10,107 research outputs found

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process

    Smart City Ontologies and Their Applications: A Systematic Literature Review

    Get PDF
    The increasing interconnections of city services, the explosion of available urban data, and the need for multidisciplinary analysis and decision making for city sustainability require new technological solutions to cope with such complexity. Ontologies have become viable and effective tools to practitioners for developing applications requiring data and process interoperability, big data management, and automated reasoning on knowledge. We investigate how and to what extent ontologies have been used to support smart city services and we provide a comprehensive reference on what problems have been addressed and what has been achieved so far with ontology-based applications. To this purpose, we conducted a systematic literature review finalized to presenting the ontologies, and the methods and technological systems where ontologies play a relevant role in shaping current smart cities. Based on the result of the review process, we also propose a classification of the sub-domains of the city addressed by the ontologies we found, and the research issues that have been considered so far by the scientific community. We highlight those for which semantic technologies have been mostly demonstrated to be effective to enhance the smart city concept and, finally, discuss in more details about some open problems

    A novel multi-level and community-based agent ecosystem to support customers dynamic decision-making in smart grids

    Get PDF
    Electrical systems have evolved at a fast pace over the past years, particularly in response to the current environmental and climate challenges. Consequently, the European Union and the United Nations have encouraged the development of a more sustainable energy strategy. This strategy triggered a paradigm shift in energy consumption and production, which becoming increasingly distributed, resulted in the development and emergence of smart energy grids. Multi-agent systems are one of the most widely used artificial intelligence concepts in smart grids. Both multi-agent systems and smart grids are distributed, so there is correspondence between the used technology and the network's complex reality. Due to the wide variety of multi-agent systems applied to smart grids, which typically have very specific goals, the ability to model the network as a whole may be compromised, as communication between systems is typically non-existent. This dissertation, therefore, proposes an agent-based ecosystem to model smart grids in which different agent-based systems can coexist. This dissertation aims to conceive, implement, test, and validate a new agent-based ecosystem, entitled A4SG (agent-based ecosystem for smart grids modelling), which combines the concepts of multi-agent systems and agent communities to enable the modelling and representation of smart grids and the entities that compose them. The proposed ecosystem employs an innovative methodology for managing static or dynamic interactions present in smart grids. The creation of a solution that allows the integration of existing systems into an ecosystem, enables the representation of smart grids in a realistic and comprehensive manner. A4SG integrates several functionalities that support the ecosystem's management, also conceived, implemented, tested, and validated in this dissertation. Two mobility functionalities are proposed: one that allows agents to move between physical machines and another that allows "virtual" mobility, where agents move between agent communities to improve the context for the achievement of their objectives. In order to prevent an agent from becoming overloaded, a novel functionality is proposed to enable the creation of agents that function as extensions of the main agent (i.e., branch agents), allowing the distribution of objectives among the various extensions of the main agent. Several case studies, which test the proposed services and functionalities individually and the ecosystem as a whole, were used to test and validate the proposed solution. These case studies were conducted in realistic contexts using data from multiple sources, including energy communities. The results indicate that the used methodologies can increase participation in demand response events, increasing the fitting between consumers and aggregators from 12 % to 69 %, and improve the strategies used in energy transaction markets, allowing an energy community of 50 customers to save 77.0 EUR per week.Os últimos anos têm sido de mudança nos sistemas elétricos, especialmente devido aos atuais desafios ambientais e climáticos. A procura por uma estratégia mais sustentável para o domínio da energia tem sido promovida pela União Europeia e pela Organização das Nações Unidas. A mudança de paradigma no que toca ao consumo e produção de energia, que acontece, cada vez mais, de forma distribuída, tem levado à emergência das redes elétricas inteligentes. Os sistemas multi-agente são um dos conceitos, no domínio da inteligência artificial, mais aplicados em redes inteligentes. Tanto os sistemas multi-agente como as redes inteligentes têm uma natureza distribuída, existindo por isso um alinhamento entre a tecnologia usada e a realidade complexa da rede. Devido a existir uma vasta oferta de sistemas multi-agente aplicados a redes inteligentes, normalmente com objetivos bastante específicos, a capacidade de modelar a rede como um todo pode ficar comprometida, porque a comunicação entre sistemas é, geralmente, inexistente. Por isso, esta dissertação propõe um ecossistema baseado em agentes para modelar as redes inteligentes, onde vários sistemas de agentes coexistem. Esta dissertação pretende conceber, implementar, testar, e validar um novo ecossistema multiagente, intitulado A4SG (agent-based ecosystem for smart grids modelling), que combina os conceitos de sistemas multi-agente e comunidades de agentes, permitindo a modelação e representação de redes inteligentes e das suas entidades. O ecossistema proposto utiliza uma metodologia inovadora para gerir as interações presentes nas redes inteligentes, sejam elas estáticas ou dinâmicas. A criação de um ecossistema que permite a integração de sistemas já existentes, cria a possibilidade de uma representação realista e detalhada das redes de energia. O A4SG integra diversas funcionalidades, também estas concebidas, implementadas, testadas, e validadas nesta dissertação, que suportam a gestão do próprio ecossistema. São propostas duas funcionalidades de mobilidade, uma que permite aos agentes mover-se entre máquinas físicas, e uma que permite uma mobilidade “virtual”, onde os agentes se movem entre comunidades de agentes, de forma a melhorar o contexto para a execução dos seus objetivos. É também proposta uma nova funcionalidade que permite a criação de agentes que funcionam como uma extensão de um agente principal, com o objetivo de evitar a sobrecarga de um agente, permitindo a distribuição de objetivos entre as várias extensões do agente principal. A solução proposta foi testada e validada por vários casos de estudo, que testam os serviços e funcionalidades propostas individualmente, e o ecossistema como um todo. Estes casos de estudo foram executados em contextos realistas, usando dados provenientes de diversas fontes, tais como comunidades de energia. Os resultados demonstram que as metodologias utilizadas podem melhorar a participação em eventos de demand response, subindo a adequação entre consumidores e agregadores de 12 % para 69 %, e melhorar as estratégias utilizadas em mercados de transações de energia, permitindo a uma comunidade de energia com 50 consumidores poupar 77,0 EUR por semana

    Exploiting Semantic Technologies in Smart Environments and Grids: Emerging Roles and Case Studies

    Get PDF
    Semantic technologies are currently spreading across several application domains as a reliable and consistent mean to address challenges related to organization, manipulation, visualization and exchange of data and knowledge. Different roles are actually played by these techniques depending on the application domain, on the timing constraints, on the distributed nature of applications, and so on. This paper provides an overview of the roles played by semantic technologies in the domain of smart grids and smart environments, with a particular focus on changes brought by such technologies in the adopted architectures, programming techniques and tools. Motivations driving the adoption of semantics in these different, but strictly intertwined, fields are introduced using a strong application-driven perspective. Two real-world case studies in smart grids and smart environments are presented to exemplify the roles covered by such technologies and the changes they fostered in software engineering processes. Learned lessons are then distilled and future adoption scenarios discussed

    Multiagent-Based Control for Plug-and-Play Batteries in DC Microgrids with Infrastructure Compensation

    Get PDF
    The influence of the DC infrastructure on the control of power-storage flow in micro- and smart grids has gained attention recently, particularly in dynamic vehicle-to-grid charging applications. Principal effects include the potential loss of the charge–discharge synchronization and the subsequent impact on the control stabilization, the increased degradation in batteries’ health/life, and resultant power- and energy-efficiency losses. This paper proposes and tests a candidate solution to compensate for the infrastructure effects in a DC microgrid with a varying number of heterogeneous battery storage systems in the context of a multiagent neighbor-to-neighbor control scheme. Specifically, the scheme regulates the balance of the batteries’ load-demand participation, with adaptive compensation for unknown and/or time-varying DC infrastructure influences. Simulation and hardware-in-the-loop studies in realistic conditions demonstrate the improved precision of the charge–discharge synchronization and the enhanced balance of the output voltage under 24 h excessively continuous variations in the load demand. In addition, immediate real-time compensation for the DC infrastructure influence can be attained with no need for initial estimates of key unknown parameters. The results provide both the validation and verification of the proposals under real operational conditions and expectations, including the dynamic switching of the heterogeneous batteries’ connection (plug-and-play) and the variable infrastructure influences of different dynamically switched branches. Key observed metrics include an average reduced convergence time (0.66–13.366%), enhanced output-voltage balance (2.637–3.24%), power-consumption reduction (3.569–4.93%), and power-flow-balance enhancement (2.755–6.468%), which can be achieved for the proposed scheme over a baseline for the experiments in question.</p

    Microgrid system design based on model based systems engineering: the case study in the Amazon region / Projeto de sistemas de microrredes baseado em engenharia de sistemas baseado em modelos: um estudo de caso na regiĂŁo AmazĂ´nica

    Get PDF
    Microgrid is a technically and economically viable opportunity to meet the demands of populations that, for various reasons, do not have access to electricity. The complexity of Smart Grid (SG) systems requires considerable engineering effort in the design process.  Designing this type of complex system requires new approaches, methods, concepts and engineering tools. Where, requirements analysis plays a major role in better characterizing, understanding and specifying the domain of application that SG systems should solve. This work presents a systemic proposal based specifically on System Systems (SoS) which anticipates the formalization of requirements, aiming to understand, analyze and design SG within the scope of Model Based Systems Engineering (MBSE). The definition of a microgrid from the SoS perspective is presented in order to provide a complete view of its life cycle. Requirements would be represented in an Objective Oriented Requirements Engineering (GORE) approach, specifically using visual diagrams based on the Keep All Objectives Satisfied (KAOS) method, where network operation and control will be formally represented. A case study for small communities in the equatorial Amazon Forest is used as a case study for the proposed method
    • …
    corecore