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Abstract—This paper considers the application of Proportional-Integral-Plus (PIP) 

control to the Lancaster University Computerised Intelligent Excavator (LUCIE), 

which is being developed to dig foundation trenches on a building site. Previous 

work using LUCIE was based on the ubiquitous PI/PID control algorithm, tuned 

on-line and implemented in a rather ad hoc manner. By contrast, the present 

research utilises new hardware and advanced model-based control system design 

methods to improve the joint control and so provide smoother, more accurate 

movement of the excavator arm. In the paper, a novel nonlinear simulation model of 

the system is developed for MATLAB/SIMULINK, allowing for straightforward 

refinement of the control algorithm and initial evaluation. The PIP controller is 

compared with a conventionally tuned PID algorithm, with the final designs 

implemented on-line for the control of dipper angle. The simulated responses and 

preliminary implementation results demonstrate the feasibility of the approach. 
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I.  INTRODUCTION 

 

   The civil and construction industries currently deploy a large number of manually 

controlled plants for a wide variety of tasks within the construction process. The 

excavation of foundations, general earthworks and earth removal tasks are activities 

which involve the machine operator in a series of repetitive operations. The automation 

of the earth removal process is likely to provide a number of benefits such as a reduced 

dependence on operator skills and a lower operator work load, both of which might be 

expected to contribute to improvements in quality. Automation also allows for the 

removal of the need for a human operator when working in hazardous environments. 

In recent years there have been a number of papers concerned with the True Digital 

Control (TDC) design philosophy, in which the design of control systems is carried out 

overtly in discrete time. The foundations of the TDC approach are based upon the 

Simplified Refined Instrumental Variable (SRIV) identification and estimation 

algorithms for data-based modelling (Young, 1984; 1991), and the subsequent design of 

Proportional-Integral-Plus (PIP) control algorithms (e.g. Young et al., 1987; Chotai et al., 

1998; Taylor et al., 2000a). 

PIP controllers have been successfully designed for a range of difficult applications, 

including the control of CO2 in Open Top Chamber (OTC) and Free Air Carbon dioxide 

Enrichment (FACE) systems (Lees et al., 1998; Taylor et al., 2000b); control of 

microclimate in horticultural glasshouses (Young et al., 1994); control of ventilation rate 

in animal houses and other agricultural buildings (Price et al., 1999); and the automatic 

positioning of an industrial piling rig system (Dixon et al., 1997). 

    The present paper considers the application of PIP control to the Lancaster University 

Computerised Intelligent Excavator (LUCIE), illustrated in Fig. 1, which is being 
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developed to dig foundation trenches on a building site. LUCIE is based on a commercial 

manual hydraulic excavator, but has an on-board computer system in place of a driver to 

control the hydraulics and therefore the machine. 

Previous work using LUCIE has demonstrated the feasibility of developing a machine 

that will dig a trench of specified dimensions (Bradley and Seward, 1998). To date, 

however, control of the excavator arm has been based on the ubiquitous PI/PID type 

control algorithms, tuned on-line and implemented in a rather ad hoc manner. By 

contrast, the present research utilises model-based PIP design to improve the joint control 

and so provide smoother, more accurate movement of the excavator arm. The ultimate 

aim is to develop a machine that will autonomously traverse a building site and dig a 

series of trenches without human intervention. In this regard, one advantage of PIP 

control is that it provides a rigorous approach for the estimation of the control 

parameters, which may be straightforwardly optimised for the different operating 

conditions encountered by the excavator arm, such as movement in the air and digging in 

soils of varying consistency. 

Finally, it should be pointed out that the research takes full advantage of new hardware 

now built into LUCIE. For example, the approach proposed in this paper incorporates the 

inverse kinematics into the on-line controller, which has only become possible with the 

wide availability of more powerful on-line computing resources. 

 

Fig.1.  The LUCIE Excavator. 

      

II. OVERVIEW of PIP CONTROL 

 

   The TDC approach involves four major steps in the control system design process: 
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• data-based identification and estimation of discrete-time, linear Transfer Function 

(TF) models, using the optimal Refined Instrumental Variable (RIV) or SRIV 

algorithms (Young 1984; 1991); 

• PIP control system design using these estimated models (Young et al., 1987; 1994);  

• initial evaluation of the design using computer simulation;  

• real time implementation and evaluation of the controller. 

    For ease of presentation, the general multivariable PIP methodology is described 

below. However, it should be pointed out that in the preliminary results presented later, 

these equations are straightforwardly reduced to the single-input, single-output (SISO) 

case. Here, the transfer function model takes the following general form: 
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where )( 1−zA  and )( 1−zB  are appropriately defined polynomials in the backward shift 

operator z
−1

; i.e., )()( ikykyz i −=− . For convenience, any pure time delay of 1>δ  

samples can be accounted for by setting the 1−δ  leading parameters of the )( 1−zB  

polynomial to zero, i.e. 011 =−δbb … . 

    The PIP control system utilises the Non-Minimal State Space (NMSS) representation 

of a linear, discrete-time, Multi-Input, Multi-Output (MIMO) system (Young et al., 

1994). With this special NMSS representation, all the states are directly measurable since 

they are all past outputs and inputs of the system; these can readily be stored in a digital 

computer, thus avoiding the complexities of state re-constructor (observer) design. The 

NMSS description includes integral-of-error states to ensure ‘Type 1’ servo performance. 

As a consequence, if the closed loop system is stable, then steady state decoupling is 

inherent in the design.  
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In the NMSS approach to control system design, the Transfer Functions (TF) are 

usually identified from measured input-output data, collected either from planned 

experiments or during the normal operation of the plant. In all cases, however, it is 

recommended that the required identification and estimation analysis should utilise the 

optimal Refined Instrumental Variable (RIV) or SRIV algorithms (Young, 1984; 1991) 

since they are often more robust to noise model specification in this regard than 

alternatives, such as the methods available in the MATLAB Identification Toolbox. 

    For a given physical system, an appropriate model structure needs to be identified, i.e. 

the most appropriate values for the triad [n,m,δ ] in equation (1) above. The two main 

statistical measures employed to help determine these values are the coefficient of 

determination RT
2

, based on the response error, which is a simple measure of model fit; 

and the more sophisticated Young Identification Criterion (YIC), which provides a 

combined measure of fit and parametric efficiency, with large negative values indicating 

a model which explains the output data well, without over-parameterisation (Young, 

1991). Note that these statistical tools and associated estimation algorithms have been 

assembled as the Captain toolbox within the MATLAB software environment 

(http://www.es.lancs.ac.uk/cres/systems.html). The second author can be contacted for 

further details about the toolbox, which is presently in the “beta” testing stage of its 

development. 

As will be seen, the dimension of the state vector is determined by the structure of the 

TF model. The simplest implementation of PIP design, for a SISO first order system with 

one sample time delay, is of the conventional PI form. For higher order implementations, 

the PI elements are retained and additional feedback terms are introduced; hence the 

name proportional-integral-plus (PIP). The resulting PIP control system allows for the 
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implementation of any state variable feedback (SVF) design technique, for example: pole 

assignment or optimal linear quadratic (LQ) control, as discussed below. 

 

A.  The NMSS Form 

 

   Consider the following r-input, p-output, discrete time system represented in the terms 

of left Matrix Fraction Description (MFD) (Kailath, 1980). 
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or, 

)()()()( 11 kzkz uByA −− =                                                                                                                                                           

where, 

n

n

1

1

1 ......)()( −−− +++= zzz AAIA                                                                       0)( n ≠A                                                                                           

m

m

1

1

1 ......)( −−− ++= zzz BBB                                                                                0)( m ≠B                                                    

Here, iA (i=1,2,…,n) are p×p matrices and iB  (i=1,2,…,m) are p×r matrices. If 

required, some of the initial B  terms could take null values to accommodate pure time 

delays in the system. The state vector for the NMSS form is defined as,   
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where the vectors (k)y  and (k)u  are, in this case, vectors of system outputs and control 

inputs. The integral-of –error vector )(kz  is defined as, 
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in which ( )kdy  is the reference or demand input vector, with each element being 
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associated with the relevant system output. Having defined the above state vector, the 

NMSS model can be formulated directly in the following form, 

)(1)(1)()( d kkkk DyGuFxx +−+−=                                                                             (5) 

)()( kk Hxy =                                                                                                                     (6)                          

where F, G, D and H are formulated matrices: 
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and, 

[ ]T

1r1 0...000...00 BIBG −=                                                          (8)           

[ ]T
0...0000...000 pID =                                                                  (9)                                                         

[ ]T
00 …pIH =                                                                                                       (10)  

Here, the block matrices pI  and rI  denote pp × and rp ×  identity matrices, 

respectively, while 0 represents a matrix of zeros. 
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B. The PIP Control Law 

 

 The multivariable SVF control law is defined in the usual fashion, i.e., 

)()( kk Lxu −=                                                                                                                (11) 

or  

)(1)(1)......(1)(1)......()()( i1m11n10 kmkknkkkk zKuMuMyLyLyLu ++−−−−+−−−−−= −−  

           (12)                           

where, 

]......[ 11110 imn KMMLLLL −= −−  

is the SVF control gain matrix. The general block diagram for the closed loop system is 

shown in Fig.2. 

 

Fig. 2.  Proportional-Integral-Plus (PIP) Control in Block Diagram Form. 

 

C. Optimal PIP Linear Quadratic (PIP-LQ) Control   

 

    In the present research, the NMSS form is typically used as a foundation for the design 

of optimal PIP-LQ controllers. Here, the requirement is to design a control gain matrix L, 

which minimises the well-known linear quadratic performance criterion,   

( )∑ +=
∞

=0i

TTT )()()()(
2
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where Q and R are, respectively, symmetric positive semi-definite and symmetric 

positive definite weighting matrices. The special structure of the NMSS form means that 
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the elements of Q have a simple interpretation. That is, the diagonal elements portray the 

weights assigned to values of the input and output variables, and the integral-of-error 

terms.    

    The feedback gain matrix L which minimises the cost function J can be computed in a 

variety of ways; e.g. by means of the well-known iterative algorithm for computing the 

steady state solution of the associated, discrete time Riccati equation (Kleinman, 1974), 

given the NMSS system description [F, G] and the weighting matrices (Q, R).         

 

III. LUCIE and PROBLEM DEFINITION 

 

    In recent years, the Engineering Department at Lancaster University has combined the 

three disciplines of civil, mechanical and electrical engineering into one  “Mechatronic” 

project — the Lancaster University Computerised Intelligent Excavator (LUCIE). Based 

on a commercial manual hydraulic excavator, LUCIE has an on-board computer system 

to control the hydraulics. It is being developed with one particular task in mind: the 

digging of foundation trenches on a building site. The ultimate aim is to develop a 

machine that will be able to accept a program of trench locations and dimensions and 

then traverse a building site and dig a series of trenches meeting these specifications. It 

should do this autonomously without human intervention.  

 

A. System Architecture: 

     

   LUCIE is a JCB801 mini tracked excavator, having one boom arm at the front as 

shown in Fig.1. All of the movements are hydraulically driven, these being: (refer to the 

numbered annotation in Fig. 1): 
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1.The movement of the arm in an (x, y) vertical plane, using two hydraulic cylinders 

which control the boom and dipper respectively. 

2.The rotation of the bucket at the end of the dipper, in the same vertical plane, using 

another cylinder. 

3.The rotation of the cab at its connection to the undercarriage, effectively providing 

movement for the arm in a horizontal plane (slew). 

4.The movement up and down of a dozer blade at the front of undercarriage.   

5.The movement of two parallel caterpillar tracks independently, backwards and 

forwards. 

   The excavator is automated by installing a distributed computer architecture to control 

its hydraulics and, therefore, all the movements. As shown by Fig. 3, the "Brain" of the 

excavator relies on three embedded PC104 computers, each computer being responsible 

for a separate task. Communication between the computers is provided by the CAN-Bus 

(Controller Area Network) a robust communications protocol developed within the 

automotive industry. 

 

Fig.3. Hardware Architecture for Excavator Control. 

 

• An activities manager (AM) is responsible for issuing high-level commands for 

digging and navigation. This contains the knowledge base extracted from theoretical 

studies and the experiences of actual expert operators. 

• A low-level controller (LLC) for the arm and tracks. This converts the movement 

demands from the AM into drive signals for electro-hydraulic valves. Such a LLC for 

the arm is the focus of the present paper. 
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• The safety manager (SM) operates as the excavator supervisor ensuring that the 

machine remains in a safe stable condition.   

 

   The sensory equipment is summarised below: 

• Four potentiometers on the joints for angle measurement. 

• A two-axis tilt sensor. 

• A Leuze RotoScan RS 3 optical laser distance sensor, for obstacle detection up to a 

range of 15 m. 

• A Trimble 7400Msi series satellite GPS for location and navigation. 

 

B. Operation and High Level Control Strategy: 

 

  The first, and only fully predictable, action of the LUCIE system is to extend the arm 

to its fullest extent and then lower it until the tip of the bucket contacts the ground 

(Bradley and Seward, 1998). Once the ground, which is the start-point of excavating, has 

been detected, the excavator attempts to penetrate the ground to a point at which the 

bucket can be filled by rotation. If this is not possible, because the ground is too hard, the 

bucket is scraped towards the cab in a dragging motion in order to loosen enough 

material to fill the bucket. The arm is then slewed to deposit the earth and finally returned 

to the previous point of entry to start another cycle. During this procedure, the system 

remembers the previous point of entry into the ground and the swept profile. This is then 

compared with the desired profile. At the end of the process, a trench is produced. The 

sequence of operation (Bradley and Seward, 1998) is defined by Fig .4. 

 

Fig. 4.  Trench Digging Sequence. 
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   During excavation it is sometimes necessary for the trajectory of the tip of the bucket to 

be a straight line. For example, when LUCIE is dragging in the ground in order to 

complete a flat bottomed trench, the trajectory of the bucket is a straight horizontal line.  

The overall control requirements can therefore be summarised as: 

1. The ability to move the teeth of the excavator bucket from point-to-point through 

a specified trajectory. 

2. The need to adapt the digging strategy in order to fill the bucket in the minimum 

cycle time. This implies the need to provide the activities manager with adequate 

progress data so that strategic decisions can be made. 

 It can be seen that during the whole operation, the proper and precise position of each 

joint of LUCIE is an essential requirement if it is to carry out its designed task. It is clear 

that the high level controller, which decides the overall excavation strategy, depends on 

fast robust regulation of these low level variables, as considered in the following section 

IV of the paper. 

 

IV. PIP CONTROL SYSTEM DESIGN 

 

To illustrate the PIP methodology, the approach is first applied to the problem of 

moving the bucket in a straight line. Here, a novel nonlinear simulation model of the 

system is developed for MATLAB/SIMULINK, allowing for straightforward 

refinement of the control algorithm and initial evaluation. The PIP controller is compared 

with a conventionally tuned PID algorithm, with the final design implemented on-line for 

the control of dipper angle. 
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A. PIP control of bucket position 

 

This research combines the previously developed kinematics (Bradley and Seward, 

1998) with TF models for the joint dynamics obtained from experimental data, in order to 

develop a nonlinear simulation model for LUCIE. The simulation is utilised to 

demonstrate the proposed PIP control methodology and identify the limitations of 

conventional PID design. 

 

A.1. Dipper and Boom Kinematics 

 

Assuming minimal flexure in the boom and dipper arms, the fixed geometry of the 

system ensures a static relationship between the joint angles and the ),( yx  coordinates 

for the reference point on the bucket. As shown in Fig. 5, the reference 

(0, 0) point for the coordinate system used in the kinematic analysis is the point of 

attachment of the boom to the vehicle, with positive motion in the x-direction being away 

from the vehicle and positive motion in the y-direction being vertically upwards. During 

digging, referring again to Fig. 5, the position of bucket joint ( BJBJ , yx ) relative to the 

reference point is obtained from the following equations (Bradley and Seward, 1998): 

)( 21211BJ θθcosLcosθLx −+=                                                                                     (14) 

)( 21211BJ θθsinLsinθLy −+=                                                                                      (15) 

The inverse kinematic equations for 1θ  and 2θ are then: 
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Fig.5.  Excavator Kinematics. 

 

A.2. Data-Based Models for the Joint Dynamics 

 

In the present section, discrete-time, linear models of the joint dynamics are estimated 

from experimental data using the SRIV algorithm (Young, 1991). For example, Fig. 6 

shows the response of the boom, from an initial closed position, to a series of input 

voltages ranging from 100 to 900 (scaled units: see later). In each case, the boom opens at 

a speed proportional to the input voltage until it reaches it’s maximum extended position, 

typically 2-3 seconds later. In Fig. 6, the initial boom angle is approximately 10 degrees; 

however, the data are stacked for clarity of presentation, with the traces higher up the plot 

representing experiments with larger input voltages. 

 

Fig. 6.  Boom Opening Response for Different Drive Demands (dots) 

and Estimated TF Model (solid). 

 

Note that for all the analysis discussed below, the dead-zone is removed at the data 

collection stage, so that a positive voltage scaled from 0 to 1000 causes the boom to open 

(large input implies faster movement), whilst a negative voltage up to –1000 reverses the 

direction. In this manner, the boom can be positioned at an angle between 0 and 60 
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degrees, where the later figure represents fully open. Similarly, a scaled input voltage to 

the dipper in the range -1000 to 1000 causes the dipper angle to vary from -30 (fully 

open) to -140 degrees. The hydraulic pressure that drives the arms is approximately 

1.1 710×  pa. Finally, all the modelling and control design is based on a sampling rate of 

0.1 seconds, which is within the capabilities of the on-line computer and is found to work 

well in practice. 

In common with other hydraulic systems (e.g. Dixon et al., 1997), it is clear that the 

boom angle behaves as an integrator, with an almost constant rate of change for a given 

input signal (see Fig. 6). This is confirmed by a model identification exercise utilising RT
2

 

and YIC, where the transfer function model is each case is found to be of the following 

first order form: 

  )(
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=                                                                              (18) 

Here, )(ky  represents the boom angle, )(ku  the input voltage and b is a numerator 

parameter estimated for each experiment in turn. It is important to stress that the linear 

model (18) is based on a time invariant parameter b and, therefore, only holds for a 

specified input voltage. For example, when 500)( =ku , then the SRIV algorithm 

determines that 0029.0=b  and 9986.02 =TR , i.e. over 99% of the variation in the data is 

explained by the simple TF model (18). Indeed, as illustrated in Fig. 6, the response of 

the model (solid trace) closely matches the data (dots) for each experiment. 

    Furthermore, plotting the value of b against input voltage, as in Fig. 7, reveals a 

nonlinear relationship that is straightforwardly represented with a nonparametric model. 

For example, a 6th order polynomial is fitted using MATLAB and shown as the solid 

trace in Fig. 7.  

 



 16

Fig. 7. Numerator Parameter b for Equation (18) Fitted to Experimental Boom 

Opening Data, Plotted against the Input Voltage (dots); Estimated Curve (solid). 

 

    Experiments utilising negative voltages to close the boom reveal a similar, albeit 

inverted, series of responses to Fig. 6. However, in this case, the RT
2

 and YIC criteria 

suggest that the most appropriate model structure has two samples pure time delay, i.e., 

  )(
1
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z
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ky
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=                                                                              (19) 

    In this case, the relationship between b and the input voltage can also be fitted with a 6th 

order polynomial. Therefore, by combining Fig. 7 and the equivalent curve for the boom 

closing experiments, with the transfer function models (18) and (19), the dynamic 

relationship between boom angle and any specified input voltage may be determined. 

Furthermore, similar TF models may be obtained for dipper opening and dipper 

closing experiments, here with unity pure time delays for both cases. In this manner, a 

nonlinear simulation model is developed for LUCIE and implemented using 

MATLAB/SIMULINK as illustrated in Fig. 8. The model is based on the following 

three components: 

• The simulation inputs are the applied voltages to the boom and dipper joints. In 

SIMULINK, a switch determines whether the joint is opening or closing and the 

appropriate parameter b is determined from the previously estimated nonlinear 

curve, such as Fig. 7. 

• The appropriate joint dynamics are determined from the TF model (18) or (19), 

yielding a boom angle 1θ  and dipper angle 2θ  at each time step. 
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• These joint angles are utilised to determine the bucket position from the kinematic 

equations (14) and (15), yielding the simulation output in the form of ( BJBJ , yx ) 

coordinates (cm). 

 

A.3.   PIP control system design 

 

    The specifications for the movement of bucket position in a straight line are as follows. 

• When the bucket moves in the air, the trajectory should keep an accuracy of 

±100mm  

• When it moves in the ground, the accuracy should be kept to within ±25mm. 

    Cycle times are also a major factor in determining performance. Observation of 

machine operators on this size of excavator suggest that a typical cycle time, for an 

average operator completing the sequence of operations defined by Fig. 4, is of the order 

of 15 to 25 seconds depending on the type of ground. The operation of moving the bucket 

through the ground is typically between 5 to 8 seconds. 

    Since there is little interaction between the dipper and boom hydraulics, the present 

research is based on the simplest multiple loop, single input, single output control 

algorithms, i.e. PIP controllers are designed for each joint separately. Furthermore, the 

most important objective is to control the bucket during digging operations, so the PIP 

control algorithms for both the dipper and the boom are based on the TF models 

estimated from joint closing data. In particular, the two control models utilised in the 

results below, are for input voltages of -250 and +250 for the boom and dipper 

respectively. These yield TF models with 0.0185=b  for the boom (equation (19) with 

two samples delay) and 0080.0=b  for the dipper (equation (18) with unity delay). 
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As will become apparent, these two TF models and associated fixed gain PIP control 

algorithms, yield good control of the bucket when applied to the full nonlinear 

simulation. Indeed, straightforward tuning quickly yields PIP-LQ controllers for the 

boom and dipper angles: the results discussed below are based on unity weights for the 

input and output states, together with weightings of 10 for the integral of error states. 

Fig. 8 shows the SIMULINK implementation of the nonlinear model, together with 

the associated PIP control algorithm. Here, the two subgroups shown in the top level 

diagram are illustrated below in Fig. 8 (b) and (c). For brevity, further levels of 

complexity are not shown in the figure – for example, the “Digger Geometry” subgroup 

in Fig. 8 (b) contains the kinematic equations (14) and (15), which are programmed in 

SIMULINK using Switches and MATLAB functions. 

 

(a) Top Level Diagram. 

(b) PIP Control Subgroup. 

(c) LUCIE Simulation Subgroup. 

Fig.8. SIMULINK Diagram For the Bucket Position Control System. 

 

In this formulation, the desired (x, y) coordinates for bucket position are fed into the 

inverse digger geometry algorithm, represented as one of the subgroups in Fig. 8 (b). 

Here the equivalent joint angles are calculated from equations (16) and (17). These angles 

provide the set points for the PIP control systems. One PIP control algorithm utilises the 

boom voltage to control the boom angle, while a second utilises the dipper voltage to 

control the dipper angle. 

As illustrated in Fig. 8 (a), the feedback variables are the joint angles, so that the 

bucket position is not required at all. It is important to stress, however, that any 
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disturbances influencing the (x, y) coordinates or their rate of change, such as the bucket 

hitting a rock, will still be fed back to the control algorithm through their inherent affect 

on the measured joint angles. The advantage of concentrating on the joint angles in this 

way, is that the nonlinear digger geometry is accounted for at the design stage whilst, 

since there is a clearly established instantaneous relationship between joint angles and the 

(x, y) coordinates, no useful control information is lost. Furthermore, this approach can 

be employed for both movement of bucket in the air and in the ground for digging. 

A typical closed loop experiment would consist of moving the bucket from position 

( 1x , 1y ) to ( 2x , 2y ). The specified trajectory could take the form of a straight line or could 

be curved, and may have either constant or time varying speed. Ultimately, the trajectory 

chosen will depend on the nature of the trench being dug and could be revised on-line by 

a high level control system. 

 

A.4.   PIP control system evaluation and comparison with PID control 

 

To illustrate the proposed control scheme, consider the simulation response shown in 

the time series and polar coordinate plots of Fig. 9 (a) and Fig. 9 (b) respectively. The 

objective of this simulation experiment is to move the bucket from its initial position 

{1500, 300}, to {2000, 800}, {2000, -800} and {1200, -800}, where the {x, y} 

coordinates are given in cm from the reference point. The trajectory between each set of 

coordinates should take the form of a straight line and be complete in 3 seconds, with a 

wait of 1 second at each location. 

   To achieve this aim, appropriate time varying (x, y) coordinates are first calculated 

off-line. These are shown as the dashed lines on the lower two plots of Fig. 9 (a). The 

corresponding control system is implemented in SIMULINK as discussed above, with 
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the joint angle set points calculated on-line, shown as dashed traces in the middle two 

plots of Fig. 9 (a), and the PIP control algorithms adjusting the input voltage (top graphs) 

in order to meet these targets. It is clear from Fig. 9 (b) that the bucket is moved along the 

defined straight-line trajectories well within the required accuracy (thick trace). 

 

(a) Time response. 

 

(b) Polar coordinate plot. 
 

Fig. 9.  Nonlinear Simulation of Bucket Movement, 

Comparing PIP (thick), PID (thin) and Set Points (dashed). 

 

    Fig. 9 also shows the response of a carefully tuned PID algorithm applied to the same 

nonlinear simulation. The PID algorithm was obtained using the Ziegler-Nichols ultimate 

sensitivity method (Franklin et al., 1994), followed by extensive subsequent experimental 

tuning. For this simulation example, it is clear that PID control does not meet the 

performance requirements. 

Previous research has shown it is possible, under certain conditions, to control the 

individual joints of LUCIE using PI/PID type algorithms. Indeed, by using a system of ad 

hoc rules, Bradley and Seward (1998) obtain reasonable, albeit sometimes juddering, 

control of the bucket. However, the present formulation of the control problem, using the 

kinematics to resolve the motion, requires fast precise regulation of the joint positions 

and this not always possible using conventionally tuned PID algorithms. Examination of 

Fig. 9 reveals that small errors in the joint angles lead to large mismatches in the final 

bucket position. 

One contributing factor for the failure of the PID approach is the 2 sample time delay 

between the application of a voltage and movement of the boom. Indeed, control of 

‘integrators with time delay’ is a rather difficult control problem in general. This is one 
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reason why the authors have turned to the more sophisticated PIP approach, which is able 

to handle time delays automatically (Taylor et al., 1998). 

 

B. Dipper Angle On-Line Implementation 

 

The present section discusses on-line results concentrating on control of the dipper 

angle. To the authors knowledge, this is the first time PIP control has been applied to 

such a heavy excavator, and these preliminary experiments are designed to assess the 

feasibility of the approach. 

 

B.1.   Dipper Angle Control System Design and Implementation 

 

    Based on a dipper closing experiment with an input voltage of –600, a first order TF 

model with unity time delay is identified ( 2
TR =0.99927 and YIC=-17.63) and utilised in 

the design of the following PIP control algorithm: 

)(6.8θ1)θ(74.8θ1)u()u( d kkkk −−+−= -)k(                                                              (20) 

where )(θd k is the set point for the dipper angle at sample k. 

   In the frequency domain, the conservative gain and phase margins were calculated at 

Gm=10.0083dB and Pm= o180 . These values are well within the acceptable bounds. For 

example, a typical aerospace application might specify margins of 4dB and 
o36 of 

phase. 

   Having confirmed satisfactory results using simulation studies, the PIP controller is 

implemented in the software language C, and finally evaluated on the actual excavator. 
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The results are shown in Fig. 10, where it can be seen that the dipper reaches its target 

angle in about 2 or 3 seconds.  

 

(a) Set point step from -130 to -60 degrees. 

(b) Set point step from -130 to -40 degrees. 

(c) Set point step from -60 to -110 degrees. 

Fig. 10. PIP Control of LUCIE Dipper Angle Compared with Response of Linear TF model. 

 

B.2.   Analysis and Evaluation 

 

   The results illustrated in Fig. 10 suggest that the PIP control system satisfies the 

requirement of driving the arm to the target angle in a fast and smooth manner. However, 

a number of avenues for improvement have been identified and are discussed below: 

• For simplicity, an integrator with unity time delay is assumed for the TF model. 

However, this is not necessary the most appropriate model structure for control of the 

dipper. The authors are presently investigating the applicability of a 2nd order double 

integrator model, possibly with two or more time delays. 

• In the case of the dipper closing, the pressure that is required to support the weight of 

the arm is initially negative as the arm descends. When the dipper is approximately 

vertical, the velocity of the dipper is nearly zero, because the oil in the ram requires 

time to build-up to a positive pressure. After passing the vertical range, the speed of 

the dipper is controlled by the input voltage again. Also, for a heavy robot such as 

LUCIE, the effect of inertia on its motion should be accounted for. In some cases, the 

arm overshoots and oscillates around its target position, as shown in Fig. 10 (b). 

Further research is clearly required to investigate these nonlinearities in the system. 
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• The TF models used in the control designs above are all based on a single input 

voltage to either the dipper or boom, yielding fixed gain PIP controllers that are 

particularly simple to implement. However, in practice, it is clear that different input 

voltages yield different responses, as shown in Fig. 6. One simple improvement 

would be to utilise different control models for the opening and closing cases. At the 

other extreme, it may prove beneficial to implement a fully scheduled PIP controller, 

where the control parameters are updated at each sample by determining the b 

parameter from a previously estimated curve such as Fig. 7. 

• Finally, the authors are presently investigating the application of multi-objective 

optimisation techniques (Chotai et al., 1998) in order to account for some of the 

above practical limitations. PIP control is ideal for incorporation within such as 

framework, where satisfactory compromise can be obtained between conflicting 

objectives such as robustness, overshoot, rise times and multivariable decoupling. 

This is achieved by concurrent optimisation of the diagonal and off diagonal elements 

of the weighting matrices in the cost function. Since it is the LQ weights that are 

optimised, this has the advantage of generating only guaranteed stable optimal 

solutions, thus allowing for better (smoother) defined optimisation problems. This is 

one advantage of utilising a model-based approach such as PIP, rather than 

attempting to directly tuning the gains of a PID type algorithm. 

 

V. CONCLUSION 

 

This paper describes research aimed at the design of an automatic positioning system 

for the bucket of a heavy construction machine — the LUCIE excavator. The design of a 

control system for such a device is a particularly difficult problem, since there are many 
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factors that must be considered, including the affect of gravity, hydraulic pressure, inertia 

during motion, time delays and the uncertain working environment. These represent the 

huge challenges for the automatic control of the LUCIE excavator. 

Previous attempts to control LUCIE have yielded relatively slow and sometimes 

juddering responses. The present work aims to improve the speed and smoothness of 

bucket control by utilising new hardware and advanced model-based control methods. In 

particular, this paper proposes a bucket position controller for LUCIE that couples the 

inverse kinematic equations with high performance Proportional-Integral-Plus (PIP) 

controllers for the joint angles. 

The authors are presently investigating the application of multi-objective optimisation 

techniques, in order to further improve the performance of the joint controllers, before 

evaluating the proposed bucket control system on-line. This research will be reported in 

future publications. However, the simulated responses discussed above, together with the 

preliminary implementation results, are very promising. 
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Fig.1.  The LUCIE Excavator. 
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Fig. 2.  Proportional-Integral-Plus (PIP) Control in Block Diagram Form. 
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Fig. 3. Hardware Architecture for Excavator Control. 
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Fig. 4.  Trench Digging Sequence. 
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Fig. 5.  Excavator Kinematics. 

 



 32

 

 

 

 

 

 

Fig. 6.  Boom Opening Response for Different Drive Demands (dots) 

and Estimated TF Model (solid). 
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Fig. 7. Numerator Parameter b for Equation (18) Fitted to Experimental Boom 

Opening Data, Plotted against the Input Voltage (dots); Estimated Curve (solid). 
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(a) Top Level Diagram. 

 

 

 

(b) PIP Control Subgroup 

 

 

 

(c) LUCIE Simulation Subgroup. 

 

Fig.8. SIMULINK Diagram For the Bucket Position Control System. 
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(a) Time Response. 

 

 
 

(b) Polar Coordinate Plot. 
 

Fig. 9.  Nonlinear Simulation of Bucket Movement, 

Comparing PIP (thick), PID (thin) and Set Points (dashed). 
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(a) Set point step from -130 to -60 degrees. 

 

 
 

(b) Set point step from -130 to -40 degrees. 
 

 
 

 (c) Set point step from -60 to -110 degrees. 
 

Fig. 10. PIP Control of LUCIE Dipper Angle Compared with Response of Linear TF model. 


