middle zone
L — Lower zone

Fig. 1 Reference lining on word image (Ref 2)
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where:

Column 1: Orientation (Up: 1; Down: 0)

Column 2: Slope of stroke piece

Column 3: Length of stroke piece

Column 4 & 5: Stroke piece Start and End_zones

(Upper: 1; Middle:2; Lower: 3)

Fig.2  The feature vector matrix of the image in Fig.

1 (Ref 2)

Parisse [3] presents a method of use of simplified
profiles of word shapes for the global recognition of off-
line handwriting.

This method, first extracts the complete contour of a
digitised word. By eliminating internal contours, the
upper and lower parts of the contour of the image are
obtained [Fig 3], and transformed into a series of
vectors. The upper and the lower profiles extracted
correspond to two series of vectors representing the top
and the bottom of the word. Vectorization, ie. series of
points obtained through contour extraction is
transformed into a series of vectors, is the next process
before attempting comparison. Dynamic time warping
technique is used for comparison of two vector series, ie.
upper profile of the word to be recognised with the upper
profile of the known word.

This global method is limited to a smaller lexicon as
training of each individual word is required. To
generalise it to a larger lexicon, the use of sub profiles
[Fig 4], that are the profiles of strings of two or three
letters or n-grams are extracted and the extraction
procedure is totally automatic. In contrast to global
comparison of word profiles, recognition will be based
in seeking of all the profiles of known n-grams in the
shape of the unknown word using dynamic time warping
algorithm.

Guillevic and Suen [4] propose a method for
recognizing  unconstrained,  writer  independent,
handwritten cursive words belonging to a small static
lexicon, ie amounts written in bank cheques. After pre-
processing,  slant  correction  mainly, amount
segmentation into words and extraction of global
features for the recognition module are performed.
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Fig 3 Processing of the word ‘robin’ to extract upper
and lower profile vectors (Ref 3)

Fig 4  Extracted sub-profile for the ‘de’ in the word
‘index’ (Ref 3)

Seven types of global features are extracted from the
word image, [Fig 5] and [Fig 6].
They are:
1. Ascenders
Descenders
Loops
Estimate of the word length
Vertical Strokes
Horizontal Strokes
Diagonal Strokes

Nownkwd

Thresholds for ascenders and descenders are determined
empirically and are expressed as a percentage of the
main body height. Ascenders and descenders are
detected by following the upper and the lower contour of
the word respectively. Word length is estimated as the
number of central threshold crossings. Strokes are
extracted using mathematical morphology operations.

Input feature vector is different to class feature vector.
Input or word feature vector consists of eleven features,
relative position of ascenders, descenders, loops, strokes,
number of ascenders, descenders, loops and the word
length. When classifying, this input feature vector is
converted to the class feature vector, which is build up
of eleven sub vectors. Class feature vector is compared
to the vectors obtained from the training sample.

Nearest neighbour classifier is the classifying technique
used. Minimum shift distance is defined to get the
distance between two feature vectors
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a. Ascender threshold
b. Reference lines
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Fig 5 Ascender, Descender and Loop features (Ref 4)
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Fig 6  Stroke features: (a) Original Image (b)
Vertical (c) Horizontal (d-e) Diagonal Features (Ref 4)

Madhvanath and Krpasundar [5], present a technique
for pruning of large lexicons for recognition of cursive
script words. This technique involves extraction and
representation of down-ward strokes from the cursive
word to obtain a generalised descriptor, which is
matched with ideal descriptors.

A new approach to the method presented in [11] is used
in obtaining shape descriptors (M-medium, A-Ascender,
D-Descender, F-f-stroke and U-unknown), from the
down ward strokes of off/on line strokes. In this
approach, each downward stroke has been represented
by an ordered pair (u, 1) where u and | are in the range [-
1, +1], and a word is represented as a sequence of such
(u, 1) pairs. Limiting contour extrema has been used to
approximate the end points as shown in Fig 7.

To compute the distance between the descriptor
extracted from the image and the ‘ideal’ descriptor
corresponding to a given word (ASCII string derived),
elastic matching technique is used and implemented
using a trie-representation, ie. organising the lexicon
entries and their ideal descriptors as a trie of stroke
classes.

Lomer Zae

4

Fig 7 Upper and lower extensions of a stroke (Ref 5)
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Guillevic and Suen [6], describe a fast reader system in
which the recognition is done at the sentence level.
Information from the graphical input is supplemented
with the knowledge of context, orthography, syntax and
semantics as the skilled human reader does in text
reading. Method is tested on bank check processing.
Theoretically this method is more robust against spelling
mistakes, missing letters, unreadable letters etc.

The primary features extracting should be invariant
enough and at the same time discriminative enough. So
the features selected here are

1. Loops

2. Near loops

3. Ascenders

4. Descenders

5. Horizontal and vertical strokes
When these primary features are not sufficient,
secondary features such as the characters that are
adjacent to blank spaces and the estimation of the
number of characters in an input word are useful.

Cai and Liu [7] present a new method to automatically
determine the parameters of Gabor filters to extract
structural features from word images. Features used in
this system are the parameters of word image line
segments, ie orientation, length and line centroid.
Extraction of these line segments would be based on the
output of the Gabor filter. Since it is difficult to order 2D
word image features in 1D domain, all line segments in a
word are divided into eight groups according to their
orientation and each group is further divided into three
sub-groups based on four base lines. Dynamic
programming is used to calculate the distance between
two words.

Madhvanath and Govindaraju [8], discuss the use of
holistic features in their address classifier implemented
at CEDAR. Features used by the system are the word
length, number and positions of ascenders, descenders,
loops and points of return. Macro features, or composite
features such as ‘ff” and ‘ty’ are also extracted and used
in the classifier to enhance the scores. Feature
equivalence rules provide means of normalization
among different writing styles.

Madhvanath, Kim and Govindaraju [9], present a
method of chain code based representation and
manipulation of hand written images. Techniques that
are applicable to word level recognition as well as image
level and character level , are described.

For chain code representation, binary image is first
scanned and the contour is traced and expressed as an
array of contour elements which contain X,y coordinates
of the pixel, slope/direction of the contour into the pixel
and auxiliary information such as curvature. Slope
convention is as shown in Fig 8.
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Determination of following word recognition techniques
are described:

= Upper and lower contour

= Local contour extremas

= Reference lines

*  Word length
Useful features such as word length, number and the
location of ascenders and descenders are extracted from
the extremas of the upper and lower contours of the
word image.

Madhvanath and Govindaraju [10], discuss the
method of applying holistic recognition techniques to a
large, dynamic lexicon of handwritten words. In the past,
these methods are mainly applied to small, static
lexicons. For large, dynamic lexicons, this approach can
be used for lexicon reduction which will eventually
improve computational efficiency as well as combining
this technique serially with analytical classifiers will
improve the performances of word recognizers.

In this paper, two different lexicon reduction methods
are described.

1. Use of constrained, bipartite graph matching
scheme to match perceptual features such as
ascenders, descenders, for unconstrained
handwritten words.

2. A system that operates on pure cursive script,
which captures relative heights of downstrokes
in the word and form a string descriptor and
matched with lexicon entries using a syntactic
matching scheme [12].

In first scheme, perceptual features, either scalar (eg.
word length) or positional (eg. ascenders) are collected.
A confidence and a weight is associated with every
feature type. Features used in the system are:

=  Natural word length

=  Ascenders

=  Descenders

= Facts, ie. Description of the existence of certain
features in specific regions of the word

The images and the lexicons are represented by
wordgraphs, or sets of feature nodes, and a match
between nodes of the image and of a given lexicon entry
is obtained using constrained bipartite matching.

In second method, the word contour is extracted and
represented as chain code. Downstrokes are then
extracted from the contour and a shape descriptor is
created using the relative heights of downstrokes. This
descriptor is matched against predicted descriptors.
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New Feature for holistic HWR based on
centroid running average of word profile

A novel feature is introduced in this paper, which will be
useful in holistic word recognition. Preliminary testing
has been done using printed script characters, and
applying this method to handwriting is under
investigation.

As the first stage of the method, the average vertical
distance of the pixels in each column of the word image
is calculated and converted to a 1D profile of the word
image [Fig 10]. Running average of this profile is
determined and used as the new feature. For the
calculations of this average, centroid or the base line is
selected as the peak line of row-wise histogram of each
word image.

T ro bl

e e

e

Fig. 10 Abstraction of 1D word profile

Results are analysed and compared with the word length
feature, which is a widely used basic feature in holistic
word recognition. Table 2 summarises the preliminary
statistics of the results obtained for a sample of 72
words. Results are analysed for a lexicon of 10 words
selected randomly. Table 3 shows few examples of word
classes having the same word length and combination of
word length and the running average of 1D centroid
profile improve the discrimination factor of these word
classes.

Conclusion

Existing methods of offline whole-word recognition
have been summarised in this paper. These are listed in
references [2] to [10]. According to the survey, most
useful features for the holistic word recognition are,
word length, number and  positions of
ascenders/descenders, holes, loops, near loops, number
and direction of strokes, information on upper and lower
contour of the word profile, endpoints and cross points.

A new feature method based on the word horizontal
average is presented here. Preliminary studies with
machine generated cursive text show promising results.
According to the results shown in Table 2 and Graph 1,
it can be proved that this new feature is as powerful as
word length feature in HWR. Most importantly, as
shown in Table 3, combination of these two features will
enhance the discrimination factor among word classes.
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An evaluation of this method using handwritten cursive

script is now in progress.

Table 1: A summary of methods presented in the literature under survey

baseline finding, image
normalisation, line width
calculations

fuzzy inference

113 test words

Ref. | Pre-Processing Method(s) | Recognition Method(s) Test Data Result
2 Thinning, zoning Not Given 552 test words, 10 80% -92%
word lexicon
3 Upper/lower contours, Dynamic time warping, 16,200 words 50% - 96%
n-grams dynamic programming
4 Slant correction Nearest neighbour 5,322 training words, | 72% - 98.5%
classifier, genetic 2, 515 test words
algorithms
5 Down-ward stroke Elastic matching, Trie 21,000 words > 95%
descriptor implementation lexicon, reduced to
1000 words
6 Line removal, slant Mathematical Not Given Not Given
correction Morphology
7 Slant/tilt correction, Dynamic programming, 105 training words, 64.6% —94.7%

slant correction

matching, syntactic
matching

names, lexicon of
1000 words
2. 825 cursive words

8 Baseline skew correction, Euclidean distances 103 images of street 88% - top
character slant correction, between the feature vector | names choice, 97%
finding reference lines and the description vector within top three

9 Noise removal, Slant Chain code processing 768 images of city > 98% for the
correction, smoothing names, lexicon of reduction of half
contours 1000 random city of the lexicon

names

10 | Chain coding, skew and Constrained bipartite 1. 768 images of city | 1. > 98% for the

reduction of
50% of
lexicon

2. 75% for the
reduction of
99%

Table 2: Preliminary results showing a comparison of word length feature with the suggested new feature for a

page of 72 machine generated cursive script with a lexicon of 10 words (15 words belong to the lexicon)

Feature 1 (Word Length) Feature 2 (Running average)
No. of No. of
No. of detected % Runnin detected %
\C)Vlzrs(si Occur W?;ig;{i?ft h WOI.'dS. with Disgrimina average %f WOI.'dS. with Disqrimin
rences similar tion' 1D profile similar ation'
features features
1 [image 2 48 3 67% -6 3 67%
2 |media 1 48 3 33% 11 7 14%
3 l|extract 1 56 1 100% 14 1 100%
4 |Digital 1 59 1 100% 8 3 33%
5 |specific 1 60 3 33% -5 1 100%
6 |[features 3 63 1 100% -4 7 43%
7 |difficult 1 67 2 50% 13 1 100%
8 [different 1 70 1 100% 7 1 100%
9 |database 3 72 2 50% 15 2 50%
10 |corresponding 1 112 1 100% -21 1 100%
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Graph 1: Graphical representation of the results shown in Table 2

120% ~
100% -
80% -
60% -
40% -
20% -

% Discrimination

% Discrimination of word classes using Feature 1 and Feature 2

O Feature 1

O Feature2

0%

~—

Mhd bl

Word Class

o
-

Table 3: Examples of few word classes having same word length

% Discrimination

Word Class Feature 1 Feature 2 using both features
are 26 0 100%
for 26 -2 100%
from 40 3 100%
these 40 6 100%
limage 48 -6 100%
media 48 11 100%
specific 60 -5 100%
domain 60 8 100%
format. 60 1 100%
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Abstract and briefly highlights existing intrinsic correspondence al-
gorithms.

A wide variety of applications including object recogni-
tion and terrain mapping, rely upon automatic three dimen-
sional surface modelling. The automatic correspondence
stage of the modelling process has proven challenging. In-
trinsic correspondence methods determine matching seg-
ments of partially overlapping 3D surfaces, by using prop-
erties intrinsic to the surfaces. These methods do not re-
quire initial relative orientations to begin the matching pro-
cedures. Hence, intrinsic methods are well-suited for auto-
matic matching.

The 3D modelling process consists of four main stages.
First, a sensing device is used to obtain 3D surfaces of
different views of an object/scene in tldata acquisition
stage. Secondly, the matching segments of different sur-
faces are found usingarrespondencealgorithm. Thirdly,

the corresponding surfaces are aligned by applyirepss-
tration scheme. Finally, the aligned surfaces are merged to
form a complete 3D model of the object/scene, initite-
gration and reconstruction phase. The automatic data ac-
quisition, registration, integration and reconstruction stages
This paper introduces a novel intrinsic automatic corre- have been more or less solved. Automatic correspondence
spondence algorithm. Local feature support regions are however, has proven challenging.

described using distance and angular metrics, which are

used to construct cumulative distribution function signa- _ .~ . L L
) trinsic or extrinsic[12]. Intrinsic methods form correspon-
tures. Local correspondences are hypothesised by compar- ; S :
dences by comparing the intrinsic properties of surfaces,

ing the signatures of two surfaces. A geometric consistency o .
) : whereas extrinsic methods form correspondences using the
test is then applied to select the best local correspondences. . ! : .
relative orientations between the surfaces being matched.

Finally, registrations are computed from the remaining cor- o . S .
) . Extrinsic methods require a rough initial alignment between
respondences and the best alignment is selected. Result :
e surfaces to converge to the correct solution [3, 5]. In-

demonstrating the algorithm’s accuracy in selecting corre- _ .~ : . .
: . trinsic correspondence-registration methods automatically
spondences for mutual partially overlapping surfaces, are . : L )
S ... form these initial alignments within the algorithm. There-
presented. The algorithm’s parameters prove robust, with L ; .
fore, intrinsic techniques are the key to developing auto-

only the local region size being surface dependent. matic correspondence algorithms, because theoretically no
user interaction is required. However, idly automatic

1 Introduction technigue exists.

Some key intrinsic methods are highlighted as follows. The
Automatic correspondence is an important step in three di- Random Sample Consensus based Data Aligned Rigidity
mensional (3D) modelling. Automatic correspondence is Constrained Exhaustive Search method defines regions on
essential in applications where the position of the sensor, one surfaceX, and searches for regions of similar size on
with respect to the scene, is unknown. A typical example the other surfac&” [4]. Triangles comprised of selected
is terrain mapping [8]. It is desired that the images of all control points make up the regions. A similar method is
views (i.e. 3D surfaces) are input into the modelling sys- graph matching, whereby a graph using distances between
tem, where they are automatically manipulated to form a points is constructed oX [6]. The algorithm then attempts
3D model of the object/scene. This section outlines the to build the same (or part of the same) graphtonMeth-
3D modelling process, discusses intrinsic correspondence0ds such as spin-image and geometric histogram matching

Correspondence methods can be categorised as @ither
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treat the correspondence problem slightly differently. The uously reduced, such that only a few remaining hypothe-
former creates signatures on each surface, that are based asised matches are passed to the registration-evaluation pro-
the horizontal and vertical distances from selected points to cess. Essentially, this algorithm is an exercisedrrespon-
every other point on the surface [9]. The latter examines dence pruning The first step of the pruning process is to
the angles and vertical distances from a given mesh facet,select small local feature support regions on both surfaces
to other facets within a predefined distance [2]. X andY. Then, these regions are given signatures based on

Aspects of the outlined correspondence methods are re_thelr local features. The signaturesXfare matched with

X . : o the signatures of " in the local correspondence phase, and
ferred to in other sections of this paper. Intrinsic corre- : .
. L X ) X the goodnes®of each match is passed to global evaluation
spondence is detailed in the following section. Section 3 rocedure. Here. bad matches are discarded. reducing the
then introduces a novel intrinsic correspondence algorithm. b ' ' y 9

. . number of possible local correspondences. The remaining
Section 4 provides results of matches between mutual par- ) . .
. . . ; . matches are accumulated to provide evidence for consistent
tially overlapping surfaces. Finally, Section 5 summarises

; o local matches. The sets of consistent matches are then used
the work outlined in this paper. : ; . ;
to compute registrations to bring andY” into common co-
ordinate systems, where their alignments are evaluated. The
2 Background best alignment gives rise to the optimal correspondence be-

tween the two surfaces.
As discussed developing an intrinsic method is the best so-

lution to constructing an automatic correspondence method.A more detailed review of the steps shown in Figure 1 is
In this section a typical intrinsic algorithm is outlined, and discussed in the following sections.
its main components are reviewed in detail.
2.2 Signatures
2.1 Intrinsic Correspondence Dissected

Signatures of surface regions are constructed from intrin-
Figure 1 illustrates a typical approach to intrinsic corre- sic surface properties. The signature construction process
spondence. This method assumes pairwise correspondencencompasses two very important steps: choosing a viable
and registration. When registering a set of surfaces, it is descriptor of a region, and storing this descriptor in a signa-
sufficient to do the initial alignment in a pairwise manner, ture that can easily be compared to other signatures. Some
matching each surface with every other surface individu- considerations when selecting descriptors, region sizes and
ally. The final accurate alignment between all surfaces cansignatures are highlighted below.

be obtained using a multiview registration scheme [14]. _ ) . _ )
Itis desired that a surface descriptor is robust, and unique to

surface X surface Y its local neighbouring region. Regions can be uniquely de-
scribed using angular [2], distance [2, 4, 6], and differential
[cOmputation of Signatur%s [10] features. The following examples concern robustness.

] Distances between points are robust, as they use the original
signatures X, Y .

surface properties [11]. However, features such as normals,

are less robust because smoothing is usually required so that

['—003' Cor‘reSPO”de”}e the descriptors are accurate [5].
goodnessf local matches

Selecting the size and shape of the local support regions,
is a process that concurs with choosing a region descriptor.
[Global CorreSpondeﬂce In some cases the regions’ size and shape may be constant
grouped Ioca"}j_consistem matches [2], and in o.the_rs variable [4]. It is essential .that each I_oc.al
support region is large enough to store a unique description
of the area, but not too large, as the entire region may not
be in the overlapping portion of the corresponding surfaces.

[ Registration & Evaluatio}1

best correspondence and alignment X & Y After selecting one or more surface descriptor(s) and defin-

ing the region size and shape, the descriptors of each sup-

Figure 1. The steps in a typical intrinsic cor- port region must be stored as signatures. Typical signatures
respondence algorithm. include graphs [6] and histograms [2]. The signatures must

be of reasonable size to ensure that local matching is effi-
Figure 1 illustrates a procedure, where the number of po- cient. Signatures such as spin-images are less favourable
tential correspondences between two surfaces are continbecause they require large data storage space [9].
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Once the signature computation process is complete, thethe surfaces. This is generally followed by another evalu-
signatures of surfaces andY” are passed to the local match ation where extrinsic-type metrics [3, 5] are computed to

algorithm. further prune the correspondence space. The final registra-
tions are examined by using methods such as an evidence
2.3 Local Correspondence accumulation scheme to test for consistent transformations

[2], or a model based scheme to test for good alignments
The function of the local correspondence algorithmis to de- [4]-

termine how well the signatures of surfaematchwiththe  rhe pest alignment between the two surfaces is selected
signatures of surfacg. A suitable match metricisrequired 55 the final outcome of the intrinsic correspondence-
for this operation. Examples include the Minkowski norm registration algorithm.

for shape distribution matching [11], and Bhattacharyya

distance for histogram matching [2]. L . .
_ 3 Statistical Signature-based Matching
Local correspondences are generally computed in batches,

as shown in Figure 1, where every signature of one surface
is compared with every signature on the other. goed-
nessof all local matches is then passed to a global evalua-
tion algorithm.

In this section, a novel intrinsic correspondence algorithm
is introduced. The algorithm conforms to the structure out-
lined in Section 2, and the following subsections discuss
signature selection, local and global correspondence, regis-

tration and alignment evaluation.
2.4 Global Correspondence g

Global correspondence algorithms prune all local matches,a'l Signatures
so that only good locally-consistent matches are selected.
An example is pruning a probability matrix, where the en-
tries of the matrix ar@robabilitiesof matches between sig-
natures onX andY. The global correspondence algorithm
is used tathin the p-matrix by only selecting matches with

a probability greater or equal to an acceptance Igel

In this correspondence algorithm, distance and angular de-
scriptors, and statistical signatures are used to characterise
regions on the surfaces being matched. It is assumed that
the surfaces are stored as polyhedral (generally triangular)
meshes. The following paragraphs discuss the signature
derivation process, with respect to the mesh surfaces.

There are a number of ways of selecting global corre- ] N ) ]
Two descriptors are utilised to describe a local region on

spondences. This process is often integrated into the lo- : X ;
cal matching procedure, such that bad matches are disthe mesh. TheD1 distance is a robust descriptor, and was

carded immediately [4], and not all matches are passed inderi\{ed for s_urface model matching [11]. The metric i_s the
a batch for global evaluation. However, analysing a batch Euclidean distance between a centre vertex and points on

of matches can be extremely valuable when using pruning 1€ surface, in the local feature support region. The second
metric is theA1 descriptor, which is the angle between the

methods, because the correspondences can then be evalu*- \ .

ated at different acceptance levels. normal of the centre vertt_ax and the normals of points, in the
local feature support region. Angles between facet normals

The correspondences that pass global evaluation are a mucire used as feature metrics in geometric histogram matching

smaller set of possible matches between two surfaces, ang2]. Both metrics are used in a combined fashion to more

these are passed to a registration-evaluation algorithm.  yniquely portray each local support region on the surfaces
being matched.

2.5 Registration and Evaluation .
Local support regions are selected around each centre ver-

tex as follows. First, thdorder layersof each mesh are
faces is completed by evaluating how well two surfaces determined. This is done by selecting the vertices on the
P y g border of the mesh (layer 1), then the vertices that connect

lign when usin lections of the remainin rr n- . :
allg en using selectio S 0 t_e emaining correspon- . 1y order vertices (layer 2), then the vertices that connect to
dences. Three corresponding pairs of regions must be se-

. : . . layer 2 vertices (layer 3), and so on as shown in Figure 2.
lected to uniquely align two surfaces in a common coordi- :
nate system The mesh can now be evaluated at a certain level. For ex-

ample, if there are many points on the mesh, it would be

A number of registration-evaluation methods are used to se-very inefficient to evaluate the potential match between ev-

lect the best possible transformations to align two surfaces. ery point on meshX and every one olt". Therefore, only

In most cases all possible combinations of three correspond-the vertices of the innermost layers (say layer 3 and above
ing region pairs are used to compute registrations betweenare selected).

The final analysis of potential matches between two sur-
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The parametep0 is the acceptance value that supports the
hypothesis that two signatures belong to the same distribu-

(a) layer 1— H

&l 2m tion.

(©) layer 3-- . _—

mesh Every possible combination of three local correspondences

is then chosen from the remaining matches. The local cor-
respondence pairs form triangles as shown in Figure 3. Ge-
ometric consistency must exist between the two surfaces if
the formation of local correspondences are to be accepted.
That iSle ~ dly, d2x ~ d2y, anddSX ~ d3y. The
measurement used to test similarity in the three distances
is|dx —dy| < 7, wherer is a percentage (also user de-
Once the vertices to be evaluated have been selected, dined) multiplied bymaz(dx,dy). The varying nature of
neighbourhood radius is chosen (this is currently a user- 7 ensures that good matches based on larger triangles are
defined value). This distance determines the surroundingmore acceptable then those based on smaller ones. This in-
neighbourhood of each vertex, by including all the points creases the robustness of the algorithm, minimising the er-
in the neighbourhood that fall into the sphere generated by ror introduced when considering small triangles as the best
the radius. TheD1 and A1 metrics are then calculated for correspondences.

each local support region. The combination of distance and
angular descriptors has proven powerful in correspondence.
algorithms [2, 9].

Figure 2. The border layers of a mesh, with (a)
being the outermost layer, (b) the second, (c)
the third and so forth.

Every possible combination of three local correspondences
is evaluated, and only th@ matches that pass the geomet-
ric consistency test are passed to the registration-evaluation
A separate signature is then built for both i and the4 1 algorithm, for further evaluation.

metrics. The signatures are cumulative distribution func-
tions (cdfs), and were selected in concurrence with the local
match metric discussed in the following section.

surface X

3.2 Local Correspondence

A brute force local matching algorithm is employed, where
the signature of every vertex under evaluation on m&sh
is tested against the signature of every selected vertex on Figure 3. Three local correspondences be-
Y. The match metric employed is the Kolmogorov-Smirnov  tween surface X and Y. The distance between
two sample test (KS-test). The KS-test tests whether two  the selected vertices on the surfaces must be
samples, that are drawn independently, belong to the same similar for good geometric consistency.
population [7]. The test statistic used in the two-sided KS-

testisT’, which is the greatest absolute distance betweentheg 4 Registration and Evaluation

two cdfs supplied for each match. The acceptance level, or

probability of a matclp, is calculated using’ [7]. Each possible combination of three centroids, of ¢hee-
All D1 signatures of the two surfacéé andY are com- maining matches, is supplied to the alignment algorithm [1].
pared, and ali1 signatures ofy andY” are compared. The These registrations are then analysed visually. This process

comparison results are stored in 2D probability matrices, Will Soon be replaced by an extrinsic-type correspondence-
Pp and P, respectively. The respective elements of the alignment-evaluation scheme. A typical evaluation method

matrices are then multiplied to form the p-matfx which IS to compute the closest points from meShto meshy’,
is passed to the global correspondence algorithm for further@nd then determine the distances between them [13]. Fi-
evaluation. nally, the number of point-pairs whose distances fall below

a thresholdr are summed, and the match with the highest
sum is selected as the best correspondence between the two

3.3 Global Correspondence
meshes.

The global correspondence method prunes local matchesz 5 The Algorithm Summarised
by examining geometric consistency. The first step of the

global correspondence method however, is discarding local the novel intrinsic correspondence method discussed in the
matches in the p-matrix that have probabilities belav previous sections is summarised in Figure 4.
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mesh X mesh Y

selected vertices: spherical regio
D1 distances, Al angles
cdfs

\
cdf signatures X, Y

Computation of Signatures ¢
S

(@) renault 135 (above) and renault 90 (below)

Local Correspondence
KS-test

I
p—matrix

pruning: p0 acceptance lev
geometric consistency

Global Correspondence%
|

consistent triplets (b) dino 360 (above) and dino 0 (below)

[Registration & Evaluation }

best correspondence and alignment X & Y

Figure 4. The steps of the statistical
signature-based matching intrinsic corre-
spondence algorithm. (c) dino 36 (above) and dino O (below)

4 Results

In this section, the results of the statistical-based signature
matching algorithm are illustrated for surfaces with mutual
partially overlapping segments. Both visual results and an
analysis of the effects of the parameters on the algorithm
are highlighted.

The surfaces matched are triangulated meshes and are dis- Figure 5. The surfaces tested (left), and the
played on the left hand side in Figure 5. The best triplets of ~ bestresulting correspondence triplets (right).
corresponding points are shown in the right hand column.

Note that at least three matches are required to register two . . _
surfaces. as that in part (b), but correspond to regions of very similar

surface variation. Figure 5(d) too shows the resulting corre-
Figure 5(a) shows two views of a Renault figurine, seen spondences when matching two surfaces contain a smaller
at 90 and 135 degree viewing angles. The correspondencepercentage of mutual partially overlapping segments (views
triplets demonstrate accurate matches between the two sur216 and 252 degrees of a toy dinosaur). The triplet of best
faces. Figure 5(b) shows two very similar views of a toy di- matches re-affirms the accuracy of the algorithm.
nosaur (viewing angles 0 and 360 degrees). The paramete
p0 = 0.99999999 was chosen to reduce the possible num-
ber of remaining matches to four. When two surfaces are
almost identical, the algorithm results in many accurately
matched local support regions. Layers four and above were
chosen for the match, although far fewer could have been
selected because of the similarities of the two surfaces.

(d) dino 252 (above) and dino 216 (below)

[I'able 1 summarises the parameter selection for the surfaces
used to test the algorithm. The table also includes the radius
size selected for each match procedure. The radius size was
constant for each of the dinosaur match procedures, high-
lighting the robustness of the algorithm. The radius size
selection will be the most important factor when fully au-
tomating the intrinsic algorithm. Other parameters such as
Figure 5(c) illustrates the best match when two surfaces areare robust for a variety of surfaces and do not require adjust-
matched that contain a smaller percentage of mutual par-ment. The neighbourhood layer region is mainly selected to
tially overlapping segments (views 0 and 36 degrees of the increase the computational efficiency of the algorithm, and
toy dinosaur) . The triplet of matches are not as accuratewill only affect the correspondences if too few points are
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Parameters  renault dino  dino dino registration-evaluation algorithm to finalise the automatic

(90,135) (0360) (0.36) (216.252)  correspondence process.
p0 0.90 0.9999 9999 0.95 0.945
[:Sg: >53O > is > :,2)5 > 32 > ACKNOWLEDGMENT:  The Cooperative Research
tau 0.05 005 0.05 T0.05 Centre for Satellite Systems is established and supported
under the Australian Government’s Cooperative Research
Table 1. The values selected for the parame- Centres Program.

ters of the novel correspondence algorithm.
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Abstract

A background modeling method for tracking object move-
ment in a cluttered scene is proposed in this paper. The
emphasis of the system is on the analysis of background
information gathered solely from an image sequence. Two
main processes are implemented in this system. The first
process uses a novel technique to extract an initial back-
ground model from an image sequence. The second process
updates the background model, when the background
situation changes at a later time. Extensive knowledge of
segmentation and edge detection is used in the modeling. It
is planned to implement the algorithm on a personal com-
puter to produce a real time working system. The image
capture rate was 10 images/second. The image sequence
may contain the moving objects during the background
extract in stage.

Keywords Image processing, background modeling, edge
detection, difference image

INTRODUCTION

This paper presents a novel technique for a low-cost PC
based read-time visual modeling system; called a back-
ground modeling system, for simultaneously tracking
movement object, and monitoring their activities in mono-
chromatic video. This system also constructs dynamic
background models to isolate object movement. Back-
ground modeling system has been designed to work with
monochromatic stationary video sources, either visible or
infrared.

The remainder of the paper is organized as follows. Section
2 describes the segmentation that employs an adaptive dou-
ble window modified trimmed mean (DW-MTM) filter for
filtering the input image in our real time system and a local
neighborhood edge operator in a low level image process-
ing. In this section, we modified a novel cluster analysis
technique to extract some interesting points to labeling ob-
ject movement and issued background model. Section 3
describes the background model updating. Section 4, ex-
perimental results are reported and summarized a complete
algorithm. Discussions and conclusions are provided in
section 5.

A simple and commonly used background modeling method
involves subtracting each new image from a model of the
background scene and thresholding the resulting difference
image to determine foreground pixels. The pixel intensity of

RMIT University, Australia.

RMIT University, Australia.

a completely stationary background can be reasonably
modeled with a normal distribution, and it can adapt to slow
changes in the scene by recursively updating the model.
However, those approaches have difficulty in modeling
backgrounds in a complex and very varied environment
such as some lighting changes. In this case, more than one
process may be observed over time at a single pixel. In [1],
a mixture of three normal distributions was used to model
pixel values for traffic surveillance applications model
road, shadow, and vehicle. In [2], pixel intensity is modeled
by a mixture of K Gaussian distributions (typically, K is
three to five). [3] uses a nonparametric background model
by estimating the probability of observing pixel intensity
values based on a sample intensity values for each pixel. [4]
uses a model of background variation that is a bimodal dis-
tribution constructed from order statistics of background
values during a training period. They apply to obtain the
background model even if there are moving foreground
objects in the field of view, such as walking people, moving
cars, etc. Our background modeling method developed in
our laboratory creates a background scene model which
obtains a non-movement object binary image when there
are moving foreground objects or if there are not moving
foreground objects in the field of view.
The major features of background modeling are as follows:

e Leaning initial background model when the system

starts up.
e Updating background model.
e Issue a background model for the future tracking.

Intensity image sequence

Initialize Section

¥ i i v

- . i
|
|

3 tati .
egnentation Analysis

Issue Background

Model -

Figure 1 System architecture of background modeling
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The block diagram in Figure 1 shows the system architec-
ture for background modeling. In the first stage, a sequence
of raw intensity images is first fed to a segmentation proc-
ess to binaries and subtracts two input image to a binary
image. In second stage, we perform a cluster analysis to
obtain some interesting points from the binary image. Then,
we issue a background model from the result of the cluster
analysis.

The Image used in this research was taken from a vertical
direction movement in the cluttered monitoring area. The
image was digitized from a video camera with an initial
pixel resolution of 768 x 576 pixels. The resolution was
reduced to 384 x 288 pixels for processing. At this resolu-
tion, 384 x 288 pixels were equivalent to about 3 x 2.3
square meter on the monitoring area. The test image se-
quence (figure 2) was captured and digitized at the rate of
10 images / per second — the fastest rate possible with the
computing equipment available for this work.

Frame n+1 Frame n+2 Frame n+3

Frame n+5

Frame n+4

Figure 2 a single movement object sequence

Learning Initial Background Model

In a real time system, its noise comes from anywhere. The
noise overcomes the difficulties of using the median estima-
tor to estimate the local mean in our image processing. A
new local mean is then computed using only pixels within a
small gray-level range about the median. This effectively
removes outliners in the calculation of the mean estimate,
hence improving the overall performance of the mean filter
in the presence of outliners such as salt and pepper noise. In
this section, we describe the sequence image filtering as
first process. An adaptive double window modified trimmed
mean (DW-MTM) filter is employed for the first step that
filters the input image in our real time system. The adaptive
DW-MTM filter algorithm is described as follows.

Given a pixel located at x, y within the image, a median
filter (MED [g (X, y)]) is computed within an n x n local
region surrounding the location x, y. The g (x, y) is the
noise-corrupted image. The median value computed from
this filter is used to estimate the mean value of the n x n
local area. Next, a larger-size window surrounding the pixel
at location x, y of size q x q is used to calculate the mean

value. In computing the mean value in the q x q window,
only pixels within the gray-level range of

MED [g (x,y)]—cto MED [g (x,y)] + ¢

are used, eliminating any outliners from the mean calcula-
tion. The output of the DW-MTM filter is the q x q mean
filter. The value of c is chosen as a function of the noise
standard deviation as

¢ =Koeg,
Where o, is the variance of the noise. Typical values of K
range from 1.5 to 2.5. This range for K is based on the as-
sumption that for Gaussian noise statistics the peak-to-peak
gray-level variations will be in the range of * 25, 95% of
the time and any values outside this range are more than
likely outliers. For K=0, the DW-MTM filter to a n x n
median filter, and for K very large, the DW-MTM reduces
to a q x q mean filter. Hence, as K decreases, the filter does
a better job of filtering impulsive noise, but a poor job of
filtering uniform and Gaussian-type noise. In our system,
we assume n=3 and q=5.
After the input image is filtered, we state that edge detec-
tion is part of a process called segmentation—the identifica-
tion of regions within an image for second step processing.
There are many varieties of edges; they may be classified
into three major classes: a line-edge has a zero order dis-
continuity, a step-edge has a first order discontinuity, and a
roof-edge has a second order discontinuity. It is compared
with the Marr-Hildreth edge detection involve large win-
dows and often needs floating-point calculations to main-
tain accuracy °. Canny edge detector that extracts not only
step edges but also ridge and roof edges ® and Shen-Castan
edge detector. " We are not interested in the direction of
the edge but only in its presence, we should use direction-
invariant edge detectors. On other way, we need to mini-
mize the process time of edge detection. Here, we use a
local neighborhood edge operator which is direction-
invariant is the Laplacian 3 x 3 edge detector for this appli-
cation. For the result refer to Figure 3.

Frame n+1 Frame n+2 Frame n+3

Frame rrtd

Frame rt5

Figure 3 Segmentation and edge detection of the single
movement object sequence
We use two consecutive frames to retrain the background

model. After the sequence starts, we subtract two consecu-
tive frames to obtain a result of a binary image (difference
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image) as figure 4 that shows to subtract two consecutive
frames from the figure 3.

e

Frame nt1

Difference Image
Figure 4 Subtract two consecutive frames from the single
object movement sequence

The cluster analysis technique is used to extract some inter-
esting points for labeling the object movement and some
noise from the result image. In the result image, there is the
object movement and some noise. For this noise, due to a
great many factors such as light intensity, type of camera
and lens, motion, temperature, atmospheric effects, dust,
and others, it is very unlikely that two pixels that corre-
spond to precisely the same gray level in the scene will
have the same gray level in the image. Noise is a random
effect, and is characterizable statistically only. The result of
noise on the image is to produce a random variation in level
from pixel to pixel, and so the smooth lines and ramps of
the ideal edges are never encountered in real images. Sub-
tracting the current image from the sequence image also
produces the noise. As the result image is a binary image,
the white pixels show the movement object or noise. There
are some white pixels that merge together from pixel to
pixel. We can state that the result image can response the
noise only has a small number pixel merge as it comes from
two consecutive frames. We can assume a threshold value
to reject these noise from pixel to pixel in one gray-level at
clustering process. This threshold value is called
Noise Threshold in number of pixels. The detail processing
is as following.

Almost always, when information about an object or region
class is available, a pattern recognition method is used to
find out some interest points for the moving object. For this
application, we investigate some related techniques: statisti-
cal pattern recognition, neural nets, syntactic pattern recog-
nition, recognition as graph matching, optimization tech-
niques in recognition, and fuzzy systems. They not only
require considerable time but are also beyond our require-
ments. A cluster analysis technique is modified for this
application as follows.

In the image analysis, clustering can be used to find groups
of pixels with similar gray levels, colors, or local textures,
in order to discover the various regions in the image. Clus-

tering is the process of counting and labeling of objects
within an image. Clusters consist of pixel groupings that are
related to one another by a predetermined criterion. This
criterion on measure can be defined as a distance between
clusters or a similarity measure such as a pixel value, or it
may be a complex set of identifiers and constraints that de-
fine membership in a cluster. The cluster may ultimately be
mapped into a binary image as a unique object.

Formally, if p is a value of pixel, the cluster is defined as

G =p (1

Where i is an integer (0, 1, 2, ....) and cluster center point is
defined as an interest point to response this cluster.

Here, our approach is to specify a connected in pixel that
the clusters should be. In the binary image, the clustering
algorithm processes each pixel and when one is found that
is nonzero, it becomes part of the first cluster and is
marked. The next nonzero pixel f{x,y) found is tested to see
if it is connected to one previous pixel of outer corners of
its half 8 adjacent [f(x-1,y-1), fix,y-1), fixt1,y-1), fix-1,y),
flx-1,y+1)]as shown in Figure 5. If it is, it is marked as a
member of the first cluster and the search continues. If it is
not, it becomes the first member of the second cluster and is
marked accordingly. This process continues until all pixels
have been evaluated.

Sx-Ly-1) | fixy-1) | fixtly-1)
ﬂx_laY) f(xa}/)
Sx-1y+1)

Figure 5 Outer corners of a pixel’s half 8 adjacent
neighbors

If we set the Noise Threshold = 4 (pixels) and maximum
value of pixel number =11, we can obtain that Cs(p) is a
valid cluster and Ci(p) &Cy(p) are noise value with the
equation (2),.

In order to minimize the processing time, we need to define
a maximum value of pixel number for the cluster. Then we
get one point to response these valid clusters as an interest
point in the object as following relate equation.
Noise_Threshold < valid cluster C(p) < maximum value of pixel
number 2)

The example shows a graphic of a set of a set of clusters
that have been labeled by grayscale value. After clustering,
we found out there are three clusters Ci(p), C(p), and Cs(p)
as shown in Figure 6. From the equation (1), we known that

Ci(p) =4, Gy(p)=2, and C5(p) = 10.
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Figure 6 A graphic of a set of clusters

At the completion of the function, a 2D data array contains
pixel values that reflect their membership in the clusters
found that meet the criteria of being pixel connected apart.
Cluster of pixels that are not connected with other cluster in
outer corners of its 8 adjacent will be partitioned into
pieces as they are found in the image. The difference binary
image (after segmentation) is scanned from the upper left
corner origin in column order. If a zero value gray-level is
defined for object in the difference binary image (image
[row][col]), we have that a chart of the function is shown in
Figure 7.

Image [row]fedl]==0 —‘

Define a Hew
Chuster for
Edge Foint

Chuster of
Previous Edge
Prive +1

Hn Ves

Chister
=Diefault Vahe?

Mo

Max. Value
forResohition 7

Figure 7 A chart of cluster analysis function

During the cluster analysis, a valid cluster result is gener-
ated with some points to interrupt the movement object.
These points are called movement object points. The valid
cluster result is generated with some points in response to
background noise. These points are called non-movement
object points such as a value (3, 263) at figure 8 that shows
a real time result of the cluster analysis. It was produced by
clustering the difference image (figure 4).

T Non-movement object point

Figure 8 Result of the cluster analysis

Issue Background Model

The cluster result is generated with some points to interrupt
the object movement and other points to response the back-
ground noise or without any point. If this result is zero there
is not any point, we state one of both images is its back-
ground model for currently sequence. If this result is not
zero such as figure 8, we state there is some object move-
ment at the scene. The background model is issued from
one of two consecutive frames binary images remove the
movement object pixels. For the background modeling, we
are interested in the outline points of the moving object as
the figure 8. Removing all the moving object pixels that are
enclosed from its outline points creates the binary back-
ground model. Figure 9 show a result of background model
that remove the movement object of frame n+1 on figure 4.

B

|- [ e |

Figure 9 A background model for the single moving object
sequence

Updating background Model

The background model cannot be expected to stay the same
for long periods of time. There could be illumination
changes, such as the sun being blocked by clouds causing
changes in brightness, or physical changes, such as a depos-
ited object. As the cluster analysis is applied to each frame
for tracking object movement at our object tracking system.
From the figure 8, we know the non-movement point that is
out of the movement object. When we keep the background
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model to apply to it sequence, a cluster analysis result show
as figure 11 at the frame n+7 of single movement object
sequence as following figure 10. From the figure 11, the
points of non-movement object are 6.

Non-movementob]ectpomtsT T T T

Figure 11 Cluster analysis result for frame n+7 of single
movement object sequence

When there are more non-movement object points than a
limit value, we need to update the background model. If this
limit value is assumed set to 6 points, an update background
processing will occur at frame nt7 of single movement ob-
ject sequence. This update background-processing algo-
rithm is summarized as follows:

e Get a cluster analysis result image by subtracting
next frame.

e If this result is zero there is not any non-movement
object points and movement object points, we state
one of both frames is the background model for
current sequence.

e  If this result is non-zero, its background model for
currently sequence is that remove all of movement
object pixels that are enclosed from its outline
points.

Experiments

The complete algorithm for our background modeling
method is summarized in section 4.1. To evaluate our algo-
rithm, two experiments are presented. The first experiments
(section 4.2) demonstrate the performance of our back-
ground modeling method in the case of a multi-movement
object environment. The second experiments (section 4.3)

show the performances of our background modeling
method to apply to our object tracking system.

The complete algorithm using the background modeling
system is as follows:

e Capture image on and filter the sequence image,

e [Edges detect two current consecutive frames and
subtract them,

e Issue an initial background model from a result of
the cluster analysis,

e If non-movement object points are over a limit
value, update processing occurs for the back-
ground model.

When we apply this background model method to a multi-
movement object sequence as figure 12, a result of back-
ground model is shown on figure 15. We subtract two con-
secutive frames as figure 13 at our background modeling. A
result of the cluster analysis on multi-object movement
sense is shown on figure 14. We are also success using the
current background model to tracking the multi-movement
object at this multi-movement object sequence. The figure
16 shows a cluster analysis result of the frame m+10 with
same background model. From this result, we can state that
the background model can be expected to stay the same for
next tracking; there is not any non-movement point at this
frame.

w

Frame m+1 Frame m+2 Frame m+3

Frame m+4 Frame m+5 Frame m+6

Figure 12 A sequence for multi-object movement

Frame m+2 Frame m+1

Result Image

Figure 13 Subtract two consecutive images
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Figure 14 A result of the cluster analysis on multi-object
movement sense

Figure 15 A background model for multi-movement object
sequence

Figure 16 (b) A result of the cluster
analysis for frame m+10

Figure 16 (a) Frame m+10

Figure 16 A result of the cluster analysis for frame m+10
with the background model on multi-object movement
sense

The background model method was success fully imple-
mented on our tracking system as in figure 16. The object
tracking result shows the single movement object from
frame n+1 to frame n+7 of the single movement object se-
quence (Figure 2). There are four windows to display an
original image, movement object detection, movement ob-
jects tracking and tracking result.

& ObioctTeackmgysinml: 2 [I0[=]

Original
Image:
sen=i

Tracking
ficsuall:
(223,230
(248,178)
2571151
[227.85)
[245.74]
(230,52
203,35

Figure 16 a movement object tracking system

Conclusion

A real-time computer vision system able to model a station-
ary object background or a movement object background in
cluttered environments has been presented. The proposed
system is based on the modeling of the structure of the
scene. The quality of the detection is improved when the
background is highly textured.

Therefore in our future works we will use this modeling
method in our object tracking system for tracking rigid and
non-rigid movement object. It will be used for to tracking
multiple non-rigid movement objects in a cluttered scene.
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Abstract

OFCat is an extensible GUI-driven optical flow compu-
tation and analysis tool. The user can add their own image
sequences, filtering, differentiating and optical flow tech-
niques. OFCat can process both grayscale and color im-
ages. It implements a number of low-pass filtering and dif-
ferentiating techniques. Many traditional optical flow ex-
traction techniques are available, in addition to some novel
color-based methods.

Analysisof the recovered flow is performed using ground-
truth analysis, image reconstruction and sparsity vs error
analysis. Synthetic ground-truth can be created and used to
create a test image sequence from a single image.

1 Introduction

Optical flow has many applications in computer vision
and image-sequence processing. Among other aress, it has
been used for robot navigation, face tracking and recogni-
tion, three-dimensional reconstruction and general analysis
of motion.

Barron [1] and others wrote a review paper on optical
flow in 1994 and provided code for other researchers to
compare their results to. The tool for the analysis and com-
parison of optical flow described in this paper (OFCat) is
intended to be a useful addition to the computer vision re-
searcher’stoolbox. It allows use of custom image sequences,
lowpassfilters, differentiating kernelsand optical flow meth-
ods. Many techniques and agorithms are implemented in
each of these categories. Some novel color-based optical
flow techniques are availabl e to the researcher using OFCat,
as well as some previously theorised color techniques [5].
In addition, an error analysis section is provided which al-
lows visualisation of the flow, analysis versus ground truth,
image reconstruction error and density vs error threshold
metrics. Both color and grayscale images are supported,

lovell@itee.ug.edu.au

with similar and different methods available for each.

Dueto the script processing nature of Matlab® the speed
of algorithms can often be increased by compilation. A
scriptisprovided for compilation of the algorithmsthat ben-
efit most in the application. This script assumes aMatlab®-
compatible compiler isinstalled and that Matlab® is appro-
priately configured.

In addition to automatic C-translation and compilation, it
is possible to use MEX (Matlab® shared library file) wrap-
pers to incorporate external C (or C++) code. This possi-
bility is exploited in the application by incorporating func-
tions which use optimized functions from the Intel® IPL®
[3] (Image Processing Library) and Intel® OpenCV® [4].
These libraries take advantage of the enhanced multimedia
extensions available on Intel Pentium-based chips. Hence,
some functions are available for Intel processers only.

When assessing the accuracy of asystem, it is necessary
to investigate each constituent independently. The recov-
ery of optica flow using gradient-based methods generally
involves three steps:

e Low-passfiltering;

e Estimation of first and often second-order derivatives;
and

e Recovering optical flow from the derivatives and other
metrics

OFCat alows the user to quickly assess the benefits and
drawbacks of various algorithms in each of these three cat-
egories, with the possibility of adding their own algorithms.
2 Filtering
2.1 Lowpassfiltering

Several non-linear de-noising filters have been imple-

mented, listed in table 1. All of these filters are available
in color.

129



| Filter \
Median Filtering (3x3)
Median Filtering (5x5)
Wiener (Adaptive) filtering (3x3)
Wiener (Adaptive) filtering (5x5)

Table 1. Implemented non-linear de-noising
filters

| Filter | Color [ IPL® |
Box (Linear Avg) Filter (3x3) | Yes Yes
Box (Linear Avg) Filter (5x5) | Yes Yes
Gauss Filter (3x3) 0 = 0.85 Yes Yes
Gauss Filter (5x5) 0 = 1 Yes Yes
Gauss Filter (3x3) o # 0.85 No No
Gauss Filter (5x5) o # 1 No No

Table 2. Implemented linear de-noising filters

Table 2 lists the linear filters available to the user. In
addition to these, the Matlab®’s FDATool (Filter Design
and Analysis Toal) can be used to design IR or FIR filters
which can be easily imported into OFCat.

As Gaussian filters are quite popular among vision sys-
tems, an additional GUI is provided for the choice of sigma,
the shape of the Gaussian.

2.2 Differentiating filters

Spatio-temporal derivatives are necessary for all gradient-
based optical flow methods. OFCat computestemporal deriva-
tives separately from spatial derivatives. Three temporal
derivatives areimplemented; one-sided finite difference, cen-
tral finite difference and four-point central difference. The
corresponding temporal supportsare 2, 3 and 5.

Default spatial derivatives available to the user are listed
in table 3. Five filters are denoted as Optimal. These are
functions utilising filters from Intel®’s IPL®, which more
closely approximate the ideal filter asthe length of the filter
increases|[3].

Manduci provides an in-depth theoretical treatment of
spatio-temporal filtering and its effect on the accuracy of
optical flow methods in his paper [7].

3 Optical Flow methods

OFCat’s default optical flow methods can be categorised
as working with gray-scale data (one set of partia deriva-
tives) or color data (three sets of partial derivatives). Each
category is described below.

| Filter | Color | IPL® |
Sobel (3x3) No Yes
Sobel (5x5) No Yes
Prewitt (3x3) No Yes
Prewitt (5x5) No Yes
Matlab®’s gradient function Yes | No
Matlab®’s difference function | Yes | No
Optimal 5x5 Yes Yes
Optimal 7x7 Yes Yes
Optimal 13x13 Yes Yes

Table 3. Implemented spatial-differential fil-
ters

3.1 Gray-scale optical-flow

Some common methods of recovering optical flow have
been implemented, these include many block-matching al-
gorithms and many of the traditional gradient-based meth-
ods reviewed in Barron et. a.'s paper [1]. These are: Horn
and Shunck, Lucas and Kanade, Nagel, Uraset. al., Uraset.
a. with Barron's gaussian curvature and Anandan. Block
matching metrics availableto the user are: Normalized, Stan-
dard, Zero-mean and Zero-mean normalized versions of Cor-
relation, Sum of absolute differences and Sum of squared
differences. Most of the gradient-based methods have de-
fault parameter values which are modifiable via dialogs.

This large selection of optical flow techniques enables
the researcher to quickly evaluate the performance of var-
ious techniques on their image sequence. Alternatively, if
they develop a new algorithm, they can quickly and easily
compare it’s performance with existing techniques.

3.2 Color optical flow

The area of color, gradient-based optical flow has been
largely overlooked by researchers. The three planes of data
available to an optical flow agorithm are usually combined
to form one intensity image. Golland [5] presented two
methods which utilise thisextrainformation; these and other
color-based methods are presented for the user’s appraisal.

The optical flow constraint equation is

or  or
ox oy

o,

ot &)

We can extend this to a system of eguations, in the form
Az = b, with each row consisting of data calculated from
different planes of the image, e.g. Red, Green and Blue.
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There are a few options available for the solution to this
equation (2), the two that have been the mgjor focus of color
optical flow methods implemented are

e Least squares
e Simple gaussian elimination

If we disregard one plane of the image, we have two equa-
tions and two unknowns. This is the basis of Golland's
“color constancy” equation, disregarding brightness and re-
taining the hue and saturation values of the image. Alter-
natively, we can retain the brightness plane (when we use
the HSV or YUV color models) and incorporate one of the
color planes.

Three different color models are available to the user.
These are HSV, RGB and normalized RGB.

In addition to those mentioned above, two novel methods
areincluded.

e Neighborhood least squares, taking a3 x 3 neighbor-
hood in each plane and using all of these measure-
ments to create a system of linear equations;

e Application of astandard grayscal e optical flow method
(e.g. Horn and Shunck [6]) to each plane, then use
the intrinsic error measure of each recovered flow to
combine them into one flow field.

Figure 1 displays the GUI used for launching color op-
tical flow algorithms. The corresponding grayscale GUI is
very similar, though offers different optical flow methods.

4 Error Analysis

Four methods of analysing the estimated optical flow are
provided. These are detailed in the next four sections.

4.1 Flow visualisation

Visualisation of theflow is performed viathe dialog shown
in Figure 2. The recovered flow, ground-truth flow and the
difference of both can be viewed here. Additionally, the
curl, divergence and magnitude of any of these vector fields
can be displayed.
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Figure 4. Mean error along each dimension

4.2 Ground Truth Analysis

When ground truth is available, the interface shown in
Figure 3 enables the user to analyse the magnitudinal, an-
gular and combined error both visually and statistically. The
mean, median, standard deviation, RM 'S, maximum and min-
imum errors are calculated and displayed in their respective
buttons. Each of the buttons opens a new figure, displaying
two plots. The plots are each statistic, respectively, taken
across each dimension (horizontally and vertically). An ex-
ample of these plotsis shown in Figure 4.

4.3 Sparsity Analysis

The dialog shown in Figure 5 illustrates the image re-
construction error of optical flow methods by calculating
the density of flow fields thresholded at chosen errors. The
resulting function is inspected with linear interpolation to
estimate the image reconstruction error at certain levels of
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Figure 5. Sparsity Analysis

Figure 6. Image Reconstruction Interface

density. The user can also choose to view the error func-
tion when image reconstruction takes the smoothed images
for input. The contrast between using smoothed and un-
smoothed images illustrates the effect of smoothing on the
process of calculating optical flow.

4.4 |Image Reconstruction

This interface (Figure 6) alows reconstruction of the
second image in the sequence from the first image and the
optical flow as per Barron and Lin [2]. The user is able to
view the first and second real images, the first and second
smoothed images, the reconstructed image, the difference
between the reconstructed and second image and the nat-
ural logarithm of the difference between reconstructed and
second original image.

The natural logarithm of the difference is useful for vi-
sualisation of the error as most of the error is of a smaller
order of magnitude than the largest errors. Using the natural
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terface

logarithm enables the user to observe the sites perturbed by
both large and moderate errors.

The mean of the difference between the reconstructed
and correct image is also calculated and displayed.

Thresholding of large vectors (a magnitude greater than
> 5 pixels) and thresholding on a chosen image reconstruc-
tion or intrinsic error level is supported. The mean returned
after thresholding is the mean of only the accepted recon-
structed sites. The density of the reconstructed image is
also shown. This indicates how many sites were deemed
unacceptable and consequently disregarded.

45 Creating syntheticerror

When ground truth is not available for a sequence, it is
till possible to perform ground truth analysis if we create
a synthetic sequence based on the first frame of the orig-
inal. Synthetic planar ground truth can be described by a
global tranglation, shearing in the horizontal and vertical
planes, rotation and zoom. If the user has their own syn-
thetic ground-truth flow field saved in a .MAT file, OFCat
can load and use thisinstead.

Figure 7 shows the dialog enabling creation of a syn-
thetic image sequence and ground truth from parameter val-
ues. After the synthetic ground truth has been calculated, it
is used to warp the first image of the image sequence. This
process is repeated until we have a sequence of five frames.
Both color and grayscale images are supported.

This sequence then becomes the input to the filtering
/ optical flow method. As ground-truth is now available,
methods of ground-truth analysis can be applied.

5 Conclusion and Future Work

OFCat is avisual, extensible, optical flow analysis tool,
intended for students learning about optical flow or for re-
searchers implementing their own methods. Adding new
algorithmsfor filtering, differentiating or computing optical
flow to OFCat is simple. OFCat provides quantitative and
qualitative error analysis, making it easy for researchers to
compare their new method(s) with traditional ones.

Two extra color models will be implemented in the near
future, these are the YUV and CIE (UCS) color systems.

OFCat is available to for download at
http://itee.uq.edu.au/ “iris/Computer Vision/OFCat/

The user must have Matlab® and Intel®’s IPL® installed.
Scriptsareincluded for recompilation of the optimized func-
tions.
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Abstract

Grayscale optical-flow methods have long been the fo-

cus of methods for recovering optical flow. Optical flow re-
covery from color-images can be implemented using direct
methods, i.e. without using computationally costly itera-
tions or search strategies. The quality of recovered optical
flow can be assessed and tailored after processing, provid-
ing an effective, efficient tool for motion estimation.
In this paper, a brief introduction to optical flow is pre-
sented, the optical flow constraint equation and its exten-
sion to color images s presented. New methods for solving
this extended eguation are given. Results of applying these
methods to two synthetic image sequences are presented.

1 Introduction

Optical flow is a useful tool for many tasks in com-
puter vision. It has been applied to problems of motion-
segmentation, time-to-contact and three-dimensional recon-
struction (structure from motion) among others. Tradition-
ally, most researchersin thisfield have focussed their efforts
on extending Horn and Shunck [8] or Lucas and Kanade's
[9] methods, all working with grayscale intensity images.

Color image sequences have been largely ignored, de-
spite three planes of information being available instead of
one. Golland proposed and discussed two simple methods
which incorporate color information [7]. She investigated
the RGB, normalized RGB and HSV color models. Her re-
sults indicated that color methods provide a good estimate
of the flow in image regions of non-constant color.

This paper compares traditional grayscale with Gol-
land’s methods and two new color methods. It also de-
scribes the proposed the extension of grayscale methods
into color.

lovell@itee.ug.edu.au

2 Optical flow

The optical flow of an image sequence is a set of vector
fields, relating each image to the next. Each vector field rep-
resents the apparent displacement of each pixel from image
to image. If we assume the pixels conserve their intensity,
we arrive at the “brightness conservation equation”,

I(z,y,t) = I(x + dz,y + dy,t + dt) 2.1
where [ is an image sequence, [dz, dy] is the displacement
vector for the pixel at coordinate [z, y] and ¢ and dt are the
frame and temporal displacement of the image sequence.
The idea of brightness conservation and optical flow were
first proposed by Fennema [6].

The obvious solution to 2.1 is to use template-based
search strategies. A template of a certain size around each
pixel is created and the best match is searched for in the
next image. The best match is usually found using corre-
lation, sum of absolute difference or sum of squared dif-
ference metrics. This process is often referred to as block-
matching. Such a search strategy is computationally costly
and generally doesn’t represent sub-pixel displacements.

Most methods presented in the last twenty years have
been gradient-based. They solve the differential form of
2.1, derived by Taylor expansion. After discarding higher
order terms, thisis

o1 oI oI

5"t 5y 50 = O (2.2)

Here we have two unknownsin only one equation, the prob-
lem is ill-posed and extra constraints must be imposed in
order to arrive at a solution.

The two most commonly used and earliest optical flow
recovery methods in this category are briefly outlined be-
low, Horn and Shunck’s[8] and Lucas and Kanade's [9] op-
tical flow methods. These and other traditional methods are
outlined and quantitatively compared in Barron et.al. [4][3].
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2.1 Horn and Schunck

Horn and Shunck [8] were the first to impose a global
smoothness constraint, assuming the flow to be smooth
across theimage. Their minimization function,

/:/UMw+@v+192+A%HVuH§+HV%H@dmw

(2.3
can be expressed as a pair of Gauss-Siedel iterative equa-
tions,

Iz [Lyuy, + Lyv, + 1]
a4+ 12 + 12

Un+1 = Un — (24)
and
I, [Ipuy + Iyv, + I

2.
a?+ 12+ 12 (2:5)

Un+41 = Un —

2.2 Lucasand Kanade

Lucas and Kanade [9] put forth the assumption of con-
stant flow in aloca neighborhood. Their method is gener-
ally implemented with neighborhoods of size 5 x 5 pixels
centered around the pixel whose displacement is being es-
timated. Measurements nearer the centre of the neighbor-
hood are given greater weight in the weighted-least-squares
formulation.

2.3 Other methods

Later methods generally extended of these two tradi-
tional methods. More recently, researches have been focus-
ing on using concepts of robustness to modify Lucas and
Kanade's method [2][1]. These methods choose a function
other than the squared difference of the measurement to the
line of fit (implicit in least squares calculation) to provide
an estimate of the measurement’s contribution to the best
line. Functions are chosen so that outliers are ascribed less
weight than those points which lie close to the line of best
fit. Thisformulation resultsin amethod which utilisesitera-
tive numerical methods, e.g. gradient descent or successive
over-relaxation.

3. Using color images

Recovering optical flow from color images seemsto have
been long overlooked by researchers in the field of image
processing and computer vision. Ohta [11] mentioned the
idea, but presented no algorithms or methods. Golland pro-
posed some methods in athesis and arelated paper [7]. She
proposed using the three color planes to infer three equa
tions, then solving these using standard least squares tech-

niques.
0lr 0lr OIr _
Ty e 70
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The other idea proposed by Golland was the concept of
"color conservation”. By constructing a linear system to
solve from only color components, e.g. Hue and Saturation
from the HSV color model, the illumination is allowed to
change, the assumption is now that the color, rather than
brightnessis conserved.

3.1. Color Models

Three color models have been implemented and tested in
this paper. These are RGB, HSV and normalized RGB.
The RGB (Red, Green, Blue) color model decomposes
colorsinto their respective red, green and blue components.
Normalized RGB is calculated as

R G B
N TN Bty

(3.2
each color being normalized by the sum of all colors at that
point. If the color value at that point is zero the normalized
color at that point is taken as zero.

The HSV (Hue, Saturation, Value) model expresses the
intensity of the image (V) independently of the color (H,
S). Optical flow based purely on V isrelying on brightness
conservation. Conversely, methods which are based on H
and S rely purely on color conservation. Methods which
combine the two incorporate both assumptions.

Similar to HSV, the YUV model decomposesthe color as
a brightness (YY) and a color coordinate system (U,V). The
difference between the two is the description of the color
plane. H and S describe avector in polar form, representing
the angular and magnitudinal components respectively. Y,
U and V, however, form an orthogonal euclidean space.

An dternative to these spaces is CIE perceptually lin-
ear color space also known as UCS (Uniform Chromaticity
Scale). This color system has the advantage of euclidean
distances in color space corresponding linearly to percep-
tion of color or intensity change.

Neither YUV, nor UCS have been implemented, though
thisisthe next step in analysing color optical flow.

N=R+G+B, R,=

3.2. Methods

Two obvious methods for arriving at a solution to the ex-
tended brightness conservation equation 3.2 are apparent:
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Method

e Disregarding one plane so as to solve quickly and di- [ 64 x 64 [ 128 x 128 [ 240 x 320 |

rectly, using Gaussian Elimination. Color (Least Sq) 0.66 211 9.24
Color (G E, 3 rows) 0.05 0.24 158

e Solving the overdetermined system as is, using either Color (GE, pivot, 2rows) |  0.03 0.14 0.54
least squares or pseudo-inverse methods. H & S(20its) 0.23 0.45 2.18
Lucas & Kanade 0.73 3.52 15.19

Disregarding one of the planes arbitrarily may throw away Nagel 1.63 6.70 36.68
data that is more useful to the computation of optical flow Uras, et. al. 2.06 8.19 37.07
than those kept. However, if speed of the algorithmis of the NCC 3.00 9.08 40.20
essence, disregarding one plane reduces memory require- Black & Anandan 0.60 2.94 19.08

ments and computational cost. Another possibility is merg-
ing two planes and using this as the second equation in the
system. Numerical stability of the solution should be con-
sidered when constructing each system. By using thesimple
method of pivoting it is possible to ensure the best possible
conditioning of the solution.

The methods of least squares and pseudo-inverse calcu-
lation are discussed in nearly all linear algebra texts.

A simple neighborhood |east-squares algorithm, akin to
Lucas and Kanade's[9], though not utilising weighting, has
also been implemented. Valuesin a3 x 3 x 3 neighbor-
hood around the center pixel wereincorporated into alarge,
overdetermined system.

Another option for the computation of optical flow from
color images is to estimate the optical flow of each plane
using traditional grayscale techniques and then fuse these
results to recover one vector field. This fusion has been
implemented here by simply selecting the estimated vector
with the smallest intrinsic error at each point.

All of the the methods mentioned above have been im-
plemented and compared in this study.

4 Error Analysis

Image reconstruction is a standard technique for assess-
ing the accuracy of optical flow methods, especially for se-
guences with unknown ground truth (see Barron and Lin
[5]). The flow field recovered from an optical flow method
is used to warp the first image into a reconstructed image,
an approximation to the second image. If the optical flow
is accurate then the reconstructed image should be the same
as the second image in the image sequence. Generally, the
RMS error of the entire reconstructed image is taken as the
image reconstruction error. However, it is advantageous to
calculate the image reconstruction error at each point in the
image. This enables a level of thresholding in addition to,
or instead of culling estimates with high intrinsic error.

The density of the flow field after thresholding at chosen
image reconstruction errors can al so be used to compare dif-
ferent methods. This is the method applied for comparison
herein.

Table 1. Time taken for computation

5. Results and Discussion

Table 1 compares the time taken for recovery of opti-
cal flow using Matlab®, excluding low-pass filtering and
derivative calculation times. The times recorded from com-
putation on a 700Mhz Pentium 111® processor. This high-
lights the drastic decrease in computational cost of direct
color methods. Thetwo row partial pivoting Gaussian Elim-
ination method is seen to perform at approximately 20Hz.
Compared to Horn and Shunck’s method [8], the best per-
former in the field of grayscale methods, this represents an
approximately fourfold increase in speed.

Figure 5.1 compares three common grayscale optical
flow methods; Horn and Shunck [8], Lucas and Kanade
[9] and Nagel [10]. This figure illustrates the density of
the computed flow field when thresholded at chosen image
reconstruction errors. It is seen that Lucas and Kanade's
method [9] dightly outperforms Horn and Shunck’s [8]
method, which itself performs better than Nagel’s [10]
method at image reconstruction errors >~ 1.35.

Figure 5.2 compares the performance of Lucas and
Kanade's [9] with three color methods. The first frame of
this image sequence is shown in figure 5.3. This sequence
was trandating with velocity [-1,-1] pixels per frame. The
three color methods shown here are gaussian elimination
(with pivoting) of the saturation and value planes of HSV,
Gaussian elimination of RGB color planes and neighbor-
hood least squares. Neighborhood least squares is seen to
perform the best out of the color methods, closely approxi-
mating L ucas and Kanade at higher densities. Both gaussian
elimination versions performed worse than the others.

An image sequence displaying a one degree anticlock-
wise rotation around the center of the image was used to
assess three other color optical flow methods. Pixel dis-
placement ranges between zero and 1.5 pixels per frame.
The methods compared were “Color Constancy” [7], least
sguares solution to 3.2 [ 7] and Combined-Horn and Shunck.
Horn and Shunck’s [8] (grayscale) algorithm was used as a
yardstick for this comparison. The results are displayed in
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Figure 5.1. Comparison of Grayscale meth-
ods applied to translating colored clouds
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Figure 5.2. Comparison of gray and color
methods applied to translating colored
clouds

Figure 5.3. First frame of the translating RGB
clouds sequence
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Figure 5.4. Comparison of techniques applied
to a rotating image sequence

figure 5.4. Combined-Horn and Shunck applied Horn and
Shunck optical flow recovery to each plane of the RGB im-
age and fused them into one flow field utilising a winner-
takes-all strategy based on their associated error. It can
be seen that the Combined-Horn and Shunck method per-
formed similarly to Horn and Shunck [8]. The methods of
least squares [7] and direct solution of the color constancy
equation [7] did not perform as well.

Figure 5.5 gives an example of the optica flow recov-
ered by the neighborhood least squares algorithm. This cor-
responds to the rotating image sequence. Larger vectors
(magnitude greater than 5) have been removedand replaced
with zero vectors. Thisfield has adensity of 95%.
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Figure 5.5. Optical flow recovered by direct
two-row optical flow and thresholding

6 Conclusion and future work

Color optical flow has been shown to be quite simple
to compute and to have alevel of accuracy similar to tradi-
tional grayscale methods. The speed of these algorithmsisa
significant benefit; the linear optical flow methods presented
run substantially faster than grayscale, non-linear methods.

YUV and UCS color models will be implemented and
compared.

Accuracy of the neighborhood least squares approach
can be improved in a number of ways. Using robust meth-
ods, e.g. least-median of squares[2], could provide a much
better estimate of the correct flow. Applying the weighted
least squares approach of Lucas and Kanade [9] could like-
wise improve the results.

A better data-fusion algorithm could be used to improve
the Combined-Horn and Shunck method. The three flows
being combined could be calculated using any grayscale
method.

Methods that iterate towards a solution usually perform
better with a good initial starting estimate. Color-optical
flow could be used to provide this estimate, speeding the
computation of some of the slower, well-known grayscale
methods.

These issues will beinvestigated in future work.
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Abstract

This paper presents a novel technique for distinguishing
images of forms from other document images. The
proposed algorithm detects regions which are likely to be
used for text entry, such as lines, boxes, and character
entry fields, and calculates a probability of the document
being a form based on the presence of such structures.
Experimental results from testing on both filled and
unfilled forms, as well as a selection of non-form
documents are presented. All document images are
assumed to have been scanned at a known resolution.

INTRODUCTION

The extradion and processng of information contained in
printed forms is a task of grea importance in many aress
of business and government dike. To date, the vast
majority of form processng hes been done manually, with
human operators performing all of the sssociated tasks up
to and including data entry. In recet times, a large
amount of reseach has been urdertaken in the fields of
form identificaion, field locetion and data extradion. All
of the reseach to date, however, makes the ssumption
that the image to be analysed is indeed a form, which may
not always be the cae in many applicdions. For this
resson, this paper presents a technique for classfying a
document image @ either a form or non-form, and
identifying likely field areas within any forms deteded.

Previous work in the field of form field detedion hes
provided an excdlent starting point for this reseach. The
technique proposed by Wang and Srihari [1] removes
isolated charaders, then searches for intersedions of line
segments. Yuan et a [2] present a method o deteding
fields in forms that relies on segmentation agorithms to
find text and straight lines, and uses adjaceicy graphs to
deted possble entry fields in form images with no text
entered. Xingyuan et a [3] propcse a more robust
technique which deteds redanguar fields and lines
regardlessof text or other markings, but does not explicitly
deted other form structures.

A number of techniques have dso been proposed to
remove the dfeds of noise and poa image aquisition,
which can often cause unwanted line bresks, false
intersedions and broken junctions [4-6].

The work presented in this paper isin two parts. The first
sedion describes a technique for deteding the primitive

data ettry structures that distinguish forms from other
documents, namely lines, bounded redanguar aress,
chedboxes, and charader cdl fields, or ‘tooth’ structures.
In the secnd sedion we dtempt to determine if an
unkrnown document is likely to be aform. Using the
presence of the previously deteded structures, combined
with the amount of text found in the document, a form
probability score is proposed as an indicaion of the
likelihood of the candidate document being a form.

Results from experiments over 100form and 200 na-form
document images from a variety of sourcesare presented.

DETECTION OF FORM STRUCTURES

An initial investigation of documents contained in [7] has
identified four mgjor structural elements which can be used
to identify forms. These ae: horizontal lines (either solid
or dotted), bounded redangles, smal chedkboxes, and
charader cdls or ‘tooth’ structures (Fig 1). Examination
of al training data has $own that every form document
contains one or more such structures. Deteding such
structures in complex document images, however, is not a
trivial problem. Attempting to segment a document image
and classfy regions is problematic due to frequent
overlapping of neighboring regions, espedally when
deding with completed forms. More traditional shape
recognition techniques such as the generalized Hough
Transform [8] are dso inacaurate in the presence of noise,
and also quite slow computationally. As all of the desired
regions consist entirely of verticd and horizontal li nes, our
approach to the detedion problem begins with finding all
such lines in the candidate image. Once these lines are
found, ead is further procesed to determine if it is a
likely form structure.

Line Detection

We define a‘line’ in a document image to be a ontiguous
or nea-contiguous squence of n ‘on’ pixels in the
horizontal (verticd) diredion, where n is diredly
propational to the resolution of the image. As the
smallest lines of interest are goproximately the same width
as a charader, n is chosen as to correspond with a distance
of 2mm in the origina document. To deted such a
sequence, we anploy a one-dimensional summing filter in
the horizontal (verticd) diredion defined by the equation
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where 1(x,y) is the original binary image. By applying a
threshold to the resulting image, the starting points of all
possble lines can be found.

L, = S(x, y) >T7 2
Binary morphologicd operations can then be used to
extend these starting points aadossall n pixels in the line
segment. Figure 2 shows the result of line detedion on a
typicd form image.

The detedion process thus outlined is succesdul at
deteding regions likely to contain lines, however aso
gives rise to a number of false positives. In particular,
large regions bladk regions in the document such as
images, thick verticd lines and large sedions of text are
often falsely deteded as horizontal lines. To remove such
regions we first segment the line image Ly into conneded
components, and cdculate the height and width of ead
component. Components which do not satisfy a minimum
width and width:height ratio are removed. This process
aso hasthe dfed of removing valid horizontal lines which
are mnneded to thick verticd lines, however as sich lines
are dmost always borders or part of images, this is not
undesirable.

Verticd lines by themselves do not constitute a possble
text entry field. For this reason, al verticd lines which do
not at some point cross a valid horizontal line ae dso
removed. To alow for noise, small bre&s in lines, and
scanning errors, we relax this constraint somewhat,
allowing verticd lines which are dose (within n pixels) to
either a horizontal line or another valid verticd line to be
kept aswell.

Line Grouping

Onceall possble lines hawe been deteced, we thenattempt
to combine these lines to form one of the four form
structures.

In order to deted charader cdls or ‘tooth’ structures, eat
horizontal line is analysed for verticd line aossngs, or
nea crossngs. Such crossngs must extend significantly in
the verticd diredion, since we aume that the horizontal
line represents the bottom of the tooth structure. We then
look for a periodic structure within these aossngs,
constrained by likely cdl size Due to noise, handwriting
or other markings within the structure, it is possble that
extra verticad crossngs unrelated to the structure ae
present. In order to alow for this, an algorithm has been
developed asfoll ows:

For every vertical line crossing not already part of
structure:
search for more crossings within search dist. x
for each such crossing found:
search line at same dist. #5%
if another crossing found,
recalculate mean distance, search again
if #crossings > 4, structure found.

The seach distance x is propartional to the resolution of
the document, and we have used a range of n-5n in our
experiments with goodresults. In order to reducethe false
detedion rate, we have dso enforced a aiterion whereby a
structure is not considered valid if more than half of its
crossngs are not fully joined. Finaly, we seach for atop
bounding line, which is defined as a horizontal li ne within
n-5n of the original li nes, which crosses (or nealy crosss)
ead verticad segment of the structure. If two or more such
lines are found, only the dosest to the baseline is taken.
Any such line found will still be mnsidered for the
baseline of further tooth structures.

For the detedion of redangles and baxes, we use asimilar
agorithm to that proposed in [3], whereby ead set of
candidate lines are dhedked to determine whether they
form an enclosed area In order to prevent redanges
being found in locaions arealy covered by previously
deteded tooth structures, baselines of such structures are
only considered as the top of aredangle. Small bre&ks in
the perimeter of redanges are permitted, so long as they
do not exceal 5% of the total distance. Redandes that are
completely covered by other redanges are then removed.
Regions whose aea ecedls a catain size threshold are
aso removed, as these ae unlikely to be text entry fields,
and are more likely borders or frames.

A chedbox is defined as a spedal case of rectangle, where
the following threecriteria ae met:

» Thesidesare of equa length (square
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Figure 2. Results of form structure detection. (a) Original document image, (b) detected vertical line
segments, (¢) detected horizontal line segemnts, (d) final form structures

«  Sidelength iswithin a given range (we use n- 5n)

e Sides do not significantly extend beyond the corners
of theredangle

All horizontal lines that do not form part of any of the
above structures are considered lines.

FORM CLASSIFICATION

The dasdficaion of documents into form and non-form
classesis achieved using a score based on the presence of
previoudy deteded form structures combined with the
amourt of text contained in the document. Examination of
a large number of forms has reveded that most do not
contain as much text as other documents of a similar size
Thus, the presence of text in a document image has a
negative impad on the probability of that document being
a form. Numerous agorithms exist for the segmentation
and extradion of printed text from documents , but for
acaracy we have manually measured the anount of text
present in eat test document. Aswe ae only interested in
the body text of the document, any large segments sich as
headlines or titles are not included. We thus define the
form probability score as.

P =W, oo + W, Gho, + W, ooy + W, e = Wil (3)
where dype represents the total horizontal lined distance
covered by the given structure type, and w is a weighting
vedor. A positive fps value indicaes that the document is

likely to be aform. In order to olktain a true likelihood
estimate, this value can be normali sed, such that:

box line

p
(dtooth + dbox + drect + dline + dtext)

In order to cdculate the weighting vedors we have
procesed a large number of both form and non-form
documents, and examined the relationship between the
amounts of ead structure present. By constructing plots
of dtext vs dtype for ead structure type, it can be seen that
there exists an amost linea separation between form and

p= )

+ +
+
+
N
+ R
+ + +
++ 4
+ + + +
n
+ + * .
+ *
+ + ¥4
* ¢ + * +
t +* *% * *
£ ¥
& I + 4 **‘** * #-&* & ke +
d-text
Figure 3. Plot of d-line vs d-text for a
selection of form(+) and non-form(*)

document images
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non-form documents. We then find the gradient of this
line and use it to calculate the corresponding weighting
coefficient in w, assuming ws = 1. Figure 3 shows an
example of such a plot. It should be noted that we could
find no non-form documents containing the tooth
structure, meaning that the value of w; would approach
infinity. For this reason we have made this coefficient very
large, approximately ten times the value of the next highest
coefficient.

RESULTS

Experiments were conducted in two stages, using a set of
100 form and 200 non-form images acquired from a
variety of sources, including the University of Washington
database [7]. Firstly, the form structure detection
agorithm was applied to all form images, and results
compared to those calculated manually. Overall, 2443 of
2567 (95%) form structures were successfully detected as
the correct type. Of those structures that were not detected
successfully, approximately two thirds were due to
misclassification of one structure as another, with the
remaining missed entirely. An additiona 181 form
structures were falsely detected, with amost all of these
being small lines. A typical form image with all detected
structures is shown in Figure 2. Table 1 shows the
confusion matrix for this experiment.

Table 1. Confusion matrix for detection of form
structures

Actual Detected Type
Type [ tooth rect. box line | missed
tooth 229 0 0 3 0
rect 0 767 9 38 0
box 0 10 318 4 14
line 1 15 1 1253 19
none 0 9 4 168 X

The second stage of experiments involved calculating the
normalised form probability score for each test document
using the detected structures and known text amounts.
Those documents obtaining a positive score were classified
as forms, with the remaining classified as non-forms.
From a total of 300 (100 form, 200 non-form) document
images, 258 were correctly classified. Of those that were
misclassified, 6 form images were missed, and 36 non-
form images falsely detected. The overall error rate of the
test was approximately 14%. Total processing time for
both structure detection and form classification is
approximately 5 seconds on a Pentium 3 600MHz
computer.

CONCLUSIONS AND FUTURE RESEARCH

This paper has presented a technique to distinguish form
documents from other types by identifying common
structures usually present in such images. Experimental
results have shown our agorithm for detecting such
structures to be accurate and robust, with over 95% of
structures detected correctly. Classification of form and
non-form documents is accomplished by comparing the
total number of such structures to the amount of text in the
document, creating a form probability score. This statistic
has shown to perform well, with almost all form images
correctly identified and a false detection rate of under
15%.

Future research will aim to more accurately model the
typical line and rectangle structure in forms by examining
surrounding text. This should greatly reduce the number
of false positive results.
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Abstract

This paper presents a novel theoretical approach to cal-
culating the apparent contour of a smooth surface. The
problemis formulated as a dual space intersection of alge-
braic tangent cones, which we will consider to be the mem-
bers of degree d hypersurfaces. The well known thereoti-
cal foundation for multi-view geometry is extended in light
of this to solve the problems of triangulation and forming
multi-view matching constraints for degree d apparent con-
tours.

1 Introduction

The problem of reconstructing a static scene from mut-
liple images is rich field of research [3]. There are a wide
range of algorithms that can be used to reconstruct linear
features such as points and lines from there projections in
mutliple images as well as the inverse problem of finding
the egomotion of the camera observing the scene.

However there has been far less research on the recon-
struction and multiple view geometry of arbitrary curves
observed in the scene[5], although the simplest cases of the
conic and quadric have been investigated to a greater extent
[4, 6, 1].

Broadly speaking, there are two different catagories of
curves commonly observed in a scene, these are the static
and apparent contours. Static curves are rigid curves they
may commonly occur as textures on a surface or a thin
thread of wire or other such objects. Each point on a static
curveobeystheregular epipolar transfer equations, however
presently thereis only one approachto finding aclosed form
algebraic solution for their geomerty in the general degree
d case[5] and several for the special degree 2 case [4, 6, 1].

We say the degree 2 case of the static curve is a special

case sinceit is the only type of 3D agebraic curve that can
be described by one equation. The other class of geomet-
ric objects that can be described by one equationin 3D are
the class of smooth degree d surfaces. The projection of a
smooth degree d surface forms a degree d apparent contour
in the image, the apparent contour in this sense is the in-
tersection of the dual of the surface with the image plane
[5, 1].

In this paper we consider the class of all degree d sur-
faces and their associated apparent contours to be repre-
sentable as degree d hypersurfaces, thus creating a generic
form of algebra for their manipulation. This paper will
only present abrief theoretical overview of the concepts, a-
though the computationally tractable cases of the apparent
contour triangulation and multi-view geometry have been
simulated in noise free conditions (up to degree 10). All the
geometry and algebra presented in this paper is projective
(8]

2 Linear Mutli-View Geometry

This section will outline the notation and the basic build-
ing block of linear mulit-view geometry. The development
of the ideas underlining multi-view matching constraints
and triangulation of linear featuresis heavily influenced by
the notation and stucture of the linear matching constraints
presented in [10]. Due to space considerations this paper
assumes that the reader is familiar with majority of these
concepts.

2.1 Features

Thefirst consideration when dealing with the multi-view
geometry of linear features is their notation. Consistantly
we will refer to features as any type of geometric object
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observed in a scene, be this points, lines and planesin the
linear case or hypersurfacesin the degree d case.

Table 1 summarises the notation and degrees of freedom
(DOF) for thegroup of linear featuresin the projective plane
([4, B,C] € P?).

Hyperplane | P2 P2 DOF
Points zA A = expox? = 20 2
Lines 2B | 4Bl — c poa? = 2ap 1

Table 1. Linear features and there duals in P2

Similarly, Table 2 summarises the notation and the DOF
for linear featuresin projective space ([a, b, ¢, d] € P3).

Hyperplane | P3 P3* DOF
Points ¢ 21 = €peat® = Tpea 3
Lines 2lat] | gl = ey = zeg 2
Planes plabel | glabe] — €abeaT™ = 14 1

Table 2. Linear features and there duals in P?

These tables demonstrate the process of dualization for
linear feature types via the antisymmetrization operator
[...]. The antisymmetrization operator should be consid-
ered as a determinantal method to generate the algebra for
linear features, by performing an alternating tensor contrac-
tion over the space to which the operator is applied [2].

2.2 Triangulation

Triangulationisthe process of calculating afeaturein 3
from two or more of its projectionsin P2, Firdty, we must
consider the projection operator (P5) or camera matrix that
denotes the projection of linear features from the scene to
the image plane (Pg : P? — P%). Table 3 summarises the
range of projection operators for linear features.

Hyperplane P P>
Point zh ~ PAz -
Line gAPl ~ PPt | ppe) ~ PL P
Plane - x4 ~ Pl

Table 3. Projection operators for linear fea-
tures

Generally it may be stated that Az = Pgz”, where \ is
an arbitrary scale factor.

Having observed 2...n image features, triangulation
proceeds through the reconstruction equations,

PA A 0 N

PA 0 g 0 M

v Al =0 (U
P 0 0 zAn )\:n

where the resulting nullvector of these equations presents
a solution for the scene feature and the scale factors A,,.
The stack of camera matrices on the left hand side of (1)
is referred to as the joint image projection matrix (P} =
PAAz-A4n) and can be thought of as a vector of camera
matricesthat projects acommon feature from the scene (z )
toits joint image feature location (z7 = gA142:+4n),
The reconstruction equations have,

() _DOF = DOF, —1)(DOF,; +1) = n+1 (2

n

DOF, where DOF}* and DOF; denote the DOF of the nt"
image feature and scene features respectively. Furthermore
the reconstruction equations are rank-(DOF,,, + n).

2.3 Multi-View Constraints

Mutli-View constraints provide a linear relationship be-
tween projections of scene features observed in two or more
images. Multi-View constraints provide a means to calcu-
late the structure of the scene and the egomotion of the cam-
era. The approach to building multi-view constraints stems
from the representation of a subspace in the Grassmann al-
gebra. Herewe wish to find a d,,-dimensional subspace for
the scene (where the scene is embedded in P%«), from the
joint image projection matrix. Thisis achieved by antisym-
metrizing over d,, + 1 of the joint images scene indetermi-
nants, with corresponding unique choices of any d ., + 1 of
the images indeterminants,

— 1 a...d —
Jho-Yd = mPJO"'Png :‘P[ZO
(3) is known as the Joint Image Grassmannian. The selec-
tion of the image indeterminants vy . . . y4 from the rows of
the joint image projection matrix determines which images
the resulting matching constraint will represent. The choice
of rows obeys the simple rules that for an image to be in-
cluded in the matching constraint, it must be represented by
at least onerow, and lessthan d; + 1 rows (where theimage
plane is embedded in P%). This leads to well known set of
matching tensors (Table 4) and also explainswhy thereis at
most 4-view matching constraints for points and lines.
There are many variations of the atypical matching con-
straints given in Table 4, see[10, 3].

...pg]d ©)
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Views Tensor Constraint
2 [B1C1B2C2 JIB1C1B2C2 (A1 . As] _ )
3 [B1C1B2B3 [IB1C1B2B3 . A Az . A3l _ (g
4 [B1B2B3By | [[B1B2B3Bap A1 A2 0. A3, A4] — g

Table 4. Atypical Linear Matching Constraint
Tensors

3 Hypersurfaces

It is at this point that we enter into profitable new terri-

tory with the introduction of hypersurfaces into the tensor
notation.
Definition A degree d hypersurfaceis denoted as the d-fold
symmetric product (symmetrization) (. ..) of an indetermi-
nant [2]. Theresulting hypersurfaceis considered to be em-
bedded in the space in which the symmetrization operator
isapplied. That is,

Ty...7) @
——

d—fold

or in the Algebro-Geometric notation [9],

n n d
P" x ... x P*"\S5
d—fold

where S¢ is the d-fold symmetric permutation group, this
may also be considered as the degree d, n space Veronese
embedding (v%).

We can state that hypersurfaces are generically points
ina P dimensional space, where v? = (") — 1, thus
they have v¢ — 1 DOF. Some common examples of hyper-
surfaces are the conic z(44)zz* = 0, and the quadric
T(aq)2?z® = 0 hypersurfaces. Equivalent dual hypersur-

facesare simply (A% z 424 = 0 where z(44) ¢ Prax,

4 Degree d Multi-View Geometry of Hyper-
surfaces

Now we are ready to observe the degree d triangulation
and Multi-View Geometry, of hypersurfaces. The develop-
ment in this section will follow the exact path we took in
Section 2, where in this case points and lines will be re-
placed by hypersurfacesand dual hypersurfaces.

4.1 Triangulation of Hyper surfaces

As in Section 2.1 our first step in solving the triangu-
lation problem is addressing the nature of projection op-
erators for degree d hypersurfaces. However, in this case

we are concerned with the degree d embedding of hyper-
surfaces in P? and IP? respectively. Firslty, we should note
that this concept is not completely new, in [4, 1] an equiv-
alent observation was made for the projection of degree 2
hypersurfaces. Table 5 summarises the range of projection
operators for degree d hypersurfaces.

d d
Pu3 ]P;u3 *

(@ pa) (A~ pA)
PPy | Po.. Py

Hypersurface

Table 5. Projection operators for degree d hy-
persurfaces

Generally, it may be stated that projection of hypersur-
facesisdenoted as Az (4. 1) = P((jij[Pjga:(a__,a) and dually

Ag(4-4) = P(((f_'_"PS)x(“"-“). We can also state that these
projection matrices are the d-fold symmetric powers of the
regular point projection matrix (and its dual), thus resulting
in the dimension of these matricesbeing ((v§+1) x (vg+1))
and ((vd + 1) x (v + 1)) respectively.

Since we are concerned with finding the the equation of
the surface generating the apparent contour in the image.
We must take the intersection of the dual hypersurfacestan-
gent cone with theimage plane. For notational compactness
we will assign (4,,---4,,) = n, and (a---a) = p. This
leads us to the equivalent set of dual reconstruction equa-
tionsfor degree d hypersurfaces,

i
1 moo... z
P =z 0 A
: : : : : =0 (6
p;]n 0O --- gMm /\'n

again the resulting nullvector of these equations presents a
solution for the scene hypersurface (z#) and the scale fac-
tors A,,.

The minimum number of image hypersurfaces required
to reconstruct a degree d hypersurfaceis given as the lower
bound of,

(d? + 6d + 11)

d>n>
TR

()

[5] the lower bound n must be rounded up to the closest
integer value. The upper bound is the limit on the number
of imagesfor the resulting matching constraint. The DOF of
these reconstruction equations and their rank are analogous
to those stated for (1).
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4.2 Multi-View Constraints for Degree 2 Hyper-
surfaces

Before we address the general formulation for the degree
d matching constraints for hypersurfaces, we will tred gen-
tly by outlining the concepts for degree 2.

Firstly, it is not clear in general the make-up or practical
relevance of features embedded in P2 or P that have DOF
other than vZ — 1 (ie. hypersurfaces).

An application of (7) suggests the presence of degree 2
matching constraints for two through to ten image projec-
tions. Again, the object in building the matching constraints
isselect v2 uniquerowsfrom thejoint image projection ma-
trix to make up the matching constraints. The correspond-
ing matching constraints are givenin Table 6.

Views Tensor Constraint
2 [B1F1B2C2 Do Ex Py Itgtigl =
3 IBl---FlBgC2D2EzB:3 I["'xAle2ng3] =0...
4 B F1B2C2D2Bs By |l g A1 Az AspAal — g
10 [P1B2Bio

Table 6. Degree 2 Matching Constraint Ten-
sors

Itisnot clear what the actual effect of selection of differ-
ent rows from the joint image has on the resulting matching
constraint (future work may included a thorough investiga-
tion of this uncertainty along the lines of [?]). But from
the initial experimentation we have found that any combi-
nation of rows that meets the af orementioned requirements
for defining a Grassmann subspace is adequate to construct
the matching tensor. The most pertinent factor in selecting
anumber of rows to form the matching constraints, is min-
imising the size of the actual matching tensor.

The selection of £ rows from a space of sizen will result
in the size of associated dimension of the matching tensor
being (), so naturally values close to either n or 1 will
yield smaller matching constraints.

4.3 Multi-View Constraints for Degree d Hyper-
surfaces

Finally, we can now see that an application of equation
(7) will give the upper and lower bounds for the degree d
multi-view constraints and an application of equation (6)
will generate the reconstruction equations for the problem.
Any selection of rows from the reconstruction equations
meeting the aforementioned criteria of a valid subspace,
will be adequate to reconstruct the degree d matching con-
straints.

5 Conclusions and Future Work

The authors have presented a general closed form lin-
ear method for the solution of degree 2 curves and surfaces
which extends to the solution of degree d surfaces. The es-
sential problems of triangulation and multi-view matching
constraints for these features have been considered, unfor-
tunately due space restrictions a full account of these ge-
ometries has been limited.

The authors have also considered a practical scheme to
calculate the apparent contours through the fitting of cubic
NURBS curves. NURBS are the only alternative since they
have the essential property of projective closure. Once the
NURBS curves have been fitted to the image data they must
then be converted into their implicit representation via the
process of implicitization [7]. Thistopic will be considered
in future work.
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