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Abstract: The influence of the DC infrastructure on the control of power-storage flow in micro- and
smart grids has gained attention recently, particularly in dynamic vehicle-to-grid charging applica-
tions. Principal effects include the potential loss of the charge–discharge synchronization and the
subsequent impact on the control stabilization, the increased degradation in batteries’ health/life,
and resultant power- and energy-efficiency losses. This paper proposes and tests a candidate so-
lution to compensate for the infrastructure effects in a DC microgrid with a varying number of
heterogeneous battery storage systems in the context of a multiagent neighbor-to-neighbor control
scheme. Specifically, the scheme regulates the balance of the batteries’ load-demand participation,
with adaptive compensation for unknown and/or time-varying DC infrastructure influences. Simula-
tion and hardware-in-the-loop studies in realistic conditions demonstrate the improved precision of
the charge–discharge synchronization and the enhanced balance of the output voltage under 24 h
excessively continuous variations in the load demand. In addition, immediate real-time compen-
sation for the DC infrastructure influence can be attained with no need for initial estimates of key
unknown parameters. The results provide both the validation and verification of the proposals
under real operational conditions and expectations, including the dynamic switching of the heteroge-
neous batteries’ connection (plug-and-play) and the variable infrastructure influences of different
dynamically switched branches. Key observed metrics include an average reduced convergence
time (0.66–13.366%), enhanced output-voltage balance (2.637–3.24%), power-consumption reduction
(3.569–4.93%), and power-flow-balance enhancement (2.755–6.468%), which can be achieved for the
proposed scheme over a baseline for the experiments in question.

Keywords: multiagent reinforcement learning; decentralized control; battery energy storage; DC
microgrid; renewable energy

1. Introduction
1.1. Background and Motivation

Efficient and easy-to-implement techniques to ensure the optimal management of
power flow in the future-facing applications of power distribution, especially micro- and
smart grids, and vehicle-to-grid charging (V2G) applications, are experiencing increased
priority in recent times. Principal drivers behind this prioritization include the urgent need
to move towards more sustainable, low-emission energy systems to address climate change
and fossil-fuel scarcity—partly achieved through the decarbonization, digitalization, and
decentralization of electrical power systems [1]. The search for practical solutions for
power management and related control issues for power-distribution applications has
therefore been pursued with great interest. For microgrids’ power-flow performance, an
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interactive two-layer control was proposed by N. Khosravi et al. [2] to stabilize the voltage
and frequency by internal voltage and current control loops; furthermore, to minimize the
steady-state error through the second control layer. Hence, the efficient management of the
voltage and frequency was verified. However, the development is suggestable in future
works in terms of the excessive renewable/intermittent integration, grid stability, and the
consideration of power-flow-balance sustainability issues, such as the load balance and
power supply quality. This was preceded by a multiagent-based control by N. Altin et al. [3]
to manage a group of renewable/intermittent resources, energy shortages, and critical
non-DC load demands in a DC microgrid. A constant output voltage was accomplished in
different operation scenarios. Nevertheless, a more real-time verification of the proposed
strategy was required. The introduction of artificial intelligence (AI) for managing the
power flow in multimicrogrid systems was a typical attempt in [4] to lower the peak of
the demand side to the median ratio and expand the profit. Specifically, a deep neural
network was employed with no direct access to the users’ information. In addition, the
decisions of pricing were predictively optimized through an RL based on the Mount Carlo
simulation. Thus, the effectiveness of the proposed strategy was confirmed by the results
under uncertainty. In the same evolutionary approach, the problems of energy balance,
economy, and sustainability in electric vehicles (EVs) and EV charging applications have
promoted recent attention, where the variability of the state of available power in EVs and
its impact on management was a point of focus. Particularly, a suggestion was made by
M. Niri et al. [5] through an established battery equivalent circuit model coupled with a
thermal model at first. Then, a long-term prediction of the load was accomplished based on
Markov models and wavelet analysis. Accordingly, a validated performance was proven
by the results from the simulation, and the results of a further experiment on lithium-ion
cells under reality-deriving scenarios. The reduction in the degradation in the lithium-ion
batteries can significantly support the participation of the EV in feeding the grid through
V2G during the out-of-use time. A solution was proposed by M. T. Bui et al. [6] through an
introduced semi-imperial model to predict and reduce the energy-capacity reduction in
the batteries in the EV by capturing the degradation behavior based on the calendar and
cycling aging. Hence, the degradation acceleration was reduced, and the aging process was
imitated from 7.3 to 26.7% for the first 100 days of operation, and from 8.6 to 12.3% after
one year of operation.

The attainment of successful solutions for power-storage flow management is at the
forefront of the key drivers enhancing power-flow management performance in microgrids
and V2G. This is due to the critical role played by energy-storage systems in maintaining
renewable energy integration and localized balancing/regulatory services in decentral-
ized and autonomous power-distribution networks [1,7,8]. Accordingly, there has been
a sustained effort to attain active and efficient solutions; a taxonomy and summary of
state-of-the-art approaches is given in [9], later expanded into [10], focusing on intelligent
control solutions, given the success of approaches in this area. As discussed in these
recent summary/review works, the introduction of multiagent reinforcement learning
(MARL) has generally outperformed other AI applications for power-flow management
in microgrids with multiple storage systems to manage. This is due to the direct learning
from local observed data in the agents (with a minimal exchange of data to neighbors),
allowing the relaxation of accurate model requirements, online adaptation with the qualifi-
cation of applying offline measurements into the online applications, precise data-driven
predictions with no forecasting model, and learning modes to optimize local and holistic
power flows and balances [11–13]. Hence, there has been a significant focus on explor-
ing and attaining successful solutions based on MARL, including primary–secondary
regulatory and balance control as an intelligent emerging solution for solving compli-
cated power-storage flow-management problems. The specific focus of this paper is to
attain an improved MARL-based control for the battery-energy-storage systems (BESSs) of
microgrid/V2G applications.
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1.2. Statement of Problem

Despite the effectiveness and reliability achieved by the above-elucidated control
approach in managing energy-storage systems, particularly batteries in the context of this
article, the inaccuracy of the charge–discharge synchronization scenarios for the batteries
has been an existing defect, especially under sudden high load variation or excessive
continuous load fluctuation. A trade-off was identified between the consumption of the
real-time energy-storage capacity and the charge–discharge synchronization precision.
Hence, the accuracy tends to reduce with the increase in the real-time utilization of the
battery’s capacity, constraining the effective capacity of the storage systems to maintain
balance. Without artificial capacity constraints, the circulating current and temporary
overloading of some storage systems in a network are existing drawbacks that upset the
optimization and steadiness of the control, reduce the balance and sustainability of the
power flow, deteriorate the health and life of the batteries, and limit the introduction and
buffering capability of renewable energy [14–16]. DC infrastructure influences are a crucial
magnifier for raising the impact of these drawbacks in real operation, potentially leading to
the disparity of load participation due to the impact of the influence of the power electronics
and transmission lines. This violates the charge–discharge synchronization accuracy if
not adequately dealt with when designing the control system, and leads to the hypothesis
that the compensation of these influences may lead to an effective capacity increase in the
storage systems and improved performance under the MARL-based control.

Therefore, the infrastructure, primarily the transmission lines and power electronics,
has a potentially major impact on the management of power-storage flow in the real-world
operation of the MARL-based control for the following influences [16–18].

1. Infrastructure influences are the major source of power losses in any electrical power
system, whether it is generation, transmission, or distribution, and heterogeneous
infrastructure around storage systems can have complex destabilizing effects if not
compensated for.

2. Infrastructure is a major influencer on the optimization and steadiness of the control
process. Therefore, the proper compensation of DC infrastructure influences is a
key factor in a successful control approach, and will be required for the balanced
management of energy flow and long-term sustainability.

1.3. State-of-the-Art Summary

Per the above discussions, taking the DC infrastructure impact into account when de-
signing the control system holds vital significance in raising the effectiveness of the balance
control of storage systems in real operational environments. In accordance, there have been
recent attempts to accomplish optimal or near-optimal solutions. In this sense, near-optimal
implies close to the best possible, with convergence to optimal in an asymptotic limit for
learning-based or adaptive solutions. J. Ma et al. [19] have suggested a sharing of the
power flow and voltage control based on hierarchical control to minimize the transmission
lines’ influence on the DC microgrids. However, the strategy still needs local infrastructure
information in addition to the inconsideration of the energy-storage units, since they are
different from other energy units due to the charge and discharge. The distributed hierar-
chical minimization of power losses was the suggestion by Y. Jiang et al. [20] to minimize
the power losses of distributed energy resources connected in parallel to DC microgrids,
wherein the hierarchical control was formulated to have a distributed gradient algorithm at
the top layer, a consensus correction at the secondary layer, and then a droop correction at
the local layer. Accordingly, an optimal current allocation was achieved based on the multi-
agent data exchange, even though local information was still required for infrastructure
details, and there was no consideration of energy storage. A. Aluko et al. [21] proposed an
adapted secondary control through the adaptation of the droop coefficient to include the
transmission line resistance in a DC islanded microgrid. In accordance, the transmission
line resistance impact appeared as an increase in the load demand that was subtracted from
the secondary reference in the droop control to keep the output voltage balanced. Although,
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information is yet needed regarding the local transmission-line-resistive reactance, with
no application on energy storage. This was followed by a suggestion based on droop gain
adaptation by M.A. Mohammed et al. [22] to reduce the losses of power in a DC microgrid
for an electric aircraft. A converter losses model was accomplished by adapting the droop
gain to be equivalent to the converter series resistance. Hence, a minimization of the overall
losses was achieved. However, some local infrastructure information is still mandatory. The
most recent proposition by C. Guo [23] has followed the adaptation of the droop coefficient
to compensate for the deviation of the output voltage due to the DC infrastructure influence
in a DC microgrid. However, local information is still obligatory regarding the transmission
lines’ DC resistance.

Therefore, based on the observation followed by the existing state-of-the-art:

• A commitment is compulsory to all or part of the local infrastructure information.
• Any modification in the local infrastructure requires a mandatory adjustment of the

control strategy parameters and factors.
• Any reality variation in the local infrastructure influence, such as temperature varia-

tions, unmonitored infrastructure flaws, and an update of the infrastructure length or
conductance material, results in the unbalance of the control process and a defective-
ness of the microgrid operation.

1.4. Contributions

This paper proposes an optimized adaptive multiagent-based primary–secondary
control to enhance the precision of the synchronization for the charge–discharge scenarios
of distributed BESSs in a DC autonomous microgrid under realistic infrastructure influ-
ences, including a variable number of heterogeneous batteries, 24 h excessive variations in
the load, environmental influences (temperature fluctuations), and infrastructure impacts.
Specifically, an adaptation was suggested based on the multiagent neighbor-to-neighbor
transfer of information to balance the immediate real-time participation level in the load
consumption based on the neighbors’ real-time correction of the participation level. Fur-
thermore, a method based on the neighbor-to-neighbor multiagent was introduced for
the compensation of the DC infrastructure impact on the control, with no requirement for
pregiven information on the local infrastructure. A compensator of the real operational
influences was introduced based on the real-time local and neighbors’ measurements.
Consequently, the voltage drop due to the DC real operational influences on the control
was measured in real-time and then compensated at the decentralized secondary correc-
tion through an extra charge or discharge. Thus, qualitative improvements have been
accomplished by the new optimized adaptive controller over the existing state-of-the-art to
support the trustworthiness and success of the microgrid in real-world operations and to
fulfill the below-demonstrated roles:

1. Accurate charge–discharge synchronization and the enhanced steadiness of the output
voltage of the BESSs under 24 h variations in the load, different operational conditions
regarding different batteries’ capacities and dissimilar initial states-of-charge (SOCs),
infrastructure influences, and the decentralization of the control and communication.

2. A qualified compensation to the DC influence of the infrastructure on the control
process during charge/discharge scenarios, with no need for preknown information
regarding the local infrastructure specifications, such as the transmission line lengths
and conductance material, under a decentralized communication and control.

3. Enhanced overcoming of circulating current/overloading for the participating BESSs
under the above-presented influences of the real operation.

4. A developed protective plug-and-play with no violation in the steadying of the
control process, the steadying of the output voltage, and the precision of the charge–
discharge synchronization. Hence, the independence of the microgrid operation from
the number of participating BESSs.
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1.5. Article Structure

The rest of the paper is structured as follows. Section 2 provides a full detailed
explanation of the design and operational methodology of the proposed extended MARL-
based control strategy for plug-and-play with infrastructure compensation. A presentation
of the achieved results, with a comprehensive discussion, is given in Section 3. Finally, an
informative conclusion is provided in Section 4.

2. Methodology
2.1. Approach and Theory of Control
2.1.1. Theory

The principle and development strategy for the proposed adapted multiagent primary–
secondary control is based on the exploitation of the fundamental features of the MARL
power-management approach toward the accomplishment of the above-explained op-
timized adapted solution (in the Section 1.4) for the control issue investigated (in the
Section 1.2) of the MARL-based primary–secondary control. The MARL approach is an
active, successful, and emerging solution to potentially solve complicated power- and
energy-management problems in multistage/multidimensional power, generation, stor-
age, and distribution environments, such as microgrids. Hence, it fundamentally serves
the fulfillment of multidecisionmakers in a unified environment. Each independent de-
cisionmaker in the MARL approach is an agent responsible for taking action (aN

Kn
) in the

power-management environment based on an individual received state (SN
Kn

) and perceived
reward (rN

Kn
), as demonstrated in Figure 1 [24,25].
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Figure 1. Multiagent reinforcement learning (MARL) solution of power–management environments.

Multiagent primary–secondary management was a prominent recent MARL applica-
tion for solving power-flow management in modern decentralized networks, especially
managing power-storage flow. Thus, many recent power-management research works
have suggested the active and successful applications of managing energy-storage systems
based on MARL, where the management of battery-energy-storage systems was the most
successful [10,26,27]. The success of the abovementioned MARL-based control is promoted
by three fundamental features. The first is that there is no necessity for a central control
authority or communication (although it may be prudent to have some minor central
regulatory agent for critical service regulation, acting as the system operator, which can
be achieved with MARL). This model is envisioned for the decentralization of control
and communication in a utility-free power-distribution network to implement a variety of
distributed demands, such as in rural areas, industrial clusters, the grids of microgrids, and
distributed V2G charging units, wherein the management policy of each independent agent
of the MARL-based primary–secondary control is entirely dependent on local measurement
and neighbor-to-neighbor communication, as explained in Figure 2. The last one refers to
the general construction of the MARL-based primary–secondary control policy [10,28,29].
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Figure 2. The general construction of MARL–based primary–secondary power management.

The second feature of the MARL-based control is the more precise stability and balance
that can be accomplished (in principle) in the control process due to the several cascade-
correction stages, as shown in the general structure of the conventional multiagent-based
primary–secondary management in Figure 2. Specifically, the management of each battery-
energy-storage system (BESS) in the approach is through a decentralized, multistage, and
multicorrection approach. Each stage of the decentralized-agent-based controller corrects
for the stage before it in a cascaded, supervisory trimming situation. The first stage of the
primary is local regulation, which is responsible for managing the power-storage flow of
the BESS. This is further corrected by the second stage of the primary, which is based on the
level of participation in the overall load demand. The first stage of the secondary corrects
for the primary management. This is under the further correction of the second secondary
stage based on multiagent neighbor-to-neighbor communication (normally a consensus cor-
rection based on a multiagent neighbor-to-neighbor correction from the neighbors) [10,29].
The third valued feature of the MARL-based policy is the possibility of boosting the accu-
racy and raising the intelligence through the introduction of adaptive or nonlinear elements
coupled with machine learning (ML), for example, through an artificial neural network
(ANN), as outlined in Figure 3. The last one demonstrates the general structure of the
ANN-based reinforcement learning. In particular, the accomplished actions are compared
with other possible successful actions to track toward the optimized solution. Accordingly,
the application of the ANN-based MARL control on complicated multivariable nonlinear
control applications requiring high accuracy has shown significant success, such as in
autonomous vehicles, aircraft applications, nuclear management, and high-rate renew-
able/intermittent power control units [27,30–32]. The MARL-based control has earned
remarkable success in solving complicated power-storage control defects, specifically in
balancing the flow of power storage in advanced applications of power distribution, such
as micro/smart grids and V2G [17].
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2.1.2. Communication in MARL

The application of a multiple-agent approach that interacts and influences in a shared
environment has been successfully introduced in modern power management. Accordingly,
mandatory decentralization and autonomy are fulfilled for making decisions regarding
power-flow organizing, especially power-storage flow [10]. This is due to the capability
of the group of agents that are distributed in a common environment to communicate
their information, such as sharing their local observations, current and future intentions,
and their experiences from previous observations, to enhance the stability of the learning.
Accordingly, a better knowledge of the environment can be achieved by each agent to ac-
complish the better coordination of the behavior [33]. Therefore, the agents’ communication
in MARL (Comm-MARL) plays a significant role in improving the agents’ learning in the
RL (improving the learning through communication). The systematic and structural way of
establishing a Comm-MARL can conventionally be categorized into nine main dimensions,
as demonstrated in Figure 4, further identified in the below points [33,34].
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1. Type of communication: This dimension identifies the communication topology for
which agents intend to communicate with each other or send/receive immediate
messages. In a multiagent system interacting in an environment, agents directly
communicate with each other under different categories based on the communication
topology. “Neighbor-to-Neighbor” learning allows communication only with the
neighbors’ agents. This has several successful applications for fulfilling the intelligent
decentralization of managing the power flow, particularly power storage, such as the
multiagent primary–secondary strategy of managing the BESSs. While the communi-
cation is not limited to the neighbors’ agents in the “Other Agents Learning”, in the
“proxy-based Comm-MARL”, communication is indirect between the agents, where a
medium agent is provided to be viewed first by the agent.

2. Type of policy: The policy in the Comm-MARL refers to the intentions and motives of
making decisions to make communication and transfer messages (building a commu-
nication link). This can be either mandatory/predefined under specific requirements
or learned based on the requirements of providing the best communication to enhance
the learning of the environment.

3. Communication messages: This signifies the piece of learning information that is
decided to be transferred through the communication link. This might include a
mandatory update of information and historical experiences/future intentions to
enhance the learning. Furthermore, it can be sent directly between the agents or in
multiple steps via the proxy agent.

4. Combining messages: The immediately received multiple messages need to be com-
bined before processing to the agent’s internal model. An independent decision by
the agent is taken on how to combine the multiple messages if the proxy is missed.
Otherwise, the combining role is the proxy’s responsibility.

5. Integration: The integration of the combined messages to the agent’s learning is
classified based on the part of the model involved in the “Policy-Level”, when the
combined messages are imported to the policy model (which means the received
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messages are considered in the next intending action), the “Value-Level”, when the
messages are received at the value function (the Q-table), and the “Policy-Value-Level”,
when both levels are responsible for integrating the combined messages.

6. Constraints: Real-world influences might establish limitations on communication in
MARL, such as the cost of communication and noisy environments. Accordingly,
a variety of constraints in communication were found, such as the limitation in the
bandwidth, a change in the messages’ distribution due to noisy environments, and
transmitted messages’ combinations through one medium.

7. Learning: Learning in the Comm-MARL denotes the update, followed by communi-
cation protocols, communication policies, and the messages’ contents, based on the
level of learning for the agent. Utilized feedback (or reward) exists in MARL, allowing
for the backpropagation of the gradients between the agents to enrich the agents’
communication learning. In accordance, learning in communication can be classified
based on the way to utilize the feedback, where the learning is “Reinforced” if another
RL algorithm is employed, and “Differentiable” if the learning in communication is
improved by the backpropagated gradients from the previous communicatees, with
no further added RL algorithm.

8. Training: The scheme of training in the Comm-MARL explains the dimensional deter-
minations of utilizing the received experience. This can be classified as “Centralized-
Learning” if the experiences are grouped in a central unit for the learning of all agents,
and “Decentralized-Learning” if the experience is received individually by each agent
through independent training.

9. Goal: The aim of controlling the agents can be classed as “Cooperative” when the
performance of the whole team is the point of focus, “Competitive” if the aim is only
maximizing the local reward, and "Cooperative–Competitive" if a mixed aim of the
previously explained aims is the requirement of the control.

The Markov game (MG) is the multiagent version of the Markov decision process
(MDP). Accordingly, the learning of the N number of agents interacting in a unified
environment can be represented by a set of states (S) based on a set of observations,
Qi (i ε N), and actions, Ai (i ε N). Therefore, in any immediate timing step of the agent i,
the action is taken, ai ε Ai, the reward is obtained as a function of S, ri: S × Ai→ R, and
the observation is taken, Oi: S→ ON. Hence, any distributed agent aims to maximize the
discounted reward (Ri), as explained in (1). Here, γ ε [0, 1] is the discounting factor [5,35].

Ri= ∑T
t=0 γtrt

i (1)

The communication protocols and conversation policies are the framework of the
agents’ communication within the unified environment, where a hidden state of the en-
coded observation is attained; then, a decision is made regarding who the intended recipient
agent of the message is and when each agent should send a message through the schedul-
ing, as explained in the scheduling function (fshed) in (2), in which the encoded messages({

mt(0)
i

}Nm

1

)
are arranged based on the scheduling policy in the graph of the output

messages
({

Gt(l)
}Lg

1

)
. Nm is the number of encoded messages and Lg is the number

of scheduled graphs. Then, a decision is made based on the integration of the received
messages through the processing, where the target encoded message in the specific sched-

uled graph
({

mt(Lg)
i

}Nm

1

)
is processed based on the followed policy for the received{

mt(0)
i

}Nm

1
and

({
Gt(l)

}Lg

1

)
through the processing function (fmp), as formed in (3). Fi-
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nally, the experiment is shared with the other agents responsible for the communication to
enhance the training, as explained in Figure 5 [35].{

Gt(l)
}Lg

1
= f sched

(
mt(0)

i , . . . , mt(0)
Nm

)
(2)

{
mt(Lg)

i

}Nm

1
= f mp(mt(0)

1 , . . . , mt(0)
Nm , Gt(1), ..., Gt(Lg)) (3)
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Hence, the agents communicate based on the followed protocol and the communi-
cation type. Figure 6 demonstrates the neighbor-to-neighbor communication that was
verified between the interacting agents through direct communication links via immediate
messages and the combinations of messages based on the communicative act with no proxy.
For the practical implementation, TCP/IP or UDP/IP datagrams (either with or without
priority, time-synchronized clocks, and bandwidth reservation) can be used within a wider
Internet-of-Things (IoT) framework. Transmission latency and delays will be very low
(typically on the order of µs) in most practical situations when compared to the frequency
of the message queuing/update (typically on the order of ms). This will be especially true
when a dedicated ‘utility intranet’ or microgrid communication platform is deployed.
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2.2. Principle of the Operation

This study reflects the application of the proposed adapted multiagent primary–
secondary strategy with the compensation of the DC infrastructure influence on each BESS
of the DC autonomous microgrid; the infrastructure impact is demonstrated in Figure 7.
The aim is to implement a 24 h variable-load demand, balanced collaboratively by the par-
ticipating (i = 1→ N) number of battery-energy-storage systems (BESSs) and using a 24 h
solar-generation profile to offset the grid load. Furthermore, the presence of the multiagent
bidirectional neighbor-to-neighbor transfer of information is assumed (note that no specific
communication channel characteristics are assumed, and that no encoding/quantization
errors, packet overheads, packet losses, or packet latencies/jitters are assumed to occur).
Accordingly, a bidirectional transfer is fulfilled between the neighbors’ BESSs of the imme-
diate real-time measurements for the voltage consensus correction (VLi_dash), the current
consensus correction (ILi_dash), the locally measured state-of-charge (SOC_i), and the cor-
rection for the participation level based on the required load consumption (Vref_droop_i_M).
The variable measured DC-resistive influence of the local infrastructure for the branches of
the microgrid’s distributed regions are as follows: the load-line-resistive influence (RSi), the
BESS-line-resistive influence (RBi), and the transmission-connection-line-resistive influence
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(RTi), respectively. The distributed BESSs are formulated as agents operating within the mi-
crogrid environment, each fulfilling an independent local power-flow balance; in addition,
collaborating with the neighbors’ BESSs to accomplish the overall balanced sustainable
power flow of the microgrid. Therefore, a corrected level of participation is attained at
each BESS under the active compensation of the DC infrastructure influence on the control,
with no necessity for preprovided information on the local infrastructure details. Hence,
the precise synchronization of the charge–discharge scenarios is implemented for the mi-
crogrid power-storage flow by the below-elucidated suggested decentralized multistage
infrastructure-influence-compensator control strategy.
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2.2.1. The Compensation of the DC Infrastructure Influence on the Control

The compensation of the DC infrastructure influence on the control process holds vital
significance in the power-flow balance of the microgrid’s real-world operation. Thus, the
success, validation, and optimization of the control in the real-world operation depends
entirely on how successful the compensation of the DC infrastructure influence is [36,37].
Accordingly, a compensation method based on multiagent neighbor-to-neighbor communi-
cation has been introduced to locally compensate for the infrastructure impact on the control
process, with no need for pregiven information regarding the local infrastructure details.

The proposed real-time decentralized multiagent-based infrastructure-influence com-
pensation of the Nth region (BESS N) and the region before it (BESS N − 1), explained in
Figure 8, is based on the idea of converting the DC infrastructure impact into the form of an
immediate real-time measured voltage drop at the distributed infrastructure branch. This
voltage drop can be subsequently compensated by the decentralized secondary correction
of each distributed BESS. This relatively straightforward approach reduces the violation of
the charge–discharge synchronization accuracy and the deviation of the output voltage,
assuming that an appropriate equivalent voltage drop can be synthesized. Since the op-
erational methodology of each decentralized BESS in the microgrid experiences different
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instantaneous operational conditions and scenarios, three scenarios were constructed to
emulate the real operation in the simulations and hardware-in-the-loop (HiL)-based experi-
ments. These scenarios were taken into consideration when measuring and compensating
for the DC infrastructure impact on the controller regarding the discharging participation,
charging participation, and plug-and-play off-participation, as described below [16,36,37].

Batteries 2023, 9, x FOR PEER REVIEW 11 of 36 
 

the success, validation, and optimization of the control in the real-world operation de-
pends entirely on how successful the compensation of the DC infrastructure influence is 
[36,37]. Accordingly, a compensation method based on multiagent neighbor-to-neighbor 
communication has been introduced to locally compensate for the infrastructure impact 
on the control process, with no need for pregiven information regarding the local infra-
structure details. 

The proposed real-time decentralized multiagent-based infrastructure-influence 
compensation of the Nth region (BESS N) and the region before it (BESS N − 1), explained 
in Figure 8, is based on the idea of converting the DC infrastructure impact into the form 
of an immediate real-time measured voltage drop at the distributed infrastructure branch. 
This voltage drop can be subsequently compensated by the decentralized secondary cor-
rection of each distributed BESS. This relatively straightforward approach reduces the vi-
olation of the charge–discharge synchronization accuracy and the deviation of the output 
voltage, assuming that an appropriate equivalent voltage drop can be synthesized. Since 
the operational methodology of each decentralized BESS in the microgrid experiences dif-
ferent instantaneous operational conditions and scenarios, three scenarios were con-
structed to emulate the real operation in the simulations and hardware-in-the-loop (HiL)-
based experiments. These scenarios were taken into consideration when measuring and 
compensating for the DC infrastructure impact on the controller regarding the discharg-
ing participation, charging participation, and plug-and-play off-participation, as de-
scribed below [16,36,37]. 

 
Figure 8. The real–time decentralized multiagent-based compensation of the DC infrastructure in-
fluence on the control process. 

Infrastructure-Influence Compensation during Charging 
The successful compensation of the DC infrastructure influence on the control during 

charging is important for reasons discussed in the Introduction and further summarized 
here. This is due to the high current flowing through the microgrid network, since the PV 
generation implements the load consumption in addition to charging the participating 
BESSs with a negative battery current (Ib_N < 0). Accordingly, the charging scenario of the 
(N) number of BESSs in the microgrid reflects an inversely proportional relationship be-
tween the voltage at each distributed node and how far the node is from the voltage of the 

Figure 8. The real–time decentralized multiagent-based compensation of the DC infrastructure
influence on the control process.

Infrastructure-Influence Compensation during Charging

The successful compensation of the DC infrastructure influence on the control during
charging is important for reasons discussed in the Introduction and further summarized
here. This is due to the high current flowing through the microgrid network, since the
PV generation implements the load consumption in addition to charging the participating
BESSs with a negative battery current (Ib_N < 0). Accordingly, the charging scenario of
the (N) number of BESSs in the microgrid reflects an inversely proportional relationship
between the voltage at each distributed node and how far the node is from the voltage of the
main source, represented by the microgrid bus voltage at the photovoltaic (PV)-generation
side (V_bus). Hence, the voltage difference between the voltage at the distributed node
(VCN) and the voltage at the neighbor-region node before it (VCN − 1), which is already
measured locally by the neighbor BESS N − 1 and sent to the BESS N via the multiagent
neighbor-to-neighbor communication, is due to the DC infrastructure impact of the Nth
region transmission connection branch (RTN). This introduces a disparity of the DC bus
voltage at each distributed region. Thus, this raises the DC current at the transmission
connection branch (ILTN) flowing between the microgrid-distributed regions, as clarified
in Figure 5. In consequence, the below-explained impacts are experienced:

• The voltage equilibrium of the microgrid DC bus is violated.
• The charge–discharge synchronization accuracy is disrupted.
• The balance of the BESSs’ participation level in load demand is compromised.
• The control process stabilization is negatively affected.

Therefore, based on the above-demonstrated remarks, the vital DC influence of the
infrastructure on the control strategy comprises any influence within the boundary of
the control environment, and is typically not included when designing for the control
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stability factors. Since the decentralized control methodology aims to balance the output
voltage at the load terminals, the increase in the load voltage due to the DC load branch
infrastructure impact in the form of a voltage (VRSN) introduces a disparity in the load-
participation balance. Likewise, the voltage due to the DC infrastructure impact at the
transmission connection branch (VRTN) establishes a real-time interruption in the balancing
sustainability for the microgrid bus. Whereas the voltage due to the BESS line infrastructure
impact (VRBN) affects the increase in the infrastructure losses, it does not affect the control
process, because it is not included when designing for the control factors.

Subsequently, to compensate for the infrastructure influence on the controller, it
is obligatory to consider the VRSN and VRTN when designing the control system. The
conventional method of compensating for the DC infrastructure influence of the control is to
add the DC impact of the infrastructure to the calculation based on the given infrastructure
technical details and then multiply it by the real-time measured currents flowing in the
branches to attain the immediate real-time measurement, including the infrastructure
impact. Hence, the accomplished real-time impact is added to the stability factors of the
control, thus formulating the control rules to provide sufficient compensation for the impact.

Consequently, the design based on the existing method is active and convenient
when the accuracy is followed for identifying the infrastructure influence based on the
administrator’s technical information. Thus, the control formulas are adapted to provide
sufficient compensation. However, a defectiveness of the reality operation is present
due to real-world operational influences, such as a lack or unavailability of all or some
infrastructure details, a regional change in the infrastructure, environmental influences,
unmonitored infrastructure flaws, and updates to the infrastructure length, conductance
material, switches, breakers, power electronics, etc. Therefore, based on the existing method,
any update of the infrastructure due to the above-stated real operational influences requires
the adjustment and update of the control. As a summary of the above-presented, it is
mandatory when designing a control system to consider all the expected events during the
real operation of the system and the long life of its operation.

A solution based on the multiagent neighbor-to-neighbor has been suggested to
overcome the previously explained issue. Thus, the immediate real-time compensation of
the DC infrastructure influence on the control was fulfilled with no need for preknown
information regarding the infrastructure details, wherein the advantage was taken from
the local and neighbor immediate real-time measurements of the voltages and currents
through multiagent communication. Specifically, an assumption was adopted for the VCN
and VCN − 1 to be equal. Thus, the immediate real-time measurement of the voltage
difference (VRSTN) between the VCN and the real-time measured load voltage at the
Nth branch (VLN) refers to the VRSN plus the infrastructure impact voltage drop at the
transmission connection branch (VRTN), as demonstrated in (4)–(6) and Figures 4 and 5.
Next, an adapted reality-influencing real-time output voltage (VLRSN) was accomplished
by adding the VRSTN to the VLN before the application to the decentralized primary and
secondary control, to be compensated by a demanded charge or discharge, as shown in (7)
and Figure 5.

VCN(t) = VCN − 1(t) (4)

VRSTN(t) = VCN(t) − VLN(t) (5)

VRSTN(t) = VRSN(t) + VRTN(t) (6)

VLRSN(t) = VLN(t) + VRSTN(t) (7)

Hence, the compensation of the infrastructure influence on the control of the suggested
method is based on converting the rise of the participation current at the specific branches,
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which is higher than the actual demand, into a locally measured real-time voltage drop.
Since the influence on the control due to most real operational infrastructural and envi-
ronmental impacts in a DC network is reflected in a variation in the current flowing at the
branches, it is immediately compensated in real-time after applying it to the controller by a
demanded charge or discharge. Therefore, the proposed method is qualified for the main-
tained balance, stability, and reliability of the control process and the enhanced precision
of the charge–discharge synchronization of the participating BESSs under the previously
stated real-world operational influences, with no requirement for the information regarding
the infrastructure details.

Infrastructure–Influence Compensation during Discharging

The influence of the infrastructure on the control during discharging requires less
compensation. Discharging is verified when the PV generation is unavailable and the
battery current is positive (Ib_N > 0). Hence, the current flowing from the microgrid
network is purely the collaboration of the load-demand implementation by the participating
discharging BESSs, as clarified in Figure 8. Therefore, the immediate real-time measured
BESS voltage (V_Bat_N) was higher than the voltage at both regionally distributed nodes,
the VCN, and the VCN − 1, since the participating BESSs occupied the role of the main
source during the discharging scenario. Thus, depending on the method assumption in (1),
the immediate real-time measurement of the DC infrastructure-influence-compensation
voltage drop can be determined in (2) and (3). Furthermore, the adapted reality-influencing
real-time output voltage can be measured in (4).

Infrastructure–Influence Compensation during Plug-and-Play

Plug-and-play in the microgrid signifies the scenario when the BESS ends the partici-
pation in the implementation of the load demand and then restarts the participation after
an unknown time, and vice versa, based on a participation policy by the administrator or
the BESS owner. A typical example of such an operation is in V2G applications, in which
batteries from electric vehicles (EVs) can dynamically enter and exit an aggregated, dis-
tributed storage schema for the provision of wider grid-balancing services. Here, the BESS
N is assumed to be out of the participation, with zero battery current (Ib_N = 0). Hence,
there is no existing infrastructure impact at the BESS N branch, although the real-time
measurement is still active in measuring the DC infrastructure influence of the branch for
both charging and discharging scenarios if the multiagent communication is in activation.
Thus, all the measurements of the infrastructure influence can be fulfilled in real-time,
imitating the above-presented participation scenarios in charging and discharging.

Accordingly, an active decentralized multiagent-based compensation of the infras-
tructure and the operational influence on the control process has been accomplished in
immediate real-time at each BESS to enhance the quality, reliability, and optimization of the
proposed adaptive decentralized primary–secondary control approach. Thus, fulfilling the
below-demonstrated talents:

• Immediate real-time compensation of the DC infrastructural and operational influ-
ences on the control process, with no need for preknown information regarding the
infrastructure details. A detailed explanation is presented in the below demonstration
of the proposed control stages. Hence, the optimization, reliability, and robustness of
the control are accomplished to verify the mandatory power-storage management of
the microgrid in real operation.

• Given the DC impact of most of the environmental and infrastructural influence,
and many of the accidental and operational faults in DC networks are violations
of the current balance, the proposed adapted control strategy, with the suggested
compensation of the infrastructure influence, supports an active, robust, reliable, and
sustainable balanced power-storage flow in uncertain and inconstant environments
with a large probability of load variations.
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2.2.2. The Decentralized Control—Primary Level

A decentralized primary power management based on droop correction has been
designed to implement the mandatory power-storage flow policy of the microgrid. Ac-
cordingly, any deviation of the output voltage due to a requested correction of the load
participation by the secondary correction is translated into a charge or discharge. Thus,
the balance of the real-time locally measured output voltage (VLi) is maintained to the
microgrid nominal voltage (Vmg) of the DC level, as presented in Table 1.

Table 1. Parameters and factors of the case studies.

Parameters and Factors Symbol Value

Voltages, Nominal/Battery Vmg, VB_i 48, 24 V
Nominal Current of Batteries Ib_i 3.913–4.782 A
Batteries’ Maximum Capacity C_max 9–11 Ah

Converter Capacitances Cin, Cout 125–1000 µf
Converter Inductance L 2.4 mH
Switching Frequency f sw 5 KHz
Local Voltage Control

Proportional/Integral Gains Kpri_v
p , Kpri_v

i
0.85, 10

Local Current Control
Proportional/Integral Gains Kpri_i

p , Kpri_i
i

0.1, 10

Droop Coefficient rd 0.5
SOC Correction

Proportional/Integral Gains KSOC
p , KSOC

i 0.4, 20

Secondary Voltage Correction
Proportional/Integral Gains Ksec_v

p , Ksec_v
i 10, 0.5

Secondary Current Correction
Proportional/Integral Gains Ksec_i

p , Ksec_i
i 0.4, 20

Consensus Gains av, ai 10, 20

Particularly, a two-stage control approach was locally formulated to fulfill the com-
pulsory modification of the load participation by droop correction through a requested
battery charge or discharge. Stage 1 is responsible for a real-time reference of the bat-
tery current (IB_ref_Ch_Dis_i) to compensate for the voltage error (ev_pri) of the locally
measured real-time reality-influencing output voltage, including the DC infrastructure
influence (VLRSi), from the adapted real-time droop correction voltage reference (Vd_i), as
demonstrated in (8) and (9), and Figures 9 and 10. Figure 9 presents the primary power
regulation under the existence of the DC infrastructure impact, whereas Figure 10 explains
the proposed adaptive decentralized primary–secondary control approach. VLRSi signifies
VLi plus the voltage drop due to the infrastructure impact (VRSTi), as clarified in (10).
Hence, the deviation impact of the infrastructure is immediately compensated in real-time
to prevent the disruption of the load-sharing balance and the violation of the precision of
the charge–discharge synchronization. The percentage limits of the VRSTi vary depending
on several operational/infrastructural influences, such as the length and properties of
the conducting material of the transmission lines, the infrastructure/equipment efficiency
and reliability, the age and wear of the infrastructure components, the level of the bat-
teries’ heterogeneity, the load-demand limits and the variation ratio, and temperature
disparities [30]. In accordance, the percentage limits of the VRSTi of the DC microgrid
under the proposed adaptive primary–secondary strategy and the nominated level of
infrastructure was 0.034–3.8208% of the Vmg. Next, a control action of the current (ei_c)
was accomplished in the second stage to be applied to the power-width modulation (PWM)
and to create the control of the converters’ switches. The parameters and the switching
frequency of the converters are shown in Table 1. The accomplished control action is
based on the current error (ei_pri) of IB_ref_Ch_Dis_i from the real-time locally measured
battery current (Ib_i). This denotes the requested battery charge or discharge to verify the
mandatory power-flow balance, as shown in (11) and (12), and Figures 9 and 10. Kpri_v

p and
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Kpri_v
i are the primary voltage proportional/integral gains, whereas Kpri_i

p and Kpri_i
i are the

primary current proportional/integral gains, respectively, with their values demonstrated
in Table 1 [15,37,38].

IB_re f _Ch_Dis_i(t) = ev_pri(t)×Kpri_v
P +

∫ t

0
ev_pri(t)× Kipr_v

i dt (8)

ev_pri(t) = Vd_i(t)−VLRSi(t) (9)

VLRSi(t) = VLi(t) + VRSTi(t) (10)

ei_c(t) = Kpri_i
p × ei_pri(t) +

∫ t

0
Kpri_i

i × ei_pri(t) dt (11)

ei_pri(t) = Ib_i(t)− IB_re f _Ch_Dis_i(t) (12)
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Implicitly, the primary local regulation of the power-storage flow is under the droop
correction regulatory control with a supervisory trim signal. A droop regulator was designed
to correct the local power management, and a droop correction reference (Vref_droop_i) was
formed in (13) based on subtracting the locally measured contribution of the load con-
sumption (ILi) in the form of a voltage drop at the nominated droop coefficient (rdi) of
the value, as shown in Table 1, from the real-time secondary correction reference signal
(Vref_sec_i). Thus, an adaptive collaborative real-time reference of the local regulation (Vd_i)
was determined based on the average neighbors’ BESSs real-time droop drop due to the
variation in the load demand by the multiagent communication (Vref_droop_j_M), including
the local (Vref_droop_i_M), as shown in (14) and Figures 4 and 8. Ni implies the number of
neighbors’ BESSs. Thus, any variation in the distributed load demand was implemented
collaboratively by the existing in-participation BESSs. Therefore, an enhanced reduction
in the circulating current/overloading was fulfilled. This is reflected in the maintained
accuracy of the charge–discharge synchronization, the optimized steadying of the control
process, the better battery health, and the longer usage life [10,15,37].

Vre f _droop_i(t) = Vre f _sec_i(t)− (ILi(t)× rdi) (13)

Vd_i(t) =
1

Ni
× (∑Ni

i=1 Vre f _droop_j_M(t)) + Vre f _droop_i_M(t) (14)

2.2.3. The Decentralized Secondary Correction

The combinational correction role of the real-time decentralized secondary correction,
under the control methodology of the proposed adapted strategy, comprises the correcting
output voltage (Uvi), the participation level in the load demand (UIi), and the SOC syn-
chronization (USOC) through an introduced qualified real-time correction platform. Hence,
the real-time balance of the voltage at this point was maintained at Vmg, as presented in
(15). In accordance, a real-time secondary control reference was achieved (Vref_sec_i) to
request an extra charge or discharge upon the compensation of the requested correction to
fulfill the mandatory balanced power-flow policy [15,37].

Vre f _Sec_i(t) = Uvi(t) + UIi(t) + USOCi (t) + Vmg (15)

The Decentralized Voltage Correction—Secondary Level

A decentralized secondary voltage correction was fulfilled through the accomplish-
ment of a voltage-control action (Uvi) by a qualified designed controller. Accordingly, the
secondary voltage error (ev_sec) was compensated to keep the real-time voltage consensus
correction (VLi_dash) balanced to Vmg, as shown in (16) and (17), and Figure 8. Ksec_v

p and
Ksec_v

i are the proportional/integral gains of the secondary voltage control, respectively,
with their values presented in Table 1. Hence, the imbalance of the output voltage was
overcome by a charge or discharge at the secondary control [10,15,37].

ev_sec(t) = Vmg−VLi_dash (t) (16)

Uvi(t) = ev_sec(t)× Ksec_v
p +

∫ t

0
ev_sec(t)× Ksec_v

i dt (17)

The Decentralized Secondary Correction of the Participation Current

A real-time secondary correction of the participation level in the load demand has been
verified through a designed correction controller. In consequence, the secondary current
error (ei_sec) related to the deviation of ILi from the secondary current consensus correction
(ILi_dash) was compensated by an accomplished control action (UIi), as demonstrated in
Equations (18) and (19), and Figure 8. The last one explains the proposed decentralized
adapted strategy. Thus, any mandatory correction of the participation current was executed
at the secondary correction by a requested charging or discharging. Ksec_i

p and Ksec_i
i are



Batteries 2023, 9, 597 17 of 35

the current-correction proportional/integral gains of the values, respectively, which are
available in Table 1 [10,15,37].

UIi(t) = ei_sec(t)× Ksec_i
p +

∫ t

0
ei_sec(t)× Ksec_i

i dt (18)

ei_sec(t) = ILi_dash (t)− ILi(t) (19)

The Secondary Correction of the SOC Synchronization

An SOC correction approach has been applied to improve the precision of the
charge–discharge synchronization for the participating BESSs under the real opera-
tional influences, such as an excessive continuous load variation, a variated number of
BESSs in the microgrid, unequal battery capacities and dissimilar initial SOCs, environ-
mental impacts, and infrastructure influences. Thus, the SOC synchronization error (eSOC)
due to the deviation of the locally measured (SOC_i) from the average neighbors’ SOC
(SOC_dash) is compensated by a created control action (USOC), as explained in (20)–(22) and
Figure 10. Hence, a charge/discharge is requested by the secondary correction to eliminate
any violation of the SOC synchronization accuracy. Ksec

p and Ksec
i are the SOC regulation

proportional/integral gains and the number of BESS neighbors, respectively, with their
values shown in Table 1 [10,15].

USOC(t) = eSOC(t)× KpSOC +
∫ t

0
eSOC(t)× KiSOCdt (20)

SOC_dash(t) =
1

Ni ∑Ni
j=1 SOC_j(t) (21)

eSOC(t) = SOC_dash(t)− SOC_i(t) (22)

Since the precision of the charge–discharge scenario synchronization is maintained by
the above-clarified correction approach, this offers a significant reduction in the circulating
current and overloading for the participating BESSs. Hence, a better stabilization of the
control system, the enhanced health and life of the batteries, a reduction in the losses,
and an improvement of the system performance and reliability of the real operations
can be accomplished with the noteworthy support of a renewable energy introduction
and sustainability.

2.2.4. The Decentralized Secondary Correction Based on Consensus

A consensus-correction protocol has been introduced to fulfill a collaborative distribu-
tive balance of the output voltage and the level of participation in the load consumption
for the distributed BESS with the neighbors’ BESSs based on multiagent bidirectional
neighbor-to-neighbor communication. Consequently, the deviation of the local voltage
due to a requested correction of the participation level in the load demand is compensated
collaboratively by the BESS and the neighbors’ BESSs. Hence, the overall mandatory
balance of the microgrid power management is verified [5,31]. Particularly, a real-time
voltage consensus correction has been formulated. Thus, an evaluation was conducted
between the local’s (VLi_dash) and neighbors’ (VLj_dash) voltage consensus correction, then
corrected based on the Vmg, multiplied by the voltage consensus gain (av) of the value
demonstrated in Table 1, and divided by the neighbors’ number (Ni) before sending it to the
neighbors to be corrected collaboratively. Next, the accomplished consensus correction was
added to the reality-influencing real-time measured voltage (VLRSi) to retain the balance
with Vmg under the DC influence of the infrastructure, as shown in (23) and (24), and
Figure 11, as well as the proposed adapted primary–secondary control strategy in Figure 10.
The VLRSI signifies VLi, plus the voltage drop due to the infrastructure influence (VRSTi).
Accordingly, the voltage deviation due to the DC infrastructure influence was applied to
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the secondary correction. Thus, it was rapidly compensated through a requested charge or
discharge. Therefore, an enhanced balance, stability, and reliability of the control process
was attained under the influence of the real operations. This implies an improved precision
of the charge–discharge synchronization, a reduced circulating current/overloading of the
contributing BESSs, and supported battery health and an extended usage life [10,15,37,39].

VLRSi(t) = VLi(t) + VRSi(t) (23)

VLi_dash(t) = VLRSi(t) +
av
|Ni|

∫ t

0
∑Ni

j=1 (
VLj_dash + Vmg

2
)−VLi_dash(t) dt (24)
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fluences.

Complementarily, a current consensus protocol was designed to verify a consensus
correction of the participation level in the load demand based on the multiagent neighbor-to-
neighbor transfer of information. In accordance, a correction to the level of the participation
in the load demand was attained based on the evaluation between the local’s (ILi_dash) and
neighbors’ (ILj_das) current consensus correction. Then, it was multiplied by the current
consensus gain (ai) by the value shown in Table 1, and divided by the number of neighbors’
BESSs (Ni), before being directed to the neighbors to be corrected by all the neighbors.
Finally, the correction was added to the ILi to implement the mandatory correction of the
participation level, as presented in (25) and Figure 10 [10,15,37,39].

ILi_dash(t) = ILi(t) +
ai
|Ni|

∫ t

0
∑Ni

j=1 ILj_dash(t)− ILi_dash(t) dt (25)

2.2.5. Plug-and-Play Insertions and the Removals of the BESSs

The aim of plug-and-play, based on the suggested adaptive multiagent primary–
secondary control, is to guarantee the balanced management of the individual start/end
points of the participation in the load demand for the N number of decentralized BESSs
in the microgrid. Thus, the independence of the microgrid power flow from the number
of contributing BESSs is verified [15,34]. Accordingly, a qualified trustworthy protective
plug-and-play was proven based on the MARL neighbor-to-neighbor transfer of informa-
tion. Each distributed BESS was formulated as an independent agent sharing with the
neighbors the mandatory power-flow information. Hence, it fulfills a regional balance of
the power-storage flow based on the load-consumption requirements by the administrator.
Consequently, the plug-and-play technical feature has seen widespread application in mod-
ern multidemand power-distribution approaches, particularly in V2G charging, wherein
the number of participating V2G units is partially dependent upon the demand level, and
also the number of available units at any one particular time; this is based on the expectation
of any individual V2G BESS unit to start or end the participation depending on the demand
availability and local restrictions, such as the driver constraints on the availability for V2G
participation. Since the number of power-storage units becomes a variable factor (in the
worst case, purely stochastic in nature), it raises the uncertainty and nonlinearity of the
resources available in the power-management environment. Thus, the independence of the
BESS management effectiveness from the number of participating BESSs in the microgrid
(in a control-theoretic sense) supports the reduction of the uncertainty and nonlinearity
of the network environment [40]. Note that a reduction in the number of available units
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may increase the external power drawn from the microgrid due to the lowered aggregate
capacity of the storage: the importance here is that the control stability, the maximization
of both the available/useable capacity of the participatory BESS units, and the energy
efficiency of the schema are the factors of concern.

The consideration of the real operational influences, mainly the infrastructure, when
formulating the plug-and-play holds vital importance. The balance during the plug-and-
play depends entirely on the level of accuracy in the charge–discharge synchronization.
Even though the infrastructure influence is the main motive for violating the accuracy of
the charge–discharge scenarios, and the DC infrastructure influence is compensated by the
qualified proposed strategy, there is still the need for protection against any out-of-control
rise of currents and voltages due to the impact of the infrastructure influence, whether
the conventional DC influence of the conductors or declared/undeclared faults. Hence,
collaborative participation management is implemented, as explained in the multiagent
topology and plug-and-play policy of the BESSs’ agents in Figure 12, at each BESS to verify
the protective management of the level of participation based on the battery-rated currents
and voltages.
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A demonstration example is the BESS N in the DC autonomous microgrid, which
ends its participation in the load demand if the measured real-time battery current (Ib_N)
is higher than the battery-rating current (Ib_Max) for both the charging and discharging, or
if the measured battery voltage (VB_N) is higher than the maximum, full-charge battery
voltage (VB_Max). Thus, the nearer BESS occupies the neighbor role instead, with no
influence on the steadiness of the control process and the precision of the charge–discharge
synchronization. Therefore, a developed, qualified, reliable, and protective plug-and-play
is verified under real operational influences to fulfill the below-demonstrated tasks [15,34].

1. Participating BESSs can end the participation individually at any time, and for an
unknown time period, with no effect on the steadiness of the control strategy and the
precision of the charge–discharge synchronization for the participating BESSs.

2. The enhanced protection of the power and control infrastructure against a faulty out-
of-control increase in the batteries’ voltages and currents higher than the nominal rat-
ings. Hence, this supports enhanced system protection and healthier long-life batteries.

3. Since balanced plug-and-play can be verified on each BESS, independence is verified
in the power-flow balance from the number of participating BESSs in the microgrid.

3. Results and Discussions

The proposed adapted decentralized multiagent-based strategy has been applied to
each BESS of the 48V DC autonomous microgrid, as shown in Figure 1, to verify the success
and discuss the performance. The system parameters (the microgrid nominal voltage,
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the ratings of the batteries involved, the parameters and the switching frequency of the
designed DC–DC converter interfacing the battery to the DC bus of the microgrid, and
the gains of the designed controllers/correction stages of the proposed strategy) of the
conducted experiments are presented in Table 1. A 24 h extremely variable load was also
implemented, served collaboratively by the participating BESSs and an additional 24 h solar-
PV-generation profile. Furthermore, the presence of the multiagent neighbor-to-neighbor
transfer of information, as described previously, was assumed. The charging temperature
was initially assumed to be room temperature (25 ◦C). Furthermore, the method followed
for charging the BESSs with renewable energy was considered as a constant voltage (CV)
to allow the battery to charge to full by the charging current, then the charging current
taper down to the minimum value and the BESS wait for its participation in the load
demand. The charge–discharge of the BESSs was formulated to be within the threshold
followed (20% minimum and 80% max), but the most that was followed, as indicated by
the result for the SOC, was close to 50%. The state-of-health (SoH) was not considered at
this level of the project, where the concentration was on the batteries’ control rather than
the batteries’ behavior, but it will be given more attention in further steps to investigate
more of the batteries’ heterogeneity and second life. Case studies were conducted in real-
time considering the influences of the real-world operation of a variable number of BESSs,
different batteries’ capacities/initial SOCs, and the DC infrastructure influences to carry
out the verification of the proposed plug-and-play.

3.1. Case 1: The Suggested Adaptjve Strategy—Three BESS Agents in the Microgrid

The proposed adapted strategy with the compensation of the infrastructure influence
has been implemented on N = 3 BESSs in the microgrid. As discussed, the expected real
operation was considered, and different batteries’ capacities (9, 10, and 11 Ah), different
batteries’ initial SOCs (48%, 50%, and 52%), and the variable-measured resistive-DC-
infrastructure influence of the microgrid branches (as defined in the table) for the distributed
regions in the microgrid were considered, as presented in Table 2. Hence, this covers most
of the real-world operational scenarios; for example, the different classes/ages of the
batteries, environmental influences, mainly the temperature, undetected faults, undeclared
repairs, a permanent or temporary update of the infrastructure lengths or components,
and the infrastructure suffering from partial wear, since the impact of all the pre-explained
influences is an increase in the flowing current. The aim was to highlight the impact of the
newly introduced adaptation on the optimization and reliability under the flawed expected
real operational influences.

Table 2. Case studies of the DC infrastructure influence of the microgrid branches.

Branch Symbol Value/Ω

Entry 1: Transmission connection between the
renewable resource and the DC microgrid bus RT1 0.06

BESS 1 line RB1 0.04
Load 1 line RS1 0.05

Transmission connection between the BESS 1 and
BESS N − 1 RTN − 1 0.06

BESS N − 1 line RBN − 1 0.05
Load N − 1 line RSN − 1 0.03

Transmission connection between the BESS N − 1
and BESS N RTN 0.04

BESS N line RBN 0.03
Load N line RSN 0.04

The accomplished results in Figure 13a demonstrate the precise synchronization of the
charge–discharge scenarios and the steadiness of the output voltage under the 24 h load
variation implementation, as shown in Figure 13c; furthermore, the availability of the PV
generation based on the 24 h PV-irradiation profile, as presented in Figure 13d. However,
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a violation of the charge–discharge synchronization accuracy at the times 16.3 and 20.4,
and a deviation of the output voltage, are observed due to the excessive continuous load
variation and the DC infrastructural/operational influences.
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The results in Figure 13b confirm both an improved precision of the charge–discharge
synchronization and a rapid stability of the output voltage under the proposed optimized
adapted primary–secondary control. In addition, the qualified compensation of the DC
infrastructure impact is evidenced. This was due to the success of the proposed adapted
strategy in verifying the following tasks:

• The successful multiagent-based balance of the participation level in the load-demand
implementation.

• The enhanced precision of the charge–discharge synchronization for the participating
BESSs in the microgrid under real operational influences.

• The good compensation of the DC infrastructural/operational influence on the control
strategy. Thus, the balance of the control process was improved under the most
expected real-world operations.

Accordingly, an enhanced stabilization of the output voltage was verified based on
the accomplished results and under the application of the proposed adapted strategy with
the compensation of the infrastructure influence. The line chart in Figure 14, which demon-
strates the measurements of the output voltage in Table A1, confirmed the outperforming of
the proposed strategy with the compensation of the DC infrastructure influence over the ex-
isting strategy in terms of the output voltage balance by an average enhancement of 1.385%
if the measurements were considered during the 24 h operation. The average enhancement
was raised to 2.2246% if the measurements were considered merely during the critical
operation times. This proves the outclassing of the proposed strategy in terms of the load-
implementation stability due to the rapid compensation by the proposed adapted strategy
of the output-voltage deviations, which are a result of the below-explained influences:

• The defilement of currents’ balance due to the DC infrastructure/operational influences.
• The disparity of the load participation by the heterogeneous batteries (different batter-

ies’ capacities/initial SOCs).
• The impact of excessive continuous load variation.
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• The violation in the charge–discharge synchronization accuracy.
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The impact of the control on the power consumption signifies a critical importance,
wherein the success of a control approach is evaluated by the amount of savings and the
balance acquired from the power flow during a specific time. Hence, it is mandatory
for any proposed solution to a defect related to power flow, whether the system is for
generation, transmission, or distribution, to be in the interest of improving the power
production. In accordance, the real-time total power consumption during a 24 h operation
of the microgrid based on the above-demonstrated results has been tracked. The aim was
to investigate the impact of the proposed adapted strategy on the power consumption
during the 24 h excessive continuous load variation. Thus, an average reduction in the
total power of 1.995% was earned when the total power consumption was measured
throughout the 24 h operation of the microgrid. The average reduction was raised to
2.367% when only the critical times of the microgrid operation were considered. This was
based on a measurement of the total power consumption per one-hour consumption at
several operational times during the 24-h operation of the microgrid, as demonstrated in
Table A2 and the representative line and bar charts in Figure 15. Additionally, a saving
of the power consumption of 1.83% was achieved based on the measurement of the total
power consumption in 24 h, raised to 1.942% when the consumption measurements were
taken during the last critical 14 operational hours of the day. This proves the success
and outperformance of the proposed strategy with the compensation of the infrastructure
influence over the existing strategy in terms of the power consumption, especially during
the critical time of the microgrid’s real operations and under the most real operational
influences. This is owed to the better stabilization and balance of the control process by the
enhanced precision of the charge–discharge scenario synchronization of the participating
BESSs in the microgrid and the improved rapid balance of the output voltage against the
24 h continuous variation in the load demand; moreover, to the successful elimination
of the circulating current and the overloading defects under the previously mentioned
real-world operational influences.
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Figure 15. Case 1 24 h total power consumption: (a) A line chart demonstrating the measured total
power consumption during 24 h operation of the existing strategy (the blue line) and proposed
strategy (the orange line). (b) A bar chart highlighting the reduction in the total power consumption
by the suggested adaptive approach compared to the existing strategy.

In line with the above, the balance of the power flow is no less important than the
reduction in the energy consumption, wherein it is, likewise, an assessment of the success
and validity of a control approach. Thus, it is vital and mandatory to evaluate the proposed
adapted strategy based on the accomplished results in terms of the power-flow balance
during the operation time. Accordingly, the power-flow balance during a 24 h operation
time was investigated under both the existing and proposed adapted strategies. Hence,
an enhancement of the power-flow steadiness and sustainability was fulfilled under the
application of the adapted proposed strategy by an average of 2.35% when the immediate
real-time power flow was measured during a 24 h period. The enhancement was upraised
to 2.62% when the measurements were limited only to the critical operation times of the
microgrid. This was based on the immediate real-time power-flow measurements at specific
operational times, as explained in Table A3 and the representative line and bar charts in
Figure 16. The last one demonstrates the charts of the power-flow measurements during
24 h under the existing and proposed strategies. This highlights the improved performance
of the proposed adaptive approach compared to the existing solution in terms of the power-
flow balance, especially during critical operational times. Therefore, the proposed adapted
strategy seems more active and reliable in critical, varying, and dynamic environments,
although further analysis and experiments in future work are planned.
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3.2. Case 2: The Verification under the Plug-and-Play Operations

A multitask case study was conducted on N = 3 BESSs in the microgrid with different
battery capacities (9, 10, and 11 Ah) and dissimilar initial SOCs (48%, 50%, and 52%); fur-
thermore, to the measured DC-resistive-infrastructure influence of the microgrid branches
to the values demonstrated in Table 2. Thus, the most-expected real-world operational
influences were considered. The aim was to discuss and verify the activity, reliability, and
trustworthiness of the proposed adaptive infrastructure-compensation-based decentral-
ized strategy under plug-and-play scenarios mimicking real operational influences. Each
BESS of the microgrid starts and ends their participation during the 24 h load-variation
implementation. Accordingly, the plug-and-play scenarios in Table A4 were followed to
allow each BESS in the microgrid to implement plug-and-play individually several times
and during different critical periods. Therefore, it is a one-day real operation under the
most predictable influences of the real operation, involving a variated number of BESSs,
heterogeneous batteries (different battery capacities and initial SOCs), a variated number
of DC infrastructure influences on the microgrid branches, and 24 h extreme variations in
the load demand.

The results in Figure 17a show a synchronized charge–discharge scenario for the
contributing BESS under the existing strategy during plug-and-play scenarios. However,
violations of the synchronization accuracy exist, especially during the critical times of
the microgrid operation. For example, the plug-and-play of the scenarios P6, P8, and P9
during the charging scenario of the microgrid operation, when the current flowing in was
high due to the availability of the PV generation. Another example is the plug-and-play
scenarios P10 and P11 during the critical transfer from charging to discharging. In addition,
an output voltage unbalance exists, mimicking the inaccuracy of the charge–discharge
synchronization, especially during the critical operational time after scenario P6. This
resulted in an unbalance in implementing the 24 h excessive variations in the load demand,
as shown in Figure 17c, whereas the results in Figure 17b demonstrate better the precision of
the charge–discharge synchronization and the stabilization of the output voltage under the
suggested adaptive strategy, particularly the critical operation times after scenario P6. This
was reflected in an enhanced balance in the implementation of the 24 h extreme variations
in the load demand, as shown in Figure 17d. Hence, the accuracy of the charge–discharge
synchronization was improved under the application of the proposed adapted strategy with
the compensation of the DC infrastructure influence. Thus, the 24 h excessive load variation
was implemented with the enhanced balance. This refers to a reduction in the mandatory
charge/discharge by the secondary control to maintain the balance of the participation
level in the load demand.

Therefore, an advantageous tradeoff was introduced between the charge–discharge
compensation required to maintain a balanced power flow and the precision of the
charge–discharge synchronization of the participating BESSs. This was reflected in a
reduction in the convergence time (CT). The last one signifies the time from the start of
the participation until the convergence with the other balanced participating BESSs. For
example, based on the plug-and-play scenarios in Table A4, scenario P6 in Figure 17a
comprises the end of the participation for BESS 1 at the time 8.6, the return to the partici-
pation at the time 9.3, and the convergence at the time 9.8. Whereas, for BESS 1, during
P6 in Figure 17b, the participation ends at 8.6, starts at 9.3, and convergence is at 9.6. This
indicates a reduction in the CT; in other words, a faster convergence (a faster plug-and-play)
under the proposed adapted strategy, as clarified in the line chart in Figure 18.
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Figure 17. Case 2 results, with presentation of the times for each plug-and-play period: (off-
participation, a1–a12), (participation, b1–b12), and (convergence, c1–c12), as demonstrated in Table A4:
(a) SOC and output voltage of the existing control; (b) SOC and output voltage of the suggested
adaptive approach; (c) Unbalanced implementation of 24 h excessive continuous load by the existing
strategy; (d) Balanced 24 h hour excessive continuous load by the proposed adapted strategy with
the compensation of the infrastructure influence.
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Figure 18. Case 2 plug-and-play convergence time comparison of the existing/proposed strategies.

Accordingly, a comparison of the CT has been conducted based on the accomplished
plug-and-play results. The line chart in Figure 18 highlights the reduction in the CT under
the proposed strategy. Thus, an average reduction in the CT of 0.66–13.366% was earned
by the proposed adapted infrastructure-influence-compensation-based strategy, with an
average reduction during the 24 h operation of 4.1559%. Therefore, enhanced accuracy,
stability, and reliability were verified by the adaptive proposed strategy in implementing
faster plug-and-play activities.
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Respectively, the steadiness of the output voltage under the proposed adapted strategy
with the compensation of the infrastructure saw distinctive support during the plug-and-
play scenarios. This was a collaborative effort of the qualified decentralized control systems
at each distributed BESS. Furthermore, the fundamental role of multiagent neighbor-
to-neighbor communication in fulfilling an immediate real-time sharing of the voltage
correction due to the mandatory participation in the implementation of the load demand.
In accordance, a comparison was performed based on the determined plug-and-play results
to evaluate the level of the balance in the output voltage achieved by applying the proposed
decentralized strategy. Several real-time measurements of the output voltage were taken
during the 24 h implementation of the excessive variations in the load demand under
both the existing and proposed adapted strategies, as presented in Table A5. Thus, the
representative line chart of the measurements in Figure 19 confirms the enhancement in the
balance of the output voltage under the suggested adaptive control.
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Figure 19. Case 2 plug-and-play comparison of the output voltage balance between the existing and
proposed adaptive strategy.

This was due to the rapid compensation of the requested immediate real-time
charge–discharge corrections by the secondary level. Hence, the balance of the output
voltage was improved by an average of 2.637% for the 24 h measurements considered.
The average improvement of the balance was raised to 3.24% by only considering the
measurements during the critical time operation of the microgrid. Therefore, the activity
and outperformance of the suggested adaptive approach with the compensation of the in-
frastructure influence were confirmed in terms of the output-voltage balance under the real
operational influences, especially during the critical variable and dynamic environments.

Analogously, the power consumption during the implemented one-day plug-and-play
scenarios and under the proposed adaptive strategy collected an average saving of the total
power consumption of 2.0915% if the consumption measurements are taken during the
24 h operation. The average saving risen to 3.29% when the consumption measurements
were purely considered for the critical time of the microgrid operation. This was based
on the measurements of the total power consumption per 1 h operation during the 24 h
implementation of the excessive load variation, as presented in Table A6. The line and bar
charts that demonstrate the measurements in Figure 20 highlight the outclassing of the
proposed adapted strategy with the compensation of the infrastructure influence over the
existing strategy, especially in the critical times of the microgrid operation. Additionally,
the measurement of the total power consumption during the 24 h operation demonstrated
a saving of the power consumption of 3.569%, rising to 4.93% for the consumption during
only the last 9 h of the critical operation.
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Figure 20. Case 2 plug-and-play power consumption demonstration: (a) A line chart showing the 
measured power consumption during the 24 h operation for the existing strategy (the orange line) Figure 20. Case 2 plug-and-play power consumption demonstration: (a) A line chart showing the
measured power consumption during the 24 h operation for the existing strategy (the orange line) and
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adaptive strategy in terms of power-consumption reduction.

This was due to the enhanced precision of the charge–discharge synchronization and
the better rapid steadiness of the output voltage of the participating BESSs under the
proposed adaptive primary–secondary control with the qualified compensation of the in-
frastructural and operational influences. Thus, an optimized active and reliable policy was
accomplished for managing the excessive continuous load-demand participation. This was
supported by the excellent balanced management during the critical time of the microgrid
operation with the most expected real operational influences. Therefore, the proposed
strategy is more reliable for real-world operations with varying dynamic environments
than the existing strategy. Similarly, an investigation of the immediate real-time power-flow
balance based on the accomplished plug-and-play results has demonstrated the progress
attained by introducing the proposed adaptive approach on the power-flow stability of
the microgrid during the 24 h implementation of the excessive continuous load variation.
This was examined by gathering several measurements of the immediate real-time power
flow during the 24 h operation, as clarified in Table A7. Thus, the application of the pro-
posed adapted strategy with the compensation of the infrastructure influence reached an
average enhancement of the power-flow balance by 2.7552% if the measurements were
considered during the 24 h operation. The average enhancement of the power flow was
raised to 6.468% if the measurements were limited only to the critical operation time. This
indicates the quality of the proposed adapted strategy in enhancing the precision of the
charge–discharge synchronization scenarios and improving the steadiness of the output
voltage under the 24 h excessive variations in the load demand and the operational and
infrastructural influences. This has been confirmed by the chart and bar chart representative
of the real-time power-flow measurements in Figure 21, wherein the outperformance of
the proposed adapted strategy over the existing strategy in terms of power-flow balance is
clearly emphasized.
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Figure 21. Case 2 plug-and-play power flow demonstration: (a) A line chart showing the measured
power flow during 24 h of the existing strategy (the orange line) and proposed strategy (the grey
line). (b) A bar chart highlighting the outperformance of the proposed adapted strategy in terms of
the power-flow balance.

4. Conclusions

The MARL-based primary–secondary strategy has been an active successful recent
application of AI in approaching intelligent decentralization for the organization of power-
storage flow, mainly in micro- and smart grids and V2G. However, existing approaches
fail to compensate for the infrastructure power losses in dynamic environments. This
paper has presented a proposed adaptive control strategy based on the MARL-based
primary–secondary control to maintain a precise charge–discharge synchronization and
the stabilized output voltage of the BESSs in a 48V DC autonomous microgrid. Distributed
24 h excessive variations in the load demand were implemented along with a 24 h profile
of the PV generation and a variable number of participating BESSs. Furthermore, variable
operational influences were introduced, where the batteries were selected to be heteroge-
neous with different capacities and unequal initial SOCs. Moreover, the DC infrastructure
influence was considered to be heterogeneous and dynamically changing at each line of
the microgrid to mimic the real-world influences of the infrastructure and switching effects.
The proposed adapted strategy is decentralized based on the neighbor-to-neighbor transfer
of information by the multiagent. Accordingly, a balance of the local level of participation
in implementing the load demand of the BESS was fulfilled with respect to the neighbors’
BESSs. Hence, any variation in the local load demand was implemented collaboratively
by the BESS and its neighbors. The accuracy of the charge–discharge synchronization of
the participating BESS was enhanced based on referencing the locally measured SOC to
the average neighbors’ SOCs. Consequently, any violation of the charge–discharge syn-
chronization accuracy was compensated by a requested charge or discharge. A qualified
optimized secondary correction level was established to perform a collaborative correction
role for the output voltage, participation current, and SOC synchronization. Thus, the
charge–discharge scenarios were managed to maintain the balance of the output voltage
under the mandatory balance of the load-demand participation. Furthermore, a multiagent-
based consensus-based correction of the output voltage and participation current was
formulated to correct the secondary management. Moreover, multiagent-based compensa-
tion for the infrastructural and operational influences on the control process was suggested.
In accordance, the controller can compensate for the impact of the infrastructure on the
accuracy of the synchronization of the charge/discharge scenarios and the steadiness of
the output voltage, with no need for pregiven information regarding the infrastructure
details. The results of the conducted case studies have demonstrated the success and out-
performance of the proposed adapted strategy with the compensation of the infrastructure
over the existing strategy. The enhanced accuracy of the charge–discharge synchroniza-
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tion was verified, especially during plug-and-play scenarios, with an average reduction
in the convergence time by 0.66–13.366%. Furthermore, an average improvement of the
output voltage balance by 1.385–2.2246% during normal operation and 2.637–3.24% during
plug-and-play was also verified. Hence, the success and activity of the proposed adapted
strategy were reflected in the power-flow saving and balance. An average saving/balance
of power consumption/flow was earned during the normal operation by 1.995% and
2.35% based on the 24 h measurements, and the average power saving/balance was risen
to 2.367% and 2.62% when the measurements were considered only during the critical
times of the operation. The saving and balance of power was likewise fulfilled during the
plug-and-play scenarios. Thus, the microgrid gained an average power saving/balance of
2.091% and 2.7552% under the consideration of the 24 h measurements and risen to 3.29%
and 6.468% under the critical time measurements. This verified improved performance
of the proposed strategy in managing the power flow under real operational conditions,
especially during the critical times of the microgrid operation. Therefore, the suggested
decentralized control strategy is well-suited for the plug-and-play implementations of
heterogeneous batteries in uncertain/variable environments with the existence of large
load instabilities. The improved precision of the charge–discharge synchronization system
in such load-fluctuated environments can typically support the extension of batteries’ life-
times and grid power stabilization in applications based on V2G and the second-life usage
of batteries in EVs. The effectiveness of the proposed adaptive strategy in sustaining the
health and lifespan of batteries holds significant importance. This is due to the fundamental
role of energy-storage systems, especially batteries, in the desired future power–technology
life, which takes the storage of renewable and alternative energy as the key enabler, the first
of which is the reliance on electricity generated by renewable/alternative energy for trans-
portation. Therefore, research into the possibility of the applicability (or transferability) of
the proposed strategy to different types of batteries, chemical storage, and energy-storage
classifications is a vital motive for the aforementioned goal.

The outperformance and reliability of the proposed adapted strategy have been proven
in real operations through a real-time online interaction with the real-time environment (the
dspace-1202, with the latest release being the 2023X). The last one is a real-time platform
with great performance to run extremely fast and intelligence-based control loops. The
system underwent a long-term real-time monitoring program to ensure its sustainable
success and reliability in real-world operations before obtaining the results. Furthermore,
the results were obtained accurately, consistently, and more than once to verify the efficiency
in real-time and to avoid mistakes. However, the long-term assessment of the results
under different conditions of the BESS and real operational influences supports the further
verification and reliability of the real operations.

Future work will fulfill further investigations of the suggested strategy based on the
concept of V2G and the related applications of BESS second-life, upon which we will devote
more concentration. This will include further enhancement of the BESSs’ participation/un-
participation and the charge/discharge management, considering the different initial
conditions, variated battery behaviors, and levels of the batteries’ heterogeneity and SoH,
with the aim of enhancing the reliability and applicability of the proposed strategy in
modern power-distribution applications. Furthermore, investigations of the application
and transferability of the proposed strategy on different types and versions of batteries
and storage classifications to support the generalization and expansion of the compatibility
and benefit in real-life power management. Moreover, further evidence will be sought
to support and quantify the improved performance based on assessing the experimental
results in a longer-term and longer-scaled manner.
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Nomenclature

V2G Vehicle-to-grid charging
MARL Multiagent reinforcement learning
AI Artificial intelligence
Near-optimal Close to the best possible, asymptotically optimal
aN

Kn
MARL agent’s action

SN
Kn

MARL agent’s status
rN

Kn
MARL agent’s reward

ANN Artificial neural network
ML Machine learning
Comm-MARL Agents’ communication in MARL
MDP Markov decision process
MG Markov game
S Set of states in the agent
Qi Agent observations
Ri Agent reward
γ Learning discounting factor
Ai Agent actions{

mt(0)
i

}Nm

1
Encoded message{

Gt(l)
}Lg

1
Scheduled graph

fshed Scheduling function
fmp Processing function
Nm Number of encoded messages
Lg Number of scheduled graphs
BESS Battery-energy-storage system
BESSs Battery-energy-storage systems
SOC State-of-charge
SOC_i Local measured state-of-charge
VLi_dash Voltage consensus correction/ith BESS
ILi_dash Current consensus correction/ith BESS
RSi DC infrastructure influence at load branch/ith microgrid region
RBi DC infrastructure influence at BESS branch/ith microgrid region
RTi DC infrastructure influence at the connection/ith microgrid region
N Number of BESSs in the microgrid
HiL Hardware-in-the-loop
PVs Photovoltaics
BESS N − 1 Battery-energy-storage system/N − 1th region
BESSN Battery-energy-storage system/Nth region
V_bus Microgrid bus voltage
VCN Node voltage/Nth microgrid region
VCN − 1 Node voltage/N − 1th microgrid region
RTN The DC infrastructure influence at the connection/Nth BESS
ILTN The current at transmission connection/Nth BESS
VRSN The voltage of DC impact at the load branch/Nth microgrid region
VRBN The voltage of DC impact at the BESS branch/Nth microgrid region
VRTN The voltage of DC impact at the connection/Nth microgrid region
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VLN Real-time measurement of the output voltage/Nth microgrid region
VRSTN Voltage difference between the VCN and VLN/Nth microgrid region
VLRSN Immediate real-time influence-compensation/Nth microgrid region
V_Bat_N Immediate real-time BESS voltage/Nth BESS
Ib_N Battery current/Nth BESS
EV Electric vehicle
EVs Electric vehicles
VLRSi Real-time locally measured reality-influencing output voltage
PWM Power-width modulation
VLi Real-time measurement of the output voltage/ith BESS
Vmg Microgrid nominal voltage
IB_re f _Ch_Dis_i Real-time current reference of the local control/ith BESS
ev_pri Error of the local voltage control/ith BESS
Kpri_v

p Local control proportional voltage gain/ith BESS
Kpri_v

i Local control integral voltage gain/ith BESS
Kpri_i

p Local control proportional current gain/ith BESS
Kpri_i

i Local control integral current grain/ith BESS
Vd_i Adapted real-time local reference/ith BESS
ei_pri Error of the local current control/ith BESS
ei_c Local control current action
rdi Droop coefficient/ith BESS
Vre f _droop_i Real-time droop reference
Vre f _droop_j_M Real-time neighbors’ droop correction of load demand/ith BESS
Vre f _droop_i_M Real-time local’s droop correction of load demand/ith BESS
Vre f _sec_i Real-time secondary correction reference/ith BESS
Uvi Secondary correction of the output voltage/ith BESS
UIi Secondary correction of the participation current/ith BESS
USOC Secondary correction of the SOC synchronization
ev_sec Error of the secondary voltage correction/ith BESS
Ksec_v

p Secondary voltage correction proportional gain/ith BESS
Ksec_v

i Secondary voltage correction integral gain/ith BESS
ei_sec Error of the secondary current correction/ith BESS
Ksec_i

p Secondary-current-correction proportional gain/ith BESS
Kisec_i

i Secondary-current-correction integral gain/ith BESS
ILi Real-time measured participation current/ith BESS
eSOC Error of the secondary SOC correction/ith BESS
SOC_dash Average neighbors’ SOC/ith BESS
KSOC

p Secondary SOC correction proportional gain/ith BESS
KSOC

i Secondary SOC correction integral gain/ith BESS
Ni Number of the neighbors’ BESSs/ith BESS
av Voltage consensus gain
ai Current consensus
Ib_Max Battery-rated current
VB_N Battery voltage/Nth BESS
VB_Full Battery full charge (maximum) voltage
CV Constant voltage charging
SoH State-of-health
CT Convergence time

Appendix A

The tables in this Appendix comprise the Case 1 24 h comparison measurements of
the output voltage, the total power consumption, and the immediate real-time power flow
under the existing and proposed adapted multiagent-based control strategies.
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Table A1. Case 1 output-voltage measurements.

Hours of the Day
Output-Voltage

Measurements/Existing
Strategy (V)

Output-Voltage
Measurements/Proposed

Strategy (V)

2.1 (convergence point) 47.99 48.01
5 47.6 47.9
10 48.3 48.04
15 47.8 48.03

16.3 47.1 47.95
17 46.2 47.93

17.5 45.5 47.8
18.3 47.3 47.98
20.4 47.5 48.01
22.5 47.8 47.99

Table A2. Case 1 power-consumption measurements.

Hours of the Day Total Power Consumption
(W/1 h), Existing Strategy

Total Power Consumption
(W/1 h) Proposed Design

2.1 (convergence point) 286.19 278.57
5 222.6 221.8
10 221.4 217.7
15 222.066 214.8
20 218.7 214.35
24 218.833 214.8333

Table A3. Case 1 power-flow measurements.

Hours of the Day Power-Flow Measurements
(W), Existing Strategy

Power-Flow Measurements
(W), Proposed Strategy

2.1 (convergence point) 237.68 231.69
5 269.95 268.88
10 210.32 202.27
15 289.36 272.68
20 185.25 185.95
24 187.02 185.64

Appendix B

The tables in this Appendix comprise the Case 2 24 h plug-and-play scenarios and
comparison measurements of the output voltage, the total power consumption, and the
immediate real-time power flow under the existing and proposed adapted multiagent
strategies.

Table A4. Case 2 plug-and-play operational scenarios.

Period BESSS Off-Participation Time
Existing/Proposed

Participation Time
Existing/Proposed

Convergence Time
Existing/Proposed

P1 BESS 3 a1, 0.4/0.4 b1, 0.9/0.8 c1, 2.2/2

P2 BESS 2 a2, 1.2/1.2 b2, 2.2/2 c2, 3.1/2.9

P3 BESS 1 a3, 2.3, 2.3 b3, 3/2.9 c3, 3.5/3.3

P4 BESS 3 a4, 3.7/3.7 b4, 4.5/4.5 c4, 4.8/4.6
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Table A4. Cont.

Period BESSS Off-Participation Time
Existing/Proposed

Participation Time
Existing/Proposed

Convergence Time
Existing/Proposed

P5 BESS 2 a5, 5.5/5.5 b5, 6.7/6.6 c5, 7.1/6.9

P6 BESS 1 a6, 8.6/8.6 b6, 9.3/9.3 c6, 9.8/9.6

P7 BESS 3 a7, 10.2/10.2 b7, 11/10.97 c7, 11.6/11.4

P8 BESS 2 a8, 12.2/12.1 b8, 12.9/12.83 c8, 13.4/13.2

P9 BESS 1 a9, 14/14 b9, 14.6/14.6 c8, 15/14.9

P10 BESS 3 a10, 15.7/15.7 b10, 16.4/16.4 c10, 20.2/17.5

P11 BESS 2 a11, 18.8/18.8 b11, 19.6/19.6 c11, 20.1/19.8

P12 BESS 1 a12, 21.7/21.7 b12, 22.5/22.5 c12, 23.6/23.4

Table A5. Case 2 plug-and-play output-voltage measurements.

Hours of the Day
Output-Voltage

Measurement/Existing
Strategy (V)

Output-Voltage
Measurement/Proposed

Strategy (V)

0.4 47.6 48.1
1.2 52.1 47.9
2.3 47.65 47.96
3.7 47.7 47.9
5.5 48.2 47.95
8.6 50.1 48.5

10.2 50.2 47.8
12.2 37.2 48.65
14 51.12 47.9

15.7 49 48.12
18.8 67 47.7
20.3 64 48.2
22.8 33.13 48.17
23.7 47.6 48.1
24 47.9 48.02

Table A6. Case 2 plug-and-play power-consumption measurements.

Hours of the Day Power Consumption (W/1 h),
Existing Strategy

Power Consumption (W/1 h),
Proposed Strategy

2.5 222.23 222.68
5 223 222.8

7.5 223.6 221.6
10 222 218.7

12.5 220.48 215.76
15 221.533 215.466

17.5 223.0857 215.14
20 220.15 214.65
22 222.545 215.363
24 222.958 215



Batteries 2023, 9, 597 34 of 35

Table A7. Case 2 plug-and-play power-flow measurements.

Hours of the Day Power-Flow Measurements
(W), Existing Strategy

Power-Flow Measurements
(W), Proposed Strategy

2.5 219.87 222.11
5 274.06 272.45

7.5 224.22 220.06
10 198.04 199.78

12.5 216.51 228.03
15 278.2 263.09

17.5 247.24 208.48
20 187.19 186.01
22 188.01 187.51
24 202.09 186.32
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