104 research outputs found

    Decoupling algorithms from schedules for easy optimization of image processing pipelines

    Get PDF
    Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imaging pipelines that separates the algorithm from its schedule, enabling high-performance without sacrificing code clarity. This decoupling simplifies the algorithm specification: images and intermediate buffers become functions over an infinite integer domain, with no explicit storage or boundary conditions. Imaging pipelines are compositions of functions. Programmers separately specify scheduling strategies for the various functions composing the algorithm, which allows them to efficiently explore different optimizations without changing the algorithmic code. We demonstrate the power of this representation by expressing a range of recent image processing applications in an embedded domain specific language called Halide, and compiling them for ARM, x86, and GPUs. Our compiler targets SIMD units, multiple cores, and complex memory hierarchies. We demonstrate that it can handle algorithms such as a camera raw pipeline, the bilateral grid, fast local Laplacian filtering, and image segmentation. The algorithms expressed in our language are both shorter and faster than state-of-the-art implementations.National Science Foundation (U.S.) (Grant 0964004)National Science Foundation (U.S.) (Grant 0964218)National Science Foundation (U.S.) (Grant 0832997)United States. Dept. of Energy (Award DE-SC0005288)Cognex CorporationAdobe System

    Fast and Exact Fiber Surfaces for Tetrahedral Meshes

    Get PDF
    Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    revision of the messinian early zanclean sediments from odp hole 953c canary island archipelago north eastern atlantic biostratigraphy cyclostratigraphy and astronomical tuning

    Get PDF
    A quantitative study was performed on calcareous plankton of the Messinian-early Zanclean succession recovered at ODP Leg 157 Hole 953C (Canary Island Archipelago, North-Eastern Atlantic). This revision allowed to recognize some events typically recorded in the Mediterranean region, highlighting affinities between the Mediterranean and North Atlantic Ocean, in the considered time interval. The presence of such events in an open-ocean succession provides the possibility to substantially improve the biostratigraphic resolution and supplies useful correlation tools between the Mediterranean and oceanic areas. Moreover, to unravel cyclical patterns of deposition and given that the investigated succession shows no evident lithological pattern, cyclostratigraphic analyses have been based on abundance fluctuations ofGlobigerinoides-Orbulinagroup, neogloboquadrinids, and warm-water versus cool-water species ratio. As a result, forty-three precession-controlled cycles have been recognized spanning from 6.457 Ma to 4.799 Ma

    Qualitative Spatial Configuration Queries Towards Next Generation Access Methods for GIS

    Get PDF
    For a long time survey, management, and provision of geographic information in Geographic Information Systems (GIS) have mainly had an authoritative nature. Today the trend is changing and such an authoritative geographic information source is now accompanied by a public and freely available one which is usually referred to as Volunteered Geographic Information (VGI). Actually, the term VGI does not refer only to the mere geographic information, but, more generally, to the whole process which assumes the engagement of volunteers to collect and maintain such information in freely accessible GIS. The quick spread of VGI gives new relevance to a well-known challenge: developing new methods and techniques to ease down the interaction between users and GIS. Indeed, in spite of continuous improvements, GIS mainly provide interfaces tailored for experts, denying the casual user usually a non-expert the possibility to access VGI information. One main obstacle resides in the different ways GIS and humans deal with spatial information: GIS mainly encode spatial information in a quantitative format, whereas human beings typically prefer a qualitative and relational approach. For example, we use expressions like the lake is to the right-hand side of the wood or is there a supermarket close to the university? which qualitatively locate a spatial entity with respect to another. Nowadays, such a gap in representation has to be plugged by the user, who has to learn about the system structure and to encode his requests in a form suitable to the system. Contrarily, enabling gis to explicitly deal with qualitative spatial information allows for shifting the translation effort to the system side. Thus, to facilitate the interaction with human beings, GIS have to be enhanced with tools for efficiently handling qualitative spatial information. The work presented in this thesis addresses the problem of enabling Qualitative Spatial Configuration Queries (QSCQs) in GIS. A QSCQ is a spatial database query which allows for an automatic mapping of spatial descriptions produced by humans: A user naturally expresses his request of spatial information by drawing a sketch map or producing a verbal description. The qualitative information conveyed by such descriptions is automatically extracted and encoded into a QSCQ. The focus of this work is on two main challenges: First, the development of a framework that allows for managing in a spatial database the variety of spatial aspects that might be enclosed in a spatial description produced by a human. Second, the conception of Qualitative Spatial Access Methods (QSAMs): algorithms and data structures tailored for efficiently solving QSCQs. The main objective of a QSAM is that of countering the exponential explosion in terms of storage space occurring when switching from a quantitative to a qualitative spatial representation while keeping query response time acceptable

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore