657 research outputs found

    Exploiting the Internet Resources for Autonomous Robots in Agriculture

    Get PDF
    Autonomous robots in the agri-food sector are increasing yearly, promoting the application of precision agriculture techniques. The same applies to online services and techniques implemented over the Internet, such as the Internet of Things (IoT) and cloud computing, which make big data, edge computing, and digital twins technologies possible. Developers of autonomous vehicles understand that autonomous robots for agriculture must take advantage of these techniques on the Internet to strengthen their usability. This integration can be achieved using different strategies, but existing tools can facilitate integration by providing benefits for developers and users. This study presents an architecture to integrate the different components of an autonomous robot that provides access to the cloud, taking advantage of the services provided regarding data storage, scalability, accessibility, data sharing, and data analytics. In addition, the study reveals the advantages of integrating new technologies into autonomous robots that can bring significant benefits to farmers. The architecture is based on the Robot Operating System (ROS), a collection of software applications for communication among subsystems, and FIWARE (Future Internet WARE), a framework of open-source components that accelerates the development of intelligent solutions. To validate and assess the proposed architecture, this study focuses on a specific example of an innovative weeding application with laser technology in agriculture. The robot controller is distributed into the robot hardware, which provides real-time functions, and the cloud, which provides access to online resources. Analyzing the resulting characteristics, such as transfer speed, latency, response and processing time, and response status based on requests, enabled positive assessment of the use of ROS and FIWARE for integrating autonomous robots and the Internet

    Development and Impact of a Mobile Application that Allows Users to Track Their Location on an Educational Institution Campus

    Get PDF
    This research study aims to solve user location issues within the campus at an educational institution. As this campus comprises a large number of places and departments, users often get confused about how to reach a specific location. To address this problem, the “Ubícate” (“locate by yourself” in Spanish) application was developed following the CDIO methodology, which encompasses four creative process steps: conceive, design, implement, and operate. The “Ubícate” app provides users with information on places of interest such as schools, departments, halls, auditoriums, and sports venues, offering a visual reference of available locations through 360-degree images. The application also uses Google Maps to track user location within the campus, thus marking a reference route between university gates and the different locations available, in addition to providing information on university-sponsored events. In this paper, Section 2 describes the methodology and each of the stages that were addressed in the following sections. Section 3 presents the development itself and the data used for the purposes thereof. Next, Section 4 reveals the results from this study. Later, Section 5 assesses these results and the findings from the study. In Section 6, our conclusions are discussed. Finally, Section 7 lists topics for future research. The application did indeed contribute to improving the attendance of the academic community at events. Where the application was used, the first-hand perception of visitors and their own was very positive and enhanced the institutional image and sense of belonging. The contribution of this study consists of presenting a mobile application as a solution from three approaches: the technical aspects for application development, the business vision to satisfy the user’s needs, and the end user’s perception. All three approaches provide a technical reader, an entrepreneur, or an end user an overview of a scalable solution to different types of implementations in different types of businesses that require indoor location through the use of technologies in mobile applications. The mobile application performs the location indoors using the Google Maps platform, allowing a more agile development in implementing the APP

    A ubiquitous service-oriented automatic optical inspection platform for textile industry

    Get PDF
    Within a highly competitive market context, quality standards are vital for the textile industry, in which related procedures to assess respective manufacture still mainly rely on human-based visual inspection. Thereby, factors such as ergonomics, analytical subjectivity, tiredness and error susceptibility affect the employee's performance and comfort in particular and impact the economic healthiness of each company operating in this industry, generally. In this paper, a defect detection-oriented platform for quality control in the textile industry is proposed to tackle these issues and respective impacts, combining computer vision, deep learning, geolocation and communication technologies. The system under development can integrate and improve the production ecosystem of a textile company through a properly adapted information technology setup and associated functionalities such as automatic defect detection and classification, real-time monitoring of operators, among others.This work was financed by the project “Smart Production Process” (No. POCI-01-0247-FEDER-045366), supported under the Incentive System for Research and Technological Development - Business R&DT (Individual Projects)

    COMPARISON OF UAVS PERFORMANCE FOR A ROMAN AMPHITHEATRE SURVEY: THE CASE OF AVELLA (ITALY)

    Get PDF
    Abstract. In the field of archaeological surveying, remote sensors and especially photogrammetric and laser scanner systems are widely used to create 3D models. The use of photogrammetric surveying with UAVs (Unmanned Aerial Vehicles), combined with Computer Vision algorithms, allows the building of three-dimensional models, characterized by photo-realistic textures. The choice of which method to use mainly depends on the complexity of the investigated site, the accuracy requirements and the available budget and time. The different components of the UAV system determine its characteristics in terms of performance and accuracy, therefore define its quality and the cost too. This study presents an assessment of the accuracy of point clouds derived by two UAV systems, a commercial quadcopter (DJI Phantom 3 Professional), a professional assembled hexacopter, and by a TLS (Terrestrial Laser Scanner) in order to compare photogrammetric and laser scanner data for archaeological applications. In this paper, we present a case study to compare and analyse the metric accuracy of the point clouds and the distribution of the GCPs (Ground Control Points). This accuracy assessment will serve to quantify the uncertainty in the absolute position of the GCPs, identified on the panoramic images in the absence of artificial targets. Executed experiments showed that in tested UAVs, the choice of the GCPs has significant impact on point cloud accuracy. Estimated absolute accuracy of point clouds collected during both test flights was better than 5&amp;thinsp;cm.</p

    Development of a spatial data infrastructure for precision agriculture applications

    Get PDF
    Precision agriculture (PA) is the technical answer to tackling heterogeneous conditions in a field. It works through site specific operations on a small scale and is driven by data. The objective is an optimized agricultural field application that is adaptable to local needs. The needs differ within a task by spatial conditions. A field, as a homogenous-planted unit, exceeds by its size the scale units of different landscape ecological properties, like soil type, slope, moisture content, solar radiation etc. Various PA-sensors sample data of the heterogeneous conditions in a field. PA-software and Farm Management Information Systems (FMIS) transfer the data into status information or application instructions, which are optimized for the local conditions. The starting point of the research was the determination that the process of PA was only being used in individual environments without exchange between different users and to other domains. Data have been sampled regarding specific operations, but the model of PA suffers from these closed data streams and software products. Initial sensors, data processing and controlled implementations were constructed and sold as monolithic application. An exchange of hard- or software as well as of data was not planned. The design was focused on functionality in a fixed surrounding and conceived as being a unit. This has been identified as a disadvantage for ongoing developments and the creation of added value. Influences from the outside that may be innovative or even inspired cannot be considered. To make this possible, the underlying infrastructure must be flexible and optimized for the exchange of data. This thesis explores the necessary data handling, in terms of integrating knowledge of other domains with a focus on the geo-spatial data processing. As PA is largely dependent on geographical data, this work develops spatial data infrastructure (SDI) components and is based on the methods and tools of geo-informatics. An SDI provides concepts for the organization of geospatial components. It consists of spatial- and metadata in geospatial workflows. The SDI in the center of these workflows is implemented by technologies, policies, arrangements, and interfaces to make the data accessible for various users. Data exchange is the major aim of the concept. As previously stated, data exchange is necessary for PA operations, and it can benefit from defined components of an SDI. Furthermore, PA-processes gain access to interchange with other domains. The import of additional, external data is a benefit. Simultaneously, an export interface for agricultural data offers new possibilities. Coordinated communication ensures understanding for each participant. From the technological point of view, standardized interfaces are best practice. This work demonstrates the benefit of a standardized data exchange for PA, by using the standards of the Open Geospatial Consortium (OGC). The OGC develops and publishes a wide range of relevant standards, which are widely adopted in geospatially enabled software. They are practically proven in other domains and were implemented partially in FMIS in the recent years. Depending on their focus, they could support software solutions by incorporating additional information for humans or machines into additional logics and algorithms. This work demonstrates the benefits of standardized data exchange for PA, especially by the standards of the OGC. The process of research follows five objectives: (i) to increase the usability of PA-tools in order to open the technology for a wider group of users, (ii) to include external data and services seamlessly through standardized interfaces to PA-applications, (iii) to support exchange with other domains concerning data and technology, (iv) to create a modern PA-software architecture, which allows new players and known brands to support processes in PA and to develop new business segments, (v) to use IT-technologies as a driver for agriculture and to contribute to the digitalization of agriculture.Precision agriculture (PA) ist die technische Antwort, um heterogenen Bedingungen in einem Feld zu begegnen. Es arbeitet mit teilflächenspezifischen Handlungen kleinräumig und ist durch Daten angetrieben. Das Ziel ist die optimierte landwirtschaftliche Feldanwendung, welche an die lokalen Gegebenheiten angepasst wird. Die Bedürfnisse unterscheiden sich innerhalb einer Anwendung in den räumlichen Bedingungen. Ein Feld, als gleichmäßig bepflanzte Einheit, überschreitet in seiner Größe die räumlichen Einheiten verschiedener landschaftsökologischer Größen, wie den Bodentyp, die Hangneigung, den Feuchtigkeitsgehalt, die Sonneneinstrahlung etc. Unterschiedliche Sensoren sammeln Daten zu den heterogenen Bedingungen im Feld. PA-Software und farm management information systems (FMIS) überführen die Daten in Statusinformationen oder Bearbeitungsanweisungen, die für die Bedingungen am Ort optimiert sind. Ausgangspunkt dieser Dissertation war die Feststellung, dass der Prozess innerhalb von PA sich nur in einer individuellen Umgebung abspielte, ohne dass es einen Austausch zwischen verschiedenen Nutzern oder anderen Domänen gab. Daten wurden gezielt für Anwendungen gesammelt, aber das Modell von PA leidet unter diesen geschlossenen Datenströmen und Softwareprodukten. Ursprünglich wurden Sensoren, die Datenverarbeitung und die Steuerung von Anbaugeräten konstruiert und als monolithische Anwendung verkauft. Ein Austausch von Hard- und Software war ebenso nicht vorgesehen wie der von Daten. Das Design war auf Funktionen in einer festen Umgebung ausgerichtet und als eine Einheit konzipiert. Dieses zeigte sich als Nachteil für weitere Entwicklungen und bei der Erzeugung von Mehrwerten. Äußere innovative oder inspirierende Einflüsse können nicht berücksichtigt werden. Um dieses zu ermöglichen muss die darunterliegende Infrastruktur flexibel und auf einen Austausch von Daten optimiert sein. Diese Dissertation erkundet die notwendige Datenverarbeitung im Sinne der Integration von Wissen aus anderen Bereichen mit dem Fokus auf der Verarbeitung von Geodaten. Da PA sehr abhängig von geographischen Daten ist, werden in dieser Arbeit die Bausteine einer Geodateninfrastruktur (GDI) entwickelt, die auf den Methoden undWerkzeugen der Geoinformatik beruhen. Eine GDI stellt Konzepte zur Organisation räumlicher Komponenten. Sie besteht aus Geodaten und Metadaten in raumbezogenen Arbeitsprozessen. Die GDI, als Zentrum dieser Arbeitsprozesse, wird mit Technologien, Richtlinien, Regelungen sowie Schnittstellen, die den Zugriff durch unterschiedliche Nutzer ermöglichen, umgesetzt. Datenaustausch ist das Hauptziel des Konzeptes. Wie bereits erwähnt, ist der Datenaustausch wichtig für PA-Tätigkeiten und er kann von den definierten Komponenten einer GDI profitieren. Ferner bereichert der Austausch mit anderen Gebieten die PA-Prozesse. Der Import zusätzlicher Daten ist daher ein Gewinn. Gleichzeitig bietet eine Export-Schnittstelle für landwirtschaftliche Daten neue Möglichkeiten. Koordinierte Kommunikation sichert das Verständnis für jeden Teilnehmer. Aus technischer Sicht sind standardisierte Schnittstellen die beste Lösung. Diese Arbeit zeigt den Gewinn durch einen standardisierten Datenaustausch für PA, indem die Standards des Open Geospatial Consortium (OGC) genutzt wurden. Der OGC entwickelt und publiziert eine Vielzahl von relevanten Standards, die eine große Reichweite in Geo-Software haben. Sie haben sich in der Praxis anderer Bereiche bewährt und wurden in den letzten Jahren teilweise in FMIS eingesetzt. Abhängig von ihrer Ausrichtung könnten sie Softwarelösungen unterstützen, indem sie zusätzliche Informationen für Menschen oder Maschinen in zusätzlicher Logik oder Algorithmen integrieren. Diese Arbeit zeigt die Vorzüge eines standardisierten Datenaustauschs für PA, insbesondere durch die Standards des OGC. Die Ziele der Forschung waren: (i) die Nutzbarkeit von PA-Werkzeugen zu erhöhen und damit die Technologie einer breiteren Gruppe von Anwendern verfügbar zu machen, (ii) externe Daten und Dienste ohne Unterbrechung sowie über standardisierte Schnittstellen für PA-Anwendungen einzubeziehen, (iii) den Austausch mit anderen Bereichen im Bezug auf Daten und Technologien zu unterstützen, (iv) eine moderne PA-Softwarearchitektur zu erschaffen, die es neuen Teilnehmern und bekannten Marken ermöglicht, Prozesse in PA zu unterstützen und neue Geschäftsfelder zu entwickeln, (v) IT-Technologien als Antrieb für die Landwirtschaft zu nutzen und einen Beitrag zur Digitalisierung der Landwirtschaft zu leisten

    D1.1 DEMAND ASSESSMENT FRAMEWORK

    Get PDF
    This report proposes the initial draft of the LeADS ADS Framework composed by three major elements; identification and definition of technologies in scope; skills included under those technologies, and definition of job roles, where other skills frameworks are considered for comparison and alignment. The report summarises the first workshop held by the project with external constituencies even though the feedback will be incorporated in the final version of the framework, where the layer of job roles will be completed, and the others revised according to additional input. This framework serves as reference for the next step in LeADS: the assessment of the demand and the supply

    Artificial Intelligence-based Cybersecurity for Connected and Automated Vehicles

    Get PDF
    The damaging effects of cyberattacks to an industry like the Cooperative Connected and Automated Mobility (CCAM) can be tremendous. From the least important to the worst ones, one can mention for example the damage in the reputation of vehicle manufacturers, the increased denial of customers to adopt CCAM, the loss of working hours (having direct impact on the European GDP), material damages, increased environmental pollution due e.g., to traffic jams or malicious modifications in sensors’ firmware, and ultimately, the great danger for human lives, either they are drivers, passengers or pedestrians. Connected vehicles will soon become a reality on our roads, bringing along new services and capabilities, but also technical challenges and security threats. To overcome these risks, the CARAMEL project has developed several anti-hacking solutions for the new generation of vehicles. CARAMEL (Artificial Intelligence-based Cybersecurity for Connected and Automated Vehicles), a research project co-funded by the European Union under the Horizon 2020 framework programme, is a project consortium with 15 organizations from 8 European countries together with 3 Korean partners. The project applies a proactive approach based on Artificial Intelligence and Machine Learning techniques to detect and prevent potential cybersecurity threats to autonomous and connected vehicles. This approach has been addressed based on four fundamental pillars, namely: Autonomous Mobility, Connected Mobility, Electromobility, and Remote Control Vehicle. This book presents theory and results from each of these technical directions
    • …
    corecore