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Abstract 
The watershed transform of mathematical morphology has been used to automatically segment 
microcalcifications on mammograms, digitised to a pixel resolution of 40 um using a CCD 
camera. Initially, the algorithm was applied to a database of 38 cases received from the breast 

assessment clinic in Liverpool. The Radiologist had reported the diagnosis as either benign or 

malignant, which was confirmed by cytology (and when appropriate histopathology). 

Subsequently, the algorithm was applied to a database of 20 cases which a Radiologist had 

reported as being of equivocal appearance, with accurate diagnosis provided by cytology (and 

when appropriate histopathology). For all cases, both cranio caudal (CC) and lateral oblique (LO) 

views were available. Compared to the opinion of a Radiologist, the watershed algorithm produced 

excellent segmentation in 85% of microcalcifications in malignant clusters and 84% of 

microcalcifications in benign clusters. By comparison, for equivocal clusters, the value was 66%. 

The value of numerical analysis of the segmented microcalcifications for distinguishing between 

benign and malignant disease was investigated. Firstly, shape properties of the individual 

microcalcifications were considered. Secondly, the properties of the cluster as a whole were 

incorporated. 

Four parameters were used to define the shape of microcalcifications; namely, infolding, 

elongation, narrow irregularity and wide irregularity. The three largest microcalcifications were 
selected for each case and using a ‘leave-one-out’ approach, every case in turn was classified in 
respect of its five nearest neighbours as either benign or malignant, An ROC analysis was 
performed to investigate the effect on the sensitivity and specificity of the overall classification of 
the proportion of the three microcalcifications representing each cluster which had been correctly 
classified. For the benign and malignant database, the largest area under the ROC curve (Az) was 
0.79. By comparison for the equivocal cases, the largest area under the ROC curve was 0.35. 

Classification based on the properties of the cluster as a whole used local features such as 
shape and global features such as total number of microcalcifications in the cluster, distance to 
nearest neighbour and cluster density. Using the ‘leave-one-out’ method, each case in turn was 
ranked in terms of its agreement with the database as a whole over twenty-one features and then 
classified in respect of its nearest neighbours. For the benign and malignant database, the 
sensitivity was 71% and specificity was 74%, and for equivocal cases the sensitivity was 60% and 
specificity was 63% based on a single nearest neighbour. Subsequently, an ROC analysis was 
performed to investigate the effect on sensitivity and specificity of the overall classification of the 
proportion of the nine nearest neighbours that agreed with the true classification. Based on the 
four features of proportion of irregular microcalcifications, proportion of round 
microcalcifications, number in cluster and inter-quartile range of microcalcification area, the 
largest Az value obtained was 0.84 for benign and malignant clusters. By comparison, for 
equivocal cases, the largest Az value was 0.51. 

The results of the ROC analysis showed that the expected probability of correct classification of 
benign and malignant clusters based on either the shape of the three largest microcalcifications or 
the properties of the cluster as a whole differed by less than ten percent. By comparison, for 
equivocal clusters, the Az value was thirty percent greater when the properties of the cluster as a 
whole were included. Analysis of equivocal clusters especially requires information regarding the 
whole cluster. Furthermore, considering information from both views can be significant. The Az 

value for the ROC analysis based on shape increased from 0.73 (CC) and 0.63 (LO) to 0.79 when 
both views are considered.



"What matters above all things is that the game should be 
played in the right spirit with the utmost courage, with fair play 
and no favour, with every man playing as a member of his team 

without bitterness and conceit" 

Sir Matt Busby, CBE, KCSG (1909 - 1994)



1.1 
2 

1.3 
1.4 

1.5 

2.1 

22 

2.4 
2 

2.6 

2.7 

3.1 
32 

3.4 
3.5 

Contents 

INTRODUCTION 
The Extent of Breast Disease 
Early Detection and Mammography Screening 

Computer Aided Analysis of Mammograms 

Nature and Scope of Research 

Organisation of Thesis 

THE BREAST 
Introduction 

Anatomy 

Blood Supply 
Lymphatics 

Physiology 

2.5.1 Development with Age 

2.5.2 The Effects of the Menstrual Cycle 

Risk Factors and Epidemiology 
2.6.1 Introduction 

2.6.2 Age 

2.6.3 Place of Birth 
2.6.4 Family History 
2.6.5 Reproductive Factors 

2.6.6 Social Class 
2.6.7 Hormonal Influences 

2.6.8 Alcohol Consumption 

2.6.9 Diet 

Clinical signs of Breast Disease 

2.7.1 Breast Lump 

2.7.2 Abnormal Nipple Appearance 
2.7.2 Abnormal Skin Appearance 

MAMMOGRAPHY, SCREENING & MANAGEMENT 
Introduction 

History of Mammography 
Equipment for Mammography 

3.3.1 X-ray Generator 

3.3.2 X-ray Tube and Filter 

3.3.3 Collimator 
3.3.4 Compression Device 
3.3.5 Anti-Scatter Grid 
Physical Requirements for Mammography 
Technique for Mammography 
3.5.1 The Lateral Oblique View 
3.5.2 The Craniocaudal View 

e
e
t
 
O
o
V
F
N
N
 =
 

12 

12 
14 
14 
15 

15 

16 
17 
17 

18 

19 
19 

20 

20 
el 
21 

21 
22 

22 

23 

24 

25 
26 
27 

29 
29 
29 

30 
31 

31 
33



3.6 

3.7 
3.8 

3.9 

4.1 
4.2 

4.3 

5.1 

5.3 

5.4 

Mammography Reading and Interpretation 
3.6.1 Detection of Abnormalities 
3.6.2 Interpretation of Mass Lesions 

3.6.3 Interpretation of Calcifications 
3.6.4 Interpretation of Secondary Signs of Malignancy 

3.6.4.1 Interpretation of stromal distortion 
3.6.4.2 Interpretation of skin thickness 
3.6.4.3 Interpretation of Nipple and Areolar Changes 
3.6.4.4 Interpretation of Abnormal Duct Patterns 

3.6.5 Wolfe Patterns 
Screening Mammography 
Aims and Methods of Screening Service 
3.8.1 Population Identification 
3.8.2 Screening 
3.8.3 Assessment 
Management of Abnormal Mammogram 
3.9.1 Needle Biopsy 

3.9.1.1 Fine needle aspiration (FNA) biopsy 
3.9.1.2 Core needle biopsy 

3.9.2 Excisional Biopsy 
3.9.3. Breast Preservation Treatment 
3.9.4 Mastectomy 

MICROCALCIFICATIONS 
Introduction 
Mammographic Features of Microcalcifications 
4.2.1 Number 
4.2.2 Size 
4.2.3 Shape 
4.2.4 Area Occupied by Microcalcifications 
Anatomical Site of Calcification Origin 
4.3.1 Ductal-type Calcifications 
4.3.2 Lobular-type Calcifications 
4.3.3 Miscellaneous Calcifications 

IMAGE ANALYSIS & MATHEMATICAL MORPHOLOGY 
Introduction to Image Analysis 
Acquisition and Formation of Digital Images 
5.2.1 Vidicon Camera 
5.2.2 Solid State Sensors 

5.2.2.1 Charge Generation for Incident Illumination 
5.2.2.2 Advantages over Vidicon cameras 

5.2.3 Laser Scanner 
5.2.4 Computed Radiography 
Image Capture and Transformation 
4.3.1 Analogue Signal Capture 
4.3.2 Analogue-to-Digital Conversion 
Digital Image Display 

 



5.5 

5.6 

5.7 

5.8 

5.9 
5.10 

5.4.1 Sampling 
5.4.2 Quantisation 
5.4.3. Properties and Visual Perception 

5.4.3.1 Connectivity 
5.4.3.2 Histograms 
5.4.3.3 Contrast 
5.4.3.4 Colour 

5.4.4 Noise 
Image Pre-processing 
5.5.1 Grey Level Transformation 
5.5.2 Local Pre-processing 

5.5.2.1 Image Smoothing 
5.5.2.2 Edge Detection 

Image Segmentation 
5.6.1 Thresholding 

5.6.1.1 P-tile Thresholding 
5.6.1.2 Modal Thresholding 
5.6.1.3 Hierarchical Thresholding 

5.6.2 Edge based segmentation 
5.6.2.1 Edge Image Thresholding 
5.6.2.2 Edge Relaxation 
5.6.2.3 Edge Graph Searching 
5.6.2.4 Snakes 

5.6.3 Region Growing 
5.6.3.1 Region Merging 
5.6.3.2 Region Splitting 
5.6.3.3 Region Splitting and Merging 

Shape Representation and Description 
5.7.1 Area 
5.7.2 Euler’s Number 
5.7.3 Projections 
5.7.4 Eccentricity 
5.7.5 Elongation 
5.7.6 Rectangularity 
5.7.7 Direction 
5.7.8 Compactness 
5.7.9 Moments 
Classification 
5.8.1 Bayesian Classifier 
5.8.2 Binary Decision Tree (BDT) 
5.8.3. K-Nearest Neighbour Algorithm 
5.8.4 Neural Networks 

5.8.4.1 Backpropagation (BP) Neural Network 
5.8.4.2 Cross Correlation (CC) Neural Network 
5.8.4.3 Divide and Conquer Neural Network 

Introduction to Mathematical Morphology 
Properties and Terminology of Morphological Transformation 
5.10.1 Extensive and Anti-extensive 
5.10.2 Idempotent



5.11 

5.12 

5.13 

5.14 

Dao 

5.16 
5.17 

6.1 
6.2 

6.3 
6.4 
6.5 
6.6 
6.7 

6.8 
6.9 
6.10 

TA 

7.2 

7.3 

7.4 

Binary Images 
5.11.1 Dilation 
5.11.2 Erosion 
5.11.3. Duality of Erosion and Dilations 
5.11.4 Opening 
5.11.5 Closing 
Grey Level Images 
5.12.1 Dilations 
5.12.2 Erosions 
5.12.3 Opening 
5.12.4 Closing 
Morphological Filtering 
Morphological Reconstruction 
5.14.1 Binary Images 
5.14.2 Grey Level Images 
Top Hat Algorithm 
Morphological Gradient Transform 
Watershed Transform 
5.17.1 Basic Application 
5.17.2 Application of Watershed with Markers 
5.17.3 Selection of Markers 

REVIEW OF IMAGE ANALYSIS TECHNIQUES FOR 
MICROCALCIFICATIONS 
Introduction 
Digitisation 

Noise 

Gain 
Enhancement 
Detection and Segmentation of Microcalcifications 
The Chicago Group 
Analysis of Microcalcification Features 
Investigation of More than One View in Mammography 
Conclusions on Previous Work and its Relevance to the Present Study 

  

- MATERIALS AND METHODS 
Subject Selection 
7.1.1 Benign and Malignant Database 

7.1.1.1 Benign Cases 
7.1.1.2 Malignant Cases 

7.1.2 | Equivocal Database 
Digitisation of Film 
Image Analysis Routine 
7.3.1 Histogram Stretching 
7.3.2 Automatic Sequential Filtering (ASF) 
7.3.2 Detection of Candidate Internal Markers 
7.3.3 Segmentation of Microcalcifications 
Inter Observer Detection and Segmentation Quality 

96 
96 
96 

97 

98 
98 

100 
100 

101 

102 
102 

103 
105 
105 

106 
106 

109 
110 
110 

111 

113 

116 
117 

117 
118 
119 

120 
121 
124 

128 
131 

132 

135 
136 

136 
136 

138 
140 
142 
144 

146 

146 
147 
152 

154 

viii



7.5 

7.6 

a7 

8.1 

8.2 
8.3 
8.3 

8.4 

7.4.1 Detectability 
7.4.2 Segmentability 
Shape Analysis of Individual Microcalcifications 
7.5.1 Infoldings 
7.5.2 Elongation 
7.5.3 Narrow Irregularities 
7.5.4 Wide Irregularities 
Feature Analysis of Cluster 
7.6.1 | Number in Cluster 
7.6.2 Cluster Area 
7.6.3 Cluster Perimeter 
7.6.4 Cluster Density 
7.6.5 Spatial Distribution 
7.6.6 Proportion of Microcalcification Shapes in Cluster 
7.6.7 Segmented Area of Microcalcifications 
7.6.8 Background Standard Deviation 
7.6.9  Circularity 
7.6.10 Contrast 
7.6.11 Average Edge Strength 
7.6.12 Smoothness 
KNN Classification and ROC Analysis 
7.7.1 Introduction 
7.7.2 KNN Classifier 
7.7.3 ROC Analysis 
7.7.4 Experimental Method 

7.7.4.1 Method of Allocating Reference and Test Data 
7.7.4.2 Features and Parameters for Individual Microcalcifications 
7.7.4.3 Features and Parameters for Clusters 

RESULTS 
Performance of Image Analysis Routine 
8.1.1 Detectability 
8.1.2 Segmentability 
Shape Analysis of Individual Microcalcifications (Benign & Malignant) 
Shape Analysis of Individual Microcalcifications (Equivocal) 
ROC analysis of Individual Microcalcifications Based on Shape 
8.3.1 Benign and Malignant Clusters 
8.3.2 Equivocal Clusters 
Feature Analysis of Benign and Malignant Clusters 
8.4.1 Number in Cluster 
8.4.2 Area of Cluster 
8.4.3 Perimeter of Cluster 
8.4.4 Cluster Density 
8.4.5 Distance to Centre of Cluster Distribution 
8.4.6 Nearest Neighbour Distribution 
8.4.7 Roundness 
8.4.8 Elongation 
8.4.9  Irregularity 
8.4.10 Individual Microcalcification Area 

154 
155 

156 
156 

156 
157 
157 

163 
164 

164 
165 

165 
165 

166 
166 

166 
166 
167 

167 

168 
169 

169 
169 
170 

173 
173 

173 
176 

179 
180 
180 

181 

184 
188 
189 
189 

191 
193 
196 
197 

199 

200 
201 

203 

204 
205 
205 
206



8.5 
8.6 

9.1 
92 

9.3 

9.4 

9.5 

9.6 

8.4.11 Background Standard Deviation 
8.4.12 Circularity 
8.4.13 Contrast 
8.4.14 Edge Strength 
8.4.15 Smoothness 
Feature Analysis of Equivocal Clusters 
Receiver Operating Characteristics of Image Analysis Routine for Clusters 

DISCUSSION AND CONCLUSIONS 
General Overview 
Research Design 
9.2.1 Subject Selection 
9.2.2 Radiological Assessment 
9.2.3 Digitisation 
9.2.4 Conclusions and Further Work 
Performance of Image Analysis Routine 
9.3.1 Preprocessing 

‘ 9.3.1.1 Histogram Stretching 
9.3.1.2 Alternating Sequential Filter (ASF) 

9.3.2 Detectability 
9.3.3. Segmentability 
9.3.4 Conclusions and Further Work 
Shape Properties of Individual Microcalcifications 
9.4.1 Mathematical Morphology & Microcalcification Shape Factors 
9.4.2 Numerical Analysis of Local Shape Features 

9.4.2.1 Malignant and Benign Database 
9.4.2.2 Equivocal Database 

9.4.3, ROC Analysis of Individual Microcalcifications Based on Shape 
9.4.4 Conclusions and Further Work 
Feature Analysis of Benign and Malignant Clusters 
9.5.1 Number in Cluster 
9.5.2 Area of Cluster 
9.5.3 Perimeter of Cluster 
9.5.4 Cluster Density 
9.5.5 Distance to Centre of Cluster Distribution 
9.5.6 Nearest Neighbour Distribution 
9.5.7 Proportion of Individual Microcalcification Shapes in Cluster 
9.5.8 Individual Microcalcification Area 
9.5.9 Background Standard Deviation 
9.5.10 Distribution of Circularity 
9.5.11 Contrast 
9.5.12 Average Edge Strength 
9.5.13 Smoothness of Microcalcifications 
9.5.14 Conclusions and Further Work 
Feature Analysis of Equivocal Clusters 
9.6.1 Number in Cluster 
9.6.2 Cluster Area 
9.6.3 Perimeter Length 

  

207 

207 
207 
208 

208 

209 
212 

219 

220 
220 
220 

221 
221 
223 

224 

224 
224 
225 
227 
229 

234 
236 
236 

236 
237 
238 

238 
239 

241 
241 

244 

247 
250 
252 
252 

253 
255 

255 
258 

258 
259 
259 

261 
263 
263 
264 
265



9.7 

9.8 

9.9 

9.6.4 Cluster Density 
9.6.5 Distance to Centre of Cluster Distribution 
9.6.6 Nearest Neighbour Distribution 
9.6.7 Proportion of Individual Microcalcification Shapes in Cluster 
9.6.8 Individual Microcalcification Area 
9.6.9 Background Standard Deviation 
9.6.10 Distribution of Circularity 
9.6.11 Contrast 
9.6.12 Average Edge Strength 
9.6.13 Smoothness of Microcalcifications 
9.6.14 Conclusions and Further Work 
Classification and ROC Analysis Based on Clusters 
9.7.1 Malignant and Benign Database 
9.7.2 Equivocal Database 
9.7.3 Conclusions and Further Work 
The Use of Two Views for Diagnosis 
9.8.1 Discussion of Results 
9.8.2 Conclusions and Further Work 
Potential Practical Applications of Image Analysis 
9.9.1 Guide to Locating Abnormalities 
9.9.2 Classification of Clusters 
9.9.3. The Use in Follow-up Scans in Patients 
9.9.4 Conclusions 

REFERENCES 

APPENDIX A 

APPENDIX B 

APPENDIX C 

265 

266 
267 
267 

268 
268 

269 
269 

270 
270 

270 
272 

272 
274 

276 
278 

278 
279 
280 

280 

280 
281 
281 

282



Chapter I 

INTRODUCTION



1.1 EXTENT OF BREAST DISEASE 

Breast cancer is the commonest malignancy among women in the western world 

(Parkin et al., 1988) and represents the commonest single cause of death for women 

in the 35 to 59 age group. The world-wide incidence of breast cancer is increasing in 

frequency. Mortality rates from breast cancer vary from country to country, the 

highest rate being in the UK with 15,000 deaths per annum. The cause of breast 

cancer has not been substantiated and there is no method of primary prevention at 

present. However, there are known risk factors including age, country of birth and 

family history. The best hope of cure is early detection and treatment before any 

spread has occurred outside the breast. 

1.2 EARLY DETECTION AND MAMMOGRAPHY SCREENING 

The World Health Organisation (Wilson and Jugner, 1968) described screening as: 

“The presumptive identification of unrecognised disease or defect by the application of 

tests, examination, or other procedures which can be applied rapidly. Screening tests sort 

out apparently well persons who probably have a disease from those who probably do not. A 

screening test is not intended to be diagnostic. Persons with positive or suspicious findings 

must be referred to their physicians for diagnosis and necessary treatment." 

The same publication explained that screening would be worthwhile for the 

population as a whole if certain criteria were met. Firstly, the disease must represent a 

major health problem and be sufficiently common to make the screening programme



cost effective. Secondly, there must be effective treatment of the disease and that 

treatment must be available to all the population. Thirdly, early treatment of the 

disease should be more effective in producing a cure or preventing the development of 

complications than treatment started at a later stage. In addition, the means of 

detection must be efficient and acceptable to the population to be screened. 

Breast cancer clearly satisfies the first of the above requirements. Effective controls 

of the disease may be in the form of mastectomy or local excision with breast 

conservation (Fisher et al., 1989; Veronesi et al., 1987). Radiotherapy reduces the 

rate of local recurrence following local excision of breast cancer (Solin et al., 1991). 

Treatment with chemotherapy (Henderson, 1991) or tamoxifen (Nolvadex Adjuvant 

Trial Organisation, 1988) has been effective in some groups of patients. Other studies 

have shown that survival after the diagnosis of breast cancer is dependent on how 

early the disease is discovered (Bloom, 1971; Brinkley and Haybittle, 1975; Milbrath 

et al., 1981). 

The first selective population study was done as part of the Health Insurance Plan 

(HIP) for New York (Shapiro et al., 1971). The survival rates for the screened 

women in this study were 38%, 30% and 23% better than in the controls after 5, 10 

and 18 years respectively. The Two Counties (Koppaberg and Ostergétland) Study in 

Sweden in 1977 demonstrated further the benefit of screening where there was a 30% 

improvement in mortality up to 8 years (Tabar et al., 1985). The result of these and 

other studies stimulated the UK Trial of Early Detection of Breast Cancer (1981). The 

Forrest Committee was initiated in 1985 by the Ministry of Health with the brief of 

considering the information then available on breast cancer screening, suggesting a 

range of policy options and assessing the benefits and costs required for



implementation of these options. The committee recommended that breast screening 

be available for all women in the 50-64 year age group (Forrest, 1986), and that this 

should take the form of a single lateral-oblique (LO) view mammogram every three 

years. Mammography was deemed to be the most accurate method for detecting 

impalpable breast cancer. Currently, it is proposed that two-view mammography be 

used and that the age for screening be expanded (Wald et al., 1995). 

1.3 COMPUTER AIDED ANALYSIS OF MAMMOGRAMS 

The efficiency of a screening program depends on detecting subtle mammographic 

signs of early breast cancer. This requires a high level of skilful and careful 

interpretation. The evaluation of abnormalities such as microcalcifications, stromal 

deformity and small irregular masses may result in interpretation difficulties, leading to 

differences in opinion between Radiologists. In particular, problems arise when subtle 

abnormalities are seen against a background of dense stromal tissue. In addition, there 

may be difficulties in deciding whether a mammographic abnormality is benign or 

malignant in nature. Because of these problems, the use of computers to assist in the 

analysis of mammograms has been investigated. 

The role of the computer can range from archiving to complementing clinical 

diagnosis by the Radiologist. There are a number of areas where computers could 

soon be used in a clinical environment. One use is to prompt the Radiologist to view 

certain regions on the mammogram that are indicated as suspicious by the computer. 

In cases where patients have been recalled for early screening, the images may be co-



register with the original archived images for assessing if an abnormality had 

progressed. 

The ultimate goal of computer aided mammography (CAM), however, is to fully 

automate the processes of abnormality detection and analysis. Image analysis offers an 

objective decision making system that could remove inter and intra observer 

differences. Although it is true that computers work logically, the human function of 

reasoning can not be transplanted to an image analysis system. Computers have to be 

programmed and the algorithms may be susceptible to errors. The major problem with 

CAM is the lack of availability of sufficiently accurate software. In the UK screening 

programme, with three million women being assessed annually, if the computer 

reported only one mistake in every ten thousand women, then over three hundred 

women would be misdiagnosed each year. 

1.4 NATURE AND SCOPE OF RESEARCH 

A database of 58 cases was received from the UK breast screening programme in 

Liverpool. Initially, 38 cases were obtained. These were diagnosed as probably benign 

(19 cases) and probably malignant (19 cases) on the mammographic features of the 

microcalcifications. The cases that were deemed the probably benign group did not 

undergo excision, but, diagnosis was confirmed by fine needle aspiration (FNA), and 

early screening mammography was performed one year later. The cases deemed to be 

probably malignant were confirmed by cytological diagnosis and histological diagnosis 

after excision. Next a further 20 cases were obtained which were deemed as equivocal 

due to their non-specific appearance on the mammograms. On the results of cytology,



15 of the cases were confirmed as benign. On the results of cytology and subsequent 

histopathology, 5 cases were confirmed as malignant. For all cases, two views of the 

breast (lateral oblique and craniocaudal) were obtained. The purpose of the present 

study was to detect, segment and extract numerical information about clusters and 

microcalcifications using computer based image analysis techniques. The objectives 

were, 

1. To investigate the performance of the watershed transform and other algorithms of 

mathematical morphology for reliably and automatically segmenting microcalcifications on 
mammograms digitised to a pixel resolution of 40 um using a CCD camera. 

2. To investigate whether the cases in both the above mentioned databases could be correctly 
classified as either benign or malignant on the basis of the shapes of the individual 
microcalcifications. The four shape parameters that were used were again obtained using 
algorithms were applied to the segmented (i.e. binary) images. The three largest 
microcalcifications were selected for each case. These are likely to contain sufficient numbers 
of pixels to make shape analysis feasible. Next, using a ‘leave-one-out’ approach, for each 
case in turn, each of the three microcalcifications was classified in respect of its five nearest 
neighbours as either benign or malignant. An ROC analysis was performed to investigate the 
effect, on sensitivity and specificity of the overall classification, of the proportion of the three 
microcalcifications representing each cluster which had been correctly or incorrectly 
classified. 

3. To investigate whether the cases in both the above mentioned databases could be correctly 
classified as either benign or malignant on the basis of a variety of local features, such as 
shape, and global features, such as the total number of microcalcifications in the cluster, mean 
distance to nearest neighbour, etc. Again, using the ‘leave-one-out’ method, each case in turn 
was ranked in terms of its agreement with the database as a whole over twenty-one features 
and then classified in respect of its nearest neighbours. Subsequently, an ROC analysis was 
performed to investigate the effect on sensitivity and specificity of the overall classification of 
the proportion of the nine nearest neighbours that agreed with the true classification. 

4. To investigate, for both (2) and (3) above, whether the classification using the LO view 
differed from that using the CC view. Finally, the merits of including both views was 
investigated.



The image analysis method used derived from a branch of mathematics known as 

mathematical morphology (Serra, 1982). The method is demonstrated on a selected 

field of view of the mammogram film containing a cluster of microcalcification 

dipiedta a pixel resolution of 40 um shown in the top left panel of Figure 1.1. The 

top right panel shows the image after application of a morphological gradient 

transform. This operation located where the maximum rate of signal intensity 

occurred for each microcalcification and was used for the watershed algorithm to 

construct objective and reproducible boundaries. The middle left panel shows the 

result of applying the top-hat algorithm superimposed upon the original image (with 

grey scale inverted). This algorithm extracts the peaks from the background signal 

intensity. Features shown in red represent candidate markers for each 

microcalcification in the cluster. To obtain a marker for the background, the 

watershed algorithm is applied to the original image with inverted grey scale, 

constrained by these markers. The algorithm uses a flooding technique and the result 

is shown as a blue line in the middle right panel. This line represents a marker for the 

whole background region. Next, the watershed algorithm is re-run (bottom left panel), 

but this time, on the morphological gradient image constrained by both the candidate 

markers (red) and the background marker (blue). The resultant segmented image is 

shown in the bottom right panel. Once the image is segmented, numerical information 

regarding the individual microcalcifications and the whole cluster is obtained.



  
Figure 1.1 - The stages of the computer algorithm run from left to right starting from the 

original digitised cluster (top left) to the final segmented image (bottom right)



Mathematical morphology algorithms were used to analyse the shapes of individual 

microcalcifications. Four shape factors were used, namely, contour irregularity (or 

infoldings), narrow irregularities, wide irregularities and elongation. The three largest 

microcalcifications were chosen from each cluster and the K-nearest-neighbour (KNN) 

algorithm identified the five nearest neighbours. A threshold level was set to classify 

each microcalcification in the set of three. A varying threshold level was selected to 

identify the fraction of the three microcalcifications classed as true-positive and false- 

positive, thus providing points for construction of the ROC curve. 

Cluster features refer to both global and local features. Features that refer to the 

whole cluster are number of microcalcifications, cluster area, cluster perimeter, 

distance of nearest neighbour, distance to centre measure and cluster density. Local 

features are area, contrast, smoothness, edge strength, circularity and background 

standard deviation. Shape analysis was used to establish the relative proportions of 

round, elongated and irregular calcifications. For each cluster, the nine nearest 

neighbours were found and the fraction of true-positives was identified. A varying 

threshold was applied to obtain the proportion of true and false positive clusters. 

These provided points to construct the ROC curve.
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1.5 ORGANISATION OF THESIS 

  

The anatomy of the normal breast and clinical signs of breast disease are described in 

Chapter 2. The technique of mammography is described in Chapter 3, including 

sections on the equipment, positioning of patient and aims and management of the 

screening program. The pathological features of microcalcifications are covered in 

Chapter 4. The general theory of image analysis and mathematical morphology is 

explained in Chapters 5 whilst Chapter 6 describes previous work done using image 

analysis in mammography. The materials and methodology used in this study are 

described in Chapter 7. The results from image analysis, numerical analysis (which 

encompassed global features, local features and shape analysis) and classification are 

presented in Chapter 8. The relevance of the results is discussed in Chapter 9 along 

with conclusions and ideas for further work.



Chapter 2 

THE BREAST
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2.1 INTRODUCTION 

Knowledge of the basic anatomy and physiology of the breast is required to 

understand breast disease and the features seen on a mammogram. 

2.2 ANATOMY 

The glandular portion of the breast is composed of fibrous, adipose and epithelial 

tissue. The secreting tissue is divided into 15 to 20 lobes arranged in a radial pattern - 

each lobe contains hundreds of lobules. Figure 2.1 shows how the lobules are 

connected together by small ducts, or ductules. The ductules, along with the intra 

lobular terminal duct, and extra lobular terminal duct, form the terminal ductal lobular 

unit. These all join together to produce the major lactiferous ducts that dilate into 

lactiferous sinuses that pass through the nipple to form 5 to 10 duct openings 

(papillae) on the surface of the nipple. 

The breast tissue is enclosed between the superficial and deep layers of the 

superficial fascia. The space between the deep layer of the superficial fascia and 

pectoralis fascia is filled with loose areolar tissue. The breast is attached to the 

overlying skin by bands of connective tissue originating between the glandular fat 

lobules. These bands, known as Cooper’s ligaments, support the breast against the 

chest and maintain its shape. After multiple pregnancies or as a result of obesity or 

age, the ligaments are stretched causing the breast to lose its firmness and adopt a 

more pendulous appearance.
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Figure 2.1 - Schematic diagram of normal breast anatomy (Adapted from Hayes, 1993)
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2.3 BLOOD SUPPLY 

The breast is supplied by the internal mammary and lateral thoracic arteries. The 

lateral thoracic artery supplies the outer half of the breast. The inner half is supplied 

by two to three small arteries passing between the second, third and fourth ribs which 

arise from the internal thoracic mammary artery, a branch from the aorta at the root of 

the neck. 

2.4 LYMPHATICS 

Lymph is the accumulation of tissue fluid between the cells of any organ. It consists 

mainly of protein and white blood cells. Lymph is collected in the lymphatic vessels 

that drain the organ. In the breast, lymph flows away from the nipple and follows the 

blood vessels towards the lymph glands in the axilla and in the spaces between the 

ribs. 

Lymph from the outer quadrants of the breast flows into the axillary lymph nodes. 

Lymph from the inner quadrants of the breast flow towards the sternum and then 

through the spaces between the ribs to drain via the lymph nodes associated with the 

internal mammary artery. The axillary nodes are usually the first to be involved by 

metastatic disease although other groups may later be affected.
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2.5 PHYSIOLOGY 

2.5.1 Development with age 

The greatest increase in growth occurs at puberty, influenced by the ovaries and to a 

lesser extent by the pituitary gland and hypothalamus. The breast grows longitudinally 

with the branching of the ductal system and formation of lobules prompted by 

oestrogen. Lobules form between one to two years of menarche, as growth continues 

there after. Until the mid-twenties, the breast consists of mainly glandular tissue and 

relatively little fat. Physiological involution, with regression of glandular epithelium 

and intralobular connective tissue and replacement by adipose tissue occurs from the 

twenties onwards, becoming more marked around the time of the menopause and 

reaching its maximum after the menopause. After the menopause, glandular 

parenchyma is at a minimum. Additionally, interlobular connective tissue becomes 

coarse, whilst intralobular tissue is absent. Eventually, all the glandular tissue has 

disappeared and been replaced by fat. However, there is considerable variation in the 

amount of glandular tissue and the rate of these involutional changes from one woman 

to another. Regression of glandular parenchyma, and the progressive replacement by 

fat and connective tissue related to age is shown in Figure 2.2 (Barth, 1971).
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Figure 2.2 - Changes in parenchyma, fat and connective tissue with age 

(Adapted from Barth, 1971) 

2.5.2 The Effects of the Menstrual Cycle 

Changes occurring in the breast during the menstrual cycle are caused by varying 

amounts of oestrogen and progesterone (Vogel et al., 1981), so that different lobules 

in the same breast can vary in morphological appearance. From days 3 to 7 of the 

menstrual cycle, the rise in oestrogen causes epithelial proliferation resulting in an 

irregular increase in cell layers. Between days 8 and 14, stratified differentiation of the 

epithelial cells occurs. On days 15 to 20, the rise in progesterone causes growth of the 

lumen of the acini and ducts. During days 21 to 27, secretion occurs in the luminal 

epithelium cells in response to progesterone. In addition, an increasing intralobular
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stromal oedema and venous congestion causes the fullness of the breasts during the 

pre-menstrual period. From days 28 to 2, secretion has ceased, with loss of stromal 

oedema and decrease in luminal size. 

During pregnancy and lactation, cell secretion occurs due to proliferation of the 

lobules and acini within each lobule. Lobular involution occurs after cessation of 

lactation. Menopausal involution causes the epithelium to flatten, lose secretory 

activity and eventually disappear completely. The loose connective tissue of the 

lobules transforms into dense connective tissue. The lobule is converted into 

featureless stroma that is replaced by fat during involution. 

2.6 RISK FACTORS AND EPIDEMIOLOGY 

2.6.1 Introduction 

Risk factors for a disease may be referred to as the characteristics or exposures 

related to the probability of an outcome. By understanding the risks, the treatment of 

the disease may be more successful when applied early in the course, rather than later. 

Monitoring efforts may be focused on individuals most likely to develop the disease. 

In the context of breast cancer, information about the pathogenesis of the disease 

may lead to improved prevention and treatment. Epidemiological studies have 

evaluated certain factors associated with the development of breast cancer. These are 

summarised in Table 2.1. Generally, risk factors may be divided into high, moderate 

and low. Women born in North America or Europe have a higher risk of developing 

breast cancer than those from Asian countries. Previous personal history of family 

history (in particular in a first-degree relative such as mother or sister) increases the
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relative risk to almost fivefold. The risk is increased in women whose sisters 

developed breast cancer before the menopause and increased further if their cancers 

were bilateral. 

> 4.0 2.0 - 4.0 11-1.9 | quantified 

Female Upper socio-economic Moderate alcohol Hormonal replacement 

class intake therapy 
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Personal history of Alcohol 
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pregnancy > 30 

  

      Strong family history 
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pre-menopausal 
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Nulliparous Smoking 

      Atypical proliferative 
benign breast lesion 

Non-atypia benign 

disease      

Table 2.1 - Risk Factors Associated with Breast Cancer (Hayes, 1993) 

2.6.2 Age 

Breast cancer is very rare in females under the age of 20. From the age of 20 

onwards, there is an increased ano until the age of 45 after which the incidence 

rises sharply. Women over the age of 75 are therefore three times at risk of 

developing breast cancer compared to those in the 35-44 year age group (HMSO 

Series - Mortality Statistics Cause, 1988).
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2.6.3 Place of Birth 

There is more than a six-fold difference of cancer incidence between high rate 

countries (such as USA and other western countries) compared to those with lower 

rates (Asian countries). However, studies have shown that the first and second 

generations of Asian migrants in western countries show an increase in cancer 

incidence (World Health Statistics, 1989). This suggests that other factors such as 

environment or diet may play a part. 

2.6.4 Family History 

Hereditary factors have been suspected to contribute to breast cancer susceptibility. 

The most common occurrence is where individuals have one or two-first degree 

relatives with a history of breast cancer, particularly before the menopause. The 

relative risk for a positive family history of breast cancer is described by Bain et al. 

(1980). If the mother has breast cancer the risk is 1.8, whereas if a sister has breast 

cancer, the risk is 2.5. If either mother or sister is diagnosed positive, the rate is 2.0, 

whereas the highest risk factor of 5.0 occurs when both mother and sister are 

diagnosed with breast cancer. 

2.6.5 Reproductive Factors 

Nulliparous women are at a higher risk than those who have had children (Logan et 

al., 1953). Women who bore children below the age of 18 have one-third the risk of 

women whose first full term pregnancy occurred after 35 (MacMahon et al., 1970). 

Multiple births also contribute to protection in pre-menopausal women (Jacobson et 

al., 1989).
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2.6.6 Social Class 

Cuello et al. (1982) showed that members of higher social class are more commonly 

affected by breast disease than those in a lower social class. 

2.6.7 Hormonal Influences 

Changes in endogenous and exogenous hormonal patterns have been linked to the 

development of breast cancer. Two endogenous factors are the age at menarche and 

age at menopause. There is a 50% reduction in risk amongst women whose menarche 

occurred after the age of 13 compared to those who had onset of menses before 12. 

Delay in regular ovulation during the menstrual cycle is protective (Apter et al., 

1983). In addition, the age of menopause is a contributory factor. Women who 

undergo menopause below the age of 45 have approximately half the risk of breast 

cancer diagnosis compared to women experiencing menopause at 55 or older 

(Trichopoulos et al., 1972). In summary, a reduction of reproductive lifetime greatly 

reduces the risk of breast disease. 

Exogenous hormone administration may be in the form of hormone replacement 

therapy or oral contraception. An increase in risk with hormone replacement therapy 

has been shown by Hoover et al. (1976) and Brinton et al. (1986). This is further 

increased by the duration of therapy. One of the most controversial areas is the effect 

of oral contraceptives. The issues include the composition of the contraceptive pill, 

the duration of use, the age at use, whether use was before or after pregnancy, and 

whether there is a high risk due to other factors. Although there is no definite answer, 

the present dosage in oral contraceptives is lower than in the early 1970’s. Caution is 

now applied in the duration of use of oral contraceptives.
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2.6.8 Alcohol Consumption 

Regular consumption of alcohol has been shown to be a risk factor for breast cancer 

(Hiatt and Bawol, 1984; Schatzkin et al., 1987). The risk is further increased if daily 

consumption exceeds 12g of alcohol, particularly amongst younger women (Harvey et 

al., 1987). 

2.6.9 Diet 

Dietary fat has been suggested as another factor associated with breast cancer 

(Wynder et al.; 1976 and Stocks; 1970). However, other studies (Miller et al.; 1978, 

Jones et al.; 1987 and Willet et al.; 1987) have failed to associate fat with breast 

Cancer. 

2.7 CLINICAL SIGNS OF BREAST DISEASE 

The commonest sign of breast disease is a lump. Other signs are nipple discharge, 

breast deformity and axillary node enlargement. 

2.7.1 Breast Lump 

If a lump is hard and ill defined it may be a carcinoma. However benign lesions such 

as fibroadenomas and cysts may also present as a hard lump, although these 

conditions are often manifested as a well-defined and movable lump.
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2.7.2 Abnormal Nipple Appearance 

Nipple discharge in the absence of a lump will usually be benign in nature. The 

discharge may be either milky, clear yellow, thick and green or consist of fresh blood. 

A discharge from a single duct may indicate a carcinoma. A blood stained discharge is 

highly suspicious of breast cancer, although benign disease may cause this finding. 

Nipple retraction may be due to a carcinoma under the nipple causing the whole of 

the nipple and areola to become pulled inwards, although most cases of nipple 

retraction are benign in origin. An eczematous appearance to the nipple may be 

caused by Paget’s disease that indicates a carcinoma in the underlying ducts. 

2.7.3 Abnormal Skin Appearance 

Skin tethering is another common sign related to a carcinoma. A fibrous reaction 

associated with a cancer pulls in the supporting structures and causes tethering. Skin 

ulceration over the tumour indicates a locally advanced carcinoma. The carcinoma 

may become fixed to the chest wall.



Chapter 3 

MAMMOGRAPHY, 
SCREENING & 
MANAGEMENT
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3.1 INTRODUCTION 

Mammography refers to the use of x-rays to study the breast. There are usually two 

radiographic projections at right angles to each other. Differentiation of various tissue 

types is possible due to the absorption and scattering of x-rays by the structures. 

Dense tissues such as fibrous tissue appear white while soft tissue structures such as 

ductolobular elements appear as varying degrees of grey. Fat within the breast appears 

as dark grey or almost black. Calcium deposits, in particular appear as extremely 

white compact foci. Silicon implants also appear white. The advantages of 

mammography are that it is easy to perform, inexpensive and accurately depicts fine 

structure detail when compared to other techniques. The major drawback is that 

mammography uses ionising radiation. 

3.2 HISTORY OF MAMMOGRAPHY 

The first application of x-rays for diagnosing breast disease was described by 

Solomon in 1913. He reported the findings from 3,000 radiographs of mastectomy 

specimens. The first in vivo use of breast radiography was by Warren in 1930. 

Throughout the 1930’s work was done to investigate the potential of x-ray in the 

diagnosis of breast disease. However, mammography did not become firmly 

established until the 1950’s following work by Gros and Gershon-Cohen. 

Morphological principles were advanced by Leborgne (1951) and work by Egan 

(1960) firmly established the use of mammography as a clinical technique.
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3.3 EQUIPMENT FOR MAMMOGRAPHY 

The equipment used for mammography is shown as a schematic diagram in Figure 

3.1. It comprises an x-ray tube, filter, collimator, compression device, anti-scatter grid 

and film cassette. 
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Figure 3.1 - Schematic diagram of screen-film mammographic system
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3.3.1 X-ray Generator 

The x-ray generator produces the high voltage (or “potential”) across the x-ray tube 

that cause electrons to accelerate from the hot cathode filament to the anode. An ideal 

generator instantaneously produces the required level, which then remains constant 

until the tube voltage drops instantaneously back to zero. A plot of tube potential 

versus time is referred to as the kV waveform. The value of tube potential that occurs 

at the peak of the kV waveform is called the kVp. The variation of the kV waveform 

during the exposure is described as the kV ripple and_ is expressed as some 

percentage of the kVp. 

There are three types of generators - single phase, three phase and constant 

potential. The three phase and constant potential generators produce higher effective 

x-ray output than single phase generators. They allow lower exposure times, hence, 

less blurring due to patient movement. When the generator places a high voltage 

across the x-ray tube, electrons are accelerated from the cathode to the anode. At this 

point, some of this energy is converted to x-ray photons that form a beam as they 

leave the x-ray tube. The energy spectrum of the photons leaving the x-ray tube and 

filter can be shown as a graph in Figure 3.2.
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Figure 3.2 - X-Ray spectrum of beam exiting a mammographic tube 

with a beryllium window 

Image quality and patient dose may be varied by kVp and kV. The average energy 

of the x-ray photons emitted by the x-ray tube is affected by kVp. High energy 

photons are less attenuated compared to lower energy photons, which results in low 

patient dose, but, less contrast. So, a compromise between image contrast and patient 

dose is needed for the choice of kVp. 

3.3.2 X-Ray Tube and Filter 

Usually, the x-ray tube uses a molybdenum anode together with a molybdenum filter. 

The molybdenum (Mo) filter is used to remove photons with energies less than 15keV 

and greater than 20keV. To achieve this, the thickness of the filter must be at least
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25m. Most tubes with an Mo anode have a tube window made of beryllium (Be) foil. 

The attenuation for photons in the 15 to 20 keV range is negligible. 

One important indication of proper beam filtration is the half-value layer (HVL) of 

the x-ray beam. The HVL is defined as the amount of aluminium which, when added 

to the x-ray beam will reduce the x-ray intensity by one-half. For optimum operation, 

the HVL should be less than 0.4 mm aluminium at the kVp used. 

An important characteristic of the x-ray tube is the focal spot size. This contributes 

to the overall image sharpness. The geometry of the mammographic system affects the 

size of the focal spot required to give good image sharpness. In normal, non- 

magnified imaging mode, sharpness is determined by the focal spot to film distance 

(FFD) and the distance between the breast and the image receptor. If the FFD is 

decreased or the object to film distance (OFD) is increased by insertion of a grid, then 

a smaller focal spot is required to maintain the same image sharpness. For a FFD of 

50 cm (without the use of a moving grid) or a FFD of 60 cm (with a moving grid), a 

nominal focal spot of 0.3 to 0.5 mm is optimal. A large focal spot causes degradation 

of image quality, whilst a small focal spot compromises image quality by limiting the 

maximum current that can be used. This requires either the use of a longer exposure 

time (which could increase the chance of blur due to patient motion) or the use of a 

higher kVp. (which could reduce the image contrast). For magnification imaging 

mode, the required focal spot depends on the degree of magnification. For 1.5X 

magnification, the optimal “equivalent” focal spot is about 0.2 mm, while, for 2X 

magnification, the optimal “equivalent” focal spot is about 0.1 mm.
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3.3.3 Collimator 

This restricts the x-ray field to the area of interest. Reduction of the radiation field 

area reduces radiation exposure to patient and scattered radiation. By reducing 

scatter, which does not contribute to the image formation, image contrast is 

improved. Collimators are either continuously adjustable or use fixed apertures of 

various sizes. The position of the x-ray film with respect to the beam should also be 

properly adjusted. 

3.3.4 Compression Device 

Compression improves image sharpness, reduces scatter, reduces dosage, maintains 

uniform film density and improves the delineation of tissue structures. By using 

compression, all the breast structures are moved closer to the film cassette and 

blurring due to patient motion is reduced. The reduction in breast thickness reduces 

the exposure time and the amount of radiation exposure. This results in reduced 

scattering, thus, improving contrast. In addition, geometric unsharpness is reduced as | 

all the structures within the breast are closer to the image receptor. 

3.3.5 Anti-Scatter Grid 

When x-ray photons are not totally absorbed they scatter. This produces an overall 

haze to the x-ray image, thus, reducing image contrast. To reduce scattering, either an 

air gap needs to be introduced between the breast and cassette or an anti-scatter grid 

must be used. Insertion of a grid necessitates a higher dose of radiation, but, improves 

image quality. Further information about scattering is described by Dance and Day 

(1984). The important finding of their work was that the amount of scatter was
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influenced more by the thickness of the breast than photon energy. They found that 

contrast losses of 20% for a breast thickness of 2 cm and 50% for a breast thickness 

of 8 cm. They set about improving the contrast by implementing a moving anti- 

scatter grid with a grid with a line density of about 30 lines/cm. 

3.4 PHYSICAL REQUIREMENTS FOR 

MAMMOGRAPHY 

There are four prerequisites for mammography. First, good resolution (or lack of 

unsharpness) is required for visualising small objects such as microcalcifications. 

Second, high contrast is required to see small differences in soft tissue density. Third, 

low noise needs to be balanced against dosage level for image quality. Fourth, low 

dose is needed to minimise any risk of carcinogenesis. 

Poor resolution may be caused by geometric unsharpnesss, receptor unsharpness or 

movement unsharpness. The patient dosage may be affected by the thickness of the 

breast, the composition and hence radiographic density of the breast, the photon 

spectrum and the receptor sensitivity. The actual area of the breast is not an important 

factor. Contrast is affected by the density of the object and background, the 

transmitted spectrum, the receptor and the amount of scatter. The amount of contrast 

decreases with the increase of photon energy. However, although low energy 

produces a better contrast, a higher radiation dose is induced. Important factors that 

affect noise are quantum mottle, film granularity and screen structure.
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3.5 TECHNIQUE FOR MAMMOGRAPHY 

Whilst x-ray mammography is not a difficult technique to apply, a careful approach to 

the patient and positioning of the breast is required. Mammograms should show the 

optimum detail to enable the recognition of subtle differences in the soft tissues. 

3.5.1 The Lateral Oblique View 

The machine is angled to 45 degrees from the horizontal position as shown in figure 

3.3. The patient stands facing the machine, the upper arm is rested on the upper edge 

of the cassette with the elbow bent at 90 degrees. The patient is positioned towards 

the film so that the edge of the film is into the axilla and the lower edge one inch 

below the inframmammary crease. The breast is pushed firmly upward and forward 

away from the chest wall with the flat of the hand. Folds of abdominal fat can be 

removed from the image area by adjusting the position of the patient’s hips. An even 

thickness of the breast is achieved by firm compression. The resultant mammographic 

image in this projection (Figure 3.4) will show all the breast tissue from the anterior 

axillary to the inframammary folds. The pectoral muscle should be visible at the base 

of the breast, and the nipple is seen in profile.



  
Figure 3.3 - Positioning for Lateral Oblique View (Adapted from Peters et al., 1989) 
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Figure 3.4 - The lateral oblique view showing (1) identification and date, (2) anatomical letter 

in axillary region, (3) pectoral muscle level with nipple, (4) whole breast imaged,(5) nipple in 

profile, (6) inframammary fold. 

3.5.2 The Craniocaudal View 

The patient stands or sits facing the x-ray machine and is rotated approximately 20 

degrees towards the cassette (figure 3.5). The arm on the side under examination is 

extended in front of the machine. The breast is lifted and positioned until the edge of 

the cassette is placed on the inframammary fold. The breast is then rested on top of 

the cassette (with the nipple in profile). Compression is applied until the breast is 

firmly held in place with an even thickness throughout. The resultant image (Figure 

3.6) will show the maximum amount of tissue with the nipple in profile, although the 

axillary is not included.



  
Figure 5.5 - Positioning for Craniocaudal View (Adapted from Peters et al., 1989) 
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Figure 3.6 - The craniocaudal view showing (1) identification and date, (2) anatomical letter 

in axillary region, (3) whole breast imaged, (4) nipple in profile. 

3.6 MAMMOGRAPHY READING AND 

INTERPRETATION 

3.6.1 Detection of Abnormalities 

Mammograms are usually displayed by placing the lateral oblique views back to back 

and the craniocaudal views side by side. Viewing of the mammograms is a two-stage 

process. Firstly, the breast is observed at a distance. This is to determine the shape of 

the ducto glandular tissue and detect any asymmetry of density. Secondly, the whole 

mammogram is examined carefully, including the skin and nipple region. Important 

features for the skin are thickening, lack of definition of the surface and any excess 

linear shadows between the breast tissue and skin. 

The nipple region should be inspected. Any inversion is noted, as is any prominence 

of subareolar ducts. The internal parts of the image are inspected for signs of
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distortion of the normal parenchymal pattern and any interruption of a linear shadow. 

A magnifying glass is used to search for calcifications. Furthermore, the axillary 

region should be specifically inspected to detect the presence of enlarged lymph 

glands. Table 3.1 describes common lesions and benign processes with their specific 

mammographic sign. 

Lesion Comment     

  

    
        

  

Cysts More than one. 

Commonly Bilateral. 

Homogeneous. 

Smooth well-defined margins. 

Surface may calcify.     

   

  

     

    

Appearance similar to cysts but may be lobulated. 

Characteristic coarse popcorn calcification occurs within them. 

Dense spiculated lesions. 

Interruption of parenchyma occurs. 

Associated with microcalcifications. 

Calcifications may be the only indicator. 

Closely mimic a carcinoma. 

Present as a lesion with radiolucent centre and very long spicules. 

Are discoid in shape and appear larger and rounder in one view than 

the other. 

Usually bilateral associated with microcalcifications. 

Microcalcifications may be of the characteristic snowflake variety or 

identical to those associated with a carcinoma. 

Duct dysplasia associated with prominent ducts throughout both 

breasts. 

Gland dysplasia (fibroadenosis) gives a honeycomb-like appearance 

and is associated with multiple cysts. 

Involves the dilation of the main subareolar ducts. 

It’s bilateral and at its final stage causes the indrawing of the nipples. 

Dilated ducts may become secondarily infected leading to septic 

discharge. 

    
   

Carcinomas 

Radial Scar 

Sclerosing Adenosis 

      

  

   

   

   
      

    
  
   
      

  

   

      

   
     
     

    

Mastitis/Dysplasia 

   
   

    
     

Table 3.1 - Common lesions and associated mammographic appearance
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3.6.2 Interpretation of Mass Lesions 

A lesion of homogeneous density is more likely to be benign than a lesion that is 

heterogeneous. If the lesion is denser than the surrounding breast tissue it is more 

likely to be malignant than one that is less dense. Benign lesions are usually well 

circumscribed - they may be round, oval or lobulated in shape. Occasionally, they may 

be surrounded by a displaced halo of fat. However, malignant lesions such as 

medullary, mucoid and papillary can also have a halo sign. The presence of fat within 

the lesion is also an indicator of benignity. In addition, microcalcifications associated 

with benign lesions are usually large with globular, eggshaped or popcorn appearance. 

Malignant lesions tend to be very dense and may be categorised into three classes - 

stellate, nodular and circumscribed. Stellate lesions are the most recognisable on the 

mammogram. They are composed of a central mass whose border is made up of 

radiating spicules of varying lengths. The central mass is dense and should not have 

any fat within it, whilst the spicules are dense, fine and radiate in all directions. As 

stellate lesions are infiltrative by nature, they are associated with secondary signs of 

malignancy such as skin thickening and stromal distortion. Nodular lesions are more 

cellular and are less connected with connective tissue changes. These lesions consist 

of multiple tiny masses that overlap forming a dense nodular lesion with fuzzy 

boundaries. Although 98% of circumscribed lesions are benign, certain types such as 

medullary, mucinous and papillary carcinomas appear well-circumscribed. Again, 

these lesions may be round, oval or lobulated in shape and may even have a rim of fat 

surrounding part or all of the mass.
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3.6.3 Interpretation of Calcifications 

Eighty per-cent of breast carcinomas present with microcalcifications upon 

histological examination, however they are visible in only 55% of the mammograms. 

As yet it is not known whether microcalcifications are caused by mineralisation of 

necrotic debris or increased cellular activity. 

Large coarse microcalcifications with diameters greater than 1 mm are likely to be 

benign in nature. Single microcalcifications are likely to be benign as are clusters of 

rounded microcalcifications of equal size. Groups of microcalcifications with mixed 

size and irregular shapes are more likely to be malignant. Microcalcifications loosely 

clustered and scattered throughout both breasts are associated with benign disease. 

Malignant microcalcifications are characterised by their variability. This may be in 

the form of size, shape, number and density. They tend to form in clusters of varying 

numbers. They may appear as multiple clusters or appear alone and they may be 

contained within or near a lesion. Although malignant microcalcifcations tend to be 

smaller than benign microcalcifications (usually less than 0.5 mm), the most distinct 

feature is the variability of sizes. Within a cluster, malignant microcalcifications vary 

in shape. They may be granular, punctate, round, linear, branching or angular. 

Malignant microcalcifications tend to be less dense than benign microcalcifications 

and will vary in density within a cluster. 

However, the distinction between malignant and benign microcalcifications may not 

be clear. Nearly 75% of biopsies performed due to the presence of microcalcifications 

are due to benignity. Confusion occurs due to benign conditions that mimic Puen 

conditions. Microcalcifications due to adenosis, papillomatosis, fat necrosis,
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fibroadenoma or within arteries may be misleading. The features of microcalcifications 

are described in detail in Chapter 4. 

3.6.4 Interpretation of Secondary Signs of Malignancy 

Secondary signs occur as a result of the tumour. These may be stromal distortion, skin 

thickening, nipple and areolar thickening and abnormal duct patterns. 

3.6.4.1 Interpretation of stromal distortion 

Parenchyma that appears to be pushed aside by a lesion indicates benignity, whereas 

parenchymal structures are pulled towards a lesion suggest malignancy. This is due to 

an increase in stromal and periductal collagen that causes retraction of the local breast 

parenchyma. This phenomenon may result in abnormal arrangement of mammary 

ducts and Cooper’s ligaments. The localised stromal distortion should be visible in 

both views. In dense breasts, it may be the only visible sign of a carcinoma. 

3.6.4.2 Interpretation of skin thickness 

Normal mammary skin thickness ranges from 1.5 mm to 3.0 mm and is symmetric 

bilaterallly. Localised skin thickening is usually associated with distinct subcutaneous 

reaction near the tumour indicating locally advanced cancer. The deep surface of the 

skin becomes slightly spiculated in the early stages until the thickened segment of the 

skin is drawn towards the lesion which is highly indicative of malignancy.
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3.6.4.3 Interpretation of Nipple and Areolar changes 

Nipple retraction is due to the thickening and shortening of retroareolar ducts 

responding to retroareolar carcinoma. It may also be due to a distant tumour that has 

spread to the retroareolar area. Paget’s disease is a type of breast carcinoma 

associated with nipple retraction and thickening of the areolar region. 

3.6.4.4 Interpretation of Abnormal Duct Patterns 

The presence of a carcinoma may cause shortening, dilation or distortion of mammary 

ducts. They may present as multiple prominent ducts or as a solitary dilated duct. A 

duct extending more than 2 cm into the breast is considered abnormal. Asymmetric 

ductal dilation may be due to something growing within the duct causing it to expand. 

This may be due to hyperplasia, a papilloma or a carcinoma. However, the usual cause 

of asymmetric ductal ectasia is benign. Symmetrical ductal ectasia is characterised by 

dilation of the subareolar ducts with periductal fibrosis and inflammation. This 

condition is common is the breasts of post-menopausal women. 

3.6.5 Wolfe Patterns 

A controversial sign of breast cancer risk is that of the parenchymal pattern (Grove et 

al., 1985; Leinster & Whitehouse, 1985; Tabar and Dean, 1983; Whitehouse & 

Leinster, 1985). Wolfe classified the breast parenchyma into four categories 

depending upon the degree of fatty replacement (Wolfe et al., 1982; Wolfe et al., 

1983). His work investigated the belief that the more epithelial and connective tissue
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within the breast, the greater the risk of cancer development, particularly after the age 

of 35. The four parenchymal classification cited by Wolfe are, 

Nl: 

Pl: 

P2: 

DY: 

The breast is exclusively fat and may appear trabeculated. Up to 10% of the 

breast volume could contain dysplastic elements or visible ducts. 

Between 11% and 25% of the breast contains visible ducts. 

At least 25% or more of the breast contains visible ducts. 

Dysplastic changes involve more than 10% of the breast parenchyma. If both 

visible ducts and dysplasia are present in the same breast, the classification is 

dependent upon the more dominant category.
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3.7 SCREENING MAMMOGRAPHY 

The first use of mammography for screening was in the 1960’s by the Health 

Insurance Plan (HIP) trial in New York (Shapiro et al., 1971; Shapiro 1977; Shapiro 

et al 1988). Sixty-two thousand women aged between 40 and 64 were divided into a 

study group offering two view screening and clinical examination for four years and a 

control group who were not offered screening. It was found that mortality from breast 

cancer was reduced by one-third in the population invited for screening. 

The Swedish study of Kopperberg and Ostergétland counties (Tabar et al, 1985; 

Tabar et al, 1989) enrolled 78,085 women in a study group offered screening by 

single view mammography, while 56,782 women were in a control group not offered 

screening. The ages of the women ranged from 40 to 74 years and those studied were 

given a single-view mammogram every 2-3 years but no clinical examination. Again, 

there was a one-third reduction in mortality as a result of mammography screening. 

A preliminary study in the UK was the Trial of the Early Detection of Breast Cancer 

Group (1981). Following this, the British government set up a committee chaired by 

Professor Sir Patrick Forrest to investigate the cases for, and cost of, screening 

(Forest, 1986). The report recommended that all women between the ages of 50 and 

65 be screened at three yearly intervals. It was estimated that one and a half million 

women would be screened annually, assuming a take up of 70%.
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3.8 AIMS AND METHODS OF SCREENING SERVICE 

The previous studies highlighted the benefits of screening a population and detecting 

breast cancer at an early stage. The earlier a cancer is detected, the less radical the 

surgery that is required. 

3.8.1 Population Identification 

The initial step is to identify the population to be screened. As specified previously, 

age is the prominent risk factor for developing breast cancer. Breast disease is rare for 

those under 35 (incidence 20 per 100,000) compared to those over 50 (incidence 150 

per 100,000). The response to invitations falls dramatically in women over 65. This is 

the reason why women aged between 50 and 65 were initially targeted for screening 

in the UK. However, the lower age limit may be reduced in the light of increasing 

evidence. 

3.8.2 Screening 

The basic screening procedure is shown in Figure 3.7. A single lateral oblique (LO) 

mammogram is taken of each breast. The mammograms are then read by two 

individuals on separate occasions. The object of this procedure is to divide the films 

into those that are normal and those that are not normal. Radiographers are usually 

the ones that conduct the initial reading of the mammograms. Any films interpreted as 

not entirely normal are passed onto a Radiologist experienced in reading 

mammograms who will decide whether further assessment is required.
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BASIC SCREEN 
Two Radiographers read 

Both reports normal Either report not normal 

/ \ 
Back to screening Films to as 

Back to screening Recall for 

assessment 

Figure 3.7 - The basic screening procedure 

3.8.3 Assessment 

The procedure for clinical assessment is illustrated in Figure 3.8. In the first stage, the 

Radiologist classifies the cases as either definitely benign, probably benign, 

indeterminate, probably malignant and definitely malignant on the basis of radiological 

appearance. In the second stage, a multidisciplinary team is required. This consists of 

a Radiologist, Surgeon, Pathologist and an experienced Radiographer. In the 

assessment clinic, the woman undergoes a clinical examination by the Surgeon. 

Further mammographic views may be required, in particular the cranio caudal (CC) 

and lateral projections. If microcalcifications are present, then magnification views 

may be taken. Ultrasound may be used to help explain the presence of a 

mammographic abnormality. Fine needle aspiration may be conducted for cytology. 

A case conference between the experts in each discipline decided the next step. This 

decision may be that the case is normal, that a period of follow-up is required, or that 

there is a distinct suspicion of the presence and that surgery is advised.
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Clinical Examination 

Further mammographic views 

Radiological Report 

  

    

         
   Indeterminate or Probably [ Malignant | Probably 

Benign Equivocal Malignant 

Fine Needle Aspiration 

| 
2. ytology Report cee et | oy | 

Histopathology Report 

Benign or 

1. | no lesion 

  

Confirmation Confirmation 

of benignity of malignancy 

Figure 3.8 - Multidisciplinary assessment procedure
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3.9 MANAGEMENT OF ABNORMAL MAMMOGRAM 

3.9.1 Needle Biopsy 

3.9.1.1 Fine needle aspiration (FNA) biopsy 

This method is especially useful for evaluating impalpable abnormalities. It provides a 

method of distinguishing between a cyst and solid tumour and provides material for 

cytological evaluation. The advantage of this method is that it is a fast, efficient and 

relatively painless procedure. In addition to the minimisation of costs using this 

method, it is also less emotionally traumatic to patients than open biopsy. The 

disadvantage is that it is dependent on the experience of the personnel performing the 

procedure, preparing the slides and interpreting the results. In addition, an inaccurate 

or inadequate sample may be taken. FNA can also be performed using a stereotactic 

device that has been attached to the standard mammography unit. 

3.9.1.2 Core needle biopsy 

This method removes a core of tissue suitable for histological evaluation. Recently, 

there has been a growing interest in this method as an alternative to needle aspiration 

for solid tumours. 

3.9.2 Excisional Biopsy 

This technique involves the complete removal of a suspicious area and is used for 

small, potentially curable malignant lesions. For malignant masses, a wide margin of 

normal tissue is also removed. The advantage of this technique is that it allows a 

complete evaluation of in-situ disease and the margin of excision. The disadvantage is 

that it is a surgical procedure.
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3.9.3 Breast Preservation Treatment 

Breast preservation techniques are generally perfomred to retain a cosmetically 

acceptable breast after complete excision of the tumour. The general principles of 

breast conserving surgery are, to keep incision central, limit the volume of breast 

tissue removed, limit the amount of skin excised and to have separate breast and 

axillary incisions. In addition there may be some axillary dissection followed by 

radiation therapy to the conserved breast. The disadvantages of conservative surgery 

are the risks of infection, bleeding and scarring and deformity of the breast. There are 

three main classes of conserving surgery: 

Excision (tumourectomy, lumpectomy) - The whole tumour is removed along with a 

comparatively narrow or even absent margin of surrounding breast tissue. 

Wide excision (limited resection, partial mastectomy) - The whole tumour is excised 

with grossly clean margins. 

Quadrantectomy - The tumour within a quadrant of breast tissue is excised along 

with the pectoralis major muscle fascia and overlying skin. 

3.9.4 Mastectomy 

Although preservation surgery techniques have reduced the emotional trauma of 

breast removal, there are cases where mastectomy is required. The objective 

indications may include diffuse or multifocal disease and pregnancy. Subjective 

reasons may be patient preference, lack of available radiation therapy, or poor 

anticipated cosmetic result. Radical mastectomy involves the en bloc removal of the 

breast and skin overlying the tumour and the pectoralis major and minor. In addition, 

there may be complete axillary dissection.



Chapter 4 

MICROCALCIFICATIONS
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4.1 INTRODUCTION 

  

The presence of microcalcifications on a mammographic film is usually the earliest 

and often the only sign of breast cancer detected on screening mammography. In 

reality, most microcalcification occurs in the presence of benign disease. Up to eighty 

per cent of breast carcinomas have calcifications on pathological diagnosis, whilst 

fifty-five per cent of breast carcinomas will solely have calcifications. The causes of 

calcifications are still unknown, some ideas on how they are formed include the 

mineralisation of necrotic debris or secretory products of cellular activity. The 

association of calcification with malignancy was described by numerous authors in the 

1950’s and 1960’s (Leborgne, 1951; Gerhon-Cohen et al. 1962; Levitan et al. 1964; 

Black and Young 1965). 

4.2 MAMMOGRAPHIC FEATURES OF 

MICROCALCIFICATIONS 

Microcalcifications appear as white structures against a grey soft tissue background. 

They tend to form in clusters and vary in size, distribution, form, density and number. 

Generally, microcalcifications associated with malignancy are irregular in shape, 

polymorphic, branching and rod-like in ee, Reena those with round or oval shapes 

and more uniform in size tend to be associated with benignity. However, there are 

cases where the microcalcifications are indeterminate in appearance - these are known 

as equivocal cases. It is desirable to reduce the rate of unnecessary biopsies by
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investigating further the properties of the microcalcifications in a discovered cluster. 

Calcifications may be analysed in terms of number of foci in a cluster, their 

distribution, the area of the cluster and size and shape parameters. Characteristic 

features are shown below in Table 4.1. 

   

    

   

Malignant 

Numerous and usually too Few and countable (1-10). 

Distribution Loosely scattered, 

Location 

malignant mass 

Uniformly dense. Vary from faint to dense. 

Smooth borders, sharp. Less sharp to bizarre. 

Relation to mass Concentrated in core or Scattered evenly 

     

  

        

  

  

many to count (>11),     
      

     

  

     Confined to measurable but     

    
    

may have polarity. irregularly defined area, 

no polarity. 

Scattered through the    Usually intraductal. 

       

  

    
       

     

  

    

  

      
   

       

  

   
(if present) in periphery of lesion throughout lesion 

Round, ovoid. Mixture of round, elongated 

     
    

  

rods and irregularities. 

| Size Usually > 1mm. Punctate, less than 0.5mm 

Table 4.1 - Mammographic Characteristics of Microcalcifications 

   

     

4.2.1 Number 

The number of microcalcifications is one factor to distinguish between benignity and 

malignancy. A major problem when applying mammography to microcalcification is to 

ascertain if all the microcalcifications are actually visible. This may be partly resolved
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by comparing both craniocaudal and lateral oblique views. A magnified view will 

probably show more microcalcifications, whilst a specimen radiograph may reveal 

even more. Development over time of the number of calcifications in a specific area 

on a sequential mammogram is very important and increases the suspicion of 

malignancy, 

4.2.2 Size 

Calcifications grow in size over a period of time, until they can be resolved by 

mammography. A rule of thumb is that a calcification with diameter less than 1mm is 

malignant whilst those above are benign (Sickles, 1986). This alone is not a reliable 

measure for distinguishing benignity from malignancy. Varying size calcifications can 

occur in epithelial hyperplasia and large popcornlike calcifications can appear in ductal 

carcinomas as well as typically in fibroadenomas. 

4.2.3 Shape 

Shape seems to be one of the most important features in differentiating benign from 

malignant cases. The more round or oval and uniform in shape, the more likely a 

calcification will be benign. On the other hand, the more irregular the shape, the more 

likely it will be malignant (Lanyi, 1986). Others have shown that shape is not a reliable 

factor (Egan et al., 1980). There may be instances where round, oval punctate calcium 

may be produced by malignancy and pleomorphic branching calcium may be produced 

by benign processes.
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4.2.4 Area Occupied by Microcalcifications 

Benign calcifications are usually considered to be scattered with a random pattern 

whilst malignant calcifications tend to be confined to a measurable area which may 

show a geometrical pattern. Sickles et al. (1986) described a significant grouping of 

microcalcifications as occupying a volume of cm’. 

4.3 ANATOMICAL SITE ORIGIN OF 

MICROCALCIFICATIONS 

  

Microcalcifications may be classified in terms of their anatomical origin. Firstly, the 

ductal type, these are located in the terminal ducts and ductules. Secondly, /obular 

type, located in cyst-like lobules. The third class are miscellaneous, such as arterial 

wall, periductal, fibroadenoma, oil cysts. A full description of the various types is 

given by Tabar and Dean (1985). 

4.3.1 Ductal-type Calcifications 

Intraductal microcalcifications often result from proliferation of ductal epithelium, 

ranging from non-typical to intraductal carcinoma. These may be due to either active 

cellular secretion (Ahmed, 1975; Egan, 1980) or calcification of intraluminal cellular 

debris. This results in calcifications with variable size, form, density and number. 

These are typical indicators of malignant process and are usually biopsied whether or 

not there is a palpable lesion. The features of ductal-type microcalcifications are 

summarised in Table 4.2.
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      Whilst the shape and sizes vary in malignant clusters, they may be divided 
into two basic forms. 
Granular - These resemble fine grains of salt and are often tiny, dot-like or 
elongated, innumerable and irregularly grouped very close together (Figure 
4.1"), Examples are shown in Figure 4.2. 
Casting - These represent the most typical sign of intraductal carcinoma. They 
are casts of segments of the ductal lumen that may occupy the whole branch 
of the duct (Figure 4.3). The maximum casting width is determined by the size 
of the ductal lumen. The irregular shape and fragmentation of these types may 
be explained by the uneven necrosis of the cellular activity and irregular 
calcification production. Examples are shown in Figure 4.4. 
The irregular nature of the underlying mechanisms producing 
microcalcification results in a marked variation in size between adjacent foci. 
For both types of microcalcifications, variation in density again mirrors the 
underlyi of micro-calcification production. 
The number of granular type calcification may be too many to count. 
Malignant intra-ductal type calcifications are often clustered within an area of 
the breast, usually within one lobe. Although separate clusters may represent 
an extensive or patchy malignant process within the breast. 

    

     
    
    
    

      
   

      

   
        

        

      

  

   

   
    

  

   

    

     

   

    

    

   

Number and 

Distribution 

      

Table 4.2 - Features of ductal-type calcifications 

  

* Figure 4.1 to Figure 4.17 are adapted from Tabar and Dean (1985)



  

Figure 4.1 - Schematic diagram of granular microcalcifications 

  

Figure 4.2 - Typical mammographic appearance of granular type microcalcifications 
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Figure 4.3 - Schematic diagram of casting microcalcifications 

  
Figure 4.4 - Typical mammographic appearance of casting-type microcalcifications 
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4.3.2 Lobular-type Calcifications 

The appearance of lobular calcifications may be due to a number of benign conditions 

including, sclerosing adenosis, atypical lobular hyperplasia, cystic hyperplasia or blunt 

duct adenosis as shown in Figure 4.5. Although they do not represent a malignant 

process, they may occasionally resemble ductal-type calcifications - hence being 

classified as indeterminate. In these cases, some form of biopsy is required. The 

features of lobular-type calcifications are summarised in Table 4.3. 

  
Figure 4.5 - Lobular Type Calcifications (a) Normal Lobule (b) and (c) Adenosis (d) 

Sclerosing Adenosis (e) and (f) cystic hyperplasia
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adenosis (Figure 4.6) which appear as small punctate, uniform 

calcifications. In larger cavities, lobular dilation may cause cystic fluid 
to move about, resulting in the calcifications appearing crescent-shaped 

or resembling a teacup on the lateral oblique projection (Figure 4.7). 

This is typical of cystic hyperplasia. 

The sizes of the calcifications depend upon the pressure of the 

surrounding fibrosis exerted upon the lobules. The greater the pressure, 
the more the calcifications appear as small and punctuate. There may be 

Features 

variation in sizes in cystic hyperplasia due to the variable sacular 

ee This is dependent upon the spherical cavity within which they occur. 

a dilation of the lobules. 

The smaller the cavity, the greater the likelihood of complete 

The small pearl like microcalcifications are uniform and dense, whilst in 

larger sacular cavities, densities may be differ according to size. 

calcification occurring. The results are solid, homogeneous objects, 

Number and | These calcifications may be numerous and scattered throughout the 
Distribution | breast parenchyma. 

spherical in shape and with a sharp outline. This is typical of sclerosing 

Table 4.3 - Features of lobular-type calcifications 

  

      
    

    

       
    
     

    
    

    

  



  
Figure 4.7 - Mammographic appearance of cystic hyperplasia 
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4.3.3 Miscellaneous Calcifications 

These seldom cause problems for diagnosis and are not biopsied if the appearance is 

typical of benignity. These are summarised in Table 4.4. 

   
      

        

    
    

    

     

    Arterial These calcifications are easy to detect as the calcified arterial walls are 

Calcifications readily visible on the mammographic film.      
    

  

Periductal 

Mastitis 
    

  

This is also known as ductal ectasia or plasma cell mastitis. Intraductal 

secretions cause periductal chemical mastitis causing plasma cells to form 

around the dilated duct. The result is either periductal (Figure 4.8) or 

intraductal calcifications (Figure 4.9). 

    

    

  

   

  

    
   
   

    

  

         

   

    

  

Sebaceous These are either ring shaped or oval, the centre is always radiolucent, 

Gland numerous in number and obviously occur within the skin (Figure 4.10). 

Calcifications 
     

   Small, 

Ring-Like 

These may be caused by fat necrosis. These appear as small eggshells up 

to a few millimetres in diameter. They can range from solitary to numerous 

and usually subcutaneous but may occur anywhere in the breast (Figure 

          

  

   

  

   

   
      

    
    
    
    
    
    
     

These are usually seen within a spherical or ovoid lesion which is either an 

oil cyst caused by trauma (Figure 4.12) or an involuting fibroadenoma. 

These rarely calcify, their shapes resemble a raspberry, limited to the size 

Larger 

Eggshell-Like 

Papilloma 

Fibroadenoma 

    

   
These are present as three different types of calcifications. 

1. Coarse, irregular dense calcifications (Figure 4.14). The bizarre 

appearance may be due to an old fibroadenoma that has undergone myxoid 

degeneration. 
2. Peripheral calcifications in a fibroadenoma may be eggshell or be 

flecked (Figure 4.15), They are high in density and uniform. Their size 

may vary up to the point where the very small ones are difficult to 

differentiate from malignant type of calcifications. 

3. Carcinoma within a fibroadenoma, which is a rare occurrence (Figure 

4.16). If a benign tumour contains malignant type calcifications of either 

casting or granular type, malignancy is suspected. 

These appear with either small calcifications that vary in form and size or 

large with bizarre calcifications (Figure 4.1 

     

  

       

   

Haemangiomas 

     

Table 4.4 - Miscellaneous Calcifications



  
Figure 4.8 - Mammographic appearance of periductal fibrosis 

  

Figure 4.9 - Mammographic appearance of intraductal microcalcifications 
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Figure 4.11 - Mammographic appearance of fat necrosis 
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Figure 4.12 - Mammographic appearance of an oil cyst 

  
Figure 4.13 - Mammographic appearance of papilloma 
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Figure 4.14 - Coarse irregular dense microcalcification within a fibroadenoma 

  
Figure 4.15 - Peripheral microcalcifications in a fibroadenoma 
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Figure 4.16 - Carcinoma within fibroadenoma 

  
Figure 4.17 - Mammographic appearance of a hemangioma



Chapter 5 

IMAGE ANALYSIS 

AND 
MATHEMATICAL 

MORPHOLOGY
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5.1 INTRODUCTION TO IMAGE ANALYSIS 

  

Computer vision is analogous to the human visual and perception system. The 

conversion of a real world image to a computer image is illustrated by Figure 5.1. 

Image analysis is a three-step process. The first step is image acquisition. In humans, 

this function is performed by the eyes; in computers, this is performed by a video 

camera or laser scanner. The next step is image transformation, in humans, the retina 

captures the image using rods and cones and the optic nerve converts this image into 

a signal for processing. In computers, this stage is executed by a frame grabber. This 

captures the sequence of analogue signal, and an analogue to digital converter then 

converts this signal to digital form that may be stored by the computer. The final step 

is image processing and analysis. In computers, this function is performed by 

software algorithms and may be likened to processes in the brain.



67 

CCD Camera 

  

Object of interest | 

Analogue Signal 

Analogue to Digital 

Converter 

  

Digital Signal 

Original image digitised 

to square matrix 

  

Figure 5.1 - Conversion of real world object to digital image
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5.2 ACQUISITION AND FORMATION 

OF DIGITAL IMAGES 

There are two types of monochromatic cameras, one relying on a vidicon tube, while 

the other uses charge-coupled devices. 

5.2.1 Vidicon Camera 

Vidicon cameras are based on television cameras and depend on scanning of a 

photosensitive tube. The basic vidicon consists of a vacuum glass tube containing a 

cathode at one end and a target with a photosensitive coating at the other end. An 

electron beam is produced from the cathode and focused as a spot on to the target, 

using a series of coils and grids. The beam scans the target in a raster fashion, 

charging the photosensitive coating in the process. The charge produced is dependent 

on the amount of incident light. The discharge current is amplified and corrected into 

a standard video for analogue output. 

5.2.2 Solid State Sensors 

Charge couple devices (CCD) consist of a discrete number of charge storing sites and 

a charge transfer mechanism. Charge transfer devices operate by transferring charge 

from one cell into the adjacent cell. The basic CCD is a semiconductor device (or 

enhancement-model MOS) that behaves like a capacitor. Figure 5.2 shows the basic 

CCD cell; electrodes are placed on top of the insulator (usually silicon dioxide) to aid 

charge transfer. Electrons (in p-type semiconductors) are moved by applying suitable 

voltages to transfer conductors. Charge is moved by sequencing cell voltages as 

shown in Figure 5.3.
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     Electrode 

Figure 5.2 - Basic structure for p-type CCD cell (adapted from Schalkoff, 1989) 

  

t = ¢t2 

  

ty t2 t3 tg 

(e) Time 

Figure 5.3 - Movement of charge in CCD device (adapted from Schalkoff, 1989)
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5.2.2.1 Charge Generation for Incident Iumination 

Luminance energy strikes the face of the CCD sensor. Incident photon energy at each 

sensing site is absorbed by the silicon substrate freeing a number of electron-hole pairs 

from one another. The electrons form under the appropriate electrode to form a 

charge packet proportional to the incident illumination. The amount of charge is also 

dependent upon the dimensions of the site and the duration of accumulation. The 

CCD transfer mechanism generates an output signal once charge packets have been 

collected at each of the sensing sites. 

5.2.2.2 Advantages over Vidicon cameras 

There are four main advantages of CCD cameras over vidicon cameras. Firstly, the 

spreading of incident illumination to adjacent pixel locations produces an image 

spectrum larger than its true size - this is known as blooming which vidicon cameras 

are prone to. However, in CCD cameras, the separation of sensing cells reduces this 

effect. Secondly, the response time to changes in incident illumination is faster in CCD 

cameras than vidicon cameras. Response time in CCD cameras depends on rate at 

which minority carriers recombine in the substrate. Third, CCD cameras are smaller 

and more compact than elongated vidicon tubes. Finally, CCD cameras require lower 

power and perform well at low light levels. 

5.2.3 Laser Scanner 

Laser scanners allow the captures of a still, flat, large image with a considerable 

degree of accuracy without calibration problems. Laser scanners may be in the form 

of a flat bed or a transparent drum. The scanner uses a HeNe laser and light 

integrating cylinder to capture the image data. The film area is imaged as the laser 

scans in one direction whilst the film moves in a perpendicular direction. The 

advantage of laser scanners over CCD cameras is that it shows linear response over 

the optical density range 0.0 to 3.0 which is the range of densities typically found in 

mammogram films. By comparison, CCD cameras are non-linear over the optical
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range of 0.0 to 1.5. Additionally, the noise response for laser scanners is lower over 

the optical density range of 0.0 to 3.0 compared to CCD cameras. The disadvantage 

of laser scanners is the time taken to scan a whole film. Whilst a CCD camera may 

take seconds to capture and image, the laser scanner could take upto half an hour to 

image a whole film. In addition, the cost of laser scanners is far greater than CCD 

cameras. 

5.2.4 Computed Radiography 

Computed Radiography (CR) refers to the direct acquisition of digital images. The 

imaging system consists of plates of photo stimulable phosphor to store the incident 

X-ray energy. These are scanned by a laser whereby the energy is released as light 

which is digitised through a photomultiplier, and displayed on a high resolution VDU. 

For mammography, whilst conventional screen/film combinations have a resolution of 

30 jm, digitally acquired images have a resolution of about 100 tm. Cowen et al. 

(1992) found that the advantage of CR was the elimination of film noise and 

reduction of scatter. However, work by Higashida et al. (1992) found that for 

microcalcification detection, the resolution was not adequate enough for analysis. 

The prospect of CR in the breast screening program is exciting. For Radiologist, the 

option is open to report on hard copy or on soft copy at a workstation. The latter 

offers the potential use of processing algorithms to enhance specific features. In 

addition, it would allow digital archiving of images produced from screening. 

However problems associated with storage medium, size of data and accessibility of 

data have to be addressed.
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5.3 IMAGE CAPTURE AND TRANSFORMATION 

  

5.3.1 Analogue Signal Capture 

The output from a video camera is usually a composite video signal (BW) or colour 

(RGB). This signal is “grabbed” by a device known as a frame grabber that interprets 

the analogue modulated signal as a frame of pixels. The grabber may hold the frame in 

a single chip plus a number of memory chips. The memory in which the frame is put is 

known as a frame buffer. This buffer is independent of the computer memory, 

although it may be connected through a DMA (direct memory access). 

5.3.2 Analogue-to-Digital Conversion (ADC) 

The main body of image transformation is the analogue to digital converter. This 

takes an input analogue signal and produces an output signal as a digital bit pattern to 

be used by the computer. The speed of the ADC dictates the overall speed of the 

frame grabber. Colour pictures require three ADCs for each of the colours (red, blue 

and green). 

5.4 DIGITAL IMAGE DISPLAY 

A captured image may be expressed as a continuous function (x,y). Digitisation refers 

to the function f(x,y) sampled to a matrix consisting of M rows and N columns. Image 

quantisation refers to the splitting of the continuous range of the image f(x,y) into K 

intervals. The best digital approximation of the continuous image function is achieved 

using a fine sampling (i.e. large / and N) and quantisation (i.e. large K). 

5.4.1 Sampling 

A continuous function may be sampled using a discrete grid of sampling points on the 

plane. The image is sampled at points x = jAx and y = KAy wherej = J, 2,...M and 

k= 1, 2,...N. Separation of sampling points are known as sampling intervals, these
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are Ax along the x axis and Ay along the y axis. The matrix of samples f(jAx, kAy) 

constitute a discrete image. Ideal sampling s(x,y) in a regular grid may be represented 

by of collection of Dirac distribution 6. 

M N 

Sampling function = s(x,y) = )° > d(x -— jAx,y—kAy) Equation 5.1 
J=1 k= _

 

The sampled image f(x,y) is a product of the continuous function S(~y) and sampling 

function s(x,y). 

f= Sey) s(x,y) 

= DUS y (x — jAx, y - kAy) 
j=l k=l 

MN 

= ficy) >) >, d(x — jAx,y — kAy) Equation 5.2 
j=l k=l 

If this is converted into the frequency domain, the Fourier transform of the sampled 

image is the sum of repeated Fourier transforms of the image F(u,v). Ideally, f(x,y) is 

band limited to ensure F(u,v) is zero outside certain interval of frequencies (|u| > 

and |v| > v) 

] wo oO : 

Fs(u,v) a ‘AxAy >, >» tae a ) Equation 5.3 
J=—0k=—00 

Periodic repetition of Fourier transforms may cause distortion of the image known as 

aliasing where individual F(u,v) components overlap. In theory, to avoid overlap, the 

sampling interval must be chosen so that it is equal to or less than half the smallest 

interest detail in the image (i.e. Ax < 1/2u and Ay < 1/2v). This is known as Shannon 

sampling theorem. 

For real digitisers, if a rectangular sampling grid is used of size M/ x N with non- 

overlapping impulses A,(x,y) and sampling period Ax, Ay, the sampled image is,
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I(%y) = > > F(x, yi, (x — jAx,y—kAy) — Equation 5.4 
J=1 k=l 

In the frequency domain this may be represented by the distorted Fourier transform, 

Fs(u,v) = —— ae >| C ore bw E(u Lv ¥) Equation 5.5 
LY j= -cok=-20 

In addition, for real image digitisers, the sampling interval is usually ten times smaller 

than that specified by Shannon sampling theorem. 

5.4.2 Quantisation 

The magnitude of sampled image f(jAx, kAy) is expressed as a digital value. 

Continuous values of an image function are referred to as brightness, the digital 

equivalent is quantisation. The brightness level in digital images is expressed a K = 2°, 

where K is the number grey scale and } the number of bits. Binary images consist of 

two bits. However, for grey scale images, eight bits are commonly used. As the 

number of grey scale decreases, the number of false contours increases due to 

insufficient brightness levels. This problem may be reduced by using quantisation 

intervals of unequal lengths, i.e. by application of histogram equalisation. 

5.4.3 Properties and Visual Perception 

5.4.3.1 Connectivity 

An important feature of digital images is pixel adjacency. Four connectivity refers to 

the centre pixel connected to its four nearest neighbours in an N, E, S and W 

direction. By comparison, eight connectivity refers to the centre pixel connect to eight 

neighbours in an N, NE, E, SE, S, SW, W, NW direction.
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5.4.3.2 Histograms 

Histograms provide detail of the frequency of grey levels in an image. The information 

contained in an image histogram is independent of the positioning of the object of 

interest in an image. 

5.4.3.3 Contrast 

Contrast refers to the ratio of average brightness of an object and the background. 

Conditional contrast refers to the situation where an object of brightness J,» is seen 

against a background of (/.4 + m) then against a background of (J.s; - ”). Humans 

would perceive the contrast as different in the two cases, however, computer vision 

would find them the same. 

5.4.3.4 Colour 

The perception of colour depends on three factors, namely, intensity, hue and 

saturation. Intensity refers to the sum of the red, green and blue (RGB) components. 

Hue is proportional to the average wavelength in appropriate spectrum. Saturation 

refers to the deficit of white colour. 

5.4.4 Noise 

The degradation of an image due to random errors is referred to as noise. Noise can 

occur during image capture, transmission or processing. Idealised noise is referred to 

as white noise which has a constant power spectrum. This means that the intensity 

does not decrease with increasing frequency. Another noise approximation is 

Gaussian noise which may be represented by, 

~(x-ny 
207 . e Equation 5.6 

  

  

PO) = ie
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Where 4 is the mean and ois the standard deviation of the random variable. During 

transmission through some channel noise may occur which is independent of image 

signal. This is known as additive noise and may be described by, 

I(x,Y) = B(x, y) + V(x, y) Equation 5.7 

Where the noise v and the input g are independent variables. On other occasions, the 

magnitude of the noise is dependent upon the signal. This is referred to as 

multiplicative noise given by the equation, 

f=gt+vg=g(1+v)* gv Equation 5.8 

This type of noise may occur in television raster degradation. Multiplicative noise may 

also occur on film material caused by finite silver grains used in photosensitive 

emulsion. As explained in Section 5.4.2, if insufficient quantisation levels are used, 

false contours appear on the image. This is referred to as quantisation noise. If the 

image is corrupted by odd noisy pixels whose brightness is much greater than its 

neighbours, this is referred to as impulsive noise. Saturated impulsive noise results in 

white and/or black pixels degrading an image, this is referred to as salt and pepper 

noise. 

5.5 IMAGE PRE-PROCESSING 

5.5.1 Grey Level Transformation 

The grey level transformation to enhance contrast may be found by applying 

histogram equalisation. This enhances contrast for brightness values close to 

histogram maxima and decreases contrast near the histogram maxima. The resultant 

image has equally distributed brightness levels over the whole brightness scale.
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5.5.2 Local Pre-processing 

Local pre-processing can be divided into two categories. The first is to smooth the 

image by suppressing noise or other signal fluctuations in the image. The disadvantage 

of smoothing is that sharp edges may be blurred which may contain important 

information about an image. The second is gradient operators, these locate where the 

image undergoes the greatest rate of change of signal. Local pre-processing 

transformations can also be divided as linear or non-linear. Linear operations work in 

the frequency domain, the output image is a linear combination of brightness in the 

input image. By comparison, non-linear operators work in the spatial domain. The 

advantages of these operators are that they preserve the edges of the image. Examples 

of non-linear operators are mathematical morphology algorithms which will be 

described later in Section 5.9. 

5.5.2.1 Image Smoothing 

Image smoothing suppresses image noise by calculating the average brightness values 

in some neighbourhood. The main problem associated with smoothing is blurring of 

edges. However, there are algorithms that preserve edge. An example of a linear 

filtering operation is the average function. This computes the local average for every 

neighbourhood in the image and these form the output image. The averaging may be 

flat where every pixel in the neighbourhood has the same weight. Alternatively, the 

neighbourhood may be weighted by using a Gaussian filter. A high degree of 

smoothing is achieved by using a larger filter. The median function is used to remove 

single pixels in a neighbourhood that degrade the image. In each kernel 

neighbourhood, the median value is computed. This value becomes the output pixel 

value. The advantage of this non-linear filter is that it removes noise from the image 

with minimum degradation of sharp edges. The rank function is a generalisation of 

the median function. However, rather than selecting the middle value in the local 

neighbourhood, the nth value is selected which becomes the pixel value for the output 

image.
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5.5.2.2 Edge Detection 

Edge detectors are used to locate where there are sharp changes in the intensity 

function. The edge of an object is found to locate the boundary of a region and has 

two components, namely magnitude and direction. There are two types of edge 

detectors. The first approximates derivatives of the image function using difference. 

Rotational invariant operators, such as the Laplace operator uses one convolution 

mask only. Other approximating first derivatives use several masks. Other operators 

are based on zero crossings of the image function second derivative such as the Canny 

edge detector. The Roberts edge detector (Roberts, 1965) is one of the oldest and 

easiest to compute as it uses a 2 x 2 neighbourhood. The convolution masks are, 

1 0 0 1 . 
h= gy hy = wes Equation 5.9 

As few pixels are used to approximate the gradient, the Roberts operator is highly 

sensitive to noise. The Laplace operator approximates the second derivative giving 

the gradient magnitude only. A 3 x 3 kernel is usually defined, 

0: -1'.0 

h=|1 -4 1 Equation 5,10 

Onol +e 

The disadvantage of this operator is that it responds doubly to some edges in the 

image. The Sobel operator is usually used to simply detect horizontal and vertical 

edges. The masks used are, 

Lea =P art 

h=|0 0 0 h,=|-2 0 2 Equation 5.11 

=~] -—2 -—-1 -! 0-1
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5.6 IMAGE SEGMENTATION 

  

The objective of image segmentation is to divide an image into areas that correlate 

strongly with objects of the real world contained in the image. Segmentation may be 

divided according to which dominant feature they employ. The first type uses global 

knowledge about an image. The second uses edge information. The third is region- 

based. 

5.6.1 Thresholding 

Grey level thresholding is the simplest segmentation process. The brightness contrast 

or threshold determines the segmented objects from the background region. The 

threshold transformation of an input image f to an output binary image g may be 

described by, 

Sij)-1 for fG,jy2T 
= 0 Jor fij) < T Equation 5.12 

where 7’ is the threshold, g/i,j) = J for image objects and g(i,j) = 0 for image 

background. The selection of threshold is very important. It may be interactive or be 

chosen using a threshold detection method. Global thresholding is used for the whole 

image, although it rarely thresholds the objects of interests without any artefacts as 

even simple images have grey level variations. An alternative is local thresholding 

which is position dependent, also, the image may be divided into sub-images and 

threshold may be determined independently in each subimage.
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5.6.1.1 P-tile Thresholding 

One method of thresholding is p-tile thresholding. If 1/p area of the image is 

occupied by the objects of interest, a threshold level may be selected so that 1/p of the 

image has grey scale values less than threshold 7. 

5.6.1.2 Modal Thresholding 

The mode method uses histogram analysis of the area of interest. A histogram may be 

bimodal with the maxima representing the background region and foreground region. 

The minimum trough between the two maxima regions represents the threshold 

selected. 

5.6.1.3 Hierarchical Thresholding 

Hierarchical thresholding is based on local thresholding methods. This method detects 

regions in the low resolution image and gives regions more precision in images of 

higher resolution. Low resolution images are computed from higher resolution images 

using averaging of grey value. The lowest resolution image is initially segmented, 

then, the next stage gives better segmentation precision. This is repeated at each 

pyramid level upto the full resolution until the final segmented image is obtained. The 

principle advantage is that the influence of noise is significantly reduced as 

segmentations at lower resolution are based on smoothed image data in which the 

noise has been suppressed.
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5.6.2 Edge based segmentation 

Edge based segmentation rely on the detection of edges of the object which represent 

the greatest rate of change of signal intensity rather than absolute grey scale value as 

in thresholding. Section 5.5.2.2 described a variety of simple edge detectors, however, 

to obtain better borders, other processing steps need to be included to construct edge 

chains. 

5.6.2.1 Edge Image Thresholding 

Border detection using edge image thresholding represents the simplest method of 

edge based segmentation. The magnitude of the edge is found and a suitable threshold 

is selected to obtain the edge (Kundu and Mitra, 1987). Alternatively p-tile 

thresholding may be used. However, if the image has low contrast or is noisy, the 

resultant image will be poor. 

5.6.2.2 Edge Relaxation 

The quality of segmentation may be improved using edge relaxation. Here, the 

confidence of an edge is increased or decreased based on the strength of edges in a 

local neighbourhood (Rosenfield et al, 1976; Hancock and Kittler, 1990). For 

example, a weak edge positioned between two strong edges would indicate that the 

weak edge is part of a boundary. However, a solitary strong edge without supporting 

edges would probably not be part of any border. Edge relaxation is an iterative 

process. The confidence of an edge may converge to zero (indicating edge 

termination) or one (indicating edge forms a border). Although the border is improved
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after a few iterations, unless threshold levels are set in terms of convergence speed 

and border accuracy, the algorithm is liable to give poor results (Levy, 1988). 

5.6.2.3 Edge Graph Searching 

If additional information, or prior knowledge is known, it should be used. An example 

of prior knowledge may be the known starting and known end point of the border; 

other knowledge may be smoothness or curvature. This method of edge detection is 

known as graph searching (Martelli, 1972). Construction of a graph is dependent on 

nodes n; and the arcs between nodes [7;,n;]. The oriented and numerical weighted (or 

costs) arcs must be considered. The cost function between the start and end points 

may depend on a number of factors. These include strong edge strength, small 

curvature and short distance to end point. 

5.6.2.4 Snakes 

Further information regarding boundary location or shape is also beneficial for 

boundary location. The information may be based on higher level knowledge or result 

from segmentation applied to a lower resolution image. One option is to determine a 

boundary based on the location of significant edges positioned close to an assumed 

border so long as the edge direction matches the assumed border direction. Another 

option is based on prior knowledge of end points which assumes low noise and 

relatively straight boundaries. This process partitions ihe border iteratively to locate 

the strongest edges. The most recent approach to contour detection involves active 

contour models. They start their search for a contour based on information provided
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by the user regarding approximate position and shape of required contour - this is 

known as snakes (Kass et al. 1987). 

The dette contour model or snake is defined as an energy minimising spline. The 

energy of the splines depends on its shape and location within the image. The local 

minimum of this image corresponds to desired image properties. Snakes do not 

automatically find contours in images, they depend on user interaction or information 

from image data adjacent in time or space. The user information may in the form of 

approximate shape and starting position for the snake close to the desired contour, a 

priori information pushes the snake to its desired position in a dynamic manner. Over 

the past few years, the development of snakes has become more sophisticated 

(Berger and Mohr, 1990; Karaolini et al. 1992; Williams and Shah, 1992). It is of 

particular interest to medical image analysis as living organisms and organs are 

naturally deformable and their shape varies considerably (Cohen and Cohen, 1992; 

Hyche et al. 1992). 

5.6.3 Region Growing 

The advantage of region growing techniques over edge based segmentation is more 

apparent in noisy images where the edges may be distorted. There are three simple 

methods of region growing, namely, region merging, region splitting and region split- 

and-merge. 

5.6.3.1 Region Merging 

Initially, the image is segmented into many small regions (for example 2x2, 4x4, 8x8). 

Region descriptors are obtained based on their statistical grey scale properties. A
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region description is compared with an adjacent region. If the descriptions match, then 

the regions are merged to form a larger region and a new descriptor is computed. This 

merging of neighbours is an iterative process until a region can no longer be merged 

with any of its neighbours. Once this stage is reached, the merging process stops. 

5.6.3.2 Region Splitting 

Region splitting is the opposite of region merging and begins with the whole image 

represented as a single region. Although splitting may be the dual of merging, the 

resultant segmentation may not always be the same. This is because some regions may 

be homogeneous during the splitting process so will not be divided further. 

Additionally, homogenous regions formed in the merging process may not be 

constructed due to the impossibility of merging smaller subregions earlier in the 

process. The criteria of homogeneity used in region splitting are the same as region 

merging, only the direction of application is different. 

5.6.3.3 Region Splitting and Merging 

Combining splitting and merging techniques results in a method that uses the 

advantages of both processes (Pavlidis, 1977). The split-and-merge process work 

using a pyramid structure. If a region is heterogeneous, it is split into four subregions 

and represents elements of a higher resolution at the level below. On the other hand if 

four regions on a pyramid level are homogenous, they are merged into a single region 

in the upper level in a pyramid. This segmentation process may be likened to a 

segmentation quadtree where each leaf node represents a homogeneous region, or an 

element of a pyramid level. The split and merge process refers to the removal or
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building parts of the quadtree. The number of leaf nodes of the tree represents the 

number of segmented areas. 

5.7 SHAPE REPRESENTATION AND DESCRIPTION 

  

5.7.1 Area 

Area is simply a the number of pixels contained within a segmented object. 

5.7.2 Euler's Number 

Euler's number describes the simple topological invariant property of an object. It may 

be represented by the equation, 

v=S-N Equation 5.13 

where S is the contiguous parts of the object and N is the number of hole in the object. 

5.7.3 Projections 

The region width is the maximum value of the horizontal projection of the binary 

image. The region height is the maximum value of the vertical projection of the binary 

image. These may be represented by the equation 5.14. 

Region width = p,(i) = >° f(i,j) 

Region height = p,(j) = > SGJ) Equation 5.14



86 

5.7.4 Eccentricity 

Ratio of length of maximum chord A to width of maximum chord B within an object. 

This is also known as the ratio of main region axes of inertia. 

5.7.5 Elongation 

The traditional measure of elongation is the ratio of length to width of the minimum 

bounding rectangle around the object of interest. However, this measure does not 

work for curved regions. 

5.7.6 Rectangularity 

This refers to the maximum ratio of region area and area of bounding rectangle. 

5.7.7 Direction 

This measure refers to the angular direction of the longer side of the minimum 

bounding rectangle. 

5.7.8 Compactness 

Compactness refers to the ratio of the square of the boundary (B) to area (A). A 

compact object will have a value equal to 1.0, whilst a highly irregular object will have 

a higher value. 

Compactness = B’/A Equation 5.15
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5.7.9 Moments 

Region moments interpret normalised grey level image function as a probability 

density function of a 2D random variable. Properties of a random variable are 

described as moments. The moment of order (p+q) depend on scaling, translation, 

rotation and transformation of grey level images and is given by, 

Mpg = > SPIED Equation 5.16 
i=—wj=—co 

Central moments are given by, 

Mpg = YD G-*.PG-Y) IGA Equation 5.17 
i=—coj=—<0 

Where x, and y. are the co-ordinates of regions centre of gravity (centroid) and are 

represented by, 

m . 

aso Yo Equation 5.18 

Scale invariant features can also be found in scaled central moments 7,, (Equation 

5.19) and in normalised unscaled central moments v,, (Equation 5.20). 

+ 

=> and 
(Hoo) w= ay 

Pq gina?) 

  

pq = Equation 5.19 

Enq 
D = 

soe 627 
  Equation 5.20
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Rotation invariance is discussed in Hu (1962) and Jain (1989) and may be defined by 

seven rotational, translational and scale invariant moment characteristics, 

P, = Vy + Vo, Equation 5.21 

G2— (U9 — Vo y+ 4v}, Equation 5.22 

3 = (Vyp — 30,2)’ + (30.1 ~ V93)” Equation 5.23 

P4 = (Vy +0, y +(U,, + 0g i Equation 5.24 

Ps = (V39 — 349 )(V3q + V2 [(V3q + V2) — 3(V2, + Vos) ]+ 
; 3 Equation 5.25 

(30x, = Vo3 KVq, + Vp3)[3(V39 + Vy) — (Vy, + V93)" J 

Pg = (Vy — Vo (Vs + Vy)” — (Vg, + Vp3)” + 404, (V9 + Vyz (Vy + Vo3) Equation 5.26 

Pz = (302; — V3 (V3q + Vj2 )[(V3q + V2) — 3(Y,, + U3) ] - 
Equation 27 

(V3 — 3042 (V2) + Vp3 )[3(V39 + Oy y — (V2, + V9; )] 

5.8 CLASSIFICATION 

  

Classification refers to the assignment of objects to a class by means of measures 

properties or features. Features are organised into a feature vector of real values that 

have been normalised so each feature is weighted equally. The feature vectors are 

plotted in a feature space. The unknown pattern is classed according to its location a 

feature space. There are a variety of classifiers, these include Bayesian classifiers, 

binary decision tree (BDT), K-nearest neighbour (KNN) classifier and artificial neural 

network (ANN). A more detailed description of how different pattern classifiers 

compare is given by Woods et al. (1993).
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5.8.1 Bayesian Classifiers 

There are two types of Bayesian classifiers (Duda and Hart, 1973), linear (LC) and 

quadratic (QC) classifiers. The type of classifier is determined by the model used to 

build the conditional density function p(x|c,). The Gaussian distribution is a popular 

function to model the feature vector; 

N(x, 4,2) = =P exp (x -—u)' ©" (x = p)) Equation 5.28 
] 

(22)*"|>| 

where x is an n-component column vector, is the n-component mean vector, » is 

the n x n covariance matrix, (x-y)' is the transpose of x-, ©" is the inverse of ¥ and 

|X| is the determinate of ©. In the simple case, the covariance matrices of the two 

classes are averaged. The classifier boundary separating the two classes is a 

hyperplane, and the classifier is known as a linear classifier. If each distribution is 

allowed to have its own covariance matrix then the decision surfaces are referred to as 

hyperquadratics and the classifier is called a quadratic classifier. 

5.8.2 Binary Decision Tree (BDT) 

Binary decision tree (Breiman et al. 1984) is an ordered list of binary threshold 

operations on feature vectors organised as a tree. For each node, one of the features 

in a vector is compared to a varying threshold that moves down the appropriate 

branch of the tree. Eventually the vector terminates at a node which assigns a class. In 

practice, BDT’s contain hundreds of nodes, the parameter at each node is controlled 

by selecting the feature and threshold that best separates the data. This is a recursive
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procedure that finishes only when a stopping criterion is met (Gelfand et al. 1991). 

This recursive selection enables automated feature selection and data reduction, in 

addition they are computationally efficient. 

5.8.3 K-Nearest Neighbour Algorithm 

The K-nearest neighbour (KNN) algorithm is one of the simplest yet powerful method 

of classification in image analysis. Unknown patterns are classified based on their 

similarity to known patterns. The distance from an unknown pattern to every test 

pattern is computed and selects the K nearest neighbours to base the classification on. 

The test sample is designated a class which has the most samples in the K nearest 

neighbours. For a two class problem, K is selected to be odd to ensure a majority 

among the two classes. Biasing may be introduced by applying a threshold of k less 

than or equal to K for one particular class rather than finding a majority amongst the 

nearest neighbours. 

5.8.4 Neural Networks 

There are four main features of neural networks. They have a large number of 

processing nodes, a larger number of connections that are weighted between nodes, 

they are highly parallel and automatically learn values for interconnecting weights. 

Most neural networks are feed-forward. In a full network, each node in one layer is 

connected to every node in the next layer. The input nodes distributes input values to 

other nodes in the network. Layers of hidden nodes are not directly observable but 

perform the weighted summing of inputs and pass values as an output. For pattern 

classification, decision regions are defined by the interconnecting weights in the
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network. A feed-forward neural network is trained by passing sample inputs into the 

network, allowing activations to flow to the output nodes and compare with the 

intended output values. Errors are computed and the weights adjusted until the 

network converges to a solution. 

5.8.4.1 Backpropagation (BP) Neural Network 

Backpropagation (BP) networks have nodes with input bias of 1 with an adjustable 

weight. Hidden and output nodes are activated using a sigmoid function. Errors are 

propagated backwards from the output nodes through the network to adjust weights 

in the previous layer. The disadvantage of BP networks is the long training times. 

One reason is the selection of the appropriate step size for changing weights during 

training. A small step size may cause the network a long time to converge, a large 

step may cause oscillation rather than convergence. Another reason is the updating of 

weights after each training sample requiring long settling times for the network for all 

the training samples. Additionally, selection of precise number of hidden nodes or 

layers required for network topology takes time. 

5.8.4.2 Cascade Correlation (CC) Neural Network 

The cascade correlation networks (CCN) are self-organising so network topology is 

not selected by trial and error compared to the BP neural networks. The network 

consists of input and output nodes with hidden nodes added when appropriate. These 

nodes are created one at a time so errors are estimated for each node rather than 

being propagated backwards throughout the network. Weights are adjusted by 

calculating the errors between each training cycle, this reduces the problem of
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selecting an inappropriate step size. The main advantage of the CCN over the BP 

network is the reduced training time as error estimates are not back propagated and 

dynamically construction during training. Additionally, network topology does not 

have to be designed in advance. 

5.8.4.3 Divide and Conquer Neural Networks 

Divide and conquer neural networks (DCN) are similar to CCN as they are self- 

organising. The two phases of divide and conquer are executed for each output during 

training. The DCN form multiple hidden nodes in hidden layers if needed. As with 

CCN, units are trained one at a time, allowing some of the training sample to be 

correctly classified and avoiding the need for errors to be propagated backwards 

through the network. Weights in the network are updated using a simple delta rule. 

The advantages are similar to the CCN, network topology does not have to be 

specified as simple learning rules are applied to update connection weights rather than 

back propagating error signals. However, unlike CCN, multiple hidden units are 

formed in multiple layers this leads to higher parallel design for hardware 

implementation.
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5.9 INTRODUCTION TO MATHEMATICAL 

  

MORPHOLOGY 

The first notions of mathematical morphology were conceived during the late 1960’s 

at The Paris School of Mines at Fountainbleau, France. The pioneers of the 

development of mathematical morphology were Matheron (1975) and Serra (1982). 

Mathematical morphology provides an approach to processing digital images based on 

shape, form and structure. It uses a branch of mathematics known as set theory. This 

assumes that an image contains a collection of objects in a background plane. As 

mathematical morphology is concerned with the detection of regions or shapes, it 

appears a natural choice for segmenting microcalcifications. 

The basic operations of erosion, dilation, opening and closing are described for both 

binary images and grey scale images. This is followed by a description how these basic 

operations may be combined for more sophisticated transformations such as filtering, 

reconstruction, top-hat and watershed. The notation for mathematical morphology 

operations is given in Appendix A.
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5.10 PROPERTIES AND TERMINOLOGY OF 

MORPHOLOGICAL TRANSFORMATION 

  

Mathematical morphology is based on a theory of shapes in a space. This space is 

known as the Euclidean N-space may be denoted by E”, where 7 is the degrees of 

freedom. For a binary image, for example where foreground pixels appear as black 

and foreground as white, the value of n is 2. Sets in Euclidean 3-space represent grey 

scale images. Sets in higher dimensions may contain other information such as colour. 

Some terms need to be defined before the operations are described. 

5.10.1 Extensive and Anti-extensive 

If ® is a binary transform acting on elements of £”, such that on sets of E” (®: P(E”) 

— P(E”)), it may be described as an extensive transformation, if and only if, 

VX € P(E"), Xo P(X) Equation 5.29 

and anti-extensive if and only if, 

VX € P(E"), OXY) cX Equation 5.30 

The transformation ® is described as increasing if and only if it preserves the order 

relations between the elements of Z” on which it acts, such that, 

WXY)€ PE)’, XCY >OXYc OY) Equation 5.31
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5.10.2 Idempotent 

The same transformation may be described as idempotent when applying it several 

times successively comes down to applying it only once. 

VX € P(E"), D(®(X)) = O(X) Equation 5.32 

Two transformations ® and ¥ are said to be dual if and only if applying the former 

to a set X is equivalent to applying the latter to the complement X” of this set, 

VX —€ P(E’), D(X =P(X ) Equation 5.33 

The properties may be converted into the decimal case where ® acts on functions 

from E” into E, i.e. on elements of F (E’,E). Thus, the order relationship between 

functions is, 

Vig) € F (EB, fs go Vx € E", f(x) < 2x) Equation 5.34
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5.11 BINARY IMAGES 

5.11.1 Dilation 

This may be considered as a region filling algorithm. It combines two sets using 

addition of set elements. The dilation of X (the original image) by B (the structuring 

element) may be denoted by, 

X@OB={x ek", XVB,4# OD} Equation 5.35 

This may be illustrated by the example shown in Figure 5.4. The resulting matrix 

appears expanded than the original image. 

  

  

Figure 5.4 - Binary dilation of X by B 

5.11.2 Erosion 

By comparison, an erosion may be considered as a region shrinking operation. It is a 

morphological transform that combines two sets using subtraction. The erosion of X 

by B may be defined as, 

X -B= {xe EB", B. € X} Equation 5.36



97 

This may be illustrated by Figure 5.5, this time the resulting matrix appears smaller 

than the original image. 

  

Figure 5.5 - Binary erosion of X by B 

5.11.3 Duality of Erosions and Dilations 

If the structuring element B is in the set of E” (B € E”), the reflection of B is denoted 

by B’ where B’ = { x | for some b € B, x = -b}. This is also known as the 

transposition of B. As well as erosions and dilations being increasing transforms, they 

are dual. This means that the dilation of a set X is identical to the complementary set 

of the erosion X¢, so that, 

(X- B)e = XC @ B’ Equation 5.37
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5.11.4 Opening 

An opening may be considered as an operation that breaks narrow links, eliminates 

small elements and sharp peaks. Openings are formed by concatenating an erosion and 

dilation. The opening of a set XY by a structuring element B denoted by (X)z is defined 

by, 

OPEN(X) = (X)p = (X -B) OB Equation 5.38 

To open X by B, X must be eroded by B and then dilated by B. Figure 5.6 shows the 

result of the binary opening, (X)g, completely contained within the original image X. 

  

  

    (XOB)OB 
Figure 5.6 - Binary Opening 

5.11.5 Closing 

A closing may be considered as an operation that fuses narrow links, fills holes and 

gaps on the contour. Closing are formed by concatenating a dilation followed by an 

erosion. The closing of a set XY by B, denoted by (X)? may be defined by, 

CLOSE(X) = (X)8 = (X @ B)-B Equation 5.39
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To close X by the structuring element B, X is dilated by B, then eroded by B. This 

time, the original image X is completely contained within the result of closing, (X)’, 

as shown in Figure 5.7. 

  

(X@B) OB 

Figure 5.7 - Binary Closing
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5.12 GREY LEVEL IMAGES 

  

5.12.1 Dilations 

Grey scale dilation is shown in Figure 5.8. In this example, a kernel & is placed over 

every pixel of the original image (referred to as the function f) in turn. The middle 

pixel of the kernel is replaced by the maximum value found in the whole kernel. The 

effect of dilating function f with kernel & causes regions of high signal intensity to 

expand and grow. This may be defined by, 

DIL) =f - k Equation 5,40 

  
Figure 5.8 - Cluster of microcalcifications showing the effects of dilation using (a) square 
structuring element, (b) diamond structuring element and (c) disk structuring element of 
radius 5 pixels and 7 pixels respectively.
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5.12.2 Erosions 

Grey scale erosion is shown in Figure 5.9. Here, a kernel & is placed over every pixel 

in the image in turn. This time, the middle pixel of the kernel is replaced by the 

minimum value found in the whole kernel. The erosion of function f by kernel k 

suppresses regions of high signal intensity and may be described by, 

ERO() =f © k Equation 5.41 

  
Figure 5.9 - Cluster of microcalcifications showing the effects of erosion using (a) square 

structuring element, (b) diamond structuring element and (c) disk structuring element of radius 

5 pixels and 7 pixels respectively.
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5.12.3 Opening 

Ge se opening is analogous to binary opening. Here, regions of high signal 

itensity with a radius less than the size of the kernel are removed by the initial 

erosion, In the subsequent dilation, the low signal intensity regions are reformed. 

However those regions removed in the erosion stage do not grow again. 

OPEN(/) = (f -) Ok Equation 5.42 

The effects are shown on a grey scale image in Figure 5.10. 

  

Figure 5.10 - Application of an opening on a cluster of microcalcifications using a disk 

structuring element of radius (a) 7 (b) 11 and (c) 13 pixels. 

5.12.4 Closing 

As with grey scale opening, grey scale closing is analogous to their binary 

counterpart. The initial dilation fills the valleys and expands the overall function. The 

‘subsequent erosion restores the size of the peaks to their original size, however, ‘the 

valleys remain filled (Figure 5.11). This operation may be described as, 

CLOSE(/) =(f ® 4) -k Equation 5.43
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Figure 5.11 - Application of an opening on a cluster of microcalcifiations using a disk 

structuring element of radius (a) 7 (b) 11 and (c) 13 pixels. 

5.13 MORPHOLOGICAL FILTERING 

Openings disconnect sets and suppress their small connected components, whilst 

closings tend to bind sets and fill their holes. This is why openings and closing have 

been used in filtering. They a particularly important when dealing with the 

enhancement of grey scale images. One such filter is the alternating sequential filter 

(ASF). 

his consists of concatenating a series of closings and openings. The initial work 

was developed by Sternberg (1982), and the theory has also appeared in other 

publications (Serra, 1988; Serra and Vincent, 1989). If opening is defined as y,, and 

closing as defined as ¢, where A is the size of the structuring element, the two 

transforms may be concatenated together in four different combinations. 

m= VaPa 

Ay Pan 

ie YaPaVa 

Sia Ppayrda Equation 5.44
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Sternberg (1986) altered an image by adding white noise, then tried to clean the 

resulting image using filters. This was achieved by first, filtering with a small closing 

dx, followed by a small opening 7a, then by a slightly larger closing $x followed by a 

slightly larger opening 72 until the image was restored. This succession of openings 

and closings was defined as an M filter. This M type filter along with NV, R and S type 

filters may be defined as, 

M,=mym2... Mm; 

N,;=nin2... Ni 

R,=rit2.. i 

Sj = S182... + Si Equation 5.45 

So, for an M-type ASF of size 2, a closing of size 1 is initially applied followed by an 

opening of size 1. Then a closing of size 2 is applied followed by an opening of size 2. 

This effect is shown in Figure 5.12. 

  

Figure 5.12 - The effect of applying an M-type ASF using a disk structuring element of size 2
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5.14 MORPHOLOGICAL RECONSTRUCTION 

  

Reconstruction for both binary and grey scale images involves the extraction of 

connected components of an image that are marked by another image. The definition 

and application of morphological reconstruction are explained in Vincent (1990) and 

Vincent (1993). 

5.14.1 Binary Images 

Binary reconstruction is demonstrated in Figure 5.13. A set of markers, Y (black) is 

contained in the connected component of X (light grey). A geodesic dilation, Dy 

(Lantéjoul and Beucher, 1981; Lantéjoul and Maisonneuve, 1984) is then applied to 

the markers Y. If Y is dilated enough (i.e. r_ times), the entire connected component of 

X is obtained which is marked by Y. 

  

  

  
Figure 5.13 - Binary reconstruction of X (light grey) using markers Y (black)
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5.14.2 Grey Level Images 

The idea of reconstruction may be extended to grey scale images as shown in Figure 

5.14. A function f (Figure 5.14a) can be reconstructed from a marking-function g 

(Figure 5.15b). In this operation only the objects of f marked by g are reconstructed 

(Figure 5.15c). 

  

Figure 5.14 - Grey level reconstruction of (a) cluster of microcalcifications - function / using 

(b) marking function g which was obtained by applying an disc structuring element of radius 

11 pixels produces (c) reconstructed image R; (g) showing a single microcalcification. 

5.15 TOP HAT ALGORITHM 

  

The top hat algorithm (Meyer, 1977; Meyer, 1979) allows the extraction of bright and 

narrow zones of a grey scale image. it may be described as the difference between the 

image f and its morphological opening, (/);, 

TH() =f- Ax Equation 5.46 

This allows the extraction of the residuals of the opening of f where the sizes of 

these residuals are smaller than the structuring element k. The resultant image may be
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thresholded. A top hat performed with a structuring element with radius A and 

thresholded at level A, allows the extraction of crests higher than / and less than 2A in 

diameter. 

We can demonstrate this algorithm to a three dimensional function as shown in 

Figure 5.15. The sharp peaks represent regions of high signal intensity, whilst the 

varying background represents regions of low signal intensity. In descriptive terms, 

the top hat algorithm is analogous to placing a top hat systematically over the 3-D 

function and counting the number of occasions on which the image signal intensity 

pierces through the top of the hat. The radius of the hat may be controlled by varying 

the size of the opening applied to the image, whilst the height of the hat may be 

controlled by varying a threshold level. 

  

Figure 5.15 - Schematic diagram demonstrating the top hat algorithm on a 3-D function 

The stages of the top hat are shown in Figure 5.16. The application of an opening 

removes the high intensity peaks. By subtracting the opened image from the original 

image, the high intensity regions are retrieved without the presence of the varying
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background. This subtraction image may be thresholded to provide binary markers for 

regions of interest. 

= 
> 

2 

Figure 5.16 - Sequence of top hat algorithm. (a) Original image containing peaks representing 
objects of interests against a varying background. (b) Image after application of opening 
removes the peaks. (c) Subtraction of opened image from original image shows the peaks 
extracted from the varying background.
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5.16 MORPHOLOGICAL GRADIENT TRANSFORM 

  

The morphological gradient (Beucher 1990) combines the erosion and dilation 

operations with arithmetic operators. The morphological gradient of an image is the 

difference between a dilation and an erosion of grey scale image by the kernel k, 

Grad(f) = (f@ &) - (f -&) Equation 5.47 

The schematic 3-D representation of the gradient image is shown in Figure 5.17. The 

high grey scale values of the gradient's modulus correspond to the high contrast areas 

of the image. This property may be used for contour detection (or watersheds) of grey 

tone images 

Figure 5.17 - Result of morphological gradient transform on a 3-D function
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5.17 WATERSHED TRANSFORM 

  

5.17.1 Basic Application 

The watershed transform (Beucher and Lantuejoul, 1979; Beucher 1990; Meyer and 

Beucher, 1990) may be explained in simple terms by considering an image f as a 

topographical surface (Figure 5.18a) and define the catchment basins of f and the 

watershed lines by means of a flooding process. To visualise this phenomenon, at each 

minimum region m(f) of the surface, a hole is pierced and then the whole surface is 

plunged into water (Figure 5.18b). The water floods the surface at uniform vertical 

speed. During this process, floods from different minima tend to merge (Figure 

5.18c). To avoid this situation, a dam is built at each position where the floods would 

meet. Once the whole surface is completely immersed in water, the only objects that 

emerge are the constructed dams (Figure 5.18d). These dams constitute the 

watersheds of the function 7.
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Figure 5.18 - (a) Topographical Surface (b) Holes are pierced at each local minimum region 

and floods commence (c) Floods rise at uniform vertical speed and start to merge (d) At the 

points where the waters meet, dams are constructed. 

5.17.2 Application of Watershed with Markers 

A more complicated situation is shown for part of a cluster of microcalcifications 

(Figure 5.19). The boundaries around the microcalcifications are again emphasised 

using the gradient transform (Figure 5.20). However, there are more regional minima 

than in the gradient image than there are microcalcifications.
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Figure 5.19 - Part of a cluster of microcalcifications digitised to a pixel resolution of 40 pun 

  

Figure 5.20 - Gradient image of cluster of microcalcifications 

If the watershed algorithm is applied to this image, severe oversegmentation occurs 

(Figure 5.21). To avoid this situation, the operation of the watershed must be 

constrained by an appropriate marking function. A unique marker needs to be 

identified for each lesion, together with a single external marker. The flooding then 

proceeds as described previously. However, this time catchment basins forming at
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minima that do not correspond to the markers are flooded by overflow from 

neighbouring basins. 

  

Figure 5.21 - Oversegmentation resulting from application of watershed algorithm 

5.17.3 Selection of Markers 

The internal markers representing each lesion were found using the top hat transform 

as described previously. They are shown in Figure 5.22 superimposed upon the 

original image displayed with the grey-scale inverted. 

  

Figure 5.22 - Internal markers superimposed upon original image with grey scale inverted
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An external marker was obtained by applying the watershed algorithm to this inverted 

image constrained by the internal markers obtained from the top hat algorithm. The 

result is the continuous line superimposed upon the inverted image (Figure 5.23). 

  

Figure 5.23 - Result of first application of watershed algorithm 

Finally, the watershed algorithm is applied to the gradient image constrained by the 

internal and external markers (Figure 5.24). 

  

Figure 5.24 - Internal and external markers superimposed upon gradient image
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Figure 5.25 shows the final result of the operation. A complete boundary for each 

lesion is found and is shown in red. These were constructed along the high contrast 

regions of the morphological gradient image that corresponded to the edge of each 

lesion. 

  

Figure 5.25 - Final segmentation of microcalcifications 

The mathematical morphology operators used to segment the microcalcifications in 

this particular example is applied to a database of clusters described in Chapter 7.



Chapter 6 

REVIEW OF IMAGE 

ANALYSIS 

TECHNIQUES FOR 

MICROCALCIFICATIONS
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6.1 INTRODUCTION 

Automated analysis of microcalcifications presents a number of problems. First, the 

method and resolution of digitisation must be addressed. Secondly, methods need to 

be implemented to reduce noise and gain. Thirdly, appropriate algorithms must be 

selected to detect and segment microcalcifications. Finally, relevant features must be 

analysed which may be used for classification. 

6.2 DIGITISATION 

Methods of digitising mammograms include using a CCD camera or a laser scanner. 

The CCD camera is used with a light box, the grey scale on the digitised image is 

dependent on the light transmitted through the film. As explained in Chapter 5, there 

may be problems associated with non-uniformity of lightbox illumination and 

extraneous light. If film digitisation is done over a number of days, the illumination 

level can vary from one day to another, so, making it hard to determine the 

relationship between grey level and film density. 

By comparison, in film scanners, the film is placed on a transparent drum or flat bed 

and is imaged by a laser scanning the whole area. The measurement of film density is 

more robust as the illuminating film intensity and transmitted light intensity are 

measured at the same time. Davies (1993) compared the technical performance of 

three film digitisers for mammogram films. These were drum _ scanning 

microdensitometer, a flat bed laser densitometer and a CCD camera. They were 

compared on the basis of modulation transfer function (MTF), noise and linearity at a
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pixel resolution of 50 um with an 8 bit grey scale. The response curves of laser 

scanners were both approximately linear up to an optical density of 3.0. However, the 

response of the CCD camera was non-linear from 0 to 1.5 and was unable to resolve 

higher optical densities. For MTF, the scanning densitometer had the frequency 

response closest to the ideal. In addition, the noise response was low for both the 

densitometer and laser scanner compared to the CCD camera. The main conclusion 

was that the scanning densitometer appeared to be the most suitable digitiser for 

mammograms. However, other factors such as value for money, speed and ease of use 

would all have an effect when selecting a digitiser. 

6.3 NOISE 

Noise in digital mammograms may be caused by the digitisation process or exist in the 

mammogram itself. Mammographic film noise may be due to a limited amount of x- 

ray photons, film granularity and random inhomogeneities in the intensifying screen. 

The image quality may be increased by using a greater exposure. However, the 

radiation dose would have to be increased. Microcalcifications and noise both have 

high spatial frequencies, hence similarity in appearance. For this reason, most work in 

noise suppression is associated with microcalcification detection. 

Microcalcifications generally contain more pixels than noise. Therefore, one method 

of distinguishing them from noise would be to set a lower area bound for valid 

microcalcifications. In addition, as noise is considered to be random, it is unlikely to 

be spatially localised as clusters. Therefore, another method is to set a lower bound on 

the number of calcifications forming a cluster. Davies et al. (1990) set an area bound
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ranging from 0.3 mm’ to 2.5 mm’. In addition, a clustering algorithm was applied 

which required both a minimum of three microcalcifications in a cluster and the near- 

neighbour distance between microcalcification to be less than 5 mm. By comparison, 

Chan et al. (1980) set area limits between 3 and 80 pixels. A clustering procedure 

located clusters with a minimum of three microcalcifications within a 1.2 cm diameter 

circular area. 

Conventional noise suppression techniques used by authors assume that noise has a 

slightly higher frequency than microcalcifications. Chan et al. (1987) used the mean 

and standard deviation of a neighbourhood to suppress noise. The same authors also 

investigated the use of band-pass and box-rim filters (Chan, 1988). Dhawan et al. 

(1986) enhanced images with adaptive neighbourhood functions and Lai et al. (1989) 

applied median filtering to mammographic images. 

6.4 GAIN 

The intensity distribution in digital mammograms may be influenced by a number of 

factors. These range from the type of film used and length of exposure to amount of 

breast compression and digitisation method. No two mammograms are the same in 

terms of intensity distribution, so comparison of absolute intensity measures would 

appear to be unrealistic. 

Some authors have applied histogram operations to set thresholds to their systems 

(Ackerman et al., 1972; Wee et al., 1979; Hand et al., 1979; Chan et al. 1987). Others 

have used a method of ratios (Smith et al., 1977; Fam et al. 1988), whilst Lai et al.
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(1989), used normalised cross-correlation. Kimme et al. (1977) attempted to 

normalise features in one mammogram by using features from the other breast. 

6.5 ENHANCEMENT 

Enhancement of mammographic features was investigated by Dhawan et al. (1986). 

They used a contrast enhancement procedure using adaptive neighbourhood 

processing. The contrast value at each point was improved using a specified contrast 

enhancement function. Morrow et al. (1992) also investigated the used of region- 

based contrast enhancement techniques. The contrast of each region was calculated 

with respect to the background, then enhanced using an empirical transformation 

based on each region’s seed pixel, its contrast and its background. The visibility of 

microcalcifications and anatomical details were considerably improved in the 

processed image. Enhancement using multiscale analysis was studied by Laine et al. 

(1994). Three wavelet methods were used - the dyadic transform, the @ transform (or 

Frazier-Jawerth transform) and the hexagonal wavelet transform. For each method, 

edges and gain parameters were found at each level of scale-space. 

Highman et al. (1994) attempted to remove the scatter component of 

mammographic images. First, the amount of scattered radiation was estimated by 

calculating the amount of energy imparted to the surrounding neighbourhood. This 

radiation was approximated by using a weighting mask that was convoluted with the 

total signal to produce a scatter estimate. With the scatter removed, an enhanced 

image could be produced that could be used by a Radiologist.
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6.6 DETECTION AND SEGMENTATION OF 
MICROCALCIFICATIONS 

The detection of microcalcifications, in particular of clusters, represents the largest 

area of published work of image analysis to mammography. The first reported use of 

image analysis was published by Ackerman et al. (1972) who digitised 120 

xeroradiographs (containing masses and microcalcifications). A histogram of the 

whole image was obtained and a threshold representing the top 15% of the grey scale 

applied to detect the microcalcifications. The resultant image was scanned to detect 

the greatest change in optical density occurring within a selected kernel in any of the 

four possible directions (i.e. top, down, left and right). If there was a change of 

intensity in all four directions that exceeded the threshold level T, then a 

microcalcification was considered detected. No attempt was made to segment the 

microcalcifications nor to analyse them. The presence of microcalcifications was 

related to the presence of other mammographic abnormalities as indicators of 

malignancy. 

Wee et al. (1975) were the first to use image analysis to distinguish malignancy 

from benignity solely on microcalcifications. Adaptive thresholds were applied to 

detect microcalcifications the boundaries of which were located using a tracing 

routine. They extracted numerical information regarding a number of features, in 

particular shape. Their method successfully identified all 23 malignant 

microcalcifications and 22 out of the 28 benign microcalcifications. However, they did 

not specify the accuracy of the tracing routine and whether the microcalcifications 

chosen fully represented the breadth of possible appearances. In addition, the size of 

the database was not adequate enough to fully test the algorithm.
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Fam et al. (1988) applied a region growing procedure to 40 cases. Initially, a grey- 

level threshold was applied to select pixels indicative of a microcalcification. A 

region-growing algorithm was used to identify potential microcalcifications in the 

digitised image. Next an edge gradient algorithm was used to determine how the 

edges of the connected structure compared to the background, this eliminated false- 

positive detection. Only clusters with three or more microcalcifications were retained. 

The most encouraging result from their work was that the computer detected 4 

clusters that the Radiologist had missed. The disadvantage of their method was that 

manual adjustments were required to compensate for variations in the intensity and 

contrast of the original mammogram. They concluded that more work was required 

to compensate for low contrast in the mammograms. 

Davies and Dance (1990) applied a simple local area thresholding technique. 

Initially, a global grey level threshold is applied, followed by a modal filter to produce 

a uniform background level outside the breast. Features were then extracted to 

discriminate microcalcifications from non-microcalcifications. These features were 

area, mean intensity within the object, shape factor and edge strength. Next, a 

clustering algorithm was applied requiring at least three microcalcifications in a cluster 

with a near-neighbour distance less than 5 mm. They correctly identified 47 out of 49 

clusters with an average of 0.2 false-positive detection per image. 

The first report of the use of mathematical morphology in microcalcification 

detection was published by Astley et al. (1990). Two aoe generators were used, the 

first was the morphological top-hat transform (with a structure element diameter of 

0.6 mm) which enhanced topographic peaks of restricted size. The second was a 

morphological internal gradient detector that responded to the sharp edges of the
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microcalcifications. Twenty mammogram patches were digitised to a resolution of 

50 um. A Radiologist marked the location of microcalcifications on an acetate 

overlay. These were digitised and discs were formed on the digital image with a radius 

of 16 pixels - this defined a region of interest (ROI). 

For each of the cue generators, a maximal value within an ROI was taken to be an 

on-target response. Responses not falling within a ROI were considered to be off- 

target responses. ROC curves were constructed for each of the individual cue 

generators and a combination of the two cue generators based on true and false 

positive responses falling within a ROI. The results suggested that combining the 

cues would produce better results. Out of the twenty cases, 17 had improved 

performance by combining cues, 3 had excellent performance using either cue 

generator. The problems they found were that the process of marking 

microcalcifications was tedious and subjective. In addition, they found that a shape 

selective operator was necessary to eliminate responses to streaks of breast tissue that 

were detected by the top-hat transform and the edge detector. 

Mathematical morphology has also been used to segment microcalcifications. A 

two-stage approach was applied by Dengler et al. (1993). The first stage applied a 

weighted difference of Gaussian filter for the noise-invariant and size specific 

detection of high signal intensity features. Then a morphological top-hat transform 

was applied to find the shape of these features. The results of both filters were 

combined with a conditional thickening operation. Twenty five images were digitised 

to a pixel resolution of 50 um. In the first stage, the Gaussian filter used had a width 

of 4 pixels and for the second stage, a disc with a radius of 13 pixels was used. The 

results showed a sensitivity of 97% with a specificity of 70%. However, they found
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that their algorithm tended to sub-divide individual microcalcifications that were 

0.8 mm in size. This was due to the convolution filters being tuned to detect 

microcalcifications up to 0.5 mm in diameter. 

6.7 THE CHICAGO GROUP 

The largest contribution to the literature has come from a group working at the Kurt 

Rossman Laboratories for Radiological Image Research in Chicago. The work 

produced by this group over the past decade parallels the advances in image analysis. 

This has ranged from simply detecting potential cluster sites to segmenting 

microcalcifications, obtaining numerical information and classifying cases to give a 

second opinion to the Radiologist. 

The first published paper by Chan et al. (1987) used a pre-processing step that 

spatially filtered the digital mammogram twice. First, a filter matched in terms of size 

and contrast variations of typical microcalcifications was applied to produce a signal 

enhanced image. Next, a median filter was applied to the original digitised image 

producing a signal suppressed image. A difference image, obtained by subtracting the 

suppressed image from the enhanced image, was thresholded to locate the 

microcalcifications. 

This computer-aided diagnosis (CAD) scheme was advanced by using a band pass 

filter to remove the background and a box-rim filter was applied to suppress signals 

(Chan et al., 1988). Subsequently, a locally adaptive grey level thresholding technique 

extracted signals from the difference image. True signals were discriminated from 

noise or other artefacts by applying criteria based on size, contrast, number and



125 

clustering properties. Initially, a Monte Carlo method was used to generate simulated 

microcalcification clusters that were superimposed upon normal mammograms - these 

provided test images for the computer algorithm. The true-positive detection rate for 

these images was 80% with a false-positive detection rate of one cluster per image. 

The algorithm was then tested on 20 clinical images containing microcalcifications, 

this time the true-positive rate was 82% with a false-detection rate of one cluster per 

image. However, if the required sensitivity is to be 85%, then the number of false- 

positives increases four-fold. They concluded that improvements still had to be made 

regarding detection of clusters with individual small, low contrast microcalcifications. 

The detection of subtle features was investigated by (Chan et al., 1990). Sixty 

mammograms were digitised, half contained a single cluster of microcalcifications, 

whilst half were free of clustered microcalcifications. The method employed a 

difference image as described above. Area and contrast parameters were set for 

detection. The range of areas was set between 3 pixels and 80 pixels, the upper bound 

of contrast was set as ten times the standard deviation of the local pixel value. This 

ensured that large area or very high contrast signals, caused by artefacts or large 

benign calcifications, were excluded. A clustering procedure located clusters with a 

minimum of three microcalcifications within a 1.2 cm diameter circular area. The 

method described in the papers above was improved by application of a new signal 

extraction criterion. For potential microcalcifications passing size and contrast 

criteria, a power spectrum in a n x n pixel region, centred at each signal site was 

calculated. This power spectrum was characterised by its first moment defined as the 

ratio of the weighted average of radial spatial frequency to the 2-D power spectrum. 

False signals were found to have higher first moment values than true
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microcalcification signals. ROC analysis was used to compare the observers’ 

performance in detecting microcalcifications with and without the use of the computer 

technique. The Az values were 0.98 with the computer and 0.94 without the 

computer. 

Nishikawa et al. (1993) investigated improved methods of clustering detected high 

intensity signals (i.e. microcalcifications). The new method was applied to a database 

of 78 mammograms consisting of 41 clusters. The computerised scheme incorporated 

two steps. The first step was to reduce areas of several pixels to single pixels by using 

a recursive transform technique. The second step was to count the number of high 

intensity signal peaks within a small region, usually 3.2 x 3.2 mm. If three or more 

signals are present within this area, then they are preserved in the output image. This 

new method eliminated falsely detected clusters based on spatial distribution of signals 

within the cluster. Compared to the previous work (Chan et al., 1988), the average 

number of false-positive clusters reduced from 4.2 to 2.5 per image whilst maintaining 

a sensitivity of 85%. The disadvantage of the technique was that although 85% of true 

clusters were detected, less than 50% of true microcalcifications were detected. The 

computer scheme was especially sensitive to noise, in particular quantum and film 

mottle, in the mammogram. 

The most recent development from Chicago has been the use of artificial neural 

networks (ANN) by Wu et al. (1992). They attempted to differentiate actual true 

clusters from normal parenchyma and to differentiate true clusters from false positive 

clusters found from previous methods (Chan et al., 1990; Nishikawa et al. 1993). 

Clusters were classified using two approaches - the spatial and frequency domain. The
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Az value for distinguishing positive clusters from false-positive clusters was 0.83 and 

0.85 when positive clusters were distinguished from negative clusters. 

Another interesting result found that distinguishing clusters of microcalcifications 

was best performed in the frequency domain than in the spatial domain. By 

comparison, for distinguishing individual microcalcifications, the spatial frequency 

provided better results. That managed to eliminate 50% of false-positive clusters 

while preserving 95% of true clusters. The disadvantage was that if all the positive 

ROIs were to be preserved, only 20% of the false-positive ROIs were eliminated. 

Zhang et al. (1994) investigated improving the previous conventional neural 

network, they did this by application of a shift-invariant neural network. They 

improved the area under the curve, Az, from 0.83 to 0.91. The advantage of the shift- 

invariant neural network was that it used the clusters in the spatial domain as the 

input, enabling the ability to detect individual microcalcifications were maintained. 

This meant that the new networks detecting clusters better than the conventional 

networks that were only useful in the frequency domain. The final decision to 

classifying a cluster was dependent on the number of detected microcalcification 

exceeding a selected threshold level rather than the exact number and distribution of 

microcalcifications. This time, when all the positive ROIs are preserved, 55% of false- 

positive ROIs were eliminated. 

Nishikawa et al. (1995) tried to improve the performance of the clustering technique 

used in previous papers (Nishikawa et al., 1993; Chan et al., 1988). The computer 

scheme roid of three steps. First, the image is filtered to increase the signal-to- 

_ noise ratio. Next, potential microcalcifications were extracted from the filtered image 

by applying a global threshold followed by an erosion to eliminate very small signals



128 

and a local adaptive threshold. The final step was to eliminate false-positives using 

texture analysis. When 85% of true clusters were detected, an average of two false 

clusters was detected per image. 

6.8 ANALYSIS OF MICROCALCIFICATION FEATURES 

Authors have used microcalcification features to distinguish between benignity and 

malignancy. Typical values of these features are shown in Table 6.1. Most features 

relate to the individual microcalcification. For example, contrast (Spiesberger, 1979; 

Fam et al., 1987; Chan et al. 1988; Woods et al., 1993), microcalcification area (Wee 

et al., 1979; Davies et al., 1990) and number (Fam et al., 1988; Woods et al., 1993). 

Other features that have been investigated include shape factor (Wee et al., 1979; 

Davies et al., 1990), smoothness within the microcalcification (Wee et al., 1979; Fox 

et al., 1980; Fam et al., 1988) and edge strength (Spiesberger, 1979; Chan et al., 

1988; Fam et al., 1988). Features regarding the whole cluster have also been 

investigated. These include, near neighbour distance, distance to centre of mass and 

spatial frequency (Olson et al., 1988; Freundlich et al., 1989; Chitre et al., 1994). 

When distinguishing between malignancy and benignity, Wee et al. (1979) found 

that the three best features were contrast, average signal intensity within 

microcalcification and approximate horizontal length. They correctly classified 22 out 

of 28 benign clusters and 21 out of 23 malignant clusters. By comparison, Fox et al. 

(1980) found the best five features were, number in cluster; standard deviation of 

microcalcification perimeters; mean aspect ratio; standard deviation of aspect ratio 

and standard deviation of microcalcifications area normalised by mean



129 

microcalcification area. Their database contained 54 benign and 46 malignant clusters. 

Using the features, they correctly detected two-thirds of all clusters. 

Number in Cluster a.13 (CC), 7.5 (LO) a. 15 (CC), 27.5 (LO) 

b. less than 5: 57% b. less than 5: 43% 

greater than 5: 29% greater than 5: 71% 

d. <10: 82% chance of d. >10: 44% chance of 

benignit malignanc 

Cluster Area (mm7”) a. 48 (CC), 23.8 (LO) a. 142 (CC), 153.6 (LO 

Cluster Perimeter (mm) _ | a. 30.2 (CC), 26.8 (LO) a. 61.9 (CC), 60.1 (LO 

a. 0.29 (CC), 0.27 (LO) a. 0.19 (CC), 0.20 (LO) 

Near Neighbour distance | a. 1.22 (CC), 1.49 (LO) a. 1.36 (CC), 1.15 (LO) 

(mm) ¢. 3.5 C5 

d. >1: 92% chance of d. <1: 52% chance of 

      

     

      

  
   
        
    

      
        

   

    

    

   

    
         

  

   

        

    
    
    
    
  
      
  

    

        

      benignity malignanc 

Microcalcification Size b. <1: 4% b. < 1: 96% 

(diameter - mm) 1-2: 75% 1-2: 25% 

>2: 75% >2: 25% 

Contrast 
Smoothness 

Background intensit 
Equal shapes 
Round shapes 
Rod shapes 

Irregular shapes 

Mixed Shapes 

Table 6.1 - Values of some microcalcification features found by authors 

[Key to authors: a. Hansell et al. (1988), b. Gale et al. (1987), 

c. Olson et al. (1988), d. Freundlich et al. (1989)] 

Shen et al. (1994) investigated the use of shape to classify microcalcifications as 

benign or malignant. They attempted to define the shape of microcalcifications based 

on parameters other than simply compactness used previously. After segmenting 

microcalcifications using a region growing algorithm, three shape measures were 

obtained for each object. These were compactness, moments and Fourier descriptors. 

The final step was to classify the microcalcifications using the three shape features.
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One hundred and forty three microcalcifications were classified from 18 biopsy- 

proven cases as benign or malignant. They found that 100% accurate classification 

was found using all three shape measures. However, their paper did not relate their 

shape parameters to those used by Radiologists (Le Gal et al., 1976; Lanyi, 1985). In 

addition, they did not tackle the problem of classifying microcalcifications that had an 

overlap of malignant and benign appearances. 

Parker et al. (1995) attempted to classify ductal carcinoma in situ as either comedo 

or non-comedo on the appearance of microcalcifications on the mammogram. They 

applied a KNN algorithm to classify clusters and individual segmented 

microcalcifications based on local and global features. The microcalcification features 

included moment invariant measures (Hu, 1961) which measured more subtle aspects 

of shape invariant of shift, rotation or scaling. They also developed two features not 

used previously. ‘Radius of gyration’ referred to the distribution of brightness across 

the microcalcification whilst ‘pair’ feature was a measure of the combined 

directionality of a microcalcification with its nearest neighbour on the mammogram. 

This measure was sensitive to pairs of elongated microcalcifications which are close 

together in particular, comedo microcalcifications. The cluster features included 

convex hull, cluster membership and cluster density. The results for ROC analysis 

showed that for individual microcalcifications, the best features for discrimination 

were difference of signal intensity (foreground-background), entropy, eccentricity and 

moment invariant measure. For clusters, the best features were shape of convex hull, 

variance of cluster shape, variance of edge strength, radius of gyration, mean of 

gyration and mean moment invariant. Although the best classifier gave an accuracy of
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88%, they were unable to differentiate some microcalcifications which showed an 

overlap of appearances on the basis of their shape. 

Microcalcifications considered difficult to diagnose was investigated by Chitre et al. 

(1994). They looked into the use of second-order histogram textural features for 

correlation with malignancy. One hundred and ninety one cases were segmented to 

provide binary images. Two sets of features were extracted. The first consisted of 

image structure feature structures from the original mammogram such as angular 

second moment, contrast and mean grey level distribution. The second consisted of 

image structure and cluster features from the binary images such as number of 

microcalcifications, area and average grey level within the object. Six different neural 

network architectures were used to evaluate the data. ROC analysis was performed to 

compare the classifiers with the two sets of features. The best result was obtained 

using the second set of features, with an Az value of 0.55. 

6.9 INVESTIGATION OF MORE THAN 
ONE VIEW IN MAMMOGRAPHY 

The work by Speisberger (1979) is the only one that has tackled the significance of 

craniocaudal (CC) and lateral oblique (LO) views. He detected microcalcifications on 

CC and LO views and assumed that valid microcalcifications would appear in both 

views. A second order polynomial co-ordinate transformation was applied to simulate 

the deformation of the breast during examination and the correlation coefficient 

between the two projections was used to further reduce the false-positive detection 

rate. Although in principle microcalcifications should appear in both views, in practice



132 

it is very difficult to check if the same microcalcification is present in both CC and 

LO views. This was reflected in the false-negative value of 31%. 

Bates et al. (1994) showed that it was possible to investigate the distribution of 

microcalcifications in three dimensions. Excised specimens of breast lesions were 

radiographed in directions normal to the faces of an equilateral tetrahedron. This 

produced four views. These were reconstructed using a back-projection method 

(Brooks et al., 1976). The resultant separation distances of microcalcifications were 

found to be consistently lower in the 3-D computed reconstruction compared to a 

conventional view (1.8 + 1.5 mm compared to 7.6 + 0.5 mm). They concluded that 

the classification of 3D specimens eliminates distortions that occur in 2D projections. 

6.10 CONCLUSIONS ON PREVIOUS WORK AND ITS 

RELEVANCE TO THE PRESENT STUDY 

Most published papers have attempted to detect clusters of microcalcifications, and in 

particular, differentiate them from noise. As microcalcifications appear as small, 

clustered and of high signal intensity, the algorithms chosen to detect them have to 

ensure that there is no smoothing, work in the spatial domain and that the structure of 

the object is preserved. Mathematical morphology provides a method of satisfying all 

three criteria. If mammogram signal intensities are considered in three dimensions, 

microcalcifications stand out as high solitary peaks on a varying background. This is 

ideal for the application of morphological operators. In particular the top-hat 

algorithm can be used to detect these peaks. The disadvantage of this algorithm was
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highlighted by Astley et al. (1990), namely that in the image, there may be other areas 

having similar characteristics to microcalcifications. 

By comparison, there have not been that many papers that have investigated 

methods of obtaining objective, robust Seinedintion of microcalcifications. Dengler et 

al. (1993) achieved segmentation using the top-hat algorithm, but, the final step of the 

threshold is subjective and may not be reproducible. By comparison, the watershed 

algorithm constructs microcalcification boundaries based on the gradient transform of 

an image constrained by markers. As stated previously, this ensures an objective and 

reproducible method of segmentation. 

Studies that have attempted to differentiate between benignity and malignancy, 

have used a number of standard global and local features. Shen et al. (1994) and 

Parker et al. (1994) provided used individual microcalcification shape as a basis for 

discriminating different classes of microcalcifications. The present study also 

investigated microcalcification shape to discriminate benignity from malignancy. 

Again, mathematical morphology algorithms were applied to define shape parameters. 

The advantage of mathematical morphology was the ability to define 

microcalcification shapes into classes used by Radiologists (Le Gal et al., 1976; Lanyi, 

1985); namely, round, elongated and irregular. 

The investigation of equivocal (or difficult to diagnose) cases is an area that has not 

been investigated in detail. The classifier accuracy of 55% found by Chitre et al. 

(1994) reflects the problems faced in using image analysis to analyse such cases. The 

work to be reported here will attempt to discriminate equivocal cases using shape and 

cluster features obtained from standard benign and malignant clusters.
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As two views are nearly always taken when symptomatic women are sent for x-rays, 

it is surprising that many research groups have not investigated the effect of two-view 

mammography on microcalcification detection and analysis. In the UK screening 

programme, only one view of the breast is taken (lateral oblique). Spiesberger (1979) 

believed that there would be a high degree of correlation between views, however, his 

studies indicated a number of practical reasons why this may not be the case. As 

microcalcifications are three dimensional structures, the projective nature of 

mammograms will mean that different shapes may be seen in each view. The 

compression used for each view can also distort the appearance of the cluster. In 

addition, other structures in the breast can easily hide a cluster of microcalcifications 

in one view but have no effect in the other. In the present study, both views were 

studied to see if there was any correlation in microcalcification features.
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7.1 SUBJECT SELECTION 

7.1.1 Benign and Malignant Database 

A database of 58 cases was obtained from the UK breast screening programme in 

Liverpool. Initially, 38 cases were received, these cases were divided as probably 

benign (19 cases) and probably malignant (19 cases) on the basis of radiological 

appearance. For each case, the lateral oblique (LO) and craniocaudal (CC) and a 

cytology/histopathology report was obtained. The pathology slides were reassessed by 

a pathologist experienced in breast screening to identify those clusters that contained 

benign or malignant microcalcifications. One case initially considered as probably 

benign was found to be malignant and one case initially considered to be probably 

malignant was found to be benign upon examination of cytology and histopathology 

results. These cases were swapped around in the database used for the present study. 

A more detailed description of the cases is given in Appendix B. 

7.1.1.1 Benign Cases 

These cases were initially diagnosed as probably benign on the mammographic 

features of the microcalcifications. The diagnosis subsequently being confirmed by 

fine needle aspiration (FNA). Those patients on the screening programme would be 

recalled in 3 years after the diagnosis. The age range of the patients varied from 50 to 

67, with an average age of 54. Figure 7.1 shows three examples of benign clusters in 

the database used for this study. The case code is related to Appendix B.
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Figure 7.1 (a) - Cluster of benign microcalcifications in the CC view 

with appearance consistent with fibrocystic change (BEN 9) 

  

Figure 7.1 (b) - Cluster of benign microcalcifications in LO view 

with appearance consistent with fibrocystic change (BEN 10)
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Figure 7.1 (c) - Cluster of benign microcalcifications in CC view 

with appearance consistent with sclerosing adenosis (BEN 14) 

7.1.1.2 Malignant Cases 

These cases were diagnosed as probably malignant on the mammographic features of 

the microcalcifications. After confirmation by cytology, the patients underwent 

lumpectomy or mastectomy. The women in this group were recalled to the clinic 

after one year. The range of the ages of the patients was from 50 to 65 with an 

average age of 53. Figure 7.2 shows three examples of malignant clusters used in this 

study.
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Figure 7.2 (a) - Cluster of malignant microcalcifications in LO view 

with appearance consistent with ductal carcinoma in-situ (MAL 8) 

  

Figure 7.2 (b) - Cluster of malignant microcalcifications in CC view 

with appearance consistent with ductal carcinoma in-situ (MAL 13)
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Figure 7.2 (c) - Cluster of malignant microcalcifications in CC view with 

appearance consistent with ductal carcinoma in-situ (MAL 2) 

7.1.2 Equivocal Database 

The equivocal database consisted of 20 cases that had non-specific appearances on 

mammography. They were received blindly without prior knowledge of diagnosis. 

The diagnosis of either benignity or malignancy was determined by cytology and/or 

histology in due course. On the results of cytology, 15 of the cases were confirmed as 

‘benign. On the results of cytology and histopathology 5 cases were confirmed as 

malignant. The age range of these patients spanned from 50 to 64 with an average age 

of 55. Figure 7.3 shows three examples of equivocal clusters used in this present 

study.



141 

  
Figure 7.3 (a) - Cluster of microcalcifications in CC view diagnosed as 

fibrocystic change after FNA (EQUB 2) 

  
Figure 7.3 (b) - Cluster of microcalcifications in CC view diagnosed as 

ductal carcinoma in-situ on histopathology (EQUM 3)
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Figure 7.3 (c) - Cluster of microcalcifications in CC view found to have 

benign epithelial cells after FNA (EQUB 14) 

7.2 DIGITISATION OF FILM 

The mammogram films received from the Breast Assessment Clinic were digitised 

using a Sony D7CE CCD camera and light box. The set-up for digitisation is shown in 

Figure 7.4. The image was captured by a frame grabber and transferred to a 

CONTEXTVISION (ContextVision AB, Sweden) image analysis system. The 

mathematical morphology algorithms were provided by XLIM3D (CMM, L’Ecole des
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Mines, Fountainbleau, France) software developed by Gratin (1993). Figure 7.5a 

shows a digitised cluster of microcalcifications in the cranio caudal view. In this case a 

59 year old woman presented at the Breast Assessment Clinic for a mammogram in 

1991. Histology confirmed malignant disease diagnosed as non-invasive ductal- 

carcinoma in-situ (DCIS). This cluster is used as a paradigm case for demonstration 

of the image analysis method in this chapter as it shows a wide variety of shapes and 

sizes of microcalcifications. This image shows a 20 mm x 20 mm section of the breast 

containing the cluster of microcalcifications digitised to a square matrix of 512 x 512 

pixels. This ensured a resolution of one pixel width equal to 0.04 mm. A cross- 

sectional signal profile of a group of pixels (along line A-B of length 20 mm) is shown 

in Figure 7.5b. Before image analysis, each of the digitised clusters was inspected by a 

Radiologist who was experienced in interpreting mammograms. 

  
Figure 7.4 - Equipment set-up for film digitisation
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Figure 7.5 - (a) Digitised cluster of microcalcifications and (b) Signal intensity profile 

through a group of microcalcifications along line A-B 

7.3 IMAGE ANALYSIS ROUTINE 

In this project, the watershed algorithm was used to segment microcalcifications. The 

watershed algorithm (Section 5.16) was applied to the gradient transform of the 

original image constrained by candidate markers. The gradient image located where 

the maximum rate of change of signal intensity occurred for each microcalcification. 

Thus, objective and reproducible boundaries could be constructed around each 

microcalcification. 

Figure 7.6 outlines the general scheme of the image analysis routine to detect, 

segment and numerically analyse the microcalcifications. After digitisation, a 

histogram equalisation algorithm and morphological filtering is applied to improve 

contrast and remove noise. Secondly, an internal marker is found for each individual 

microcalcification. This is done by application of the top-hat algorithm (Meyer, 1977). 

The third stage is to apply the watershed algorithm (Beucher and Lantejoul, 1979).
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This is applied twice, firstly to the original image to find an external marker within the 

background region; secondly, to the gradient transform of the original image, 

constrained by the internal and exec markers, to objectively define.a complete 

boundary for each microcalcification. The final stage is concerned with the numerical 

analysis of the whole cluster and of the individually segmented features. 

The image analysis routine was applied to the cluster of microcalcifications in 

Figure 7.5(a) using the XLIM3D/LISP program in Appendix C. 

To
p 

Ha
t 

Al
go

ri
th

m 

  

  

Wa
te
rs
he
d 

Al
go

ri
th

m 

  

on
os
ee
 s

on
eo

ns
pe

se
ne

sq
en

em
ee

ys
an

ss
on

je
co

po
cc

oc
ss

so
cn

d 
} 

ne
ed

s 
ne

sc
ar

sn
ae

s 
sw
ec
se
nn
ce
se
nc
ns
se
 c

ess
 ss

en
en

rn
ac

s 
sq

en
ee

na
sc

ss
on

ss
es

se
ew

en
ca

ce
s 

  
Figure 7.6 - Schematic Flow Diagram of Image Analysis Algorithm
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7.3.1 Histogram Stretching 

Histogram stretching was applied to the cluster of microcalcifications to improve the 

contrast of the image by producing an image with equally distributed brightness levels 

over the whole grey scale. This ensured that all the images had a grey scale range 

from 0 to 255. The result of applying histogram stretching to the image in Figure 7.5 

is shown in Figure 7.7a. The corresponding signal profile is shown in Figure 7.7b. 
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Figure 7.7 - (a) Cluster of microcalcifications after histogram stretching and 

(b) Signal intensity profile along line A-B 

7.3.2 Alternating Sequential Filter (ASF) 

The alternating sequential filter (ASF) (Serra, 1988) is used to enhance the image. For 

this example, an M-type ASF was applied twice. Thus, an opening of size 1 was 

initially applied, followed by a closing of size 1; next an opening of size two is 

applied, followed by a closing of size 2. In the opening stage, the filter removed noise 

from the high intensity pixels. The central region of the microcalcification was
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smoothed in the closing stage, whilst preserving edges. The improvement in the image 

is shown in Figure 7.8a with the signal profile shown in Figure 7.8b. 
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Figure 7.8 - (a) Application of alternating sequential filter and (b) Signal intensity profile 

along line A-B 

7.3.3 Detection of Candidate Internal Markers 

Candidate markers for the centre of each microcalcification were found by application 

of the top-hat algorithm. The cluster of microcalcification may be described as a 

mountainous range, as shown in Figure 7.9, consisting of peaks (i.e. 

microcalcifications) on a variable background (i.e. stromal tissue). The top-hat was 

used to extract these peaks from the background. The algorithm is analogous to 

placing a top-hat over each peak in turn and determining whether peaks poke through 

the top of the hat. The two variables of the top-hat are its radius and its height. The 

algorithm has been applied in other medical applications, including the automated 

analysis of cervical smears (Meyer, 1979) and the recognition of enlarged and 

hyperchromatic nuclei in cytology specimens (Cornelisse et al., 1985).
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Figure 7.9 - Three dimensional representation of cluster of microcalcifications 

A kernel needs to be specified. This defines the local neighbourhood on which the 

morphological operations are performed. For this paradigm case, the cluster contained 

microcalcifications with a mixture of sizes. The size of the kernel approximated to the 

size of the largest microcalcification in the cluster. In this case, a circular disc of 

radius 7 pixels was used, hence, defining the radius of the top-hat. The first part of the 

top-hat algorithm consists of a morphological opening. As described in Section 5. 14, 

this is a two-step process consisting of an erosion followed by a dilation. The effect of 

erosion is to decrease the size of the regions of high signal intensity (ie. 

microcalcifications) in the digitised image (Figures 7.10a and 7.10b). The dilation 

algorithm is then applied. This has the effect of partially restoring regions of relatively 

low signal intensity in the background (i.e. stromal tissue) that did not completely 

disappear as a result of the erosion step (Figures 7.11a and 7.1 1b). Restoration of the 

background region is completed by applying the reconstruction algorithm (Vincent,
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7.4 Inter Observer Detection and Segmentation Quality 

7.4.1 Detectability 

Detectability is a measure of the accuracy of detecting the number of high intensity 

objects (i.e. microcalcifications) in the image. Inter-observer variation refers to the 

difference in detection rates between the Researcher (DB') and Radiologist (GHW’). 

The Radiologist was considered the ‘gold standard’ or reference. Intra-observer 

variation refers to the difference in detection rate by the same Radiologist upon 

repeated observations. First, the researcher detected the microcalcifications using the 

top-hat algorithm to mark candidate markers. Secondly, the Radiologist marked the 

microcalcifications on the digitised image using a mouse. The Radiologist had all the 

original mammogram films available to use as a reference. While the Radiologist 

marked the candidate markers, the room was darkened to achieve normal film-reading 

conditions and a magnifying glass was available for use with the mammogram films. 

Thirdly, after a period of at least two months, the same radiologist repeated the 

detection process using the computer mouse. Again, the films were available and the 

room was darkened. In this study, the inter-observer variation was obtained by 

comparing the results of the first and second conditions. Intra-observer variation 

compared the results of the second and third conditions. 

' Dibendu Betal 
? Prof. G.H. Whitehouse
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1993) to the opened image with the original image as a mask (Figures 7.12a and 

7.12b). 
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Figure 7.10 - (a) Cluster after erosion with disc size 7 and (b) Signal intensity 

profile along line A-B 

Gr
ey
 
Le
ve
l 

  

Figure 7.11 - (a) Cluster of Figure 7.10 after subsequent dilation with disc size 7 

and (b) Signal intensity profile along line A-B
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Figure 7.12 - (a) Opened image after reconstruction and (b) Signal intensity profile 

along line A-B 

The second part of the top hat algorithm involves subtraction of the reconstructed 

opened image, in which the microcalcifications have been removed and stromal tissue 

left relatively unchanged, (Figure 7.12a) from the original image (Figure 7.8a). The 

predominant features in the subtraction image are the microcalcifications (Figures 

7.13a and 7.13b). The third stage is a thresholding operation - the process by which 

the height of the hat is controlled. If a single threshold was used, too many false 

positive objects would be present in the binary image. So, a hierarchical system of 

thresholding was used requiring manual observer interaction. For this particular 

image, a threshold of 55 was initially chosen, producing a binary image. The binary 

objects representing microcalcifications were selected by the operator and all other 

objects were discarded. The resultant binary image is shown in figure 7.14a. This was 

done again at a threshold level of 40 and the selected objects were combined with 

those found at the first threshold level (Figure 7.14b). The next threshold was 25 

(figure 7.14c). The final threshold was 10, the selected objects were again added to 

those found at the previous three threshold levels to produce Figure 7.14d. These
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represent all the candidate markers for the microcalcifications. For other images, 

different threshold levels will be applied. 
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Figure 7.13 - (a) Subtraction Image and (b) Signal intensity profile along line A-B (with 

expanded y-axis). The dashed lines show the the four threshold levels used to segment all the 

microcalcifications 

a.    
  

c. d. 

Figure 7.14 - Image after thresholding at (a) grey scale level 55 (b) grey scale level 40 

(c) grey scale level 25 (d) grey scale level 10



152 

7.3.4 Segmentation of Microcalcifications 

The watershed algorithm is used for the segmentation of objects in a grey scale image. 

It is applied to the gradient transform of the grey scale image constrained by internal 

markers representing each object of interest and an external marker, representing the 

background region. The implementation of the watershed has been described in detail 

in Chapter 5. The maximum rate of change of signal intensity in the original image 

may be determined by application of the morphological gradient transform (Beucher 

1990) as shown in Figure 7.15. However, in this image there are many more regional 

minima than foci of microcalcification and application of the basic watershed 

algorithm would result in over-segmentation. 

  

Figure 7.15 - Morphological gradient transform 

The internal markers of the microcalcification were found using the top-hat transform 

as described previously. These are shown as red objects, superimposed upon the 

original image displayed with inverted grey scale (Figure 7.16a). The result of running 

the watershed on the inverted image constrained by the internal markers is shown as a
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continuous blue line (Figure 7.16b). This is subsequently used as an external marker. 

The watershed is re-applied, this time to the gradient image constrained by the 

internal and external markers (Figure 7.16c). A complete boundary is found for each 

microcalcification, as shown in Figure 7.16d. 

  
Figure 7. 16 - Application of Watershed algorithm constrained by markers. (a) The result of 

the top-hat algorithm (red) is shown superimposed upon the original image. (b) The watershed 

algorithm is initially applied to the inverted image constrained by the internal markers, the 

resultant continuous blue line is subsequently used as an external marker. (c) The watershed 

algorithm is re-applied to the gradient image constrained by both the internal and extemal 

markers. (d) The watershed boundaries are constructed along the line of maximum rate of 

change of signal intensity and the resultant segmented image is shown.



154 

7.4 Inter Observer Detection and Segmentation Quality 
\ 

7.4.1 Detectability 

Detectability is a measure of the accuracy of detecting the number of high intensity 

objects (i.e. microcalcifications) in the image. Inter-observer variation refers to the 

difference in detection rates between the Researcher (DB') and Radiologist (GHW). 

The Radiologist was considered the ‘gold standard’ or reference. Intra-observer 

variation refers to the difference in detection rate by the same Radiologist upon 

repeated observations. First, the researcher detected the microcalcifications using the 

top-hat algorithm to mark candidate markers. Secondly, the Radiologist marked the 

microcalcifications on the digitised image using a mouse. The Radiclogist had all the 

original mammogram films available to use as a reference. While the Radiologist 

marked the candidate markers, the room was darkened to achieve normal film-reading 

conditions and a magnifying glass was available for use with the mammogram films. 

Thirdly, after a period of at least two months, the same radiologist repeated the 

detection process using the computer mouse. Again, the films were available and the 

room was darkened. In this study, the jintec-pbserver variation was, obtained by 

comparing the results of the first and second conditions. Intra-observer variation 

compared the results of the second and third conditions. 

' Dibendu Betal 
2 Prof. G.H. Whitehouse
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7.4.2 Segmentability 

In this study, the boundaries of the microcalcifications were found using the 

watershed algorithm described previously. The markers used were those obtained by 

the top-hat algorithm. The boundaries were inspected by the Radiologist who made 

any manual adjustments if necessary. Parker (1994) investigated the accuracy of 

segmenting subtle microcalcifications and described this as the ‘quality factor’. In this 

study we have used this ‘quality factor’ as a measure of how well the watershed has 

segmented the microcalcification compared to the opinion of the Radiologist. The 

formula used to measure segmentability was, 

Aig O Ayad 

A,UA ia rad 

SEG = (Equation 7.1) 

Where Aj. represents the area found using the image analysis technique and A,og the 

area detected by the Radiologist. A value of 1 indicates excellent agreement between 

the Radiologist and computer, a figure above 0.5 indicates good resemblance and a 

value of less than 0.5 indicates poor segmentation. Figure 7.17 shows the discrepancy 

between the Radiologist’s estimation and the computer’s estimation of the 

microcalcification boundary in schematic terms. 

Figure 7.17 - Discrepancy between radiologist opinion (blue line) and 
image analysis technique (red line)
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7.5 SHAPE ANALYSIS OF INDIVIDUAL 
MICROCALCIFICATIONS 

Mathematical morphology algorithms were used to analyse the shapes of 

microcalcifications. The method used was based on work done by Lesty et al. (1986) 

who analysed size and shape characteristics of nuclei in tissue sections of non- 

Hodgkin’s lymphoma. Four shape factors were used, these were contour irregularities 

(or infoldings), narrow irregularities, wide irregularities and elongation. 

7.5.1 Infoldings 

A measure of whether the contour of the microcalcification folds inwards was 

achieved by applying a closing with disc size equal to the average radius for each 

calcification. If the closing is identical to the unclosed object, then no infoldings are 

present. 

7.5.2 Elongation 

The method of measuring elongation is shown in Figure 7.18. The largest disc that 

can fit in any of the shapes has a diameter of Dyna, and is shown in light grey. If an 

opening of size n (i.e. of area size A,) removes a microcalcification completely, the 

area of the largest disc that fits inside that microcalcification (Ayca) will have an area 

of A,.;. The elongation factor is then the ratio of the total area of the 

microcalcification (Ayca) to the area occupied by the largest disc contained within the 

microcalcification of interest (A gisc). 

Elongation = Ayca/Aédisc (Equation 7.2)
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Figure 7.18 - Calculation of Elongation factor. 

The grey disc represents the largest disc that fits inside the microcalcification. 

7.5.3 Narrow Irregularities 

These were found by applying successive openings to the object using a disc of 

diameter D. The difference in areas of the object before and after applying the nth 

opening is S,, whereas A,.; is the area of the object before the nth opening had been 

applied. The narrow irregularity is then described as the sum of the ratios of area 

differences with each opening (S,) to the object area after n-7 openings (A,.;) until the 

disc size is equal to or less then Dnax/2. 

Nic= a Sp/An-1 (Equation 7.3) 

7.5.4 Wide Irregularities 

Wide irregularities may be expressed as the sum of the ratios of area differences with 

each opening (S,) with successive openings from disc of size Dmnax/2 up to the integer 

equal to or less than 3Dma,/4. This may be expressed as, 

3D/4 

WI. = s Sw/An-1 (Equation 7.4) 
D/2
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The technique used to find narrow and wide irregularities is shown in Figure 7.19. 

The maximum disc Dax that fits in the object is shown in red, the disc of diameter 

3D max/4 is shown in green, whilst the disc of diameter Dynax/2 is shown in blue. In 

Figure 7.19a, the part marked as (i) is considered a wide irregularity, it fully contains 

not only the disc of Dmnax/2 (blue) but the disc of size 3Dmax/4 (green). The same 

irregularity in Figure 7.19b contains the disc of size Dmnax/2 (which is shown in blue 

but equal in size to the green disc, 3D max/4, in Figure 7.19a) but does not contain the 

disc of size 3Dmax/4 (which is shown in green but is equal in size to the red disc Dinax 

in Figure 7.19a), so is considered a narrow irregularity. However, the part marked (ii) 

contains the disc of size 3Dmax/4 (green) and this is now considered as the wide 

irregularity. 

  

Irregularity (ii) 

    Irregularity (i) 

Figure 7.19 - Calculation of narrow and wide irregularities. The discs shown are Dg (red), 

3D max/4 (green) and Dmax/2 (blue). (a) The irregularity marked as (i) is a wide irregularity as it 

contains the blue disc and green discs. (b) The same irregularity is now a narrow irregularity, 

the red disc of (a) is of size 3Dnax/4 and does not fit inside irregularity (i) but does fit in 

irregularity (ii) - a wide irregularity.
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The shape factors of narrow irregularity, wide irregularity, infolding and elongation 

may be used together to form sixteen different combinations to describe individual 

microcalcifications. The combinations are given in Table 7.1 (/ refers to infoldings; W, 

wide irregularity; N, narrow irregularity; E, elongation; +, the presence of shape 

factor; -, lack of shape factor). Examples of the type of calcification for each category 

are colour coded in Figure 7.20. Classes in the top row go from 1 to 8, the second 

row contains classes 9 to 16. Figure 7.21 shows how the calcifications in the 

paradigm case fall into the various classes. In this cluster, for the microcalcifications 

to have Elongation the area of the microcalcifications had to be at least 30% bigger 

than the area of the largest disc contained within the microcalcification. To indicate 

wide irregularity, the sum of the ratios of area differences had to be at least 50%. To 

indicate narrow irregularity, the sum of the ratios of area differences had to be at 

least 10%.    
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Irregularities, infoldings, no elongation 

Irregularities with elongation and infoldings 

Punctate and round 

Rounded, wide and smooth 

Club shaped and elongated 

Wide body and slight narrow protrusion 

Wide body with elongated narrow 

protrusion 

Elongated with smooth margi 

Round body with narrow protrusion 

Elongated with narrow irregularit 

Table 7.1- Combinations of infoldings, elongation and irregularities
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Figure 7.20 - Classification of Microcalcification Shapes 

  
Figure 7.21 - Classification of paradigm case study
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This analysis classified the microcalcifications into 16 different classes. These 16 

classes may be then condensed further to be used when the whole cluster was 

analysed. In _ practice, Radiologists usually comment on whether the 

microcalcifications are round, elongated or irregular. Classes 1, 9 and 13 were 

categorised as round. Classes 2 and 10 (regular elongation) along with classes 12, 14 

and 16 (irregular elongated) were combined together simply as elongated. Classes 3, 

4, 5, 6, 7, 8, 11 and 15 were classified as irregular. At least two other clinical studies 

have investigated shape characteristics, however, image analysis was not na 

Figure 7.22 shows the results from Le Gal’s morphologic classification of 

microcalcifications (Le Gal et al., 1976). The five classes can be related to the shapes 

found in this study. Class A described regular elongated microcatcifications which 

resemble Classes 2, 10 and 12 in Figure 7.20. Class B describes round and bean 

shaped microcalcifications (Classes 9 and 13 in Figure 7.20). Class C describes small 

punctate microcalcifications (Classes | and 9). Class D is a mixture of irregular type 

microcalcifications (Classes 6, 8, 14). Class E are undulating microcalcifications of 

varying lengths (Classes 4, 6, 12 and 16). 

Class A | Class B |Class G| Class B | ClassE 

  

Figure 7.22 - Classification of microcalcifications by Le Gal
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Figure 7.23 shows the four main classes found by Lanyi (1985). Class a are round 

punctate form of varying sizes (Class 9 in Figure 7.20). Class b are bean shaped (class 

13). Class c are elongated (Classes 2, 4, 10, 12, 14, 16) and Class d are irregular 

shaped (Classes 3, 5, 6, 8). 

Class a Class t 

  

Figure 7.23 - Classification of microcalcifications by Lanyi



163 

7.6 FEATURE ANALYSIS OF CLUSTER 

A cluster of microcalcifications contains both global features and local features. 

Global features refer to properties of the whole cluster such as total number, the 

shape of the convex hull and the spatial distribution. The main local features 

investigated were the size parameters, shape parameters and the effect of grey level 

intensity on individual microcalcifications. Both global and local features may be of 

value in establishing whether a particular cluster displays malignant or benign 

properties. The cluster shape was determined by constructing a convex hull enclosing 

the microcalcifications. The convex hull was found using the chull algorithm (Barnett, 

1976) available on the S-Plus (StatSci, Oxford) statistical package. This algorithm 

provided an objective and reproducible method of determining the shape of the 

projection of the cluster by locating outer points of the cluster and constructing lines 

between these points (Figure 7.24).
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Figure 7.24 - Convex hull enclosing cluster of microcalcifications segmented in Figure 7.16 

7.6.1 Number in Cluster 

This is simply a count of the number of objects contained within the convex hull, 

which in the present example is 58. 

7.6.2 Cluster Area 

The area of the cluster was found by finding the area of the polygon enclosed by the 

convex hull. A total area of 144 mm?’ was found in the present example.
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7.6.3 Cluster Perimeter 

The cluster perimeter is the length of the convex hull enclosing the cluster of 

microcalcifications. This was obtained by using Pythagoras’ theorem to find the length 

of each line. The lines were summed to form the perimeter, which was 45 mm for this 

example. 

7.6.4 Cluster Density 

The cluster density was found by dividing the number of microcalcifications (which in 

this case was 58) by the area of the cluster (144 mm”). In the present case, the cluster 

density was 0.40 mm”. 

7.6.5 Spatial Distribution 

The spatial distribution was described using two measures. The first is to find the 

centre of gravity of the cluster and calculate the mean distance between the centre of 

each individual microcalcification and the centre of the cluster. This is called the 

distance to centre measure (DC) (Chitre et al., 1994). The second is to find the 

distance to the nearest neighbour for individual microcalcification. This is known as 

the nearest neighbour measure (NN) (Chitre et al., 1994). For this example the DC 

measure was found to be 5.02 + 1.84 mm. Whilst the NN measure was found to be 

0.89 + 0.48 mm.
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7.6.6 Proportion of Microcalcification Shapes within Cluster 

This refers to the percentage of round, elongated and irregular microcalcifications that 

make up each cluster. In this example, 82.8% of the microcalcifications were round, 

15.5% were elongated whilst 1.7% were irregular. 

7.6.7 Segmented Area of Microcalcifications 

The microcalcification area was found by a counting the number of pixels making up 

each segmented binary object (Wee et al., 1975). In our example the average area was 

found to be 0.169 + 0.168 cm’. The areas of the individual microcalcifications varied 

from 0.014 mm’ to 0.742 mm’. 

7.6.8 Background Standard Deviation 

This is the standard deviation of the signal intensity of the background region, two 

pixels wide, surrounding each microcalcification (Chan et al., 1988; Woods et al., 

1993; Kegelmeyer et al., 1994). For this study the mean value was 16.6 with a range 

from 4.4 to 52.5. 

7.6.9 Circularity 

This measurement was used by Shen et al. (1992), Spiesberger (1979) and Davies & 

Dance (1990). It has also been described as a measure of compactness of an object, it 

is found by the equation; 

C; = 4T1A/P” (Equation 7.5)
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where A describes the area and P the perimeter of a microcalcification. A figure of 

one would describe a circular object (similar to the Elongation factor of 1 

representing a round object), whilst any higher figure would represent an irregular 

object. In this example the average value was 1.12 with values ranging from 0.93 to 

1.94. 

7.6.10 Contrast 

Spiesberger (1979), Fam et al. (1988) and Bowyer (1993) described this as the ratio 

of average grey level in the microcalcification to the local background average after 

pre-processing; 

Contrast = (I, uCa(ave) ~ Loxgrna(ave))/ I, bkgrnd(ave) (Equation 7.6) 

where Jycaave) is the average intensity of the calcification and Ipigrnaave) the average 

intensity of the background region of two pixels surrounding the object of interest. 

The values for this example was 0.49 + 0.30. 

7.6.11 Average Edge Strength 

This is a measure of the average signal intensity on the microcalcification boundary 

after processing (Davies and Dance, 1990; Woods et al., 1990); 

Edge = (X Ieage)/Nedge (Equation 7.7)
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where Jae is the signal intensity at each pixel on the perimeter and nage the number of 

pixels. The value for this paradigm case was 18.6 + 7.84. 

7.6.12 Smoothness 

This is a measure of the root-mean-square (RMS) of grey level fluctuation in the 

calcification and has been described by Wee et al. (1979) and Bowyer (1993); 

P 

Smoothness = fi/ Auca >? CTs) (Equation 7.8) 
n=1 

where Ayca is the area of the microcalcification, 7, the signal intensity at the nth pixel 

and /,,. the average signal intensity within the microcalcification. In our example the 

smoothness varied from 2.68 to 125 with a mean of 22.0.
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7.7 KNN Classification and Receiver Operating 

Characteristic (ROC) Analysis 

7.7.1 Introduction 

A principle objective of this study was to investigate whether benign and malignant 

microcalcifications and clusters could be classified using their mammographic 

appearance. The classification was based on the K-nearest neighbour (KNW) algorithm 

(Duda and Hart, 1973; Devijver and Kittler, 1982). This procedure was then repeated 

for a database of equivocal cases. A test was used to identify which combinations of 

features gave the best performance. The area under the receiver operating 

characteristic (ROC) curve (Swets, 1979; Metz, 1986) provided a means of 

evaluating the performance of the image analysis method. 

7.7.2 KNN Classifier 

The K-nearest neighbour (KNN) algorithm is a simple yet effective method of pattern 

classification. Unknown feature patterns are classified according to their similarity to 

known feature patterns. The KNN algorithm calculates the distance from an unknown 

test pattern to every reference pattern and selects the K nearest training objects for 

classification. The test object is assigned to the class with the most objects amongst 

the K nearest samples. As there are two classes for the objects (i.e. benign and 

malignant), the number of nearest neighbours, K, is odd ensuring a majority of one 

class over the other. In the present study, the classifier was applied separately to both 

individual microcalcifications and to the clusters of microcalcifications.
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7.7.3 ROC Analysis 

The earlier methods of testing diagnostic performance have been to hse a measure of 

accuracy or percentage correct. This depends strongly on disease prevalence, if a 

particular disease is prevalent in only 5% of the population, the system could be 

labelled as 95% accurate by labelling all patients negative with respect to the disease. 

In addition, the proportion of false-positives and false-negatives are Hof taker into 

account. To overcome these problems, one may consider measurements of sensitivity 

and specificity. Sensitivity is the proportion of patients having the disease, i.e. 

diagnosed as true-positive (TP). Specificity is the proportion of patients without the 

disease, i.e. diagnosed as true-negative (TN). Figure 7.25 shows how specificity and 

sensitivity interact with respect to a defined choice of threshold level. The horizontal 

axis represents the observer’s confidence, the two bell-shaped curves are the 

probability density functions of actual positive (true-positive) and negative images 

(true negative). The measures of true-positive fraction (TPF) and false-positive 

fraction (FPF) are dependent on the threshold selected by the observer. In this study, 

the true positive fraction may be defined as, 

TP 
TPF =——_ (Equation 7.9) 

TP +FN 

Where 7P is the number of true positives (i.e. malignant cases correctly classified), 

FN the number of false negatives (i.e. number of malignant cases incorrectly 

classified) and TP + FN is the number of positive malignant cases in the test-set. The 

false positive fraction may be defined as, 

FP 
FPF =———_ (Equation 7.10) 

FP+TN
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Where FP is the number of false positives (i.e. benign cases incorrectly classified), ZN 

the number of true negatives (i.e. benign cases correctly classified) and FP + TN is the 

number of benign cases in the test-set. 

One Possible Setting of Confidence Threshold 

       

    
   

Actual Negative Patients Actual Positive Patients 

FPF=1-Specificity 

Specificity TPF=Sensitivity 

Confidence of Positive Decision 

Less —————$————+_ More 

Figure 7.25- Schematic diagram of model showing the 
interaction between sensitivity and specificity 

ROC Analysis (Swets, 1979; Metz, 1986) provides a method of evaluating the 

performance of diagnostic tools in medicine. The ROC curve compares the classifier’s 

true-positive fraction with its false-positive (FP) rate. The 7P rate is referred to as 

sensitivity and is the fraction of patients having the disease. By comparison, the rate 

(1 - FP rate), is referred to as specificity, the fraction of patients without the disease. 

A typical ROC curve is shown in Figure 7.26, as the confidence threshold is 

changed the 7PF and FPF will change accordingly. This generates a variety of 

sensitivity and specificity pairs; by plotting these points on a unit square and finding 

the best fit line through them, a ROC curve may be constructed. The area under the 

ROC curve, Az (Hanley and McNeil, 1982), represents the expected probability of the 

correct classification of the test-cases, A perfect classifier would have a TP rate of 1
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and a FP rate of 0, resulting in an Az value equal to 1.0. Random guessing would 

result in an Az of 0.5. The larger the area under the ROC curve, the greater 

discrimination between positive and negative cases, and subsequently, a lower ROC 

would indicate less discrimination. 
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False Positive Fraction (FPF) 

Figure 7.26 - Typical ROC curve - the x-axis (FPF) is the proportion of benign cases 

incorrectly classified as malignant - also known as (1-Specificity). The y-axis (TPF) measures 

the proportion of malignant cases correctly detected - Sensitivity. 

The curves may be constructed by drawing by hand, although this would be subjective 

and unreliable. For this study a method using cubic smoothing splines, which fits a 

curve to points locally, was employed. The algorithm - smooth.spline is available in 

the Splus (StatSci, Oxford, UK) statistical package. The ideal curve would be a step 

function, however, in practice, it may be non-linear. One method of finding the area 

under the curve would be to use the trapezoid rule, although underestimation may 

result. For this study, the equation of the curve fitting the points was found and 

integrated to find the value for Az.
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7.7.4 Experimental Method 

7.7.4.1 Method of Allocating Reference and Test Data 

The ‘leave-one-out method’ was used. Initially, the reference data set contains all the 

available benign and malignant clusters. One cluster is removed to form the test set 

and is classified. This is replaced into the reference set, and the process is repeated for 

each cluster in turn. The advantage is that the widest range of appearances is 

represented by the reference set. The disadvantage is that numerous slightly differing 

reference sets were formed to evaluate a test-set containing a single cluster. 

7.7.4.2 Features and parameters for individual microcalcifications 

For the individual microcalcifications, it was decided that only shape factors would be 

used for classification. The three largest microcalcifications in each cluster were 

selected for analysis. This ensured that they contained sufficient numbers of pixels to 

make shape analysis feasible and that the reference set was not swamped by the 

greater numbers of microcalcifications in the malignant clusters. The four features 

used were the presence of infolding, elongation, narrow irregularity and wide 

irregularity as described in Section 7.5.
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Figure 7.27  - Demonstration of KNN _ algorithm when classifying 

microcalcifications on the basis of shapes. Each box (Bl, Ml, ... By, Mn) represents a 

collection of three microcalcifications. The individual microcalcifications are represented by 

feature vectors (Bla, Mla, Blb, ... Bua, Mna, Bnb). A ‘+’ sign in the box represents the 

presence of that shape feature whilst ‘-’ sign represents the absence of the shape feature 

Figure 7.27 demonstrates the experimental procedure used in this study. The prefix 2 

represents a benign case, whilst the prefix / represents a malignant case. The matrix 

U acts as the test case, it contains three microcalcifications represented by feature 

vectors Ua, Ub and Uc. The microcalcification represented by Ua does not have any 

infoldings, elongation, wide irregularities or narrow irregularities, so would be 

categorised as class 9 in Figure 7.20. Similarly, the microcalcifications represented by 

features vector Ub and Uc would be categorised as class 10 and /3 respectively in 

Figure 7.20. The other matrices B1 to B3 and M1 to M3 represent three benign and 

three malignant cases respectively. In this analysis, the number of nearest nehuneoues! 

K is set to five.
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If Uais considered initially, its five nearest neighbours are Bla, B1b, B2c, B3a and 

M3b. In this group, there are 4 benign compared to 1 malignant, so this particular 

microcalcification is classed as benign. If Ub is considered, there are only two nearest 

neighbours that match up, B2a and M2a, as there is no difference between the number 

of benign and malignant neighbours, this microcalcification is unclassified. The third 

matrix Uc matches up with Blc, B3b, B3c, M2b and M3c. So, this microcalcification 

is classified as benign. The process is repeated for each feature vector in the other 

matrices (B1 to B3 and M1 to M3) using the ‘leave-one-out’ method described in 

Section 7.7.2.1. Initially, the leave-one-out method was applied to the CC view. Next, 

the procedure is repeated in the LO view. Finally, both views are included. 

Once each microcalcification out of the set of three was classified, the cluster itself . 

was assigned a class according to a threshold T, where, 

Cluster classed as malignantif f,,, 2T 

Cluster classed as benign if Pinr<edi (Equation 7.11) 

M 
= ———_— Equation 7.12 Ome M.+M, (Eq ) 

and M,, and M, the number of microcalcifications out of the three in each cluster 

classified as malignant and benign respectively. ROC curves were constructed by 

varying the threshold T, from 1 (the strictest threshold level) to 0 (the least strict 

threshold level). In this study, the threshold points were 0.67, 0.50 and 0.33 (for each 

of the three possibilities for the feature vectors). At each threshold level, the false- 

positive fraction and true-positive fraction was determined (using equations 7.9 and 

7.10) amongst the cases and plotted as a ROC curve.
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7.7.4.3 Features and parameters for clusters 

To classify clusters, both global and local features needed to be considered. 

Additionally, for local features such as microcalcification area, circularity and 

contrast, the properties of median value and inter-quartile range were considered. 

However, features with a correlation coefficient I7| > 0.90 (between the benign and 

malignant cases) were excluded from the features set as there is unlikely to be any 

significant difference between malignancy and benignity. A total of 21 features was 

used and these are summarised in Table 7.2. 
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Table 7.2 - Feature list for classification of clusters 

In this study, the distance of an unknown pattern to a known pattern is found by using 

a ‘ranking measure’ shown in Equation 7.13. For each feature, the distances of each 

unknown object (U;) are calculated and given a rank in relationship to a reference 

object (Rj). The nearest object has a rank of 1, the furthest has a rank of N, the
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number of cases. This is done for each feature in turn, then each of the ranks is 

summed together and the K nearest neighbours over all the features are found. 

K= SU, —R |) (Equation 7.13) 

  

  
    

Figure 7.28 - Demonstration of KNN algorithm when classifying clusters on the basis of 

global and local features. The feature vector U represents an unknown cluster to be classified. 
The feature vectors Bl to B5 and M1 to M5 represent benign and malignant clusters that 

make up the reference data-set. Fl to F5 represent five cluster features. For each feature, the 

clusters are ranked from | to 10 according to how near the value in each of the reference 
clusters compares with the unknown cluster. Once this ranking measure has been applied to all 
five features, the ranks for each individual cluster are summed and are shown in italics. These 

figures are again ranked in numerical order and are shown in bold type. 

Figure 7.28 shows a simple example of the ranking procedure. The test-case is 

represented by the feature vector U. The reference database is made up of benign (B1 

to B5) and malignant (M1 to M5) cases, irrespective of view. In this example only 

five features are considered (F1 to F5). For each feature, the clusters making up the
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reference database are given a rank from 1 to 10 according to how close the value of 

that particular feature is compared to the unknown cluster. This is repeated for all five 

features. The individual ranks are then summed together and are shown in italics in 

Figure 7.28. These are then re-ranked in numerical order. In this example, the first 

nearest neighbour to U is B3, so the unknown cluster is classified as benign. To test 

the probability of correct classification of test cases ROC analysis is again applied. 

However, unlike the individual microcalcifications, the points on the ROC curve were 

chosen according to the fraction of true and false positives amongst the nearest 

neighbours at a selected threshold level T. 

Cluster classed as malignant if Fig ek 

Cluster classed as benign if Tous <T (Equation 7.14) 

NN, 
Sotus = NN, +NN, (Equation 7.15) 

Where NN,, and NN, are the number of malignant and benign nearest neighbours 

respectively amongst the K nearest neighbours (which was chosen to be a quarter of 

the database - 9). Again the ROC curves were constructed by varying the threshold T, 

from 1 (the strictest threshold level) to 0 (the least strict threshold level) in ten steps. 

At each threshold level the true-positive fraction and false-positive fraction are 

determined (using equations 7.9 and 7.10) amongst the cases and plotted as a ROC 

curve. This was initially applied when the reference database was made solely of 

benign and malignant clusters. The equivocal clusters were then included with the 

benign and malignant clusters in the reference set and the ROC analysis is repeated. In 

addition, values for sensitivity and specificity is calculated based on a single nearest 

neighbour.



Chapter 8 

RESULTS 
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8.1 PERFORMANCE OF IMAGE ANALYSIS ROUTINE 

  

8.1.1 Detectability 

Three readings were taken to assess detectability. First, the Researcher used the top- 

hat algorithm to detect objects of interest. Second, the Radiologist marked the 

microcalcifications on the computer screen, with the films available for viewing on a 

light box nearby. The final reading was repeated by the Radiologist after a period of 

two months. The inter-observer agreement (i.e. between the Researcher and the 

Radiologist's first reading) and intra-observer agreement (i.e. the Radiologist repeated 

readings after a period of two months) for all the microcalcifications is given in Table 

8.1. 

    
       

a 

Table 8.1 - Comparison of Intra and Inter Observer Rates for 

Benign, Malignant and Equivocal Cases 

For the malignant and benign database, 38 clusters were analysed and 2162 

calcifications were detected by the Radiologist. The benign cases contained 681 

microcalcifications. Of these, 372 were located in the craniocaudal (CC) view and 309 

were located in the lateral oblique (LO) view. For malignant cases, 1481 

microcalcifications were found; these were divided into 822 in the CC view and 659 in 

the LO view. For the equivocal database, 20 clusters were analysed, 15 were benign
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and 5 were malignant. The benign cases contained 1243 microcalcifications. Of these, 

528 were located in the CC view and 715 were located in the LO view. The malignant 

cases contained 486 microcalcifications, of which 245 were found in the CC view and 

241 in the LO view. 

8.1.2 Segmentability 

Segmentation of the microcalcifications was achieved by applying the watershed 

algorithm constrained by the markers approved by the Radiologist. The segmentability 

values for each category are summarised in Table 8.2. They describe the difference 

between the Radiologist’s outlining and the area enclosed within the watershed line 

generated by the computer for all the microcalcifications. Those microcalcifications 

with a value less than 0.5 were considered poorly segmented, values between 0.5 and 

up to 1.0 represented reasonable segmentation and a value of 1.0 indicated excellent 

segmentation. 

Segmentability Benign Malignant Equivocal 

5 

1.0 87% | 85% 81% | 84% | 66% | 68% | 66% 

    

       
        
    

  

Table 8.2 - Segmentability Values for Microcalcifications in 

Benign, Malignant and Equivocal clusters
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Figure 8.1 - Illustration of microcalcification segmentation. The top panel shows a cluster of 

microcalcifications with mixed shapes and sizes. The middle panel shows the segmentation 

achieved using image analysis. The bottom panel shows the Radiologist’s segmentation. The 

objects that are colour coded show a microcalcification with excellent segmentation (red), 

reasonable segmentation (blue) and poor segmentation (green)
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The ranges of segmentability values are illustrated for a cluster of microcalcifications 

in Figure 8.1. The segmented microcalcification marked in red had a segmentation 

value of 1.0, the microcalcification shown in blue had a value of 0.81, and the 

microcalcification shown in green had a value of 0.44.
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8.2 SHAPE ANALYSIS OF INDIVIDUAL 

MICROCALCIFICATIONS (BENIGN & MALIGNANT) 

The various types of microcalcification shapes found using the method described in 

Section 7.7 are shown below in arbitrary colours (Figure 8.2). This section describes 

the results of shape analysis applied to a database of benign and malignant 

microcalcifications. Table 8.3 summarises the percentage of benign and malignant 

microcalcifications for each of the 16 classes. In addition, the minimum, median and 

maximum area of the microcalcifications are shown. 
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Figure 8.2 - Colour coded classification of microcalcification shapes 

Figures 8.3 and 8.4 shows a selection of benign and malignant clusters respectively. 

The segmented microcalcifications are colour coded according to Figure 8.2. At first 

sight, the grey scale images do not suggest any differences in microcalcifications
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Shapes between the clusters. However, shape analysis provides a method of 

distinguishing the clusters based on microcalcification shape. Figure 8.3 shows a range 

of malignant clusters from those containing microcalcifications of equal shapes to 

those clusters with a wide mixture of shapes. Figure 8.4 show four benign clusters 

containing microcalcifications with a wide range of shapes. 

    
    

  

| | Number | Area(mm*) | Number| Area(mm’) 
J | % | Median | Min | Max | % | Median] Min | Max_ 
| 2 | 01 | 0.192 | 0.192 | 0.192 | 04 | 0.043 | 0.012 | 0.140_ 

          

  

    

  

   

| 2 | 04 | 0081 | 0.060 | 0.197 | 11 | 0.179 | 0.023 | 0.702 | 
P 3 fe = 03 | 0.069 | 0.050 | 0.166 

ME cee tial ole ge ce) 180305. | 0-053 | 0.557 | 
| 5 | 04 | 0.098 | 0.061 | 0.107 | 02 | 0.107 | 0.056 | 0.121 | 
| 6 | 03 | 0.091 | 0.085 | 0.096 | 21 | 0.312 | 0.034 | 1.324 | 
oe ee eo eee ee | 
2 ee Ee ee a ee 

| 9 | 76 | 0.002 | 0.023 | 0.439 | 54 | 0.026 | 0.002 | 0.584 | 
| 10 | 69 | 0.053 | 0.037 | 0.359 | 88 | 0.079 | 0.018 | 0.812 | 

| 2 | 01 | 0.051 | 0.051 | 0.051 | 0.2 | 0.067 | 0.044 | 0.255 
| 13 | 87 | 0.040 | 0.061 | 0.715 | 20 | 0.067 | 0.006 | 0.484 | 

po - | - | - | 01 | 0.092 | 0.041 | 0.143 | 
eee ie ed    

Table 8.3 - Percentage and areas of microcalcifications for each class
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  _ 

Figure 8.3 - The range of microcalcification shapes in benign clusters, (a) cluster [BEN 3] 
consists solely of round microcalcifications, (b) cluster [BEN 4] contains mainly round 
microcalcifications with two elongated microcalcifications, (c) cluster [BEN 10] contains an 
equal mixture of round and elongated microcalcifications, (d) cluster [BEN 14] consists of one 
round, one elongated and one irregular microcalcification
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Figure 8.4 - The range of microcalcification shapes in malignant clusters (a) cluster [MAL 5] 
consists solely of round microcalcifications, (b) cluster [MAL 12] contains mainly round 
microcalcifications and elongated microcalcifications, (c) cluster [MAL 16] contains a 
mixture of round and irregular microcalcifications, (d) cluster [MAL 19] contains a mixture of 
round, elongated and irregular microcalcifications
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8.2 SHAPE ANALYSIS OF INDIVIDUAL 

MICROCALCIFICATIONS (EQUIVOCAL) 

The result of shape analysis of microcalcifications in equivocal clusters is described in 

this section. Table 8.4 summarises the percentage of benign and malignant 

microcalcifications for each of the 16 classes in equivocal cases. The minimum, 

median and maximum areas of the microcalcifications are also shown. 

      

       

      

      

Se ee ee 
| | Number | Area(mm’) | Number| ___Area(mm') 
oe a) eine ee ie | oer eee tee Ta 

| 2 | 04 | 0,041 | 0.026 | 0.102 | 08 | 0.296 | 0.181 | 0.429 | 
| 2 | 06 | 0105 | 0.038 | 0.449 | 04 | 0.167 | 0.048 | 0.286 | 

3 {01 [ose [oe [oie {=f 

  

        

    
    
    
     

  
    

6 | 03 | 0147 [0.102 [oss | - 
ple ek oa are aes Se a fle 2 

| 8 | 02 | 1386 | 0.867 | 1906 | - | L—— 
[2 | 731 9.017 | 0.002 | 0.184 | 72 _| 0.195 | 0.010 | 1.602 | 
| 10 | 5.0 | 0.058 | 0.040 | 0.423 | 53 __ 
| dt | 12 =| 0.018 | 0.011 | 0.160 | 10 _| 
| 12 | 0.2 | 0.618 | 0.215 | 1.021 | - 
a 

Table 8.4 - Percentage and areas of microcalcification for each class
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8.3 ROC ANALYSIS OF INDIVIDUAL 
MICROCALCIFICATIONS BASED ON SHAPE 

8.3.1 Benign and Malignant Clusters 

For ROC analysis, only the three largest microcalcifications were considered from 

each cluster as described in Section 7.7. The areas ranged from 0.012 mm” (8 pixels”) 

to 0.93 mm” (609 pixels”) for benign microcalcifications and from 0.043 mm? (28 

pixels’) to 1.32 mm? (865 pixels”) for malignant microcalcifications. Table 8.5 shows 

the proportion of microcalcifications in each of the 16 classes as well as the median, 

minimum and maximum areas for the three largest microcalcifications from each 

  

     

         

      
    
   

    

   

cluster. 

| | Number | Area(mm’) | Number| Area(mm’) | 
| | % | Median | Min [| Max | % | Median] Min | Max __ 
| 2 | 1 | 0.192 | 0192 | 0.192 | 2 | 0.286 | 0.121 | 0.450 | —

 

    

   
    

pg | - | - | - | - [4 [0173 | 0.069 | 0.194 | 
pA ee es Le | 0587 | 0.557 | 0.557 | 
| § | 1 | 0107 | o107 | o1o7 | - | - [ - | - | 
| 6 | - | - | - | - | is J 0623 | 0.160 | 1.324 | 
eS Te ee ee eo See see ee Poe 
poe | - | - | - | - | 4 7 0385 | 0.121 | 0.829 | 
| 9 | 52 | 0.092 | 0.012 | 0.439 | 18 | 0.114 | 0.050 
| to | 21 | 0.129 | 0.038 | 0.930 | 19 | 0.204 | 0.055 | 0.801 | 
pee see lee a ee ee ee -  e 

0.086 
| ia | 8 | 0.102 | 0.058 | 0.230 | 20 | 0.261 | 0.090 
peebse bot. ee ee Ae eR fa ee 

ae ee ee a ee ee ee      
Table 8.5 - Percentage and area of microcalcifications for each class
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Figure 8.5(a) shows the ROC curve for microcalcifications classified on shape 

features in the CC and LO views. The areas under the curve were 0.73 for the CC 

view and 0.63 for the LO view. When the ROC analysis is repeated for all the 

microcalcifications including both views, the area under the curve increases to 0.79 - 

this is shown in Figure 8.5(b). 
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Figure 8.5 - ROC curves based on individual microcalcification shapes for 

(a) microcalcifications solely in CC and LO views, (b) all microcalcifications in both views
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8.3.2 Equivocal Clusters 

The procedure described in 8.3.1 was repeated for equivocal cases. This time, the 

areas ranged from 0.015 mm” (10 pixels”) to 1.906 mm’ (1249 pixels’) for those from 

benign clusters and 0.047 mm” (31 pixels’) to 0.778 mm” (510 pixels”) for those from 

malignant clusters. Table 8.6 shows the proportion of microcalcifications in each of 

the 16 classes as well as the median, minimum and maximum areas. 

  
Table 8.6 - Percentage and areas of microcalcifications for each class
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The constructed ROC curve for microcalcifications in the equivocal database is shown 

in Figure 8.5. The area under the curve is 0.35. ‘ 

1.
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6 
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Figure 8.6 - ROC curve for individual microcalcification shapes
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8.4 FEATURE ANALYSIS OF BENIGN AND 

MALIGNANT CLUSTERS 

  

The feature analysis is divided into two parts. The first nine features are global and 

refer to the whole cluster. Three of these features refer to proportion of shapes and 

are expressed as percentages. The next six are local features and refer to the 

microcalcifications. Descriptions of all fifteen features are summarised in Table 8.7. 

The median value, lower quartile (LQ), upper quartile (UQ), minimum and maximum 

values are shown. The median value was tabulated as the distribution of values was 

not normal for all fifteen features. The last column compares the results from the 

malignant and benign cases regardless of view using an analysis of variances 

(ANOVA). 

Table 8.8 shows the p-values when both the CC and LO views are considered for 

benign and malignant clusters for each of the 15 features. Figure 8.7 shows boxplots 

for each of the 15 features and illustrates the distribution of values in the CC and LO 

views for malignant and benign condition. In each boxplot the median value is shown 

as a white horizontal line and the inter quartile range as a grey box.
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1.05 | 140 | 058 
| Contrast | 018 | 0.12 | 026 [| 006 | 154 | 013 
| Edge Strength | 42 

7 

Table 8.7 - Comparison of malignant and benign cases based of analysis of both 

global and local features. The table gives detail of median value, inter-quartile range, 

minimum and maximum range and p-value found using ANOVA. 

Global Features Local Features 

p-Value . 

0.53 Microcale. Area 

0.73 
0.65 

0.05 
0.13 
0.47 
0.97 
0.27 

0.93 

  

Table 8.8 - The p-values obtained using ANOVA compare the significance of the 

CC and LO views on global and local features for the malignant and benign clusters.



a. Number in Cluster 

    

40 

20 

M(CC) M(LO) B(CC) B(LO) 

g. Roundness % 

‘ ' 
% ' 
e ‘ ‘ 

: : : : { : : 
: a ‘ 

M(CC) M(LO) B(CO) B (LO) 

|. Microcalcification Area (mny\2) 

  

M(CC) M(LO) B(CC) B(LO) 

m. Contrast 

0.30 i 

0.25 

0,20 

0.15 

0,10 

    

    

   

   

M (C0) M (to) B (00) 

M(CC) M(LO) B(CC) 

  

195 

c. Cluster Perimeter (mm) 

  

M(CC) M(LO) B(CC) B(LO) 

{. NN (mm)     

  

M(CC) M(LO) B(CC) B(LO) 

|. Circularity 

     
M(CC) M(LO) B(CC) B(LO) 

0. Smoothness 

  

M(CC) M(LO) B(CC) BLO) 

Figure 8.7 - Boxplot comparing each of the 15 features in the CC and LO views for 

both malignant (M) and benign (B) clusters. The white line in the box indicates the 

median value, the limits of the grey box indicate the lower quartile (LQ) and upper 

quartile (UQ). The features shown are (a) number in cluster, (b) projected cluster 

area, (c) cluster perimeter, (d) cluster density, (e) distance to centre (DC) measure, (f) 

nearest neighbour (NN) distance, (g) percentage of round microcalcifications in 

cluster, (h) percentage of elongated microcalcifications, (i) percentage of irregular 

microcalcifications, (j) microcalcification area, (k) background standard deviation, (I) 

circularity, (m) contrast, (m) edge strength, (0) smoothness of microcalcification.
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8.4.1 Number in Cluster 

The p-value between the two types of clusters regardless of view was 0.01 indicating 

that the median values of numbers of microcalcifications in benign and benign cases 

were significantly different. The p-values of 0.53 (malignant) and 0.63 (benign) 

indicate that there was no significant difference for both types of clusters between the 

CC and LO views. Examples of benign and malignant clusters in the database 

showing the number of microcalcifications in clusters at the lower quartile, median, 

mean and upper quartile point are shown in Figures 8.8 and 8.9. 

  
Figure 8.8 - Four Benign clusters illustrating the variety of the number of microcalcifications 

per cluster. The four examples show clusters containing microcalcifications at (a) Lower 

quartile, number of microcalcifications = 7 (b) Median value, number = 10 (c) Mean value, 

number = 18 (d) Upper quartile, number = 34.
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Figure 8.9 - Four Malignant clusters illustrating the variety of the number of 

microcalcifications per cluster. The four examples show clusters containing 

microcalcifications at (a) Lower quartile, number of microcalcifications = 14 (b) Median 

value, number = 25 (c) Mean value, number = 38 (d) Upper quartile, number = 46. 

8.4.2 Area of Cluster 

If the projected clusters areas are compared regardless of view, they were found to be 

significant at the p = 0.10 value. The p-values of 0.73 for malignant clusters and 0.65 

for benign clusters indicated that there was no significant difference in cluster area 

between the two views. Examples of projected areas for benign and malignant 

clusters are shown in Figures 8.10 and 8.11. In addition, the perimeter length for these 

clusters is also shown.
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Figure 8.10 - Four Benign clusters showing the variety of projected cluster areas (with 

associated perimeter length) at the (a) Lower quartile range, area = 4 mm”, perimeter = 9.6 

mm (b) Median value, area = 9 mm’, perimeter = 17.9 mm (c) Mean value, area = 56 min’, 

perimeter = 21.5 mm (d) Upper quartile range, area = 27 mm’, perimeter = 34.8 mm.
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Figure 8.11 - Four Malignant clusters showing the variety of projected cluster areas (with 

associated perimeter length) at the (a) Lower quartile range, area = 13 mm’, perimeter = 16.2 

mm (b) Median value, area = 32 mm’, perimeter = 30.6 mm (c) Mean value, area = 102 mm’, 

perimeter = 42.6 mm (d) Upper quartile range, area = 144 mm’, perimeter = 44.6 mm. 

8.4.3 Perimeter of Cluster 

The p-value of 0.01 for benign and malignant clusters indicated that there was 

significant difference in perimeter length for the two conditions. The median cluster 

perimeter for malignant clusters was double the median perimeter for benign clusters. 

However, the p-values of 0.65 (malignant) and 0.85 (benign) shows there was no 

significant difference between the CC and LO views for benign and malignant clusters.
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8.4.4 Cluster Density ; 

The p-value obtained by comparing malignant and benign clusters regardless of view 

was 0.01 indicating that the two sets of data were different. The p-values of 0.93 and 

0.85 for malignant and benign clusters respectively indicate there was no significant 

difference between cluster density in the CC and LO views. Examples illustrating the 

variation of cluster density in malignant and benign clusters are shown in Figures 8.12 

and 8.13. 

    

d. 

Figure 8.12 - Variation of cluster density in Benign clusters at (a) lower quartile, cluster 

density = 0.69 mm” (b) median value, cluster density = 1.29 mm” (c) mean value, cluster 

density = 2.52 mm” (c) upper quartile, cluster density = 7.18 mm” 

c.
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   Cy d. 

Figure 8.13 - Variation of cluster densities in Malignant clusters at (a) lower quartile, cluster 

density = 0.24 mm” (b) median, cluster density = 0.69 (c) mean, cluster density = 1.56 

(d) upper quartile, cluster density = 2.16 mm” 

8.4.5 Distance to Centre of Cluster Distribution 

Examples of clusters showing the ranges of values for distance to centre of cluster are 

shown in Figures 8.14 and 8.15. The p-value of 0.34 when all the benign and 

malignant clusters are compared, suggested there was be some similarity between the 

two data-sets. The p-value of 0.05 for malignant clusters indicated that there was little 

similarity between the CC and LO views. However, for benign clusters, the p-value of 

0.85 indicated that definite similarities between the two views did exist.



  
Figure 8.14 - Variation of mean distance to centre (DC) in Benign clusters at (a) lower 
quartile, DC = 0.44 mm (b) median, DC = 2.54 mm (c) mean, DC = 5.60 mm (d) upper 
quartile, DC = 8.76 mm 

  
Figure 8.15 - Variation of distance to centre (DC) in Malignant clusters at (a) lower quartile, 
DC = 0.60 mm (b) median, DC = 4.04 mm (c) mean, DC = 7.34 (d) upper quartile, DC = 
9.84 mm ;
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8.4.6 Nearest Neighbour Distance 

The distance to nearest neighbour for benign and malignant clusters was significantly 

different (p = 0). When the distance to nearest neighbours is considered in relation to 

projection, the p-values of 0.13 (malignant) and 0.54 (benign) indicated that there was 

slight resemblance in the two views for both benign clusters and malignant clusters. 

Figures 8.16 and 8.17 show examples of benign and malignant clusters illustrating 

with median near neighbour distances ranging from the lower quartile to the upper 

quartile. 

  C 

Figure 8.16 - Variation of nearest neighbour (NN) distance in Benign clusters at (a) lower 

quartile, NN = 0.31 mm (b) median, NN = 0.85 mm (c) mean, NN = 1.58 mm (d) upper 

quartile, NN = 2.23 mm
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Figure 8.17 - Variation of nearest neighbour (NN) distance in Malignant clusters at (a) lower 

quartile, NN = 0.36 mm (b) median, NN = 0.94 mm (c) mean, NN = 1.52 mm (d) upper 

quartile, NN = 2.27 mm 

8.4.7 Roundness 

The benign and malignant datasets were significantly different when compared 

regardless of view (p = 0). The percentage of round microcalcifications was higher in 

benign clusters (90.1%) than malignant clusters (74.7%). When the two views are 

considered, the p-values of 0.47 (malignant clusters) and 0.49 (benign clusters) 

indicated that there are similarities in the percentages of round microcalcifications in 

the CC and LO views.
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8.4.8 Elongation 

There is a significant difference between benign and malignant clusters regarding the 

proportion of elongated microcalcifications (p = 0.08). The median proportion of 

elongated microcalcifications in malignant clusters was 13.8% compared to 8.2% in 

benign clusters. In addition, the range of values was slightly higher for benign clusters 

(inter-quartile range of elongated microcalcifications: 12.3% malignant, 16.1% 

benign). If the two views are considered, for malignant clusters, the p-value of 0.97 

indicated that the similarity between the data in the CC and LO views was excellent. 

For benign clusters, the p-value of 0.42 indicated reasonable resemblance of the 

clusters in the CC and LO views. 

8.4.9 Irregularity 

The median percentage of irregular microcalcifications was higher in malignant 

clusters (7.3%) compared to benign clusters (0%). However if the mean values are 

considered the percentages of irregular microcalcifications were 10.4% for malignant 

clusters and 2.2% for benign clusters. The discrepancy between median and mean for 

benign clusters was due to only 7 of the 38 clusters having any irregular 

microcalcifications. The p-value of 0 confirmed that the two datasets were 

significantly different. When the percentages of irregular microcalcifications are 

compared with the projection taken into account, the p-values of 0.27 and 0.47 for 

the malignant and benign clusters respectively indicated reasonable resemblance.
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8.4.10 Individual microcalcification area 

The two data-sets were significantly different (p = 0) with regards to median 

microcalcification area. The median area of malignant microcalcifications (0.043 mm’) 

was double that of benign microcalcifications (0.026 mm7’). If the microcalcification 

areas are compared in the CC and LO views, there appeared to be very good 

resemblance for both datasets (p-value = 0.60 malignant, 0.82 benign). Figure 8.18 

gives examples of benign and malignant clusters showing the variety of 

microcalcification areas. 

  
Figure 8.18 - Variation of calcification sizes within (a) Benign cluster: mean area = 0.03 + 
0.03 mm? (b) Benign cluster: mean area = 0.04 + 0.08 mm? (c) Malignant cluster: mean area 

= 0.03 + 0.02 mm’ (d) Malignant cluster: mean area = 0.22 + 0.23 mm?
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8.4.11 Background Standard Deviation 

The value for mean background standard deviation is significantly different for benign 

and malignant clusters (p = 0). The median value was slightly higher for malignant 

microcalcifications than benign microcalcifications regardless of view. If the CC and 

LO views are considered, the values for malignant microcalcifications were 

significantly different between the two views (p = 0), whilst for benign 

microcalcifications, there was some similarities (p = 0.37). 

8.4.12 Circularity 

The median circularity of malignant microcalcifications (1.20) is higher than benign 

microcalcifications (1.10). The p-value of 0 indicated that there was significant 

difference between the two datasets. When the microcalcifications are compared with 

regards to projection, the resemblance in the two views was good (p-value =0.79 

malignant, 0.59 benign). 

8.4.13 Contrast 

The contrast between benign and malignant microcalcifications is significantly 

different (p = 0). The median value was higher in malignant microcalcifications 

compared to benign microcalcifications regardless of view. If the two projections are 

considered, the resemblance of contrast in malignant microcalcifications is excellent (p 

= 0.99), whilst in benign microcalcifications the resemblance was poor (p = 0).
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8.4.14 Edge Strength 

The median edge strength was slightly higher for malignant (18.0) microcalcifications 

than benign (17.8) microcalcifications. The p-value of 0.95 indicated that there was 

no significant difference between the two data-sets. When the edge strength of the 

microcalcifications in the CC and LO views is compared, the resemblance in values 

was very poor (p = 0, malignant, 0.02 benign). 

8.4.11 Smoothness 

The value for smoothness of microcalcification was slightly higher for malignant 

(10.0) microcalcifications than benign (8.0). The p-value of 0 indicated that the two 

data-sets were significantly different. When the microcalcifications are compared 

according to view, the resemblance for malignant clusters was poor (p = 0.12), whilst 

for benign clusters it was very good (p = 0.85).
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8.5 FEATURE ANALYSIS OF EQUIVOCAL CLUSTERS 

The feature analysis was repeated for the equivocal clusters. The 20 clusters analysed 

consisted of 15 found to be benign and 5 found to be malignant upon the results of 

cytology or histopathology. The median, inter-quartile range and minimum and 

maximum values are shown in Table 8.9. The last column compares the results from 

the malignant and benign cases regardless of view using an analysis of variances 

(ANOVA). 
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Table 8.10 shows the p-values when the CC and LO views are compared for benign 

and malignant clusters for each of the 15 features. Figure 8.19 shows boxplots for 

each of the 15 features and illustrates the spread of values in the craniocaudal and 

lateral oblique views for malignant and benign condition. The median value is shown 

as a white horizontal line and the inter quartile range shown as a grey box. 

         
So pee vane Ty oS dole: pie 

[Number in Cluster | 0.99 | 0.15 | Microcale, Area | 095 | 045 
[Cluster Area | 054 | 080 | Backgroundsd | 0.19 | 0.00 
[Cluster Perimeter | 0.62 | 0.76 | Circularity | 032 | 0.00 _ 

Cluster Density | 034 | 076 | Contrast | 0.14 | 0.00 
[Nearest Neighbour | 0.73 | 0.18 | Smoothness | 0.01 | 021 
tie ea | ome 

[“Blongated% | 055 | 095 | —~+d~YSidrS SSS 
[—trregular% | 072 | o71 | ‘| +.        

Table 8.10 - The p-values obtained using ANOVA compare the significance of the CC and 
LO views on global and local features for the malignant and benign clusters in the equivocal 
database.
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a. Number in Cluster b. Cluster Area (mnv2) c. Cluster Perimeter (mm) 
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Figure 8.19 - Boxplot comparing each of the 15 features in the CC and LO views for both 

malignant (M) and benign (B) clusters in the equivocal database. The white line in the box 

indicates the median value, the limits of the grey box indicate the lower quartile (LQ) and 

upper quartile (UQ). The features shown are, (a) number in cluster, (b) projected cluster area, 

(c) cluster perimeter, (d) cluster density, (e) distance to centre (DC) measure, (f) nearest 

neighbour (NN) distance, (g) percentage of round microcalcifications in cluster, 

(h) percentage of elongated microcalcifications, (i) percentage of irregular microcalcifications, 

(j) microcalcification area, (k) background standard deviation, (1) circularity, (m) contrast, 

(n) edge strength, (0) smoothness of microcalcification.



8.6 RECEIVER OPERATOR CHARACTERISTICS OF 

IMAGE ANALYSIS ROUTINE FOR CLUSTERS 

  

After the feature analysis in Section 8.4, of the original 15 properties analysed, edge 

strength was dropped. This was due to the p-value between the malignant and benign 

clusters equalling 0.95. For sensitivity and specificity only the one nearest neighbour 

was considered over all 21 features. The sensitivity and specificity values for the 

clusters in the CC view, LO view and then all the clusters regardless of view are 

shown in Table 8.11. 

    

    
   

   

Table 8.11 - Sensitivity and Specificity figures over 21 features for clusters in the 

CC view, LO view and all the clusters regardless of view 

   

The points on the ROC curve were determined according to the fraction of malignant 

clusters correctly classified from the nearest 9 neighbours. The area under the curve 

for the remaining features is summarised in Table 8.12. For half of them, the median 

and inter-quartile range (IQR) were used. The leave-one-out method was used to test 

each individual feature and the ROC curves are shown in Figure 8.20. The area under 

the ROC curve (Az) was found for each feature and is shown in the second column of 

Table 8.12. The best features for distinguishing malignancy from benignity were 

irregularity, roundness, number in cluster and inter-quartile range of microcalcification
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area. The worst features were inter-quartile range of NN measure, median 

smoothness, median contrast, inter-quartile range of contrast and inter-quartile range 

for smoothness. The ROC analysis was repeated using a combination of individual 

features. The Az values for each combination are summarised in Table 8.13. The best 

performance was found using the four features of irregularity, roundness, cluster 

number and inter-quartile range of microcalcification area. The area under ROC curve 

was 0.84 and the curve is shown in Figure 8.21. 

      
    

    
| Cluster Perimeter | 0G 
| Cluster Density =| OL 

   

   

    

   

Microcalcification Area IQR 

Table 8.12 - The area under the ROC curve for microcalcification features
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Figure 8.20 - Constructed ROC curves for, (a) number of microcalcifications in cluster, 

(b) cluster area, (c) cluster perimeter, (d) cluster density, (e) DC (median), (f) DC (IQR), 

(g) distance to NN (median), (h) distance to NN (IQR), (i) roundness, (j) elongation, 

(k) irregularity.
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Figure 8.20 (continued) - Constructed ROC curves for (I) microcalcification area (median), 

(m) microcalcification area (IQR), (n) background sd (median), (0) background sd (IQR), 

(p) circularity (median), (q) circularity (IQR), (r) contrast (median), (s) contrast (IQR), 

(t) smoothness (median), (u) smoothness (IQR), (v) all 21 features.
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Az Combination of features 

0.79 

0.80 

Irregularity 

Irregularity and roundness 

  

0.81 Irregularity, roundness, number in cluster 

. . 
g 0.84 Irregularity, roundness, number in cluster, microcalcification area (IQR) 

0.80 Irregularity, roundness, number in cluster, microcalcification area (IQR), 

microcalcification area (median) 
    
   

  

0.82 Irregularity, roundness, number in cluster, microcalcification area (IQR), 

microcalcification area (median), NN (median) 

0.78 Irregularity, roundness, number in cluster, microcalcification area (IQR), 

microcalcification area (median), NN (median), circularity (QR) 

0.73 All 21 features 

Table 8.13 - Area under ROC curve with different feature combination 

TP
F 

  
FPF 

Figure 8.21 - ROC curve constructed using the four features of irregularity, roundness, 
number in cluster, inter-quartile range of microcalcification areas and median 
microcalcification area.
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Classification and ROC analysis were repeated for the equivocal clusters. The values 

for sensitivity and specificity are shown in Table 8.14. These figures relate to all the 

clusters regardless of view, clusters in the CC view only and clusters in the LO view 

only. There were two conditions for testing the classifier. First, the equivocal cases 

were only considered as the test-data with no equivocal cases being included in the 

reference set. The second condition was to use the leave-one-out method and include 

all the equivocal data in the reference set. 

    

    

  

| —S—S—sL=SAlclusters [| CC View =| SLO View __—i 

ee War ee equivocal cases 

method 

Table 8.14 - Comparison of sensitivity and specificity for all clusters regardless of view, 

clusters in the CC view and clusters in the LO view. The two conditions were firstly to test the 

equivocal cases without including any equivocal cases in the reference set and secondly use the 

“leave-one-out- method’. 

      
The best value for sensitivity and specificity for all the clusters regardless of view was 

found when the reference set was made up solely of benign and malignant clusters. 

Like the classification, the ROC analysis was conducted using the two conditions 

described. Again the points on the ROC curve were obtained by finding the fraction of 

true-positive nearest neighbours over all 21 features. The constructed ROC curves are 

shown in Figure 8.22.
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Figure 8.22 - ROC curves for Equivocal database (a) Reference consists solely of benign and 

malignant clusters (b) All equivocal cases included in reference set, leave-one-method used. 

When the reference set contains no equivocal clusters, the areas under the curve, Az 

was found to be 0.51. When the equivocal data are included in the reference set, the 

area under the curve decreased slightly to 0.48.
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9.1 GENERAL OVERVIEW 

The application of image analysis using mathematical morphology in mammography 

has been investigated. The abnormality studied was microcalcifications. Computer 

algorithms were used to detect, segment and numerically analyse microcalcifications. 

This discussion is divided in three parts. First, the research design is discussed. 

Second, the results from shape and feature analysis and their subsequent use for 

classification are examined. Third, potential practical use of the image analysis 

methodology will be discussed. 

9.2 RESEARCH DESIGN 

The research design depended on subject selection, radiological assessment of 

microcalcifications, diagnosis confirmation by cytology and/or histpathology and the 

conversion of microcalcification clusters on film into a digitised format. 

9.2.1 Subject Selection 

A total of 58 cases that had been referred for tissue diagnosis following 

mammographic screening was used for the study. The database consisted of 19 benign 

cases, 19 malignant cases and 20 equivocal initially selected blindly (but subsequently 

found to consist of 15 benign and 5 malignant cases on biopsy). All the women were 

asymptomatic and microcalcification was the only abnormality. The composition of 

the breast in terms of the relative amounts of stromal and fatty tissue was not
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considered. As the cytology and occasionally, histopathology results were available, 

the study was clinically retrospective although the image analysis routine was applied 

blindly. 

9.2.2 Radiological Assessment 

X-ray mammography is the technique used in the screening programme. Despite its 

advantages, there are limitations. The main disadvantage is that the films produced 

show a two-dimensional projection of a three-dimensional structure. There may be 

overlap of structures, for instance, causing more microcalcifications to be apparent in 

one view than the other. Although a normal mammogram can resolve a limited 

number of microcalcifications, a magnification view of the same area will generally 

reveal many more microcalcifications. A specimen radiograph will usually show even 

more. The information regarding a cluster may therefore be incomplete on standard 

mammography. 

9.2.3 Digitisation 

Before digitisation, there will always be the problem of variable optical density from 

one film to another. In this study digitisation by a CCD camera with a light box added 

to that problem. As the films were not digitised on the same day, settings of light box 

luminance and camera aperture size were not constant from one day to another. 

Another problem was focussing of the camera onto an area of interest. This was 

subjective and time consuming. In addition, signal to noise levels made the detection 

of the most subtle calcifications very difficult. Davies (1993) highlighted the 

limitations of using a CCD camera. He found that the laser scanner was the nearest to
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ideal for digitisation. The CCD camera is limited because of modulation transfer 

function (MTF), noise and non-linearity. The advent of computed radiography (CR) 

promises to eliminate the problem of converting mammogram films to digital format 

by acquiring the digital image directly. However, CR is limited by the available 

resolution. At present, the standard resolution is 100 um which is clearly not adequate 

enough for numerical analysis of most microcalcifications. 

Section 5.4.1 described how Shannon’s sampling theorem required the sampling 

interval to be chosen so that it is equal to, or half, the smallest detail of interest in the 

image. In this study, the diameter of the smallest microcalcification was 0.08 mm, so 

the resolution of 0.04 mm was adequate. This compares well with other studies. 

Early workers in digital mammography used a resolution of 0.1 mm. More recently, 

the standard resolution used has been 0.05 mm. In addition, Spiesberger (1979) used 

a resolution of 0.025 mm to detect calcifications. By halving the resolution, the 

number of pixels in the image increases four fold. For shape analysis, a highycwijer 

resolution is required for detecting infoldings or irregularities. This will be discussed 

later in this chapter.
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9.2.4 Conclusion and Further Work 

The number of subjects was adequate for analysing the properties of benign and 

malignant clusters. However, for the equivocal cases, a larger database would be 

required to fully analyse the properties of this category of microcalcifications. The 

database used in this study did not take into account the different breast types. Further 

work could include testing the algorithm on clusters of microcalcifications in fatty, 

fatty-glandular and dense breasts. It would be interesting to see if there was any 

significant change in performance especially for segmenting faint microcalcifications in 

a dense breast. As stated before, normal mammograms may not reveal the full extent 

of microcalcifications in the cluster. Further work would be to digitise the magnified 

views of the cluster. 

This study was limited by the digitisation procedure used. The CCD camera with 

light box presented a number of problems including variable optical density, low MTF 

and the introduction of noise. Information regarding the most _ subtle 

microcalcifications was lost in the digitisation process. Ideally, the mammograms 

would be digitised using a laser scanner, and it would be interesting to investigate the 

effect upon subtle microcalcifications using this method. The resolution of 0.04 mm 

used in this study compared well with other published work, by using this for 

magnified views the estimation of the microcalcification boundary would be vastly 

improved.
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9.3 PERFORMANCE OF IMAGE ANALYSIS ROUTINE 

  

9.3.1 Pre-processing 

After digitisation, pre-processing was the next step. Histogram stretching ensured 

improved contrast between microcalcifications and background and provided a limited 

means of normalising images as described in Chapter 7. 

9.3.1.1 Histogram Stretching 

Histogram stretching does not always have the desired effect and may have a 

detrimental effect on the image as shown in Figure 9.1. The image on the left shows 

part of a cluster of microcalcifications before application of histogram stretching. The 

microcalcifications in the bottom left quadrant is visible. After stretching (right), 

whilst the contrast of the majority of the microcalcifications is improved on the right 

hand side, the microcalcifications in the bottom left quadrant are not as visible. 

  

Figure 9.1 - Example showing where stretching algorithm does not have the desired effect. 

(a) Part of a cluster of microcalcifications is shown before stretching, the group of three 

microcalcifications on the left are clearly visible. (b) After histogram stretching, whilst the 

contrast of the majority of the microcalcifications has been improved, the group of three 

microcalcifications on the left are almost invisible.
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9.3.1.2 Alternating Sequential Filter 

The alternating sequential filter (ASF) was used to remove noise and to smooth the 

microcalcification. However, the size of the radius of the ASF was dependent upon 

the size of the smallest microcalcification in the cluster. If the radius selected is too 

big, the filter will have a detrimental effect upon the edge of the microcalcification - 

this is demonstrated in Figure 9.2. Figure 9.2(a) shows part of a cluster of 

microcalcifications; the gradient transform of the original image shows a noisy image 

with the microcalcifications having rough edges. After application of an ASF of size 

3, the noise in the background is removed and the edges of the microcalcifications are 

preserved (Figure 9.2b). However, if an ASF of size 10 is applied, although the image 

is cleaner, the edges of the smaller microcalcifications are not preserved (Figure 9.2c).
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  Cc. 

Figure 9.2 - Effect of applying an Alternating Sequential Filter (ASF) on microcalcifications. 

(a) Original digitised cluster of microcalcifications with gradient transform. (b) Application of 

ASF of size 3 - the gradient transform shows the microcalcifications with cleaner edges and 
noise is removed from the background region. (c) Application of ASF of size 10 - the gradient 

transform has no noise in the background, however, the definition of the edges of the smallest 

microcalcifications on the right hand size is diminished.
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9.3.2 Detectability 

The top-hat algorithm was used to select unique markers for each microcalcification. 

The selection of the size of the opening was dependent upon the size of the largest 

microcalcification in the cluster. The size of the opening needed only to be an estimate 

as the whole microcalcification was not required to be segmented, it needed to be big 

enough to remove all the microcalcifications in the erosion step - this was done by 

trial and error. The opened image was reconstructed to create an image consisting 

solely of stromal tissue. The subtraction image consisted of the microcalcifications 

removed by the opening. 

The final step of global thresholding presented the main limitation to the top-hat 

algorithm and was the barrier to full automation of the image analysis routine. An 

alternative method for this step could have the application of a local adaptive 

thresholding technique to the opened image. Other approaches that could be used for 

thresholding are a hysteresis method (Parker et al., 1994) or a Gaussian filter (Dengler 

et al., 1993). 

The effect of selecting the appropriate threshold level is demonstrated in Figure 9.3. 

Figure 9.3(a) shows a simple case in which the threshold level selected captured all 

the microcalcifications with no artefacts detected. By comparison, Figure 9.3(b) 

illustrates the more common scenario, in which all the microcalcifications are found at 

the selected threshold level, but, there are numerous artefacts. These were often 

structures such as ducts or background noise that were not removed completely by 

opening. So, in the resultant subtraction image, these appeared to have the same 

intensity as microcalcifications. This posed a problem in the threshold stage as very
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faint microcalcifications could not be extracted without thresholding unwanted 

structures. In this study, different threshold levels were used. At each level, the 

objects of interest were selected by the operator and all other objects were discarded. 

This was very time consuming when clusters contained numerous microcalcifications. 

  
Figure 9.3 - The effect of selecting threshold levels. (a) In the ideal case, all the 

microcalcifications were found (red) with no false-positives. (b) More generally, however, 
whilst all the microcalcifications (red) are found, there were numerous false-positives. 

Before any comparisons between Radiologist and image analysis it is important to 

establish the so-called ‘gold standard’, or reference. For this study, the Radiological 

assessment of individual cases relied heavily on the subjective judgements made by 

one person, this is highlighted by the results. The agreement between the Radiologist
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on two occasions (described in Section 7.4.1) was excellent for microcalcifications in 

benign clusters (99%) and malignant clusters (89%). However, it was much lower for 

equivocal microcalcifications (70%). The ‘gold standard’ could be improved by 

having two or more Radiologist viewing the images. 

Discrepancies were also found when the Researcher's view of what constituted a 

microcalcification was compared to the Radiologist’s view. The inter-observer rates 

(between the researcher and Radiologist) were 86% for benign clusters and 89% for 

malignant clusters. However, for the equivocal cases the rate was poor (57%). For all 

three categories, the rates were consistent for both the CC and LO views. The 

researcher tended to underestimate the number of microcalcifications in a cluster. 

Subtle microcalcifications are not readily identified by the non-expert but picked up by 

the Radiologist experienced in reading mammograms. 

9.3.3 Segmentability 

The morphological gradient transform of the original image highlighted regions of 

high signal intensity along the edges of the microcalcifications. These high intensity 

regions enclose catchment basins representing the microcalcifications and are the basis 

of the watershed algorithm which constructs boundaries along the crest lines. 

However, segmentation is also dependent upon selection of correct markers found 

using the top-hat algorithm. 

Figure 9.4 demonstrates the importance of marker selection. In this example, two 

markers were incorrectly found for a single microcalcification in the top-hat stage due 

to the selected threshold level being too high. Figure 9.4(a) shows one elongated 

microcalcification as part of a larger cluster of microcalcifications. Figure 9.4(b)
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shows the gradient transform of the image with markers found from the top-hat stage 

(shown in green) superimposed. These markers were found at the regions of highest 

signal intensity of the microcalcification. The result of running the watershed 

algorithm using these markers is shown in Figure 9.4(c) - clearly, the marking was not 

adequate as two boundaries are constructed. Figure 9.4(d) shows the Radiologist’s 

estimation of the microcalcification boundary. 

  c. 

Figure 9.4 - The importance of selecting appropriate markers (a) A single elongated 

microcalcification is shown which is part of a larger cluster of microcalcification (b) The 

binary markers found using the top-hat algorithm (green) are shown superimposed upon the 

gradient transform of the microcalcification (c) The result of running watershed using these 

markers are shown in purple superimposed upon the original image (d) The Radiologist 

generated boundary is shown in red superimposed upon the original image.
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The result of comparing the computer generated boundaries and the Radiologist’s 

opinion of microcalcification boundaries was, however, generally very encouraging. 

Excellent segmentation (defined in Section 7.4.2) was found in 85% and 84% of 

microcalcifications in malignant and benign clusters respectively. There appeared to be 

no significant difference between the CC and LO views with regard to segmentability. 

The results for the equivocal cases tell another story. Excellent segmentation was 

found in only 66% of all the microcalcifications. If the equivocal cases are further sub- 

divided, those diagnosed as benign had a lower figure for excellent segmentation 

(62%). Segmentation using the watershed algorithm was dependent upon the quality 

of the gradient image. This will be demonstrated in Figure 9.5 on four different 

microcalcifications making up a larger cluster. Figure 9.5(a) shows a section from a 

cluster with a mixture of microcalcification shapes and sizes. Alongside this, the 

gradient transform of the image is shown (Figure 9.5b) highlighting the edge strength 

of each microcalcification. 

  

Figure 9.5 - Part of a cluster of malignant microcalcifications showing (a) Original digitised 

image and (b) Gradient transform of original image.
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Figure 9.6(a) shows the result of applying the watershed algorithm (red) line upon the 

largest microcalcification in the cluster of Figure 9.5. The Radiologist’s generated 

boundary is shown as a blue line. For this particular microcalcification, the computer 

missed the irregular protrusion in the top left corner of the microcalcification. The 

gradient image showed that the strength of the protrusion was not as high as the main 

body of the microcalcification, hence, underestimation of the boundary occurred. 

Figure 9.6(b) considers the microcalcification to the right and below the large 

microcalcification in Figure 9.6(a). The watershed captured the irregularity on the 

upper left side of the microcalcification. However, slight overestimation occurs on the 

bottom right side of the microcalcification, although the general shape is maintained. 

Figure 9.6(c) considers the elongated microcalcification below the 

microcalcification shown in Figure 9.6(b). The watershed algorithm overestimates the 

boundary again and the shape is not maintained. The elongated nature of the 

microcalcification with the infolding is not found at all. The final diagram shows the 

circular microcalcification at the bottom of the cluster of Figure 9.5. There is excellent 

agreement between the computer generated boundary and the Radiologist generated 

boundary (Figure 9.6d). 

To summarise, Figure 9.6 highlighted the dependence of watershed algorithm upon 

the gradient image. If the microcalcification has a strong edge strength (as in Figure 

9.6d), excellent segmentation occurs. However, if the edge strength of the 

microcalcification is weak or has any breaks (Figures 9.6b and Figure 9.6c), 

oversegmentation occurs.
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d. 

Figure 9.6 - Comparison of performance of Watershed algorithm (red) compared to the 

Radiologist’s estimate (blue) of microcalcification boundary (a) Watershed algorithm 

segments the main body of the microcalcification but misses the slight irregular protrusion on 

the upper left side (b) Watershed slightly oversegments the microcalcification, but the basic 

shape is maintained (c) Watershed algorithm oversegments the microcalcification and misses 

the elongated and infolding nature of the microcalcification completely (d) Excellent 

segmentation is achieved between computer and Radiologist. 
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9.3.4 Conclusions and Further Work 

The pre-processing step was an important step for reducing noise, improving the 

contrast of the images and smoothing the central region of each microcalcification. 

However, because of the variability of optical densities in the images, absolute 

measures based on grey scale could not be done. The histogram suéiching algorithm 

provided a means of spreading grey scale values equally between 0 and 255. The 

advantage of the ASF was that it provided a means of smoothing the 

microcalcification whilst preserving the edge. The disadvantage when applied globally 

to a cluster of microcalcifications is that the radius is limited to the smallest 

microcalcification in the cluster. This could be overcome by ranking the sizes of the 

microcalcifications in the cluster and applying a variable size filter locally. 

The detection of individual microcalcifications was subjective and in this study was 

dependent on the judgement of a single Radiologist. This could be improved by using 

two Radiologists to select markers on the digitised image. The watershed algorithm 

provided an objective method of boundary detection for each microcalcification. The 

construction of the boundary was dependent upon the gradient image of the original 

image. As the gradient image remains the same for repeated measurements, the 

method is intrinsically reproducible. However, for faint microcalcifications with weak 

edge strength, the segmentation is poor. 

Boundary construction also relies on marking relevant objects of interest (i.e. 

microcalcifications), at present this is time consuming and subjective. The top-hat 

algorithm provided a method of extracting microcalcifications from the background 

stromal region. However, it may have been just as quick to manually select 

microcalcifications to. provide candidate markers. The selection of appropriate
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threshold level in the top-hat algorithm needs to be automated. Instead of applying a 

global threshold, a local thresholding technique could be used to reduce the number of 

false-positives in the threshold stage.
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9.4 SHAPE PROPERTIES OF INDIVIDUAL 

MICROCALCIFICATIONS 

  

9.4.1 Mathematical Morphology and Microcalcification Shape Features 

Shape has been described as one of the major criteria for distinguishing malignant 

from benign microcalcifications (Feig et al., 1987, Sickles, 1988). In this study, 

different mathematical morphology algorithms were used to determine the four shape 

factors of infolding, elongation, wide irregularity and narrow irregularity. These were 

combined to form sixteen possible classes shown in Figure 8.2. These were then 

reduced to three main classes of round, elongated and irregular. The application of 

image analysis to obtain realistic shape information for the microcalcifications was 

dependent upon the area (or number of pixels) of the microcalcification. Whilst the 

resolution used in this study was adequate to differentiate between round and 

elongated microcalcifications, to measure irregularities or infoldings of very small 

microcalcifications, a higher resolution is required. 

9.4.2 Numerical Analysis of Local Shape Features 

Traditionally, benign calcifications are believed to be typically more rounded with 

smooth margins and within a cluster, tend to be similar to each other. Irregular shaped 

microcalcifications within a cluster are suggestive of a carcinoma (Sigfusson et al., 

1983). However, irregularity may also occur in atypia (Ashikari et al., 1974) and 

benign conditions such as adenosis (Fisher et al., 1974, Murphy and DeSchryver- 

Kecskemmeti, 1978; Stamp et al., 1983; Wolfe, 1983). Malignant microcalcifications
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are believed to have a variety of shapes, including elongated and highly irregular 

forms. 

9.4.2.1 Malignant and Benign Database 

If all the segmented benign microcalcifications are pooled together, the vast majority 

were found to be round (85%), however there was also microcalcifications showing 

elongated (10%) and irregular (5%) appearance. By comparison, if all the malignant 

microcalcifications are pooled together, the majority of microcalcification were still 

round (74%), but, there was a higher percentage of elongated (15%) and irregular 

microcalcifications (11%) than in benign clusters. These results reflect the nature of 

individual microcalcification shape described by previous work. 

The vast majority of round microcalcifications fell in Class 9 of Figure 8.2 - the 

round and punctate group (90% benign, 75% malignant). The main surprise in the 

results was the high proportion of benign elongated microcalcifications. For both 

malignant and benign microcalcifications, the proportion of regular elongated to 

irregular elongated microcalcifications was approximately 70:30. Elongated 

microcalcification shapes may occur in fibrocystic changes. For the benign 

microcalcifications showing irregular appearance, nearly 90% belonged to Class 11 in 

Figure 8.2, possessing a round body with a slight protrusion. By comparison, the 

irregular microcalcifications came from Classes 3, 6, 8 and 11. So, there was a larger 

variety of shapes in malignant microcalcifications.
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9.4.2.2 Equivocal Database 

In the equivocal database, if all the benign microcalcifications are pooled together, 

round microcalcifications make up 80% of the total, elongated microcalcifications 

make up 7% and irregular microcalcifications 13%. By comparison, for malignant 

microcalcifications, the proportion of round (81%), elongated (8%) and irregular 

microcalcifications (11%) was very similar to that for benign microcalcifications. Even 

if the three main groups are broken down to the classes in Figure 8.2, the percentage 

of microcalcifications in the individual classes are similar. From the results above, it is 

apparent that there is not much difference between the shapes of benign and malignant 

microcalcifications in the equivocal database. When the cases are examined closely, 

many of the malignant clusters in the equivocal database contained ducts filled with 

benign microcalcifications. This may, in part, explain the similarity in 

microcalcification shapes. 

9.4.3 ROC Analysis of Individual Microcalcifications based on Shape 

For the ROC analysis, only the three largest microcalcifications were chosen from 

each cluster. This was done to ensure that enough pixels were available accurately to 

analyse the shape of each microcalcification. This time, the lower bounds for area 

were 0.063 mm’ (41 pixels’) for round microcalcifications; 0.093 mm? (58 pixels’) for 

elongated microcalcifications and 0.175 mm? (115 pixels’) for irregular 

microcalcifications. 

The individual microcalcifications were classified by using the KNN algorithm 

where k was set as five. For benign and malignant clusters, the sensitivity value was 

poor (42%), however, the specificity figure was reasonable (67%). This may be
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explained by the fact that many malignant microcalcifications were of a round nature 

but were misclassified as benign. The points on the ROC curve were found by finding 

the fraction of individual microcalcifications classified as true-positive or false-positive 

in each cluster according to a varying threshold level. If the two views are considered, 

the clusters in the CC view produced better results (Az = 0.73) than the clusters in the 

LO view (Az = 0.63). Obviously by analysing just a single view, not all the aspects of 

the microcalcification shape were captured. By combining all the clusters, the Az 

value increases up to 0.78, which is a vast improvement. 

By comparison, for microcalcifications in the equivocal databases, the sensitivity 

value was very poor (10%), however, the specificity value was good (74%). The 

effect of malignant microcalcifications being misclassified as benign is more severe 

than the benign and malignant database. It appears that most of the malignant 

microcalcifications selected for classification clearly showed benign appearance. When 

ROC analysis was done for the equivocal database, the area under the curve was very 

low (Az = 0.33). This is not surprising as the results discussed in Section 9.4.2 

suggested little difference in shape for individual malignant and benign 

microcalcifications. 

9.4.4 Conclusion and Future Work 

The values for sensitivity for the benign and malignant database as well as the 

equivocal database were very poor. This was due to many of the malignant clusters 

containing microcalcifications showing benign appearance. For image analysis 

purposes, an adequate number of microcalcifications is required to describe each type
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of irregularity or infolding. Ideally, the magnified views of the cluster would be used 

with a higher resolution ensuring enough righ calcifications. 

The ROC curves were not very smooth as only three microcalcifications from each 

cluster were selected. Ideally, more microcalcification would be selected, but they 

would have to be above a certain size criterion. For the benign and malignant 

database, the ROC analysis using individual microcalcifications could be improved by 

incorporating other local features based on area and grey level variations. For the 

equivocal cases, ROC analysis based solely on microcalcification shape was not 

adequate. The results from this study showed that there was overlap between the 

appearances of benign and malignant microcalcifications in this database. As with the 

benign and malignant database, other local features could be incorporated to see if 

there is any further improvement in ROC analysis.
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9.5 FEATURE ANALYSIS OF BENIGN AND 

MALIGNANT CLUSTERS 

  

Before any analysis, based on the results of previous studies (Table 6.1), it would be 

reasonable to assume that malignant clusters would contain numerous 

microcalcifications and the spatial frequency would be high due to the compact nature 

of the cluster. The distance between adjacent microcalcifications and the distance 

from each calcification to the centre of the cluster would be relatively short. The 

individual malignant microcalcifications have been assumed to be heterogeneous, faint 

and variable in size and shape. By comparison, benign clusters contain fewer, more 

scattered microcalcifications with larger distances between neighbouring 

microcalcifications and to the centre of the cluster. In addition, the individual benign 

microcalcifications have been generally thought to be highly visible against the 

background region, large, homogeneous, circular in nature and possess a definite 

edge. 

9.5.1 Number in Cluster 

Over all the cases, there were more microcalcifications in the malignant clusters than 

benign clusters (1481 malignant compared to 681 benign). There tended to be a 

higher number of microcalcifications found in the craniocaudal view (822 malignant, 

372 benign) than lateral oblique view (659 malignant, 309 benign) for both benign and 

malignant clusters. There was correlation between high number per cluster and 

malignancy. For the benign clusters, 53% contained ten or fewer microcalcifications,
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by comparison only 11% of the malignant clusters contained ten or fewer 

microcalcifications. 

Moskowitz (1983) suggested that in-situ carcinomas may appear as clusters 

containing as few as 3 microcalcifications. Other authors have suggested that an 

ageregation of five or more microcalcifications is not necessarily specific for 

carcinoma and that histological examination is required (Rogers and Powell, 1972; 

Mills et al., 1976; Stamp et al., 1983). In this study, all the benign cases had at least 

five microcalcifications in either the CC or LO views. 

Interesting results are found when the number per cluster is examined. Figure 9.7 

shows a barplot of the difference between numbers in CC and LO views for each case. 

For the malignant cases, 79% of the cases had more microcalcifications in the CC 

view than the LO view. By comparison, only 32% of benign cases had more 

microcalcifications in the CC view than the LO view. There was a perfect match of 

numbers for both views in 32% of the benign cases, but, there was no perfect matches 

in numbers for the malignant cases. There appeared to be a relationship between a 

small number of microcalcifications and perfect correlation of numbers in the CC and 

LO view. For those benign clusters with a perfect match of numbers in the two views, 

the number of microcalcifications in each cluster was less than 10. 

There were two anomalous cases. In one of the malignant cases (Figure 9.8), there 

were 208 microcalcifications in the CC view compared to 147 in the LO view. In one 

of the benign cases (Figure 9.9), there was 121 microcalcifications in the CC view 

compared to 56 in the LO view. In both these cases, it is noticeable that the clusters in 

the LO view appear more dispersed than in the CC view. Explanations for the large
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difference include problems regarding the local density of the breast and the overlap 

of microcalcifications. 
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Figure 9.7 - Barplots showing differences in number of microcalcifications in each 
view for (a) All 19 malignant clusters (b) All 19 benign clusters 

  

Figure 9.8 - Comparison of numbers of microcalcifications in an anomalous malignant 
cluster. (a) The CC revealed 208 microcalcifications whilst (b) The LO view revealed 147 
microcalcifications
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Figure 9.9 - Comparison of number of microcalcifications in an anomalous benign case (a) 
The CC view revealed 147 microcalcifications whilst (b) The LO view revealed 56 

microcalcifications 

9.5.2 Area of Cluster 

The area occupied by malignant clusters (median = 37 mm”) was greater than benign 

clusters (median = 9 mm’). The range of projected areas was slightly larger in 

malignant clusters than benign (2 mm’ to 872 mm” malignant, 0.2 mm’ to 604 mm? 

benign). This contradicts the traditional idea that malignant clusters are contained 

within a smaller area than benign clusters. However, the wide range in areas for both 

types may be explained by Muir et al. (1983) who deduced that the area occupied 

depended on the type of malignancy or benignity. They found that the average area 

occupied by non-invasive and invasive carcinomas was 137 mm? and 38 mm? 

respectively. By comparison, they found that benign microcalcifications associated 

with parenchymal elements occupied an average area of 177 mm’ compared to an 

average area of 53 mm’, the average area occupied by stromal associated 

microcalcifications. In addition, Tabar and Dean (1985) found that whilst granular 

types of malignant microcalcifications are contained within a tight cluster, intraductal 

carcinomas are sometimes very extensive. In this study, 63% of the benign clusters
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occupied an area less than 12 mm” (the lower quartile of malignant clusters), and 10% 

of benign clusters occupied an area greater than 140 mm” (the upper quartile of 

malignant clusters). There appeared to be an association between projected area with 

number per cluster as shown in Figure 9.10. The correlation figures were 0.93 and 

0.76 for malignant and benign clusters respectively when area is compared to number 

  

in cluster. 
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Figure 9.10 - Association of Cluster Area with Number in Cluster in 
(a) Malignant Clusters (b) Benign Clusters
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Figure 9.11 - Comparison of Cluster Area in CC and LO Views in 
(a) Malignant Clusters (b) Benign Clusters 

Figure 9.11 shows barplots comparing the difference in area in the CC and LO views 

for each case. For the malignant cates, 59% had cluster areas bigger in the CC 

compared to the LO view. By comparison, the percentage of benign clusters larger in 

the CC view compared to LO view was 32%, and the percentage bigger in the LO 

view compared to the CC view was also 32%. One of the anomalous malignant cases 

is shown in Figure 9.12. The projected area in the CC view is 102 mm? whereas in the 

LO view the area is only 4 mm’, Figure 9.13 shows one of the anomalous benign 

cases where the area in the CC view was 56 mm’ compared to 324 mm? in the LO 

view. It is clear from both the cases that in one view the cluster ‘appears as a tight 

bundle, whereas, in the other view it appears more spread out and scattered. The
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discrepancies in projected area for both cases may in part be explained by the 

compression factor used when taking the mammogram. 

  

Figure 9.12 - Comparison of projected cluster area and perimeter length of a malignant case 
in (a) The CC view where the area occupied was 102 mm’ and perimeter was 43 mm (b) In 
the LO view the area occupied was 4 mm’ with a perimeter length of 28 mm. 

a. b. 

Figure 9.13 - Comparison of projected area of a benign case in (a) The CC view where the 
area occupied was 56 mm’ with a perimeter length of 34 mm (b) In the LO view the area 
occupied was 324 mm’ and the perimeter length was 70 mm 

9.5.3 Perimeter of Cluster 

Long perimeter length (or convex hull) was associated with malignancy (median 

length: 33.2 mm for malignant clusters, 15.5 mm for benign clusters). Thirty-seven
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per-cent of the benign clusters had perimeters less than 10 mm in length, whilst this 

figure was 16% for malignant clusters. Hansell et al. (1988) also found that the 

perimeter length of malignant clusters was about double that of benign clusters. 

Figure 9.14 shows the clear relationship between cluster perimeter with cluster area. 

The correlation values were 0.92 for both malignant and benign clusters. The 

differences in perimeter lengths in the CC and LO views are shown in Figure 9.15. 

The clusters in the CC view tended to have longer perimeter lengths than benign 

clusters. Again the two anomalous cases were the ones shown earlier in Figures 9.12 

and 9.13. The perimeter length for the malignant cluster was 43 mm in the CC view 

compared to 28 mm in the LO view. For the benign case, the perimeter length was 34 

mm in the CC view and 70 mm in the LO view. As with cluster area, the explanation 

for the lack of correlation may in part, be the compression of the breast during the 

mammogram. Another interesting point is the method of defining the perimeter 

around a cluster. In this study, the convex hull was used. This avoided any subjectivity 

in describing cluster shape. However, Figure 9.16 shows how the convex hull may not 

always reflect the shape of the cluster, the microcalcifications in the cluster clearly 

form an elongated concave shape. However, the convex hull is constructed according 

to where the outlying microcalcifications are positioned, hence, the cluster is 

represented by a rhomboid shape.
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Figure 9.14 - Relationship between Cluster Area and Cluster Perimeter in 
(a) Malignant Clusters (b) Benign Clusters 
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Figure 9.15 - Comparison of Perimeter lengths in CC and LO Views in 
(a) Malignant clusters (b) Benign clusters 
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Figure 9.16 - Demonstration of how Convex Hull does not always accurately describe the 

boundary of the cluster (a) The cluster of microcalcifications (b) Convex hull enclosing cluster 

9.5.4 Cluster Density 

The density of benign clusters was higher for benign clusters (median = 1.25 mm 

2 than malignant clusters (median = 0.69 mm”). This would seem unusual, as 

traditionally, malignant clusters are thought to contain numerous microcalcifications in 

a small area. However, in this study, although the benign clusters had a small number 

of microcalcifications, they were contained in smaller areas, hence, the reason for 

higher cluster density. In addition, Hansell et al. (1988) also found that benign clusters 

possessed higher cluster density (0.29 mm” CC, 0.27 mm? LO) than malignant 

clusters (0.19 mm” CC, 0.20 mm? LO), although the difference was smaller. 

The barplots in Figure 9.17 illustrate the difference in cluster density for each case 

in the benign and malignant database. When the p-values comparing cluster density in 

CC and LO views are considered, there appeared to be no significant difference for 

both benign (0.85) and malignant (0.93) clusters. However, if the correlation factor
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between the views is considered, the value for malignant cases was 0.73, compared to 

0.56 for benign cases. This low value for benign cases is due to one anomalous case, if 

this is eee the correlation figure would go up to 0.89 for the benign database. 

This anomalous case is shown in Figure 9.18, in the CC view the 3 microcalcifications 

occupy a very small area of 0.21 mm’ that produced an extremely large cluster density 

of 14.6 mm”. By comparison, in the LO view, although there are 7 

microcalcifications, the area occupied is 4.2 mm’. This has the effect of reducing the 

cluster density dramatically to 1.67 mm”. Again, the explanation for this case may be 

the compression factor that produced such a difference in cluster area between the 

two views. 
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Figure 9.17 - Barplots comparing the cluster density difference for individual clusters in 
(a) Malignant clusters (b) Benign clusters
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a. b. 

Figure 9.18 - Comparison in Cluster Density for a Benign Cluster in (a) CC view (b) LO view 

9.5.5 Distance to Centre of Cluster Distribution 

The median distance of nietocalticaligns to the centre of the cluster was higher for 

malignant clusters (4.85 mm) than benign clusters (3.03 mm). However, the difference 

for inter-quartile range between the two types of clusters was small, hence the p-value 

of 0.34 for the clusters. Unfortunately, there are no other published figures for this 

measure for comparison. 

9.5.6 Nearest Neighbour Distribution 

Freundlich et al. (1989) suggested there was a 92% chance of benignity if the nearest 

neighbour distance was more than 1 an and a 52% chance of malignancy if the 

distance was less than 1 mm. In this study, for all the individual microcalcifications, 

the median near neighbour distance for malignant microcalcifications was 0.32 mm 

compared to 0.59 mm for benign microcalcifications. Different results are found if the 

median NN is calculated for each cluster and then averaged. The values are then 0.70 

mm for malignant clusters and 0.55 mm for benign clusters. However, the range of
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near neighbour distances was consistently bigger for benign cases for both the 

individual microcalcifications and the whole cluster. When the two views were 

considered, there appeared to be no significant difference for benign clusters 

(p = 0.54), but, there appeared to be some difference for malignant clusters 

(p = 0.13). 

If other studies are considered, Olson et al. (1988) found that the nearest neighbour 

values were 3.5 mm for benign cases and 5.0 mm for malignant cases. Hansell et al. 

(1988) also found some interesting results, with values of 1.22 mm for benign 

calcifications and 1.36 mm for malignant calcifications in the craniocaudal view. For 

the lateral view, the values were 1.49 mm for benign cases and 1.15 mm for malignant 

cases. The median or average near neighbour distance is perhaps not the most reliable 

measure for discriminating between benignity and malignancy. 

9.5.7 Proportion of Individual Microcalcification Shapes in Cluster 

Gale et al. (1987) investigated the microcalcification shapes in clusters and related its 

malignant outcome. Their results are shown in Table 9.1. The values for this study are 

shown alongside. Both the studies tended to give similar results. The results of note 

are the proportion of elongated microcalcifications was higher for benign clusters in 

this study than in Gale et al. (1987) and a higher proportion of benign clusters 

contained microcalcifications of equal shapes. In addition, a higher proportion of 

benign clusters had a mixture of shapes.
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[Gale et al. (1988) | Present study _| 

Table 9.1 - Shape characteristics of individual microcalcifications 

in Benign and Malignant Clusters 

Shapes in Cluster 

Round/Elongated 
Round/Irregular 

Round/Elongated/Irregular 
Table 9.2 - Breakdown of microcalcification shape combinations 

in Benign and Malignant Clusters 

    
       

     
     

  

    

     

      
     

  

    

If these values are investigated further (as shown in Table 9.2), round and elongated 

microcalcifications made up the majority of benign clusters. There is also a clear 

relationship between composition of cluster and number of microcalcifications in 

cluster. For those clusters containing microcalcifications of equal shapes, the average 

number of microcalcifications in the cluster was 13; by comparison, for those clusters 

with a mixture of round, elongated and irregular shapes, the average number of 

microcalcifications per cluster was 52. Lanyi (1983) also found a relationship between 

a high number of microcalcification in cluster with mixed shapes in the cluster. These 

results confirm that benign clusters tend to contain microcalcifications of equal shapes 

or a limited mixture of shapes. By comparison, malignant clusters clearly have a wide 

mixture of microcalcification shapes.
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9.5.8 Individual microcalcification area 

Mills et al. (1976) categorised microcalcifications as coarse (larger than 1 mm in 

diameter), intermediate (0.5 to 1 mm) and fine (less than 0.5 mm). Sickles (1986) 

considered small sized individual foci as well as aggregation as indicative of 

malignancy. In this study, however, the median areas were found to be 0.026 mm’ for 

benign cases and 0.043 mm” for malignant cases, contradicting the idea that malignant 

microcalcifications are all small specks. Hansell et al. (1988) also found that malignant 

microcalcifications had a bigger mean area than benign microcalcifications on both the 

craniocaudal and lateral views. 

The more significant result is the distribution in size. For benign microcalcifications 

the inter-quartile range was from 0.012 mm’ to 0.049 mm. By comparison, the inter- 

quartile range for malignant microcalcifications was from 0.021 mm” to 0.087 mm’. 

These results confirm traditional ideas regarding calcifications, benign clusters tending 

to contain calcifications of equal sizes and malignant calcifications have a mixture of 

sizes. The important size feature is not the absolute value for individual calcifications 

but the variety of sizes relative to other calcifications within the cluster. 

9.5.9 Background Standard Deviation 

The variation of signal intensity of the background region of two pixels surrounding 

each microcalcification was higher for malignant calcifications (9.5) than benign 

calcifications (7.4). This is consistent for both the CC and LO views. Olson et al. 

(1988) also report that the local tissue region averages were higher for malignant 

compared to benign microcalcifications. These results indicate that the tissue
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surrounding the microcalcifications is more heterogeneous for malignant 

microcalcifications compared to benign microcalcifications. 

Another consideration is the association of background standard deviation with 

area. This is illustrated in Figure 9.19. The correlation coefficients (between 

background standard deviation and microcalcification area) of 0.85 for malignant 

microcalcifications and 0.70 for benign microcalcifications indicate that there is a 

strong association between the two features. Figure 9.20 shows two possible 

microcalcifications. In the diagram on the left, the microcalcification consists of a 

single pixel, so if two pixels are taken surrounding this, a total of 24 pixels is found. 

On the other hand, in the other diagram, the microcalcification consists of five pixels, 

this time the surrounding background consists of 40 pixels. It is possible that there is 

more chance of signal variation by analysing more pixels, this may explain why the 

malignant microcalcifications tended to have a higher signal variation in the 

background region than benign microcalcifications as they had bigger areas. In 

hindsight it may have been better to normalise the values by dividing background 

standard deviation by area of the microcalcification.
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Figure 9.19 - Comparison of Background standard deviation with area in 
(a) Malignant clusters (b) Benign clusters 

  

  

      

  

  
Figure 9.20 - Demonstration of the variability of background standard deviation
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9.5.10 Distribution of circularity 

The median values for circularity were 1.20 for malignant microcalcifications 

compared to 1.10 for benign microcalcifications. The inter-quartile range of circularity 

indicated a larger variety amongst malignant microcalcifications than benign 

microcalcifications (IQR: 0.35 malignant, 0.24 benign). When the circularity index is 

compared to microcalcification area, there appeared to be some correlation for 

malignant microcalcifications (0.54), but, very little for benign microcalcifications 

(0.29). This indicates that for benign microcalcifications, at least, even the largest 

microcalcifications were circular. By comparison, for malignant microcalcifications, 

some of the larger microcalcifications were circular, but, in the rest the large 

microcalcification area seemed to be associated with irregular shape. 

9.5.11 Contrast 

The results showed that the median contrast was higher in malignant 

microcalcifications (0.18) than benign microcalcifications (0.13). In comparison, 

Olson et al. (1988) showed that the benign microcalcifications had a slightly higher 

contrast than malignant microcalcifications, but the difference was very small (1.28 

compared to 1.25). There appears to be little association of contrast with 

microcalcification area. The correlation figures were 0.37 for malignant 

microcalcifications and 0.51 for benign microcalcifications. If the inter-quartile range 

of this database is taken into account, amongst malignant microcalcifications, the 

microcalcification contrast varied from 0.12 to 0.26. For benign calcifications, the 

contrast range is more narrow (0.10 to 0.18). One reason for the difference in range is 

that malignant clusters often contain a mixture of round microcalcifications with sharp



259 

contrast and casting types (Section 4.3) that were faint and blended with the 

background area. Another factor to consider is the digitising process. 

9.5.12 Average Edge Strength 

The median edge strength was similar for both benign and malignant 

microcalcifications. The values of 18.0 (malignant) and 17.8 (benign) were not 

significant enough to distinguish between the two groups of clusters. In the individual 

views, thie edge strength was slightly larger for benign than malignant 

microcalcifications in the CC view (19.2 for benign compared to 16.8 for malignant), 

although the reverse was true in the LO view (16.0 for benign and 20.1 for 

malignant). Again, there appeared to be little correlation between edge strength and 

microcalcification area. The correlation values were 0.17 for malignant 

microcalcifications and 0.35 for benign microcalcifications. 

9.5.13 Smoothness of Microcalcifications 

The smoothness values suggest that benign microcalcifications (8.0) tend to be more 

homogenous, while malignant calcifications (10.0) tend to be more heterogeneous. 

Olson et al. (1988) found that the smoothness value was higher in malignant 

microcalcifications (169) than benign microcalcifications (60). Tabar and Dean (1985) 

suggests that both granular and casting type malignant calcifications vary in density. 

Benign calcifications, particularly lobular types, tend to be pearl like with dense 

centres, hence no variation in density. Large coarse benign calcifications vary in 

density.
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Another aspect that needs to be considered is the relationship between smoothness 

and microcalcification area (Figure 9.21). The correlation figures of 0.78 for 

malignant microcalcifications and 0.64 for benign microcalcifications indicate that 

there was strong association between these two features. As with background 

standard deviation, the high smoothness values may be more affected by the size of 

the microcalcification rather than the diagnosis of the cluster of which it is a member. 

Again, in hindsight it may have been better to normalise the smoothness value by 

dividing it by the microcalcification area. 
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9.5.14 Conclusions and Future Work 

The results for the global features of number in cluster, cluster area and cluster 

perimeter correlated with previous work. The values for all three were higher for 

malignant clusters than benign. However, in the present study, there may be some 

influence from the year that the mammograms were obtained. The benign databases 

were obtained from mammograms taken from late 1993 to 1994; by comparison, the 

majority of the malignant database originate from mammograms taken between 1990 

and 1992. The mammograms taken before 1992 may have a grater proportion of 

prevalent screening cases rather than incident screening. By this stage, the cluster 

would have grown significantly. This may explain the large cluster areas and numbers 

found in the malignant clusters. 

The low value of cluster density in malignant clusters compared to benign clusters 

does seem odd initially. However, it appears that although malignant clusters a 

more microcalcifications, the area occupied by them was so large that it lowered the 

values for cluster density. The measures of median near neighbour distance and 

median distance to centre of cluster also provided good features that distinguished 

benignity from malignancy, however, the distance to centre measure was linked to the 

size of the cluster. The proportion of microcalcification shapes in the cluster mirrored 

the expected result, namely, that benign clusters consisted of microcalcifications of the 

equal shapes and malignant clusters contained a mixture of shapes. However, an 

interesting result was the high number of elongated microcalcifications in benign 

clusters this may be due in part to microcalcifications forming along the ducts having 

a rod-like appearance.
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On a local level, the measures of high variability of microcalcification area, 

heterogeneity of microcalcification texture and non-circularity of microcalcifications 

in malignant clusters were as expected. The measures of contrast and edge strength 

were not convincing features for distinguishing between benignity and malignancy. 

However, features based on grey level intensity would have been affected by the 

digitisation process used. The use of a CCD camera with light box was not the best 

method of digitisation. Ideally, a laser scanner would be used to provide stable optical 

densities in digitised images.
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9.6 FEATURE ANALYSIS OF EQUIVOCAL CLUSTERS 

9.6.1 Number in Cluster 

For the equivocal cases, there was a total of 486 microcalcifications in the 10 

malignant clusters (i.e. average of 49 microcalcifications/cluster) and 1243 

microcalcifications in the 30 benign clusters (i. average of 41 

microcalcifications/cluster). This time, none of the malignant clusters contained fewer 

than ten microcalcifications. By comparison, 27% of the benign clusters had fewer 

than ten microcalcifications. Additionally, the benign clusters had a wider range of 

numbers in each cluster. There appeared to be an equal number of microcalcifications 

in both the CC and LO views for malignant cases (CC: 245, LO: 241). However, for 

the benign cases, there was more microcalcifications in the LO view (715) than the 

CC view (528). If the individual cases are considered, for both the benign and 

malignant categories, 60% of the cases had more microcalcifications per cluster in 

LO view than the CC view. Again there was an anomalous case as shown in Figure . 

9.22. This particular benign cluster was found to have many more microcalcifications 

in the LO view (89) than the CC view (20). Clearly, in the CC view the cluster is very 

tight and potentially many of the microcalcifications are hidden by overlapping 

compared to the LO projection. These results, along with those found in the previous 

section reinforce the idea that both views need to be examined to make a full appraisal 

of the microcalcifications.
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Figure 9.22 - Comparison of number in cluster for Equivocal Benign Case 

in (a) CC View (b) LO View 

9.6.2 Cluster Area 

The difference between the median areas for malignant cases (71.0 mm’) aad beige: 

cases (48.6 mm’) were smaller than the previous database (p = 0.60). However, the 

range of cluster areas was far wider in benign clusters than the malignant clusters in 

this database (IQR: 5.4 mm? malignant, 135 mm” benign). One interesting result was 

the proportion of projected cluster areas exceeding the upper and lower quartiles of 

the malignant clusters described in Section 9.5.2. In this database, the proportion of 

benign clusters less than 12 mm? was 30% compared to 0% of malignant clusters. The 

proportion of benign clusters with areas exceeding 140 mm’ was 27% compared to 

10% for malignant clusters. By comparison, in the database described in Section 

9.6.2.1, the proportion of malignant clusters with areas exceeding 100 mm’ was 39% 

against 11% for the benign clusters. This suggests that the benign clusiers in the 

equivocal database have a spread of cluster areas similar to the malignant clusters in 

the previously described database. By comparison, the range of malignant areas in the 

equivocal database was much narrower.
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9.6.3 Perimeter Length 

The median perimeter of 34.2 mm for malignant clusters was close to that of 28.3 

mm for benign clusters (p-value equal to 0.73). Again, like the cluster areas, the range 

of perimeters was greater for the benign clusters than the malignant. There was only 

one anomalous result related to the cluster shown in Figure 9.22 that also showed a 

disproportionate number of microcalcifications in the two views. The perimeter was 

8.9 mm in the CC view and 55.7 mm in the LO view. Again, the very nature of 

constructing a convex hull (where the outlying microcalcifications represent the limits 

of the boundary) may have contributed to the higher perimeter length. However, for 

this particular cluster, the projective nature of mammography seemed to be the main 

factor for the disparity of the results. 

9.6.4 Cluster Density 

Similarities in cluster density exist for benign and malignant clusters in this database 

(p=0.33). Although the median cluster density was larger for malignant clusters (0.73 

mm”) than benign cluster (0.58 mm”), it is the range of values that seems to be the 

more interesting result once more. The inter-quartile range of 0.26 mm” for 

malignant clusters compared to 3.40 mm” for benign clusters. As with the benign and 

malignant clusters the variety of cluster areas contributed to the variety of cluster 

densities. An interesting result is shown in Figure 9.24. The cluster in the CC view 

occupies an area of 1.8 mm’ compared to the slightly larger area of 2.2 mm? 

occupied by the same cluster in the LO view. However, the number of 

microcalcifications in the LO view (20) is double the number in the cc view (9). The 

result shows a big discrepancy between the cluster density in the CC view (4.88 mm”)
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compared to the LO view (9.13 mm”). So, this time it is the number of 

microcalcifications in the cluster that has the greater effect. ‘ 
] 

———_—=-- 

  

Figure 9.24 - Comparison of Cluster Density for a Benign Equivocal case 
in the (c) CC view and (b) LO View 

9.6.5 Distance to Centre Distribution 

The results for the equivocal database are different to those found in the benign and 

malignant database described previously. This time, the median distance to centre was 

greater for benign clusters (4.79 mm) compared to malignant clusters (3.34 mm). In 

addition, the range of values was greater in benign clusters than malignant clusters. As 

was so for the malignant and benign database, it seems that this measure is linked to 

the area of the cluster. It appears that if the areas of the clusters are large, then the 

distance of individual microcalcifications from the centre of the cluster will also be 

greater. If the relationship between the distance to centre of cluster is investigated in 

relation to view, it appears that there is less similarity for malignant clusters (p = 0.34) 

compared to benign clusters (p = 0.76).
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9.6.6 Near Neighbour Distribution 

The results for NN measure were similar to the benign and malignant database 

described previously. The median NN distance for malignant microcalcifications (0.44 

mm) was less than the distance for benign microcalcifications (0.51). As with the 

malignant and benign database, the range of NN distances was greater for benign 

microcalcifications than malignant. However, if the two views are considered, there is 

little similarity between NN distance for benign clusters (p = 0.18), but, good 

similarity for malignant clusters (p = 0.73). 

9.6.7 Proportion of Individual Microcalcification Shapes in Cluster 

This time the difference between the median percentage of round microcalcifications 

in the cluster was narrow for benign clusters (86.9%) compared to malignant clusters 

(79.0%). However, the minimum proportion of round microcalcifications in the 

malignant clusters was 60.7% compared to 40% for the benign clusters. It is apparent 

that the malignant clusters in this database compared to the one described in Section 

9.5.7 have, on average, a higher proportion of round microcalcifications. The 

similarities of the two types of clusters in the database are emphasised if the median 

percentages of elongated and irregular microcalcifications are considered (Elongation: 

10.0% benign clusters, 5.2% malignant clusters. Irregularity: 4.7% benign clusters, 

3.1% malignant clusters). It’s clear from the results that the microcalcifications in the 

malignant clusters show more benign appearance that the database described 

previously. The proportion of microcalcification shapes in a cluster proved to be a 

good discriminator between benign and malignant clusters in Section 9.5. However, 

for the equivocal database, the proportion of microcalcification shapes did not appear
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to be a good discriminator between malignancy and benignity. As described in Section 

9.4.2, the overlap in appearance of malignancy with benignity may be, in part, due to 

the malignant clusters in this database containing benign ducts filled with 

microcalcifications. 

9.6.8 Individual Microcalcification Area 

The median area was larger for malignant microcalcifications (0.114 mm”) than benign 

microcalcifications (0.021 mm”) in the equivocal database. However, the sizes of the 

malignant microcalcifications exceeded those in the previous database. Fifty-seven 

per-cent of the malignant microcalcifications had areas bigger than 0.1 mm” compared 

to 6% of benign microcalcifications. Again, the range of areas was greater for 

malignant microcalcifications than benign microcalcifications (IQR: 0.162 mm? 

malignant, 0.025 mm? benign). An interesting result was the correlation of individual 

microcalcification areas in the CC and LO views for malignant microcalcifications (p 

= 0.95) compared to benign microcalcifications (p = 0.45). 

9.6.9 Background Standard Deviation 

The variation of grey level in the background region was found to be higher in the 

benign microcalcifications (6.9) than malignant microcalcifications (5.5), the opposite 

effect compared to the benign and malignant database. As before, there appeared to 

be strong correlation between background standard deviation and area for benign 

microcalcifications (cor = 0.84), however, the correlation was not as strong for 

malignant microcalcifications (cor = 0.55). As the malignant microcalcification areas 

were far greater than benign microcalcifications, background standard deviation may
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not as previously shown (Section 9.5.11) be linked with large areas. However, 

another factor could be the effect of the digitisation process. 

9.6.10 Circularity 

The median values this time was very close for malignant (1.03) and benign (1.06) 

microcalcifications and the range for both diagnoses were narrow compared to the 

previous database. The correlation of circularity with area was reasonable for both 

malignant microcalcifications (cor = 0.41) and benign microcalcifications (cor = 0.65). 

The percentage of malignant microcalcifications with a circularity index less than 1.1 

was 74%, by comparison, the percentage of benign microcalcifications was 54%. This 

is a very unexpected result as the values indicate that the malignant microcalcifications 

are more circular than the benign microcalcifications in the equivocal database. 

9.6.11 Contrast 

The median contrast of the benign microcalcifications (0.13) was slightly higher than 

the malignant microcalcifications (0.11). These results are in keeping with those found 

by Olson et al. (1988). Again there appeared to be low correlation between contrast 

and microcalcifications for malignant (0.47) and benign (0.39) microcalcifications. 

Unlike the previous database, it is the benign microcalcifications that have the larger 

variation in contrast than malignant microcalcifications. This may once again reflect 

the benign nature of some of the microcalcifications in the malignant clusters.
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9.6.12 Edge Strength 

As for the benign and malignant database, there seemed to be very little difference in 

edge strength between the two types of cluster (18.2 for benign microcalcifications 

and 16.8 for malignant microcalcifications). Also, there appeared to be very little 

correlation with area for both malignant microcalcifications (cor = 0.26) and benign 

microcalcifications (0.22). The edge strength was derived by finding the gradient of 

each microcalcification. It is apparent that the rate of change of signal intensity at the 

boundary did not differ for the two diagnoses. For this reason, the feature was 

dropped for the ROC analysis. As mentioned previously, it would be interesting to see 

if this measure would be of value if a laser scanner was used to digitise the films. 

9.6.13 Smoothness of Microcalcifications 

The results of 7.7 for benign microcalcifications and 6.3 for malignant 

microcalcifications again were the reverse of the results found in the previous 

database. This time, the range of smoothness values was also wider for benign 

microcalcifications, suggesting that these were more heterogeneous than the 

malignant microcalcifications. There was correlation between smoothness and area for 

both malignant (cor = 0.57) and benign (cor = 0.62) microcalcifications. Larger 

microcalcifications do not, however, have bigger smoothness values. 

9.6.14 Conclusions and Further Work 

For the equivocal database, there appeared to be similarities between benign clusters 

and malignant clusters for global features. The median values for number in cluster, 

cluster area, cluster perimeter, cluster density and proportions of microcalcification
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shapes in the cluster did not show any significant difference between benignity and 

malignancy in this database. However, the inter-quartile range appeared to be larger in 

benign clusters than malignant for all the global features. The nearest neighbour and 

distance to centre measure were both slightly greater in benign clusters than malignant 

clusters, regardless of view. For the local features, microcalcification area (median 

and inter-quartile range) was the only feature to clearly distinguish malignancy from 

benignity. For all the other features, the median and inter-quartile range were similar 

for benign and malignant condition. 

In hindsight, it is perhaps not surprising to see the similarity between local and 

global features in the equivocal database. If a Radiologist experienced in interpreting 

mammograms was not able to categorise these clusters as probably benign or probably 

malignant, one has to question whether image analysis would fair any better. 

Obviously, a larger database is required, 20 cases was not enough to investigate all 

the subtle differences between benign and malignant clusters.
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9.7 CLASSIFICATION AND ROC ANALYSIS 

BASED ON CLUSTERS 

9.7.1 Malignant and Benign Database 

The classification of clusters in this study used the KNN classifier. To gain the values 

for sensitivity and specificity, the single nearest neighbour was found over all 21 

features described in Section 8.6. The values of 71% for sensitivity and 74% for 

specificity were reasonable. An interesting result was the comparison of figures in the 

CC and LO views (CC: 79% sensitivity, 79% specificity, LO: 63% sensitivity, 68%: 

specificity). It appears that better results were found by evaluating the CC view only. 

However, Figures 9.23 and 9.24 illustrate why it important to consider both views 

before classification. Figure 9.23 shows a malignant case that was correctly classified 

in the CC view but wrongly classified in the LO view. Figure 9.24 shows a benign 

case where the case is classified correctly in the LO view, but incorrectly in the CC 

view. 

  

a. 

Figure 9.23 - Malignant cluster classified correctly in (a) the CC view, 

but incorrectly as benign in the (b) the LO View
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a. b. 

Figure 9.24 - Benign cluster classified incorrectly as malignant in (a) the CC view, 

but correctly in (b) the LO View. 

The ROC analysis of this data-set was dependent upon nearest neighbours to an 

unknown cluster within the database. The points on the ROC curve were found by 

determining the proportion of true and false-positives found by thresholding the 

number of nine nearest neighbours. This provided a smoother ROC curve than the one 

produced using just the individual shapes of the microcalcifications. 

When ROC curves were constructed for each of the 21 features individually, it was 

not surprising which performed well and which performed badly. As stated before 

(Section 9.4), shape of individual microcalcifications is an important indicator towards 

benignity or malignancy. The proportion of various shapes within a cluster is equally 

as important. The presence of irregularity and roundness were the two best 

discriminators. Elongated microcalcifications were prominent in both benign and 

malignant clusters, so this feature did not perform as well as the other two features. 

The number of microcalcifications in the cluster as well as the range of areas within 

the cluster also performed well. The worst features were those based on changes in
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grey level, namely background standard deviation, contrast and smoothness. These 

features were dependent upon the digitisation. In this study, the digitisation of the 

films using a CCD camera could have affected the results, as the optical density would 

have varied from one day to another. 

Single features did not reflect the different appearances of each cluster, but, 

performance was improved using a combination of features. The combination of 

features should capture the various subtle differences between clusters. For this study 

four features produced the highest Az value. The thousands of possible combinations 

using 21 features could be further explored to see if any improvement may be made. 

9.7.2 Equivocal Database 

Two data allocations were used to test the image analysis system. In Allocation 1, 

only the benign and malignant database was included in the reference set with the 

equivocal cases excluded. The Az value was found to be 0.51. For Allocation 2, the 

equivocal cases were included into the reference set, and the leave-one-out method 

was used to test the system. This time, the Az value was found to be 0.48. 

Investigation of the sensitivity and specificity figures also produced some interesting 

results. The sensitivity was 60% for Allocation 1 and remained the same for 

Allocation 2. However, the specificity figure goes from 63% in Allocation 1 down to 

43% in Allocation 2. When the equivocal cases are combined with the rest of the data, 

one would expect a wider spectrum of subtle appearances to be present for defining 

malignancy and benignity. However, from these results it appears that introduction of 

these cases has a detrimental effect on the classification of the benign clusters in the 

equivocal database. This may be due to the malignant clusters in the equivocal
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database having appearances aaatnerading as benign, and vice versa, that they were 

incorrectly classified as the nearest neighbour. Investigation of the two views shows 

there was no difference in results for the CC view in Allocation 1 and 2. By 

comparison, in the LO view, the specificity is greatly reduced from 67% to 27%. 

Figure 9.30 shows a benign cluster diagnosed correctly in both views for Allocation 1 

but the LO view is misclassified as malignant in using Allocation 2. Figure 9.31 shows 

a benign cluster correctly classified for both views in Allocation 1, although both are 

misclassified as malignant in Allocation 2. Another important point to consider was 

that a small cohort of cases was used, in addition, the ratio of benign to malignant 

cases was 3:1, so the classifier was not assessed over the full range of possible 

appearances. 

  

Figure 9.25 - Benign case in Equivocal database shown in (a) CC view and (b) LO view. 

Both views are classified correctly using Allocation 1, however, in Allocation 2, the cluster 

shown in the LO view is misclassified as malignant.
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a. b. 

Figure 9.26 - Benign case in Equivocal database shown in (a) CC view and (b) LO view. 

Both views were classified correctly using Allocation 2, however, in Allocation 1, both 

clusters are misdiagnosed as malignant. 

9.7.3 Conclusion and Further Work 

Classification by image analysis relies on information found from feature analysis of 

clusters and in this study, is based on the relationship of unknown clusters to a 

neighbourhood of reference clusters. The highest Az value of 0.84 for the malignant 

and benign clusters was encouraging, however the Az value of 0.51 for equivocal 

clusters suggests that improvements need to be done. 

The shape of the individual microcalcifications proved to be a very useful feature to 

distinguish benignity from malignancy. If the resolution is high enough to confidently 

classify the shapes of all the microcalcifications in each cluster, then the results of 

these can be combined with cluster features to improve the image analysis 

performance. Rather than obtaining points on the ROC curve from thresholding 

nearest neighbours, it would be better to use a threshold to obtain the fraction of 

microcalcifications in the cluster identified as true-positive to obtain points for curve 

plotting.
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For the equivocal clusters, further work needs to be done to establish which features 

are of more use to distinguish malignancy from benignity in this database. Clearly, 

features that were of use in the malignant and benign database may not have been as 

beneficial in the equivocal database. The results showed that the inter-quartile range 

of cluster features and the size of individual microcalcifications were the best features 

to distinguish benign condition from malignant and should be investigated further. In 

addition, more cases need to be considered in the test-group to fully test the 

algorithm. Further work needs to be done in combining the 21 features used in this 

study.
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9.8 THE USE OF TWO VIEWS FOR DIAGNOSIS 

9.8.1 Discussion of Results 

The results from the two views were compared by an analysis of variance (ANOVA). 

Table 9.3. The best correlation between CC and LO view occurred for global 

features. Four features, number, cluster area, cluster perimeter and cluster density 

appear to have good correlation between CC and LO views for each of the databases. 

For the local features, the correlation is not as good, except for microcalcification 

area and circularity. As explained earlier, because of the 3-D nature of a cluster, there 

is bound to be overlapping of microcalcifications and matching of individual 

microcalcifications from one view to another would be difficult. 

  
Table 9.3 - Correlation of Features in the Craniocaudal and Lateral Oblique Views
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The results from the ROC analysis based on microcalcification shape show the 

benefits of considering both views. The Az value increased from 0.73 (CC) and 0.63 

(LO) to 0.78 when all the clusters were considered regardless of view. The values 

suggest that the full the aspect of the cluster is not appreciable unless both the views 

are investigated. 

There are a number of reasons why anomalies occur between the two views. The 

main reason is the projective nature of mammography, obviously, the different 

compression factors may contribute to the disparity in results in the two views. 

Another explanation include problems with the local density of the breast causing 

microcalcifications to appear different in one view compared to another. 

9.8.2 Conclusions and Further Work 

This study has shown that not all aspects of the cluster of microcalcifications are 

apparent by viewing a single projection. In the UK screening program, only the lateral 

oblique view is taken for asymptomatic women, but, there are plans to introduce two- 

view mammography. There are disadvantages of using two views, namely cost, 

increased radiation and increased personnel requirement for reading mammograms. 

Further work may be done to investigate the projective nature of mammography. A 

specimen biopsy containing a cluster of microcalcifications could be x-rayed in a 

number of different views. The image analysis could be re-applied and the features 

may be extracted from a number of views and pooled together to gain insights into the 

effect of analysing a single projection.
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9.9 POTENTIAL PRACTICAL APPLICATIONS 

OF IMAGE ANALYSIS 

Computer-aided techniques potentially have an important role to play. Work has been 

done to design intelligent systems (Giger, 1993; Proctor et al., 1994; Stewart et al., 

1994). Some of the uses are described below. 

9.9.1 Guide to Locating Abnormalities 

The computer may be used to scan the whole film and automatically indicate the 

presence and location of abnormalities. While the Radiologist’s reading of the 

mammograms is systematic, it is nonetheless frequently subjective. Image analysis has 

a potential use to objectively guide the observer to the location of abnormalities. This 

has been addressed by Chan et al. 1990; Astley et al., 1990; Hutt et al., 1994. The 

only potential disadvantage is that the Radiologist may eventually become too 

dependent on the computer prompts and ignore other potential sites of abnormalities. 

9.9.2 Classification of Clusters 

This presents the ultimate challenge for image analysis. The final goal would be to 

automatically detect and classify clusters without any human interaction. This is where 

most research is now being directed. Neural networks are being used to analyse large 

databases of benign and malignant clusters (Kegelmeyer et al., 1994; Nishikawa et al.; 

1994). An important area that needs to be investigated are those clusters that are 

visually difficult to diagnose (i.e. the equivocal cases in this study). This present study
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has provided useful reference data required to train neural networks, but, at the same 

time, highlighted the difficulties. 

9.9.3 The Use in Follow-up Scans in Patients 

Image analysis may also be used to study the serial progress of abnormalities 

(Brzakovic et al., 1994). Mathematical morphology algorithms could be repeated on a 

suspicious area to see if there has been any proliferation of calcifications. The obvious 

problem is the re-alignment of a cluster from one scan to another, although 

Stamatakis et al. (1994) have had some success in aligning mammograms. Another 

problem is that foci of benign microcalcifications sometimes disappear in sequential 

mammograms (Fewins et al., 1988). 

9.9.4 Conclusion 

The first use of X-rays to detect breast disease was done by Solomon in 1913, clinical 

use began in the 1960’s and application to screen selected groups of women during 

the 1970’s. Image analysis has developed alongside the advancement of screening. As 

the new millennium approaches, screening in a totally digital environment is on the 

horizon. Image analysis could eventually be incorporated for segmentation and 

classification of microcalcification clusters, thus, offering a second opinion to a 

Radiologist on digitally acquired images.
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APPENDIX A 

Mathematical morphology notation adapted from Serra (1982). 

1 SUkS 

Ap scalars (i.e. positive numbers) 

x, fob, hh, ete: (latin lower case letters) points in R" or Z", and also 

vectors O,, O,, .. .; when one wants to specify that x 

is a point (geometrical figure) and not a vector, one 

writes {x} 

txt} set of points x satisfying property * 

Xe (latin capital letters) Euclidean or digital sets under 

study 

B structuring element 

iI test plane generating cross-sections 

n set of directions w, i.e. the unit sphere 

IR", Z" Euclidean space, digital space of dimension 71 

U uimnbra 

E arbitrary set 

7 (*) sct of all subsets of set * (i.e. Boolean lattice) 

wy arbitrary complete lattice 

ot lattice of increasing mappings on 

GF lattice of dilations, erosions, on 4 

FEY, FC), 2M set of all closed, open, compact subsets of * 

eee Un) set of umbrae, set of umbrae of family * 

g connected class : 

BE (*) sel of convex sets of family * 

2 LOGIC AND SET TRANSFORMATIONS 
¢ 

ax there exists an x such that 

Wx for all x 

worl. with respect to 

= implies 

23; iff if and only if 

XEN; xX point x belongs to set_X; point x does not belong Lo set’ 

xX 

X=Y;X #Y sets X and Y coincide; set X is different from set ¥ 

KEY, 2a)8 X is included in Y; Z contains B 

Xn Y set X hits set Y, ie. X NY #24



Xx), 

V(X) © 
w*(X) 

XU 

ae (ee 

X/Y,XNY 

bt 

XoeB, XoR 

yo 
rr 

UX, OX, 

3 TOPOLOGY 

XxX, X 
ax 

Xa 

lim, lim 
lim (*) 

Te 

inf, sup 

X, 4X; X, 1 X 

A(X, Y); day) 
T8;C.71.8:C- 

LCS space 

(42) 
Pt *) 

EX} 

Il 

complement of X, f.c. set of point x such that x é 

family of sets X; 

complement operator 

smaller than, longer than, sup, inf ina lattice 

homothetic af X with scaling factor 4; \ ¥ = 
{x:x/ € X} 

translate of X by vector h; X, = (x: x - he X} 

-set transform of X w.r.t. set transformation ¥ 

dual transformation (w.r.t. the complementation), 

ie, W(X) = [¥CX*)]* 
set union, f.e. set af points belonging to X or to Y 

set intersection, i.e. set of points belonging to both X 

and Y j ( 

set difference, j.c. set of points belonging to X and nol 

to Y 

union, intersection, of all the translates X,,, with b¢ B 

Minkowski addition, substraction 

generic notation for opening, closing 

generic notation for dilation, erosion 

closure, interior, of set X 

boundary of set X 

X, tends towards X (for the Hit or Miss topology) in.” 

upper limit, lower limit 

limit of * when ¢ tends towards f, 

lower, upper bound 

monotonic sequential convergence of {X;} to X, by 

upper (resp. lower) values 

distance between X and Y; distance between x and y 

upper semicontinuous; lower semicontinuous 

locally compact Hausdorff and separable space 

Lebesgue measure in IR" 

probability of the event * 

mathematical expectation of X



Benign Cases 

Case Age 
BEN 1 50 

BEN 2 62 

BEN 3 53 

BEN 4 51 

BEN 5 56 

BEN 6 53 

BEN 7 62 

BEN 8 57 

BEN 9 66 

BEN 10 57 

BEN 11 50 

BEN 12 58 

BEN 13 65 

BEN 14 58 

BEN 15 61 

BEN 16 67 

BEN 17 50 

BEN 18 55 

BEN 19 50 

Malignant Cases 

Case Age 
MAL 1 a7 

MAL 2 a2 

MAL 3 61 

MAL 4 60 

MAL 5 60 

MAL 6 60 

MAL 7 60 
MAL 8 59 

MAL 9 64 

MAL 10 65 

MAL 11 65 

MAL 12 56 

MAL 13 60 

MAL 14 60 

MAL 15 60 

MAL 16 58 

MAL 17 60 

MAL 18 59 

MAL 19 50 
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APPENDIX B 

Year 

1993 

1994 

1992 

1993 

1992 

1993 

1994 

1990 

1993 

1993 

1991 

1993 

1993 

1990 

1993 

1993 

1993 

1993 

1994 

Year 

1990 

1991 

1990 

1992 

1992 

1992 

1992 

1991 

1992 

1991 

1991 

1990 

1991 

1991 

1991 

1991 

1994 

1991 

1994 

Diagnosis/Comments 
Fibrocystic changes 
Blunt duct adenosis and microcyst formation 
Low grade neoplasm 
Fibrocystic change 
Fibroadenoma 
Fibrocystic change 
Fibrocystic change 
Sclerosing adenosis 
Fibrocystic change 
Fibrocystic change 
Fibrocystic change 
Fibrocystic change 
Fibrocystic change 
Fibrocystic change with sclerosing adenosis 
Fibrocystic change 
Fibrocystic change 
Fibrocystic change 
Fibrocystic change 
Blunt duct adenosis and atypical lobular hyperplasia 

Diagnosis/Comments 
Invasive ductal carcinoma 
Non-invasive DCIS 

Invasive ductal carcinoma 
Non-invasive DCIS 
Non-invasive DCIS 

Non-invasive DCIS 

Non-invasive DCIS 

Invasive ductal carcinoma 
Non-invasive DCIS 

Non-invasive DCIS 
Non-invasive DCIS 
Non-invasive DCIS 
Non-invasive DCIS with necrotic microcalcifications 
Non-invasive DCIS with necrotic microcalcifications 
Non-invasive DCIS with necrotic microcalcifications 
Non-invasive DCIS with coarse microcalcifications 
DCIS and invasive ductal carcinoma 
Non-invasive DCIS 
Non-invasive DCIS



Equivocal Cases 

Benign 

Case Age Year Diagnosis 

EQUB 1 53 1993 Fibrocystic change 

EQUB 2 53 1993 Fibrocystic change 

EQUB 3 53 1993 Fibrocystic change 

EQUB 4 58 1994 Fibrocystic change 

EQUB 5 55 1994 Fibrocystic change 

EQUB 6 51 1993 Fibrocystic change 

EQUB 7 56 1994 Fibrocystic change 

EQUB 8 51 1994 Fibrocystic change 

EQUB 9 51 1994 Fibrocystic change 

EQUB 10 63 1994 Fibrocystic change 

EQUB 11 56 1994 Fibrocystic change 

EQUB 12 60 1994 Fibrocystic change 

EQUB 13 55 1994 Fibrocystic change 

EQUB 14 58 1993 Fibrocystic change 

EQUB 15 52 1994 Fibrocystic change 

Malignant 

Case Age Year Diagnosis 

EQUM 1 53 1993 Non-invasive DCIS with necrotic microcalcifications 

EQUM 2 56 1994 Mixture of coarse microcalcifcations (DCIS) with fine 

foci of microcalcifications in benign ductules 

EQUM 3 64 1994 Mixture of microcalcifications associated with DCIS 

and associated with benign disease 

EQUM 4 52 1994 Mixture of microcalcifcations associated with DCIS and 

benign blunt ductal adenosis 

EQUM 5 50 1993 Non-invasive DCIS



APPENDIX C 

Example of XLIM3D program to detect and segment microcalcifications in a cluster. 

# Memory registers are initially set 

(def a (imget2d 512 512)) 

(def b (imgetsame a)) 

(def c (imgetsame a)) 

(def d (imgetsame a)) 

(def e (imgetsame a)) 
(def f (imgetsame a)) 

(def g (imgetsame a)) 

(def h (imgetsame a)) 

(def i (imgetsame a)) 

# Input image is read into the program as a VISILOG file 

(imreadvisilog a "file.v") 

# An alternating sequential filter of size 2 is applied to the original image 

(defun ASFilter (im size &aux disk) 
(setq disk (send diskse :new 2)) 

(dotimes (i size) 

(imclose im im (send disk :radius (1+ 1))) 

(imopen im im (send disk :radius (1+ i))) 

) 
(send disk :delete)) 

(imiscopy b a) 
(ASFilter b 1) 

# An opening is applied using a disc structuring element of radius 7 pixels 
(imopen c b (setq disk (send diskse :new 7))) 

# The opened image is reconstructed using the original image as a mask 

(imunderbuild c b :graph square8gr) 
# The reconstructed opened image is subtracted from the original image 

(imsubimageabs d b c) 
# The first threshold level is set at 55 
(imthresh e d 0 55 255) 

(imlabel e e :graph square4gr) 
(imthresh fe 1 34 255) 
# The second threshold level is set at 40 

(imthresh e d 0 40 255) 
(imlabel e e :graph square4gr) 
(imthresh g e 1 1 255) 
(imaddimage f f g) 
(imthresh g e 5 6 255) 

(imaddimage f f g) 
(imthresh g e 13 14 255) 
(imaddimage f f g) 
(imthresh g e 20 21 255) 

(imaddimage f f g) 

(imthresh g e 22 22 255) 
(imaddimage f f g) 
(imthresh g e 26 26 255)



(imaddimage f f g) 

# The third threshold level is set at 25 

(amthresh e d 0 25 255) 

(imlabel e e :graph square4gr) 

(imthresh g e 21 21 255) 

(imaddimage f f g) 

(imthresh g e 23 23 255) 

(imaddimage f f g) 

(imthresh g e 26 26 255) 

(imaddimage f f g) 
(imthresh g e 36 39 255) 

(imaddimage f f g) 
(imthresh g e 46 49 255) 
(imaddimage f f g) 

(imthresh g e 51 51 255) 

(imaddimage f f g) 
# The final threshold level is set at 10 
(imthresh e d 0 10 255) 
(imlabel e e :graph square4gr) 
(imthresh g e 70 70 255) 

(imaddimage f f g) 
(imthresh g e 86 86 255) 
(imaddimage f f g) 

(imthresh g e 30 30 255) 
(imaddimage f f g) 
# The binary images at each threshold level are summed and given a unique label 
(imlabel e f :graph square4gr) 

# The original image is inverted 
(iminvert a a) 

# The watershed is initially applied to the inverted image with the internal candidate 
markers 
(imconstrainedws f e a :graph square8gr) 

# The resultant watershed line is thresholded and added to the internal markers 
(imthresh f f 0 0 255) 
(imaddimage f f e) 
# The original image is inverted back 

(iminvert a a) 

# The morphological transform is applied to the original image 
(immorphogradient g a (setq disk (send diskse :new 1))) 
# The watershed is re-run on the gradient image with candidate internal and external 
markers . 
(imconstrainedws h f g :graph square8gr) 
# The resultant watershed line is thresholded 
(imthresh i h 0 0 255) _ 

Gime ee 
(exit) i


