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ABSTRACT 

An optimal controller for auxiliary heating of passive 
solar buildings and commercial buildings with high 
internal gains is tested in simulation. Some of the 
most restrictive simplifications that were used in 
previous studies of that controller (Kummert et al., 
2001) are lifted: the controller is applied to a 
multizone building, and a detailed model is used for 
the HVAC system. The model-based control 
algorithm is not modified. It is based on a simplified 
internal model.  

It is shown that the optimal controller's performance 
varies strongly with the zone that is considered and 
the reference zone that is used. However, it is never 
worse than the performance of a reference controller. 
The global performance at the building level depends 
on the selected reference zone and on the building 
sensitivity to overheating. 

INTRODUCTION 
The problem of heating control in passive solar 
buildings or in modern, well-insulated buildings with 
high internal and/or solar gains, is characterized by a 
need of anticipation, which is illustrated in Figure 1. 
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Figure 1: Typical building behavior, sunny mid-season day 

If there is no cooling plant, overheating can occur 
during a sunny afternoon while heating was 
necessary in the morning. In this case, when 
overheating occurs, it is too late to take a control 
decision for the heating plant: the heat stored in the 
building structure cannot be removed. If a cooling 

plant was present, the temperature could be 
maintained in the comfort zone in the afternoon, but 
this would increase the electricity load during on-
peak hours. If afternoon overheating is anticipated, it 
is possible to reduce heating in the morning, saving 
heating energy and improving thermal comfort (or 
reduce cooling cost) at the same time. 

Estimating the recovery time after night setback is 
another example where anticipation is required. 
Energy savings can be realized by applying an 
important setback and by warming-up the building as 
late as possible, but enough warm-up time must be 
given to prevent occupant complaints if the building 
is too cold. This situation expresses the permanent 
search for a compromise between energy concerns 
(low temperature during night, heating started as late 
as possible) and comfort concerns (warm building 
when occupants arrive). 

The observations here above justify the interest for 
predictive optimal controllers in passive solar 
buildings. 

LITERATURE SURVEY 
Optimal control studies related to buildings can be 
subdivided in two categories: auxiliary heating (and 
sometimes cooling) control in solar buildings, and 
cooling system optimization. The first category finds 
its origin in the need for anticipation illustrated here 
above, while the second typically allows important 
savings in terms of money because optimal control 
can take advantage of time-of-day electricity rates. 

Some cooling optimization studies only address the 
cooling plant operation – in that case building loads 
are fixed and comfort is not part of the equation 
(Flake, 1998). This is also true for most studies on 
ice storage optimization where building loads have to 
be anticipated but where they are considered to be 
independent from the controller actions (Henze et al., 
1997). Other studies (e.g. Keeney and Braun, 1996) 
consider the comfort issue as boundaries that must 
not be exceeded and optimize the operation of the 
cooling system in order to maintain the building at 
the desired setpoint.  

The work on solar buildings includes complete 
studies with experimental validation that show 
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significant savings compared to reference controllers 
(Nygard-Fergusson, 1990; Oestreicher et al., 1996). 

In both types of studies, the concept of reference 
zone is very often used (Braun, 1990): The controller 
optimizes the energy consumption while maintaining 
comfort in a reference zone. Most advanced 
controllers implement a model-based predictive 
strategy, which implies that they are based on an 
internal model of the system (building and/or HVAC 
plant). In simulation studies, the model that is used in 
the (detailed) simulation can be the same as the 
controller's internal model. However, it has been 
shown that the simulated performance of optimal 
controllers deteriorates when more detailed models 
are used to assess their performance (Kummert et al., 
1996).  

OBJECTIVE OF THIS STUDY 
The present study aims at assessing the performance 
of an optimal controller developed to optimize the 
behavior of one reference thermal zone based on a 
simplified internal model. The performance at the 
building level is assessed using detailed models for 
the building and the HVAC system. 

OPTIMAL CONTROL ALGORITHM 
The principle of model-based predictive control is to 
use a model of the system and a forecast of future 
disturbances to simulate possible future control 
sequences and select the "best" one over a given 
forecasting horizon. This controller is also optimal in 
the sense that it minimizes a given cost function 
taking discomfort and energy use into account. The 
cost function is described in the "Performance 
Criterion" section. 

Figure 2 shows the implemented optimal controller 
(Kummert, 2001). The control algorithm was 
developed in Matlab (The Mathworks, 1999), which 
was then called from TRNSYS. Its principle is 
briefly described here under. 

1. At each time step (0.25h) some variables are 
measured: zone operative temperature (Top), 
radiator supply and return temperature 
(respectively Tws and Twr), ambient temperature 
(Tamb) and solar radiation on southern façade 
(GS).  

2. These variables are passed to three different 
subsystems:  

- A system identification routine that adapts the 
parameters of the controller's internal model 
using the latest available measurements. The 
internal model is described in the next Section.  

- A Kalman Filter (State estimator), which 
estimates the state of the internal model. This 
provides the initial conditions for the 
optimization.  

- A disturbance forecasting algorithm that predicts 
the ambient temperature and solar radiation for 
the next optimization period (e.g. 24 h). In this 
study the forecasting algorithm was just 
repeating the data from previous day. 

3. At the beginning of each new optimization 
period, the optimization algorithm minimizes the 
cost function on the given horizon (NH hours). It 
outputs an "optimal" 0.25h-profile of Top and Tws 
(respectively Top,O and Tws,O). The optimization 
uses the estimated state of the system, the newly 
identified parameters and the disturbance 
forecasting to simulate the next NH hours and 
select the best future control sequence. The 
optimization uses a quadratic programming 
algorithm (Quad. Prog. in Figure 2). 

4. After the optimal profile has been computed, the 
desired zone temperature profile is known (Top,O). 
If the model and the disturbance forecast were 
perfect, that temperature would be obtained by 
providing a water supply temperature that 
matches the calculated profile (Tws,O). A PID is 
cascaded with the optimal controller to 
compensate for modeling and forecasting errors. 
The PID tracks the setpoint for Top (i.e. Top,O). Its 
output adjusts the setpoint for the water supply 
temperature (Tws,S). 
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Figure 2: Optimal controller block scheme 

CONTROLLER'S INTERNAL MODEL 
The controller is based on a simplified model of the 
building and the HVAC system. This model is a key 
component of the controller, because it allows 
simulating future control sequences to select the 
optimal one. This internal model has to be simplified 
in order to keep the optimization algorithm 
computationally efficient. 

The building model is a linear state-space 
representation based on second-order walls. It was 
developed for control purposes and is presented in 
detail in (Kummert, 2001). It has been optimized to 
realize a compromise between accuracy and 
complexity. The global building model includes 2 air 
nodes and 4 walls, which gives 10 state variables. It 
can be represented by a "star" network of thermal 
resistances and capacitances, where each wall makes 
one branch connecting the air node to other nodes 
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(e.g. ambient temperature or adjacent zones). 
Ventilation is modeled through an additional flow 
path between the zone air temperature and the 
ambient temperature, with a resistance adjusted to 
match the outside air flowrate. Humidity is not taken 
into account in the controller's internal model. 

The radiator is modeled as a single node and heat 
emission characteristics are linearized. The average 
between the radiator temperature (which is assumed 
to be equal to Twr) and the water supply temperature 
(Tws) is used to compute the power emission. Heat 
flux is directed to air and to wall surfaces according 
to a fixed ratio. The simplified model only takes into 
account the inertia and the maximal power of the 
boiler (a constant efficiency is assumed), and pipes 
are neglected. 

PERFORMANCE CRITERION 
The notion of "cost function" is used to assess the 
performance of different controllers. The cost 
function must be an expression of the trade-off 
between comfort and energy consumption. The 
chosen indicator of thermal (dis)comfort is Fanger's 
PPD (Predicted Percentage of Dissatisfied – Fanger, 
1972), while energy cost is considered to be 
proportional to the boiler energy consumption (Qb).  

In the discomfort cost, Fanger's PPD is computed 
with default parameters for non-simulated aspects 
(air velocity and metabolic activity). Furthermore, it 
is assumed that occupants can adapt their clothing to 
the zone temperature. This method allows modeling a 
comfort range in which occupants are satisfied. With 
the chosen value for parameters, the comfort zone 
covers operative temperatures from 21°C to 24°C. 
The PPD is also shifted down by 5%, to give a 
minimum value of 0. This modified PPD index will 
be referred to as PPD'.  

This gives, respectively for discomfort cost and 
energy cost (Jd and Je):  

 ( )dJ PPD[%] 5= −∫  (1)

e bJ Q= ∫  (2)

The total cost (J) is a weighted sum of Jd and Je: 

d eJ J J= α +  (3)

The role of the α parameter is to give more or less 
importance to comfort with respect to energy. It can 
be seen as a "comfort setting" of the controller. If a 
user increases the value of α, she/he is actually 
saying that comfort should have more importance in 
the trade-off that is made to control the HVAC plant. 
If we assume that the energy cost is expressed in 
kWh, the units of α will be [kW %PPD'-1].  

In other words, α  is the energy quantity (expressed 
in kWh or in terms of environmental impact, 
financial cost, etc.) which may be used to reduce the 

Predicted Percentage of Dissatisfied occupants by 
1% during 1 hour. 

Detailed versus simplified performance criterion 

• The optimal controller uses a quadratic 
approximation of the cost function in the 
optimization algorithm. This approximation uses 
the net energy delivered to the reference zone for 
Je, and the quadratic approximation of the 
discomfort cost is based solely on the operative 
temperature (i.e. Fanger's PPD is calculated with 
default values for all other parameters, including 
humidity). A similar quadratic approximation of 
the discomfort cost is used in (Mozer et al., 1997).  

• In the detailed simulation study, the energy cost at 
the building level is the primary energy used by the 
boiler. This takes into account the energy delivered 
to all zones, the thermal losses in the water loops 
and the boiler efficiency (which is a function of the 
water supply and return temperatures). The 
discomfort cost is calculated using the simulated 
mean radiant and air temperature, as well as the 
humidity. Other parameters (air speed, metabolism, 
clothing) use default values. One of the objectives 
of this study is to assess whether or not the 
optimization of the simplified cost function 
actually minimizes a more detailed expression of 
the energy and discomfort cost. 

Performance "trajectory" 

Each value of the weighting factor α in the total cost 
(3) will lead to a different solution of the 
optimization problem. If a full year (or a full heating 
season) is considered, the performance of a controller 
can be represented by a total value of Jd and Je, or a 
point in the (Jd, Je) plane. The solutions obtained by 
the same controller for different settings (e.g. 
different weighting factors for an optimal controller 
based on the cost function described here above) is a 
trajectory in the (Jd, Je) plane. This is illustrated in 
Figure 3. 
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Figure 3: Typical controller performance for different 

settings. Costs are summed over the entire heating season 
(note the zoomed in x and y scales) 

- 557 -



SIMULATION ASSUMPTIONS 
Compared to the simplified model that the controller 
uses internally (described here above), the TRNSYS 
model used in the simulation removes the most 
restrictive simplifications:  

• Multizone building: the detailed model playing the 
role of the real building uses the full capabilities of 
TRNSYS Type 56 (Klein et al., 2000) 

• Ventilation: a realistic ventilation plant is modeled, 
taking humidity and temperature into account 

• Heating plant: the boiler, pipes and radiator use 
detailed dynamic models 

• Performance criterion: the energy cost is expressed 
by the primary energy at the building level. The 
discomfort cost takes humidity into account, as 
well as both the air and mean radiant temperatures. 

The main restriction of this simulation study is that a 
simplified model of the users' behavior is still used: 
occupants are assumed to work with a fixed schedule 
which is perfectly known in advance. 

SIMULATED BUILDING AND SYSTEM 
The chosen building is a one-storey office building 
with heavy external walls in concrete and large 
glazed areas in each façade. The whole building is 
surrounded by a glazed envelope. It is representative 
of heavy passive solar constructions likely to 
experience overheating during sunny mid-season 
periods. This particular building is not taken as a 
good design example but was derived as an 
"extrapolation" of an existing building used in an 
experimental validation study (Kummert, 2001). 

The building includes six occupied zones facing 
South, Southwest, Northwest, North, Northeast and 
Southeast (referred to as S, SW, NW, N NE and SE 
respectively). The floor area of each room is close to 
30 m² and the area of internal windows (between 
offices and glazed sunspace) is 8m² for each room. A 
floor plan of the building is shown in Figure 4. 

N
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NW NE

SESW

 
Figure 4: Floor plan of the simulated building 

The heating plant is powered by a gas boiler. Hot 
water is distributed to radiators by two water loops 

(North and South), which have independent supply 
temperature controllers. Radiators are equipped with 
individual thermostatic valves. When the optimal 
controller is used, thermostatic valves are assumed to 
be fully opened in reference rooms (N and S). A 
schematic of this heating plant is shown in Figure 5.  

The nominal power of radiators in reference rooms is 
10% smaller than non-reference zones. This provides 
a reserve power in the "non-optimized" zones, since 
the local feedback control is realized by thermostatic 
valves that can only reduce heating. 
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Figure 5: Heating plan 

The building is equipped with a balanced mechanical 
ventilation system. A heat exchanger is placed 
between exhaust and supply air flows. Furthermore, 
a humidifier can be used to maintain the humidity 
level of supply air above 50% during the heating 
season. 

This ventilation system introduces a certain degree of 
"thermal mixing" in the building, since all zones 
have the same supply air temperature. A simplified 
scheme is shown in Figure 6. 

 Supply air

Supply
Exhaust

 Exhaust air

 Heat exchanger

 Fan  Humidifier

N

S

NW NE
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Figure 6: Ventilation 

Each zone is assumed to be occupied by 2 persons. 
Office workers are supposed to enter the building at 
8 AM and to leave the building at 6 PM during 
working day (from Monday to Friday). This fixed 
schedule is maintained during the whole year. 

Actual data measured in Uccle (Brussels) during 
years 1985 and 1986 is used, in order not to interfere 
with the weather forecasting quality. Only the 
heating season is simulated, between 12th of October 
1985 and 25th of April 1986. 
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COMPARED CONTROLLERS 

Reference controller 

This controller is based on a feed-forward action on 
water supply temperature by the so-called "heating 
curve" and a feedback action on water flow rate by a 
thermostatic valve. It implements an optimal start 
algorithm. One controller is used for each heating 
loop and the boiler temperature setpoint is set to the 
maximum of the computed setpoints for both loops. 

Optimal controller 

The optimal controller is based on the algorithm 
described here above. Two controllers are used in 
parallel (one for each heating loop), using a one-zone 
simplified model. The reference zones (the only ones 
simulated in the internal model) are N for the North 
loop and S for the South loop. Other zones are only 
taken into account by identical boundary conditions 
in the controller's internal model. 

The weather forecasting routine simply uses previous 
day data as forecast for the current day. A previous 
study has shown that this simple solution allows the 
optimal controller to operate properly while 
providing a lower bound for the controller's 
performance (Kummert, 2001).  

The cost function uses the quadratic-linear 
approximation mentioned here above. In particular, 
the PPD is approximated on the basis of the operative 
temperature only (Fanger's formulation normally 
uses the air and the mean radiant temperature 
independently). The energy cost is computed using 
the net heating energy delivered to the reference 
zones only. Different settings were tested for the 
relative weight of discomfort and energy (α in (3)). 

RESULTS 
The following graphs will present the energy and 
discomfort costs for the entire heating season in the 
(Jd,Je) plane. In each Figure, the best controller is 
closer to the lower left corner of the graph (smaller 
cost for both energy and discomfort). 

The "trajectory" of different controllers is obtained 
by varying some settings of the controllers 
themselves or some parameters of the simulation: 
• Reference controller: the best internal settings of 

the optimal start algorithm were obtained by trial 
and error. The controller "trajectory" was obtained 
by varying the setting of thermostatic valves in all 
zones simultaneously (from 19.75 to 22.0°C) 

• Optimal controller: The relative weights of 
discomfort and energy costs are changed through 
varying the α parameter in the cost function (3). 
Thermostatic valves in reference rooms (S and N) 
are fully opened and other thermostatic valves are 
left to their nominal setpoint (21.0°C). 

Performance in the reference zones 

The results obtained in the two reference zones (N 
and S) are shown in Figure 7. 
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Figure 7: Performance in reference zones (N and S) 

The North zone has far lower solar gains than the 
South zone. This explains the higher energy 
consumption and the lower discomfort: no 
overheating occurs and the installed heating power is 
sufficient to maintain the desired comfort 
temperature in all circumstances. A non-zero 
discomfort cost is only observed when heating is 
started too late in the morning (after night setback) or 
in case the setpoint is reduced below the "comfort 
range" in order to save energy. 

The trajectories in the (Jd, Je) plane that are obtained 
for both controllers are typical of all tested control 
algorithms (optimal and reference): for a well 
designed controller, it is only possible to reduce 
heating consumption by accepting a higher 
discomfort, which gives a roughly hyperbolic-like 
curve. The only exceptions are the ends of both 
curves for the South zone. For these extreme settings 
values, both controllers lead to a global decrease of 
performance (increased energy consumption and 
discomfort). 

As discussed in (Kummert, 2001), the optimal 
controller is able to save energy and improve comfort 
in the South zone, in comparison with the reference 
controller. Energy savings for a similar discomfort 
are between 7 and 10%. In the North zone, the 
optimal controller is able to save between 3% and 
6% energy for a similar discomfort. The only 
advantages of this controller in absence of 
overheating are a finer tuning of the optimal start 
time and a better feedback control action. The 
reference controller only relies on thermostatic 
valves for the feedback action and those valves allow 
larger oscillations than the PID algorithm included in 
the optimal controller. 
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Performance in non-reference zones 

Figure 8 shows the net energy cost and discomfort 
cost for the three Southern zones (S, SE, SW).  

Zones SE and SW are less subject to overheating and 
have a higher energy consumption than zone S 
because of lower solar gains. The difference between 
the SE and SW zones is explained by the higher 
fraction of useful solar gains in zone SE: direct solar 
radiation enters this zone during the morning, while 
most of solar gains in zone SW enter the zone at the 
very end of the occupancy period. 

The behavior of non-reference zones is similar for 
both controllers. The optimal controller is still able to 
save energy in some conditions, but these energy 
savings are very limited (2 to 4%). Furthermore, the 
reference controller offers a larger range of 
discomfort cost. One should keep in mind that the 
simulation hypotheses are slightly different for both 
controllers: for the optimal controller, thermostatic 
valves in all rooms are set to 21°C in all cases, while 
the trajectory of the reference controller is obtained 
by varying the setting of all thermostatic valves 
simultaneously. 
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Figure 8: Performance in all South zones 

The situation in Northern zones is shown in Figure 9. 
Note that the scale of the Figures 8 and 9 is different: 
Northern zones have a higher energy cost (less solar 
gains) and a lower discomfort cost (no overheating). 
The optimal controller gives a very similar 
performance for all settings in NE and NW zones. 
Both the NE and NW zones have a higher energy 
cost than the reference zone (N) – note that this is not 
the case for the reference controller. Here again, all 
zones have a lower energy cost with the optimal 
controller.  

The poor control of comfort level in non-reference 
rooms can be explained as follows: if a high comfort 
level is desired, the temperature in the reference zone 
is maintained at desired level in all circumstances. As 
radiators of the other zones are slightly oversized and 
equipped with thermostatic valves, these zones 
experience a good level of comfort. If the optimal 
controller attempts to save more energy by reducing 
the level of comfort, it slightly under-heats the 

reference room, but this has almost no effect on other 
Northern rooms. If the optimal controller is used with 
a high weighting factor for energy, the water setpoint 
profile may become quite erratic with large 
oscillations sometimes caused by the PID algorithm. 
This gives a water setpoint adapted to zone N but not 
adapted at all for other zones. This can lead to a 
global decrease of the optimal controller 
performance for these zones (higher energy cost and 
discomfort cost). 
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Figure 9: Performance in all North zones 

Global performance at the building level 

Figure 10 shows the costs obtained for the group of 
Northern zones (N, NE and NW), the group of 
Southern zones (S, SE and SW) and for the whole 
building. 

The total energy cost is simply obtained by summing 
the respective costs for all zones. The calculation of a 
total discomfort cost could use weighting factors to 
give more importance to given zones (e.g. with 
higher occupancy). In our case, we assumed an 
identical number of occupants in each zone. The 
discomfort cost is based on a Predicted Percentage of 
Dissatisfied, so the (possibly weighted) average 
between all zones is an expression of the cost (PPD) 
at the building level. Since we are only interested in 
the relative performance of two controllers, the sum 
of discomfort costs provides the same information 
and was used in Figure 10 to obtain a graphical 
presentation consistent with the energy cost. 
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Figure 10: Performance at the building level 
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The performance obtained for the entire building 
reflects the relative importance of different zones. 
The conclusions are therefore very dependent on the 
chosen example (6 zones of equal importance, of 
which 2 reference zones). It can be seen that the 
global performance of the whole building with both 
controllers is very similar to the behavior of a single-
zone building (with a hyperbolic-like trajectory in the 
(Jd, Je) plane). The advantage of the optimal 
controller is reduced to about 5% energy savings for 
a similar discomfort in the low discomfort range, and 
the reference controller performs better for high 
discomfort values (which are unlikely to be chosen 
by a building manager). 

Detailed discomfort evaluation 

Figure 11 shows the discomfort cost obtained for 
Southern zones with the optimal controller, 
according to simplified and detailed computations. 
As explained here above, the simplified cost is used 
by the optimal controller and the purpose of this 
comparison is to assess whether or not the 
optimization of a simplified discomfort cost also 
minimizes the actual discomfort of the occupants.  
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Figure 11: Detailed vs. simplified discomfort cost 

Taking into account the actual humidity of the zones 
and both the air and mean surface temperatures 
causes a significant change in the computed 
discomfort (curves are shifted towards lower Jd 
values). However, the relative position of the 
different curves remains similar.  

A detailed study (not shown here) has shown that the 
most important factor that is neglected in the 
simplified discomfort cost is humidity. The 
consideration of the operative temperature instead of 
the mean radiant and air temperatures has no 
significant effect on the discomfort cost in our study. 

During the heating season, the relative humidity is 
often lower than 50%, despite the presence of a 
humidifier for ventilation air (the supply air humidity 
is controlled but not its temperature, which is lower 
than the average zone temperature).  

This lower humidity actually reduces the computed 
discomfort during overheating periods, since the 

human body is less sensitive to overheating in dry 
air, according to Fanger's comfort indexes. In the left 
part of each curve, discomfort is mostly caused by 
overheating and is less important when computed 
using the detailed definition.  

For higher values of discomfort (right part of each 
curve), cold-related discomfort becomes more 
important. In this region, the effect of humidity is 
inverted, making computed cost higher when the 
detailed expression is used. The discomfort values 
obtained for Northern zones with the detailed cost 
function are therefore slightly higher than values 
obtained with the simplified expression.  

The relative position of the different curves is not 
significantly modified for these thermal zones either. 
Globally, the relative performance of the optimal 
controller (i.e. compared to the reference controller) 
is slightly better with the detailed expression of 
discomfort cost than with the simplified expression. 

Detailed energy cost (primary energy) 

The primary energy consumption calculated by the 
detailed simulation model is used to assess the 
performance of both controllers. The purpose of this 
comparison is to assess whether or not optimizing the 
net energy delivered to the reference zones also 
minimizes the primary energy consumed at the 
building level. 

Taking this into account, the primary energy does not 
modify the relative performance of different 
controllers in this simulation exercise. This is 
illustrated in Figure 12. This figure represents the net 
and primary energy consumption of the whole 
building versus the discomfort cost evaluated with 
the detailed expression. It can be compared with 
Figure 10 to evaluate the influence of the detailed 
discomfort cost expression on global performance 
results. 
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Figure 12: Performance at the building level, detailed 

energy cost and detailed discomfort cost 

Heat losses of the distribution loop depend on the 
supply and return temperatures of different zones. 
However, the average values of these temperatures 
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are very similar for different controllers. The boiler 
efficiency is also very similar for all simulated cases. 
The global ratio between total net heat transferred to 
all zones and primary energy consumption is about 
81% in all cases (ranging from 80% to 82%). Pipes 
heat losses represent about 6% of total heat load and 
the average boiler efficiency is about 86%, with the 
retained parameters for the simulation. 

CONCLUSIONS 
This simulation exercise aimed at assessing the 
performance of a single-zone optimal controller on a 
multizone building using a detailed simulation 
environment. The comparison with an advanced 
reference controller, including an optimal start 
algorithm, shows a slightly better global performance 
of the optimal controller. The latter leads to a better 
control of the reference rooms, despite strong 
simplifications in the controller's internal model, but 
it is not able to achieve a significantly better control 
of other rooms, especially if these rooms are not 
subject to overheating.  

An improved algorithm taking the multizone 
character of the building into account would 
probably give better results, but further work is 
required to simplify the optimum search algorithm 
and to insure the robustness of such a controller. The 
relatively low financial incentives to implement 
advanced heating control strategies and the increased 
difficulty of commissioning controllers using 
complex algorithms are two obstacles to their 
implementation. Nevertheless, they can play a 
significant role in the global effort to reduce the 
energy intensity of buildings. The situation is 
different in cooling applications, where predictive 
controllers can take advantage of real-time electricity 
pricing and yield very substantial financial savings. 
Cooling and heating predictive controllers can share 
a great deal of hardware and software investments, 
which should then increase the financial gains of 
advanced heating control. 
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