2,794 research outputs found

    Modeling and supervisory control design for a combined cycle power plant

    Get PDF
    The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controller’s scheme

    Robust control of room temperature and relative humidity using advanced nonlinear inverse dynamics and evolutionary optimisation

    Get PDF
    A robust controller is developed, using advanced nonlinear inverse dynamics (NID) controller design and genetic algorithm optimisation, for room temperature control. The performance is evaluated through application to a single zone dynamic building model. The proposed controller produces superior performance when compared to the NID controller optimised with a simple optimisation algorithm, and classical PID control commonly used in the buildings industry. An improved level of thermal comfort is achieved, due to fast and accurate tracking of the setpoints, and energy consumption is shown to be reduced, which in turn means carbon emissions are reduced

    Hardware-in-the-loop tuning of a feedback controller for a buck converter using a GA

    Get PDF
    This paper presents a methodology for tuning a PID-based feedback controller for a buck converter using the ITAE controller performance index. The controller parameters are optimized to ensure that a reasonable transient response can be achieved whilst retaining stable operation. Experimental results demonstrate the versatility of the on-line tuning methodology

    Proportional-Integral-Plus Control Strategy of an Intelligent Excavator

    Get PDF
    This article considers the application of Proportional-Integral-Plus (PIP) control to the Lancaster University Computerised Intelligent Excavator (LUCIE), which is being developed to dig foundation trenches on a building site. Previous work using LUCIE was based on the ubiquitous PI/PID control algorithm, tuned on-line, and implemented in a rather ad hoc manner. By contrast, the present research utilizes new hardware and advanced model-based control system design methods to improve the joint control and so provide smoother, more accurate movement of the excavator arm. In this article, a novel nonlinear simulation model of the system is developed for MATLAB/SIMULINK, allowing for straightforward refinement of the control algorithm and initial evaluation. The PIP controller is compared with a conventionally tuned PID algorithm, with the final designs implemented on-line for the control of dipper angle. The simulated responses and preliminary implementation results demonstrate the feasibility of the approach

    Cost effective combined axial fan and throttling valve control of ventilation rate

    Get PDF
    This paper is concerned with Proportional-Integral-Plus (PIP) control of ventilation rate in mechanically ventilated agricultural buildings. In particular, it develops a unique fan and throttling valve control system for a 22m3 test chamber, representing a section of a livestock building or glasshouse, at the Katholieke Universiteit Leuven. Here, the throttling valve is employed to restrict airflow at the outlet, so generating a higher static pressure difference over the control fan. In contrast with previous approaches, however, the throttling valve is directly employed as a second control actuator, utilising airflow from either the axial fan or natural ventilation. The new combined fan/valve configuration is compared with a commercially available PID-based controller and a previously developed scheduled PIP design, yielding a reduction in power consumption in both cases of up to 45%

    Simulation of a model-based optimal controller for heating systems under realistic hypothesis

    Get PDF
    An optimal controller for auxiliary heating of passive solar buildings and commercial buildings with high internal gains is tested in simulation. Some of the most restrictive simplifications that were used in previous studies of that controller (Kummert et al., 2001) are lifted: the controller is applied to a multizone building, and a detailed model is used for the HVAC system. The model-based control algorithm is not modified. It is based on a simplified internal model

    On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes

    Get PDF
    In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modeling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure

    Nonparametric identification of linearizations and uncertainty using Gaussian process models – application to robust wheel slip control

    Get PDF
    Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect to inputs, with their variance, providing a direct estimate of the locally linearized model with its corresponding parameter variance. We show how this can be used to tune a controller based on the linearized models, taking into account their uncertainty. The approach is applied to a simulated wheel slip control task illustrating controller development based on a nonparametric model of the unknown friction nonlinearity. Local stability and robustness of the controllers are tuned based on the uncertainty of the nonlinear models’ derivatives

    Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning

    Full text link
    Multi-objective optimisation design procedures have shown to be a valuable tool for control engineers. They enable the designer having a close embedment of the tuning process for a wide variety of applica- tions. In such procedures, evolutionary multi-objective optimisation has been extensively used for PI and PID controller tuning; one reason for this is due to their flexibility to include mechanisms in order to en- hance convergence and diversity. Although its usability, when dealing with multi-variable processes, the resulting Pareto front approximation might not be useful, due to the number of design objectives stated. That is, a vast region of the objective space might be impractical or useless a priori, due to the strong degradation in some of the design objectives. In this paper preference handling techniques are incorpo- rated into the optimisation process, seeking to improve the pertinency of the approximated Pareto front for multi-variable PI controller tuning. That is, the inclusion of preferences into the optimisation process, in order to seek actively for a pertinent Pareto front approximation. With such approach, it is possible to tune a multi-variable PI controller, fulfilling several design objectives, using previous knowledge from the designer on the expected trade-off performance. This is validated with a well-known benchmark exam- ple in multi-variable control. Control tests show the usefulness of the proposed approach when compared with other tuning techniques.This work was partially supported by the fellowship BJT-304804/2014-2 from the National Council of Scientific and Technologic Development of Brazil (CNPq) and by EVO-CONTROL project (ref. PROMETEO/2012/028, Generalitat Valenciana - Spain).Reynoso Meza, G.; Sanchís Saez, J.; Blasco, X.; Freire, RZ. (2016). Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning. Expert Systems with Applications. 51:120-133. doi:10.1016/j.eswa.2015.11.028S1201335
    corecore