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Abstract

For a long time survey, management, and provision of geographic in-
formation in Geographic Information Systems (gis) have mainly had
an authoritative nature. Today the trend is changing and such an
authoritative geographic information source is now accompanied by
a public and freely available one which is usually referred to as Vol-
unteered Geographic Information (vgi). Actually, the term vgi does
not refer only to the mere geographic information, but, more gener-
ally, to the whole process which assumes the engagement of volunteers
to collect and maintain such information in freely accessible gis.

The quick spread of vgi gives new relevance to a well-known challenge:
developing new methods and techniques to ease down the interaction
between users and gis. Indeed, in spite of continuous improvements,
gis mainly provide interfaces tailored for experts, denying the casual
user—usually a non-expert—the possibility to access vgi information.
One main obstacle resides in the different ways gis and humans deal
with spatial information: gis mainly encode spatial information in a
quantitative format, whereas human beings typically prefer a quali-
tative and relational approach. For example, we use expressions like
“the lake is to the right-hand side of the wood” or “is there a super-
market close to the university?” which qualitatively locate a spatial
entity with respect to another.

Nowadays, such a gap in representation has to be plugged by the
user, who has to learn about the system structure and to encode
his requests in a form suitable to the system. Contrarily, enabling
gis to explicitly deal with qualitative spatial information allows for
shifting the translation effort to the system side. Thus, to facilitate
the interaction with human beings, gis have to be enhanced with
tools for efficiently handling qualitative spatial information.

The work presented in this thesis addresses the problem of enabling
Qualitative Spatial Configuration Queries (qscqs) in gis. A qscq is
a spatial database query which allows for an automatic mapping of
spatial descriptions produced by humans: A user naturally expresses
his request of spatial information by drawing a sketch map or pro-
ducing a verbal description. The qualitative information conveyed by
such descriptions is automatically extracted and encoded into a qscq.



The focus of this work is on two main challenges: First, the develop-
ment of a framework that allows for managing in a spatial database
the variety of spatial aspects that might be enclosed in a spatial de-
scription produced by a human. Second, the conception of Qualitative
Spatial Access Methods (qsams): algorithms and data structures tai-
lored for efficiently solving qscqs. The main objective of a qsam
is that of countering the exponential explosion in terms of storage
space—occurring when switching from a quantitative to a qualitative
spatial representation—while keeping query response time acceptable.



Zusammenfassung

Seit langem wird das Management und die Bereitstellung von Geoin-
formationen in Geographic Information Systems (gis) von wenigen
zentralen autoritativen Stellen bearbeitet. Im Informationszeitalter
werden jedoch frei verfügbare öffentliche Informationsquellen, soge-
nannte Volunteered Geographic Information (vgi), immer wichtiger.
Hierbei bezeichnet der Ausdruck vgi nicht nur die eigentliche Geoin-
formation, sondern den Gesamtprozess, in welchem durch das Mitwir-
ken von Freiwilligen Geoinformationen in öffentlichen gis gesammelt
und gewartet werden.

Die schnelle Verbreitung von vgi resultiert in einer wohlbekannten
Herausforderung: Das Entwickeln von Methoden und Techniken um
die Interaktion zwischen Benutzern und gis zu vereinfachen. Trotz
kontinulierlicher Verbesserungen stellen gis bis heute überwiegend
Expertenschnittstellen bereit, sodass der Gelegenheitsnutzer kaum ei-
ne Möglichkeit hat, an Informationen aus vgi zu gelangen. Eine be-
sondere Hürde besteht darin, dass Menschen und gis grundsätzlich
unterschiedlich mit räumlichen Informationen umgehen: gis codie-
ren räumliche Informationen zumeist auf quantitative Art und Weise,
während Menschen normalerweise einen qualitativen und relationalen
Ansatz bevorzugen. Beispielsweise benutzen wir Ausdrücke wie “Der
See ist rechts des Waldes.” oder “Gibt es einen Supermarkt in der Nä-
he der Universität?”, sodass eine räumliche Entität in Bezug zu einer
anderen gesetzt wird.

Heutzutage wird diese Lücke vom Benutzer gefüllt, der die Informa-
tionsstruktur des Systems erlernen muss und seine Anfragen in einer
Form darstellen muss, die an das System angepasst ist. Um die Be-
nutzerfreundlichkeit zu erhöhen und um Gelegenheitsnutzern Zugang
zu gis zu ermöglichen, muss also ein gis, welches mit qualitativen
räumlichen Informationen arbeitet, diese Übersetzungsarbeit leisten.
Das System muss mit Werkzeugen zur effizienten Verarbeitung von
qualitativen räumlichen Informationen ausgestattet werden.

Diese Dissertation adressiert das Problem der Behandlung von soge-
nannten Qualitative Spatial Configuration Queries (qscqs) in gis. Ei-
ne qscq ist eine Datenbankanfrage welche eine automatisierte Über-
setzung von menschlichen räumlichen Beschreibungen erlaubt: Ein Be-
nutzer wird seine Anfrage an eine räumliche Datenbank normalerwei-
se in Form einer verbalen Beschreibung oder einer handgezeichneten



Skizze stellen. Die qualitative Information, welche in solchen Beschrei-
bungen enthalten ist, wird automatisch extrahiert und in eine qscq
übersetzt.

Der Fokus dieser Arbeit gilt vor Allem zwei Herausforderungen: Er-
stens der Entwicklung eines Rahmenwerks, welches es erlaubt, die
Ausprägungen von räumlichen Aspekten in menschlichen Beschrei-
bungen in einer Datenbank zu verwalten. Zweitens der Erstellung von
sogenannten Qualitative Spatial Access Methods (qsams): Algorith-
men und Datenstrukturen, welche darauf zugeschnitten sind, qscqs
effizient zu lösen. Stellt man quantitative Daten qualitativ dar, kommt
es zu einer exponentiellen Explosion des benötigten Speicherplatzes.
Das Hauptziel von qsam ist es, diesen Mehraufwand zu verhindern
oder zu begrenzen, während die Bearbeitungszeit einer Anfrage ak-
zeptabel bleibt.



Sommario

La raccolta, la gestione e la fornitura di informazioni geografiche nei
Geographic Information Systems (gis) ha avuto per un lungo periodo
una natura prettamente autoritaria. Oggi la tendenza sta cambiando
e questa sorgente autoritaria di informazioni geografiche è ora accom-
pagnata da una pubblica e liberamente disponibile a cui ci si riferisce,
tipicamente, col nome di Volunteered Geographic Information (vgi).
In realtà, con il termine vgi non ci si riferisce solo alle mere infor-
mazioni geografiche, quanto piuttosto all’intero processo che assume
l’impiego di volontari per il collezionamento ed il mantenimento di
tali informazioni in gis liberamente accessibili.

La rapida diffusione del vgi da nuova rilevanza ad una ben nota sfi-
da: sviluppare nuovi metodi e tecniche che facilitino l’interazione tra
utenti e gis. Infatti, malgrado i continui miglioramenti, i gis con-
tinuano a fornire interfacce principalmente disegnate per esperti, ne-
gando all’utente casuale—tipicamente un non esperto—la possibilità
di accedere alle informazioni vgi. Uno degli ostacoli principali ri-
siede nel diverso modo in cui gis ed esseri umani gestiscono le in-
formazioni spaziali: mentre i gis codificano le informazioni spaziali
principalmente in un formato quantitativo, gli esseri umani preferisco-
no ricorrere, tipicamente, ad un approccio relazionale e qualitativo.
Per esempio, ricorriamo ad espressioni quali “il lago si trova a de-
stra del bosco” oppure ”il supermercato è vicino all’università?” che
localizzano qualitativamente una entità spaziale rispetto ad un’altra.

Ad oggi, questo divario rappresentativo deve essere colmato dall’uten-
te, il quale deve imparare a conoscere la struttura interna del sistema
ed a codificare la sua richiesta in un formato che quest’ultimo possa
interpretare. Viceversa, abilitare i gis al trattamento esplicito del-
le informazioni spaziali qualitative permetterebbe di far ricadere lo
sforzo di traduzione sul sistema piuttosto che sull’utente. Dunque,
per facilitare l’interazione con gli esseri umani, i gis devono essere
potenziati con strumenti che permettano una gestione efficiente delle
informazioni qualitative spaziali.

Il lavoro presentato in questa tesi affronta il problema di abilitare le
Qualitative Spatial Configuration Queries (qscqs) nei gis. Una qscq



è un tipo di query ad un database spaziale che permette un map-
ping automatico delle descrizioni spaziali prodotte dagli esseri uma-
ni: un utente può esprimere la sua richiesta di informazioni spaziali
disegnando delle sketch maps o producendo delle descrizioni verba-
li. Le informazioni qualitative convogliate da tali descrizioni vengono
automaticamente estratte e codificate in una qscq.

Questo lavoro si focalizza principalmente sulla risoluzione di due pro-
blemi specifici. In primo luogo lo sviluppo di un framework che per-
metta di gestire in un database la varietà di aspetti spaziali che pos-
sono essere racchiusi in una descrizione prodotta da un essere umano.
Successivamente l’attenzione è posta sull’ideazione di Qualitative Spa-
tial Access Methods (qsams): algoritmi e strutture dati progettati per
risolvere efficientemente una qscq. L’obiettivo principale di un qsam
è quello di contrastare l’esplosione esponenziale in termini di spazio
di memorizzazione—a cui si è soggetti quando si passa da una rap-
presentazione spaziale quantitativa ad una qualitativa—mantenendo,
contemporaneamente, un tempo di risposta delle query accettabile.
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Chapter 1

Introduction

The perception of space serves a fundamental role in everyday life. For this reason
we have always tried to represent and store spatial information to the best of our
abilities. Beginning from geographic charts onwards, we investigated and devel-
oped continuously more advanced spatial representation and analysis instruments
that help in easing down the process of making space-related decisions. For this
purpose, today, we use Geographic Information Systems (gis): complex com-
puterized systems providing tools to store, manipulate, and analyze (geo)spatial
data.

For a long time survey, management, and provision of geographic information
in gis have mainly had an authoritative nature and the access to such information
has been restricted to expert users. Today, thanks to the drop in the cost of survey
instruments (mainly gps devices) and to the spread of information integration
and sharing tools characteristic of the Web 2.0, the trend is changing. The
“old” authoritative geographic information source is now accompanied by a “new”,
public and freely available one. Recently, Goodchild (2007) coined for it the term
Volunteered Geographic Information (vgi): a particular form of user-generated
content that assumes the active engagement of volunteers to collect and provide
spatial data to be used in gis.

One main goal of vgi is to make geographic information freely available and
usable. Probably the best known form of vgi is represented by web-based projects
like OpenStreetMap1, which aims at collaboratively producing a free editable map
of the world, and Wikimapia2, which furnishes spatial data that users are allowed
to tag with textual information. Such projects provide web interfaces to let the
users interact with the spatial information stored in an underlying gis.

1http://www.openstreetmap.org/
2http://wikimapia.org/
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1.1 Motivation

Albeit Web 2.0’s technologies allowed for bringing gis within general public’s
reach, the expertise required to interact with them drastically reduce the number
of potential spatial data contributors and consumers. Indeed, in spite of continu-
ous improvements, gis mainly provide interfaces tailored for experts, denying the
casual user—usually a non-expert—the possibility to fully exploit their poten-
tials. The challenge of developing new methods and techniques to interact with
gis in a more intuitive and natural way has been already tackled in the past (cf.
Egenhofer, 1996, for example). Today, thanks to vgi, such a challenge gained
new relevance (cf. Pfoser, 2011, for example).

gis allow for performing a variety of spatial data manipulation and presen-
tation for the most disparate tasks going from simple map visualization to path
planning, to land usage examination, and to economical or criminal statistics.
Nonetheless, most of these operations require a level of expertise that the casual
user does not possess. Accordingly, general public can exploit gis capabilities
mainly by means of some web interfaces of the kind provided by OpenStreetMap
or Wikimapia. According to Yao (1999), such interfaces restrict geographic data
consumers to access spatial data in mainly two ways. (i) Location finding: de-
tects a specific location and shows a map of the surrounding area; (ii) Routing:
finds the shortest route between two locations. In both cases the user is required
to specify the location(s) he is interested in either providing the specific name,
the exact address or even the geographic coordinates.

Although such data access methods come in handy in many occasions, there
is an important type of access that today is largely unaccounted for. It concerns
cases in which we want to find a location on the basis of a set of spatial constraints
that we specify. In such a case, most of the times we do not know the location a
priori, hence we cannot specify an address or a name. From a certain perspective
this kind of requests complements the previous ones in that the input consists
somehow of the spatial description of an entity and the expected output is the
entity’s address, name, or geo-coordinates. Such a kind of requests can occur in
everyday life demands.

Example 1.1 (Apartment searching) - We are looking for an apartment to rent in the city

of Bremen, Germany. We obviously do not know the address in advance, but we have a

certain number of spatial constraints in our mind that the place has to satisfy. We want the

Apartment to be (i) located in between the main station and the university, (ii) in a walking
distance from—i.e. close to—a Supermarket and (iii) a Tram- or a Bus- Stop. Lastly, (iv)
we may want a Park to be visible from the Apartment. Figure 1.1 depicts the part of the

OpenStreetMap dataset of Bremen relevant for the request with icons showing entities of

interest. The solution is shown in Figure 1.2 that highlights with different colors the three

entity configurations fulfilling the requirements. Note that the bottom-right Apartment is

part of two solutions (magenta and blue) as two different Parks are visible from it. Blurred

icons indicate objects that do not fulfill the requirements, like, for instance, the Apartments

on the left side of the map from which no Parks are visible.
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Flat for rent

Bus/Tram stop

Supermarket

Park

Main station

University

Figure 1.1: Partial visualization of the OpenStreetMap dataset of the city of Bremen
(Germany) with icons showing some exemplary points of interest.

Basically, solving requests of this kind consists in identifying groups of entities

arranged according to some spatial preferences which human beings naturally

express in terms of qualitative spatial prepositions—e.g. in between, close to,

and visible from. Since these prepositions embody spatial relations among spatial

entities, we shall refer to such requests as qualitative spatial relation queries.

Qualitative spatial relation queries can play a fundamental role in many de-

cision making scenarios concerned with spatial arrangement which may occur

in situations ranging from house finding to urban planning and to strategic po-

sitioning of emergency camps in disaster management. Moreover, since they

naturally encode spatial descriptions produced by humans, their enablement in

gis makes a breakthrough in the realization of new human–computer interaction

techniques. For example, the development of web interfaces that allow for pos-

ing such queries can enlarge the public geographic service pool, increasing the

amount of geographic data consumers.
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Flat for rent

Bus/Tram stop

Supermarket

Park

Main station

University

Figure 1.2: Configuration solutions for the apartment-search example. The bottom-right
flat is part of two different solutions.

1.2 Qualitative Spatial Relation Queries

This work focuses on the development of methods and techniques to efficiently
solve spatial queries for retrieving from a gis all the sets of objects arranged
in a specific configuration given in qualitative terms. The interpretation of spa-
tial descriptions into a set of qualitative relations falls outside the scope of this
work, however an analysis of their main characteristics is necessary to detect key
requirements that have to be addressed.

1.2.1 Natural Spatial Descriptions

With the expression natural spatial description we shall intend, in the scope of this
thesis, those spatial descriptions produced by a human being when communicat-
ing spatial knowledge to another human being. This kind of spatial descriptions
are natural in the sense that they can be generated and interpreted effortlessly by
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the individuals involved in the communication process without the need to resort
to further descriptive means than the description itself.

Natural spatial descriptions come mainly in two forms: verbal or pictorial. In
verbal forms a spatial entity is typically described using expressions that qual-
itatively locate it with respect to one or more other objects in the scene, e.g.
“The cinema is in between the university and the main station, close to the park”.
Occasionally (e.g. when providing directions to a place) people likes to resort
to pictorial descriptions, commonly known as sketches or sketch maps, as they
provide a much more compact representation of spatial information. Sketch maps
look similar to real maps in that they report spatial entities in a geometric format.
However, metric information is usually not intended to be reported in sketches
which, instead, correctly convey information about certain qualitative relations
like relative position, ordering, and connectedness. Qualitative relations, thus,
are reliable pieces of information that can be extracted from both verbal and pic-
torial spatial descriptions. As such, qualitative spatial relations are a key element
that has to be considered in the development of solving techniques for querying
via natural spatial descriptions.

A further important observation to consider when handling natural spatial
descriptions is that they usually convey information regarding several aspects of
space. For example, the sentence “The cinema is in between the university and
the main station, close to the park” carries information about relative position
and distance. We can safely assume that for every domain/task there are some
essential spatial aspects to take into account, while the others are usually irrele-
vant. For instance, when giving directions to a place in a city, visibility can play
an important role as the utilization of visual landmarks can allow for producing
clearer instructions; similarly, relative directions might be preferable over cardi-
nal ones. Contrarily, in a geographic description context in which one wants to
explain where the city of Bremen is located within Germany, cardinal directions
play a significant role, while speaking about visual landmarks is pointless.

Heterogeneous composition of spatial descriptions and context–dependent di-
versity of relevant spatial aspects are key issues to be considered to develop tech-
niques that can realistically handle natural spatial descriptions. Accordingly, this
work does not aim at treating selected aspects of space but, rather, pursues gen-
eral and extensible solutions that allow for the integration of multiple qualitative
spatial aspects.

1.2.2 Qualitative Spatial Configuration Queries

Usually a gis contains information about millions of real-world spatial entities
which are represented as geometric objects of different types, i.e. points, lines,
polygons, or more complex combinations of these basic types. For example, at
the time of writing, the OpenStreetMap dataset of the Niedersachsen region, in
Germany, contains nearly 1.300.000 geometric objects.
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Solving a qualitative spatial relation query is equivalent to searching for all the
sets of objects in the gis arranged as described in the query. In other words, the
qualitative spatial relations expressed in the query have to be matched against
those raised by the spatial dataset.

Matching is as much easier as the number of objects uniquely specified in the
query increases: If one or more objects are specified by either their unique names,
addresses, or geo-coordinates, the query difficulty scales down as the search can
be “anchored” on such entities. Similarly, specifying the category of searched
objects allows for reducing the number of entities to be searched and, thus, the
difficulty of the query. Consequently, qualitative spatial relation queries can be
classified according to the degree of specification they provide.

Example 1.2 (Classes of qualitative spatial relation queries) - Answering the query “find

all the objects north of id”, where id identifies a certain object in the gis, consists in

checking which cardinal direction relation holds between any object o in the gis and id and

retrieving all the objects such that o is north of id.
A more demanding query might be “find all the Supermarkets north of a Park”, where

Supermarket and Park are categories of spatial entities which the geometric object in the gis

are tagged with. Answering this query requires to check all the object pairs Supermarket-

Park in order to identify and retrieve those satisfying the expressed request.

This work focuses on the hardest class of qualitative spatial relation queries,
namely that in which neither searched objects are fixed nor any kind of tag or
categorization that allows for reducing the search space is given. We shall refer
to such queries as Qualitative Spatial Configuration Queries (qscqs).

Efficiently Solving qscqs: Managing the Space-Time Tradeoff When
switching from the geometric objects to the qualitative spatial relations existing
over them, the amount of data to be considered is subjected to a combinatorial
explosion: Let us assume, for simplicity, we are only interested in cardinal direc-
tions, then every pair of objects from a spatial dataset raises one qualitative rela-
tion. Hence, the Niedersachsen dataset gives rise to nearly (1.3 ·106)2 = 1.69 ·1012

cardinal direction relations. This number is doomed to augment in a realistic case
when multiple spatial aspects have to be accounted for. Accordingly, one of the
main challenges in solving a qscq is that of opportunely managing the access to
such an enormous number of qualitative spatial relations.
Qualitative spatial relations are not explicitly stored in a gis, thus, in order

to perform the matching required to solve a qscq, they have to be computed
from a geographic dataset. Given the typical size of a geographic dataset such an
operation might require an amount of time unacceptable in a human-computer
interaction scenario: For instance, in the apartment searching scenario reported in
Example 1.1 a user would expect to receive an answer to his request within a few
seconds whereas computing the qualitative relations might require hours, days or
even months according to the size of the geographic dataset under consideration.
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A typical approach to handle computation time issues is that of resorting to
pre-computation: the qualitative spatial relations are computed and stored be-
forehand. This approach leads to a tradeoff situation between the query response
time and storage space occupied by the qualitative relations, as reported in the
graphics in Figure 1.3.

T
im

e

Space

Retrieval Pre-computation

Figure 1.3: Retrieval and pre-computation of qualitative spatial relations from a spatial
dataset: time as the number of stored relations, hence occupied space, varies.

The higher the number of pre-computed relations (i.e. the occupied storage
space) the longer the time to pre-compute them and the shorter the query re-
sponse time. A basic alternative, located at the extreme left of the graphics,
corresponds to null pre-computation time and storage space at the cost of a re-
trieval time excessively high.

Its direct counterpart locates itself at the extreme right of the graphics and
consists in pre-computing all the spatial relations occurring on the spatial dataset.
This corresponds to maximal occupied storage space and minimal retrieval time.
Moreover, the pre-computation time might be unfeasible in a real case scenario
where multiple aspects of space have to be considered: by the time the pre-
computation is completed the world is changed as well as its representation in
the gis, calling for a new pre-computation.

A third solution that aims at reaching an optimal space-time tradeoff (the
point where the two curves meet) is based on the following observations. The
number of qualitative relations generated from a spatial dataset can be drastically
reduced by avoiding redundant ones. Indeed, many of the relations raised by a
dataset are superfluous as they can be inferred from others.

Example 1.3 (Superfluous Relations) - Let us consider the icons connected via cyan lines

in Figure 1.2 and in particular the Park, the Apartment, and the Supermarket ones. The

Apartment icon is northwest of the Park icon and the Supermarket is northwest of the

Apartment. Investing little reasoning effort it is possible to infer that the Supermarket has

necessarily to be northwest of the Park. Thus the latter relation is somehow redundant as

it can be inferred from the other two.
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A spatial dataset may give rise to many similar instances and it can be repre-
sented by as many relations as necessary to infer all the omitted ones. Therefore,
qualitative relation reduction strategies can be employed to keep memory con-
sumption within an acceptable range, while search time efficiency can be obtained
by combining relation reconstruction strategies with indexing techniques.
Now, it is clear that to efficiently enable qscqs it is not enough to device

“superficial” solutions to put on top of existing systems—like interfaces or access
functions. Rather, it is necessary to operate changes deep into the gis storage
layer, developing new algorithms and data structures that, combining spatial
indexing techniques and qualitative relation reduction strategies, allow for main-
taining spatial and temporal efficiency in the gis. Such data structures have to
be placed aside and designed to work synergistically with the existing ones.

1.3 Thesis and Contributions

This work aims at demonstrating the following thesis:

The synergistic interplay of spatial access methods and reduction
strategies is the key to enable and efficiently solve Qualitative Spatial
Configuration Queries in Geographic Information Systems.

In particular, the main contributions are:

• A special type of spatial queries, based on the notion of qualitative rela-
tion, is defined that embraces and generalizes a variety of queries typically
accounted for separately in the literature. Consequentially, this allows for
the conception of generalized spatial indexing techniques.

• This work provides a theoretical and practical framework for the integration
of an open number of qualitative spatial calculi and spatial access meth-
ods. The interplay of Qualitative Spatial Representation and Reasoning
(qsr) and indexing techniques is identified as a suitable means to enable
qualitative spatial queries in gis and to retain space-time efficiency.

• Based on the aforementioned framework, a variety of reduction/reconstruc-
tion strategies for qualitative spatial relations are presented. They simulta-
neously exploit the properties of standard spatial indexing techniques and
qualitative spatial calculi. An algorithmic realization is given for each of
them.

• A novel approach that allows for identifying minimal sets of qualitative
spatial relations needed to describe a spatial scene is developed. As such
it provides a reduction strategy based on a general reduction theory that
exploits properties of reasoning tables provided with qualitative calculi but
does not depend on any particular algebraic property.
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1.4 Outline of the Thesis

The remainder of this thesis is organized as follows: In Chapter 2 different ap-
proaches for the representation and management of spatial information are dis-
cussed and some fundamental background concepts are introduced.

The problem of enabling Qualitative Spatial Configuration Queries in Geo-
graphic Information Systems—and particularly in spatial databases—is detailed
in Chapter 3. A set of necessary requirements is defined on top of which is de-
signed a basic resolution method. Moreover, the issue of dataset qualification is
raised and formalized for which two straightforward—but inefficient—solutions
are discussed.

In Chapter 4 a theory of qualitative spatial relations indexing is developed.
There, we define the concept of Qualitative Spatial Access Method (qsam) which
can embody the basic resolution methods presented in the previous chapter as
well as more advanced indexing techniques. In particular, we introduce a family
of qsams based on a tile&cluster strategy and a generalized approach based on
qsr techniques. Such qsams have been conceived in the scope of this work; they
are formalized and presented along with an algorithmic realization.

Chapter 5 is devoted to the development of a novel prototypical software
framework. It provides an extension for an existing open-source Database Man-
agement System (dbms) and a realization of the theoretical framework traced
along the previous chapters.

Such a framework also provides a qsam development and benchmark environ-
ment that has been used to evaluate the presented work. The results of such an
evaluation are presented in Chapter 6. Finally, conclusions are drawn in Chap-
ter 7 where also possible extensions and future work are outlined.





Chapter 2

Representation and Management of

Spatial Information

This chapter presents a review of the state–of–the–art on different techniques for
the representation and management of spatial information in computer systems
and Geographic Information Systems (gis). Section 2.1 introduces some back-
ground concepts on graphs and hypergraphs, with a special focus on directed
hypergraphs which are largely used in the next chapters. Section 2.2 narrows
down to a specific field of knowledge representation called Qualitative Spatial
Representation and Reasoning (qsr) that provides the formal ground and some
core techniques which ideas of this thesis have been stemmed from. Finally,
in Section 2.3 a review of the state-of-the-art on spatial databases is presented
that draws special attention on spatial queries, spatial indexes, and spatial query
languages.

2.1 Directed Hypergraphs

A graph is a combinatorial structure widely used in mathematics and computer
science to represent sets of objects and binary connections over them. The repre-
sented objects are abstracted into entities called nodes, whereas interconnections
are node pairs called edges. If the edges are ordered pairs one speaks of directed
graphs and directed edges or, more simply, of digraphs and arcs. If multiple edges
(resp. arcs) between the same node pair are admitted one speaks of multigraph
(resp. multidigraph). Graphs lend themselves very well to be diagrammatically
represented. As shown in Figure 2.1, nodes are represented by circles and edges
(resp. arcs) by curves connecting the nodes.
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Figure 2.1: Three simple graphs. A graph is said undirected (a) if its edges are not
oriented, otherwise it is called directed (b). If more instances of the same edge are allowed,
one speaks of multigraph (c). The graph in (b) is not a multigraph because a1 and a2 have
different orientation; thus, they are not instances of the same arc.

Hypergraphs are a generalization of graphs in which an edge can connect any
number of nodes. They have been accurately studied in (Berge, 1976, 1989). In
the scope of this work we are mainly concerned with directed hypergraphs, a
generalization of directed graphs. More precisely, we are interested in a special
type of directed hypergraphs which, in (Gallo et al., 1993), are referred to as
b-hypergraphs (or simply b-graphs).

Definition 2.1 (b-graph) - A b-graph H = (N ,A) is an ordered pair, where N is a set of

nodes and A a set of hyperarcs. A hyperarc a ∈ A is itself an ordered pair of the form (T , h).

T ⊂ N is a proper subset of the node set called the arc tail and denoted by T (a). h ∈ N \ T

is one element of the node set that is not contained in T (a). It is named the arc head and is

denoted by h(a).

Example 2.1 - Figure 2.2 depicts a simple b-graph H = (N ,A) consisting of three nodes

N = {n1, n2, n3} and one hyperarc A = {a1} with T (a1) = {n1, n2} and h(a1) = n3.

n
2

n
1

n
3

T

h

a
1

Figure 2.2: Simple b-graph.

Thanks to the syntactic structure of their arcs, b-graphs naturally lend them-
selves to model implication dependencies and have been applied to solve a variety
of problems in computer science (cf. Ausiello et al., 2001, for a detailed review). In



2.1 Directed Hypergraphs 13

(Ausiello et al., 1983), for instance, b-graphs are used to represent functional de-
pendencies1 in relational databases (cf. Elmasri & Navathe, 2008, for a thorough
introduction to databases).

In the next two subsections we will review a series of useful hypergraph con-
cepts that are necessary for a full comprehension of this work. Definitions are
taken and adapted from (Ausiello et al., 1983, 1986, 2001; Gallo et al., 1993); for
a complete overview refer to these sources.

2.1.1 Basic Concepts

Before proceeding with more advanced definitions, let us introduce the following
basic concepts. Note that the definitions below also hold for graphs as special
instances of hypergraphs.

Definition 2.2 (Size) - The size of a hypergraph H = (N ,A) is defined as |H| = |N |+ |A|.

Definition 2.3 (In- and Out-degree) - Let H = (N ,A) be a hypergraph and n one of its nodes.

We call in-degree (resp. out-degree) of n the number of hyperarcs having n as their head (resp.

in their tail). We refer to all such hyperarcs as incoming hyperarcs (resp. outgoing hyperarcs).

Definition 2.4 (Sub- and Super- hypergraph) - Let H = (N ,A) and H′ = (N ′,A′) be two

hypergraphs, such that N ′ ⊆ N and A′ ⊆ A. Then, we say that H′ is a sub-hypergraph of H or,

alternatively, that H is a super-hypergraph of H′ and denote it by H′ ⊆ H. A sub-hypergraph

(resp. super-hypergraph) is said proper if the inclusion is strict.

Definition 2.5 (Arc-induced Subhypergraph) - Let H = (N ,A) be a hypergraph and A′ ⊆ A

a subset of its hyperarcs. Let also N ′ = ∪a∈A′T (a) ∪ h(a) be the union of nodes in the tails

and heads of the hyperarcs in A′. The hypergraph H′ = (N ′,A′) is called the subhypergraph of
H induced by A′.

Similarly, it is possible to define a node-induced subhypergraph by considering
the hyperarcs ingoing and outgoing a given subset of the hypergraph nodes.

2.1.2 Connectedness

In this section we review connectedness in directed hypergraphs which serves
a significant role in the scope of this work. Given the complex structure of
hypergraphs, we first give an overview of the most relevant concepts for graphs in
order to allow for an intuitive understanding. Later we generalize such concepts
to hypergraphs and give formal definitions.

Intuitively, we say that an undirected graph is connected if in its diagrammatic
representation it is possible to go from each of its nodes to any other moving along

1A functional dependency (FD) is a constraint between two sets of attributes in a relation
from a database.
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its edges. For example, the graph in Figure 2.1(c) is connected whereas the one
in Figure 2.1(a) is not. In other words, a graph is connected if there is a path
connecting any node pair. More precisely, a path from n1 to nl is a sequence
n1, e1, n2, e2, . . . , el−1, nl, where n1, . . . , nl are nodes of the graph at hand and
ei = (ni, ni+1) is the edge connecting ni to ni+1. Given two nodes n1 and n2 we
say that they are connected, or alternatively mutually reachable, if there exists a
path going from n1 to n2. Similarly, we say that a graph is connected if any of
its nodes is reachable from the others.

The concept of connectedness extends to digraphs. However, due to the fact
that edges are oriented (ordered node pairs), the existence of a path from a
source node ns to a target one nt only guarantees that nt is reachable from ns

but not vice-versa. Accordingly for digraphs it is possible to specify two different
types of connectedness: strong and weak. We say that a digraph is strongly
connected if its nodes are reachable from each other through directed paths. We
say that it is weakly connected if the associated multigraph, obtained ignoring
the arc orientations, is connected. For instance, the digraph in Figure 2.1(b) is
weakly connected because its associated multigraph, reported in Figure 2.1(c), is
connected.

These concepts can be generalized for directed hypergraphs.

Definition 2.6 (Hyperpath) - Given a hypergraph H = (N ,A), a hyperpath from a non-empty

set of source nodes S ⊂ N , to a target node t ∈ N is a subhypergraph ΠSt = (NΠ,AΠ) of H

such that the following holds:

If t ∈ S, AΠ = ∅.

Otherwise the l ≥ 1 hyperarcs of ΠSt can be ordered in a sequence (a1, . . . , al) such that:

• ∀ai ∈ AΠ, T (ai) ⊆ S ∪ {h(a1), . . . , h(ai−1)};

• t = h(al);

• No proper subhypergraph of ΠSt is a hyperpath from S to t in H.

The above definition is taken from (Ausiello et al., 2001) and coincides with
the definition of b-path given in (Gallo et al., 1993).

Definition 2.7 (Hypercycle) - A hyperpath ΠSt is said a hypercycle if it consists of at least

one hyperarc and t ∈ S.

Similarly to digraphs, also in directed hypergraphs it is possible to define a
reachability relation between pairs of nodes:

Definition 2.8 (Reachability) - Given a hypergraph H = (N ,A) and two of its nodes s, t ∈ N ,

we say that t is reachable from s in H, and denote it by s  H t, if there exists a hyperpath

ΠSt from S = {s, · · · } to t.

Strong connectedness in hypergraphs directly stems from strong connected-
ness in digraphs: a hypergraph is said to be strongly connected if for each pair
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(s, t) of its nodes, there exists a hyperpath ΠSt and a hyperpath ΠTs, that is, its
nodes are mutually reachable from each other.

In fact, the reachability relation can be used to identify equivalence classes in
the node set of non-strongly connected hypergraphs.

Definition 2.9 (Strongly Connected Component) - Given a hypergraphH = (N ,A), a strongly
connected component (scc) is a subhypergraph C = (NC ,AC) of H such that the following

conditions hold simultaneously:

• the nodes of C are pairwise mutually reachable: s C t and t C s ∀s, t ∈ NC ;

• C is maximal: there exists no scc C ′ that is a super-hypergraph of C.

Also for directed hypergraphs, there exists the concept of weak connectedness.
A directed hypergraph is said weakly connected if its associated multi-digraph,
obtained replacing each hyperarc with a series of arcs going from each node in
the tail to the head, is weakly connected.

Definition 2.10 (Weakly Connected Component) - Given a hypergraph H = (N ,A), a weakly
connected component (wcc) is a subhypergraph C = (NC ,AC) of H such that the following

conditions hold simultaneously:

• C is weakly connected;

• C is maximal.

Above concepts are illustrated in the following:

Example 2.2 (Hyperpaths, Components and Condensation) - Let us begin by considering

the b-graph in Figure 2.2. There exists a hyperpath ΠS,n3
going from the node subset

S = {n1, n2} to n3, but neither a hyperpath Π{n1,··· },n3
nor a hyperpath Π{n2,··· },n3

exist.

Therefore the hypergraph is not strongly connected and its strongly connected components

correspond to the single nodes. Figure 2.3(a) shows the multi-digraph associated to it.

It is easily verifiable that such a digraph is weakly connected since, by ignoring the arc

directions, we have a connected graph. Accordingly the hypergraph in Figure 2.2 is weakly

connected.

Now, let us move to Figure 2.3(b). The depicted hypergraph is a b-graph and is also

not strongly connected since there is no hyperpath Π{n2,··· },n3
. Conversely, the hypergraph

in Figure 2.3(c) is strongly connected: the addition of arc a4 creates the missing hyperpath.

Finally let us take a look at the b-graph in Figure 2.3(d). It is weakly connected,

but not strongly. Moreover it is easy to identify three strongly connected components:

one consists of the nodes {n1, n3}, the other two correspond to the remaining nodes. The

strongly connected components can be used to generate a so-called condensation. A con-

densed (hyper)graph is obtained by substituting each scc with one node and removing

redundant (hyper)arcs. The condensation of the hypergraph in Figure 2.3(d) is depicted

in Figure 2.3(e). Note that the arc a5 has been removed since it duplicates a6 in the

condensation.
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Figure 2.3: Hyperpaths, Components, and Condensation in hypergraphs.

2.2 Qualitative Spatial Representation and Rea-

soning

Qualitative Reasoning (qr) (cf. Forbus, 2008, for an introduction) is a subfield
of Artificial Intelligence (ai) 1 that aims at abstracting from the continuous,
infinitely precise, nature of the world into a discrete representation of it, providing
symbolic reasoning techniques.

Forbus, Nielsen & Faltings (1991) point out that one of the main strengths of
qr approaches is their minimality in representation. In other words, according to
Freksa (1991b), qualitative representations allow for differentiating only as many
concepts as necessary for the specific domain and task to achieve. Hence, qr
turns particularly helpful when accurate measures (quantitative information) are
missing or when resorting to precise calculations is unnecessary or even undesir-
able.

qr is usually concerned with scalar quantities, that is why it falls short when
dealing with domains like the spatial one that are intrinsically multi-dimensional.

1For the interested reader, (Russell & Norvig, 2003) provides an excellent introduction to
ai.
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In such domains dimensions are related to each other in such a way that it is
impossible to consider them separately. A rehash of mono-dimensional approaches
that allows for their application to multi-dimensional domains turns usually into
cumbersome adaptations and can potentially lead to wrong results.

Example 2.3 (Applying mono-dimensional approaches to multi-dimensional domains) -

A typical example in the literature is about the application of the interval algebra (Allen,

1983) to 2-d space. Allen’s algebra was originally developed for reasoning on temporal

intervals but it correctly handles any kind of convex intervals in 1-d space. It defines all

the possible relations (thirteen) which can occur between two intervals as depicted in Figure

2.4(a).

One possible application to model relations occurring among convex regions in 2-d space

consists in considering simultaneously x- and y-Cartesian projections to draw conclusions

about the projected objects. Figure 2.4(b) depicts a successful scenario: projections on

the x-axis are disconnected leading to the conclusion that the corresponding objects are

also disconnected. Such an approach, however, works properly only when dealing with

rectangles uniformly aligned with Cartesian axes, as done in (Guesgen, 1989) for instance.

Figure 2.4(c), shows a failure scenario where the two rectangles do not overlap although

both their projections do.
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leads to a false result.

Figure 2.4: Example adapted from (Cohn & Renz, 2008). The Allen temporal cal-
culus and its application to the spatial domain.

To successfully handle the complexity of multi-dimensional spaces a special-
ized subfield has emerged from general qr. It is called Qualitative Spatial Rep-
resentation and Reasoning (qsr) (c.f. Cohn, 1997; Cohn & Hazarika, 2001; Cohn
& Renz, 2008; Freksa, 1991b, for an overview) and it is mainly concerned with
2-d and the 3-d Euclidean spaces.
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2.2.1 On Qualitative Spatial Descriptions

qsr is well suited for synthesizing human way of representing and reasoning about
space. Indeed, human beings acquire, reason, and communicate about space
everyday and, in particular when it comes to spatial information exchange, they
mainly communicate spatial information by resorting to either a verbal (spoken
or written) or a pictorial (sketches) description.

Tversky & Lee (1998) investigate route instruction generation and demon-
strate that, typically, information reported in sketches is enough to convey the
route, whereas verbal descriptions often miss some pieces of information—e.g.
the starting or ending point—that are inferred from the context. However, they
come to the conclusion that both formats schematize routes in a similar way, in
the sense that they rely on the same constituent entities, e.g. landmarks and
orientations. Accordingly, Tversky & Lee (1999) argue that verbal and graphical
elements map onto one another.

The work of Klippel (2003) moves along the same line: He demonstrates the
cognitive adequacy of wayfinding choremes1 by means of an experiment in which
subjects had to produce sketch maps out of verbal descriptions. Klippel’s work
is also an empirical demonstration that human beings mentally process space by
chunking it and grouping large parts under a single concept. That is, humans
do not deal with the infinite precision of metric space, but rather abstract from
quantitative measures into qualitative categories (like left and right or inside and
outside).

In the scope of this work we also assume that verbal and pictorial spatial
descriptions rely upon a common structure and we use the general term natural
spatial description to refer to the qualitative spatial information conveyed by ei-
ther such description. qsr draws upon the definition of formal structures usually
referred to as qualitative spatial calculi, which we assume to be valid candidates
for modeling and reasoning on such information.

2.2.2 Qualitative Modeling: A World of Relations

Modeling is defined as the act of “devising a representation, especially a math-
ematical one, of a phenomenon or system” 2. A qualitative (spatial) model is,
indeed, a well-defined mathematical structure consisting of a potentially infinite
set of symbols usually called relations. In fact such symbols aim at representing
some sort of relationship intervening over a set of entities of interest.

Definition 2.11 (a-ary Qualitative Relation) - Let D be a potentially infinite domain. An

a-ary qualitative relation r ⊆ D × D × · · · × D = Da is a subset of the a-ary Cartesian power

1Wayfinding choremes are classifications of direction instructions into a set of directional
prototypes.

2Definition from Oxford Dictionaries Online (http://www.oxforddictionaries.com/)
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of the domain of interest. An element of an a-ary relation is an ordered multiset of a domain

elements called an a-tuple .

The domain of interest in the scope of this work is the set of regions embedded
in 2-d space. We adopt the typical interpretation of a region as a point-set since
it is general enough to embrace lines and points as well—e.g. a point can be seen
as a singleton point set. Then, an a-ary spatial relation r ⊆ {(o1, . . . , oa) |oi ⊆
R

2, i = 1, . . . , a} is a subset of the infinite set consisting of any possible plane
region a-tuple.

The typical approach in qsr is to define a finite set of relations that is jointly
exhaustive and pairwise disjoint ( jepd).

Definition 2.12 (jepd set of qualitative relations) - A set B of a-ary qualitative relations is

called jointly exhaustive and pairwise disjoint if the following conditions hold simultaneously:

• B covers all the possible domain a-tuples:
⋃

ri∈B
ri = D

a;

• any domain a-tuple is contained in one, and only one, relation from B: ri ∩ rj = ∅

∀ ri,rj ∈ B with i 6= j.

The relations in a jepd set B are usually referred to as base relations, whereas
those belonging to the powerset 2B of B are called disjunctive relations. The set
of disjunctive relations is obtained by considering all the possible unions of base
relations.

Given an a-tuple of domain object (o1, . . . , oa) ∈ D
a we say that “the relation

r holds over o1, . . . , oa” or that “o1, . . . , oa are in the relation r” and we write
r(o1, . . . , oa), to denote (o1, . . . , oa) ∈ r. For binary relations it is also possible to
use the more intuitive notation o1ro2 to say that o1 is in relation r with o2.

Finally it has to be noted that, although different relations can have different
arities, a qualitative spatial model is typically defined over a set of relations of
uniform arity a, in which case one speaks of an a-ary model.

The definition of relations suffices for representation purposes, whereas the
conception of a set of operations over the defined symbols provides the model
with reasoning capabilities.

2.2.3 Qualitative Reasoning: Relational Operations

According to Cohn & Renz (2008, pag. 572), spatial reasoning is concerned with
“[. . . ] deriving new knowledge from given information, checking consistency of
given information, updating the given knowledge, or finding a minimal represen-
tation.”. In summary, reasoning consists in performing some sort of manipulation
over given pieces of information to infer other (not necessarily new) pieces of
information.

Classical set-theoretic operations are commonly used in qsr. The union op-
eration ∪ is a binary operation that can be used to adduce uncertainty (produce
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disjunctive relations). Contrarily, the intersection operation ∩ allows for refin-

ing disjunctive relations and can be used to reduce uncertainty. Intersection can

also be used to check consistency over a set of given relations. Broadly speaking

(consistency checking is treated in more detail in Section 2.2.5), a relation set is

consistent if the relations of the set do not contradict each other, i.e. intersecting

any pair of relations does not yield the empty set. Finally, the complement is a

unary operation that can be used to express logical negation. E.g. to say that

objects o1 and o2 are not in relation r we write ¬r(o1, o2) that is equivalent to

the disjunction of all of the base relations but r.

Beyond standard set-theoretic operations, qualitative models are usually pro-

vided with two more kinds of operation that provide the main core for entailment:

permutation and composition.

Permutation Permutation is a unary operation that, given the relation ri,

holding over a domain element a-tuple (o1, . . . , oa), yields the relation rj holding

over a permutation of the element tuple. Accordingly, the number of possible

permutation operations depends on the arity a of the model and is equal to

a!− 1.

For binary relations it is possible to define only one permutation operation:

Definition 2.13 (Converse of a binary relation) - Let B be a jepd set of binary base relations

defined over a domain D and r ∈ 2B a disjunctive relation. The unary converse operation (⌣)

is defined as:

r⌣ = {(o2, o1) ∈ D
2|(o1, o2) ∈ r}

For the ternary case it is possible to distinguish up to five different permuta-

tions. A possible nomenclature for them is introduced in (Freksa & Zimmermann,

1992) and later reused in (Wallgrün et al., 2007):

Definition 2.14 (Permutations of a ternary relation) - Let B be a jepd set of ternary base rela-

tions defined over a domain D and r ∈ 2B a disjunctive relation. The five possible permutation

operations are defined as follows:

Shortcut: sc(r) = {(o1, o3, o2)|(o1, o2, o3) ∈ r}

Inverse: inv(r) = {(o2, o1, o3)|(o1, o2, o3) ∈ r}

Homing: hm(r) = {(o2, o3, o1)|(o1, o2, o3) ∈ r}

Shortcut inverse: sci(r) = {(o3, o1, o2)|(o1, o2, o3) ∈ r}

Homing inverse: hmi(r) = {(o3, o2, o1)|(o1, o2, o3) ∈ r}
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Composition Composition is a binary1 operation that, given the relations
holding over two overlapping a-tuples of domain elements, yields the relation
holding over an a-tuple obtained from a concatenation of the given a-tuples. For
example, given the binary relations ri(o1, o2) and rj(o2, o3), a possible compo-
sition operation yields the relation rk(o1, o3). For a generic a-ary model it is
possible to define up to (a!)3 composition operations according to the permuta-
tion of objects considered in the input and output relations.

For binary models it is commonly defined only one composition operation:

Definition 2.15 (Composition of binary relations) - LetB be a jepd set of binary base relations

defined over a domain D and ri,rj ∈ 2B two disjunctive relations. The binary composition
operation is denoted by the symbol ◦ and is defined as follows:

ri ◦ rj = {(o1, o3) ∈ D
2|∃o2 ∈ D : (o1, o2) ∈ ri ∧ (o2, o3) ∈ rj}

If the set of disjunctive relations 2B defined for a qualitative spatial model
is closed under intersection, union, complement, permutation, and composition
then the model is commonly referred to as a qualitative calculus, to stress the
fact that it also allows for symbolic reasoning beyond the mere representation.
However, it is quite common that relations of spatial models are not closed at
least under some of the aforementioned operations. In this case it is necessary
to weaken the definition of the problematic operations in order to still be able to
perform symbolic reasoning correctly. This is done by defining weak versions of
the problematic operations: A weak operation yields the smallest relation in 2B

containing the result of the original operations.

Commonly the operation under which spatial calculi are not closed is the
composition. Weak composition (cf. Düntsch et al., 2001; Renz & Ligozat, 2005)
is defined as:

Definition 2.16 (Weak composition of binary relations) - Let B be a jepd set of binary

base relations defined over a domain D and ri,rj ∈ 2B two disjunctive relations. The weak
composition operation is denoted by the symbol ⋄ and is defined as follows:

ri ⋄ rj = {rk ∈ B|(ri ◦ rj) ∩ rk 6= ∅}

Weak and strong composition can be defined for ternary calculi in a similar
way. Moreover, the definitions of permutation and composition operations can
also be extended to generic a-ary models (cf. Condotta et al., 2006).

If a calculus is closed under permutation and composition (or a weak form
of them) the application of such operations over a relation in 2B yields another
relation in 2B. Moreover, as the base relation set B is finite it is possible, and

1It is possible to define also higher-arity composition operations. Ternary composition, for
example is defined in (Condotta et al., 2006).
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common, to provide tables summarizing precomputed results for any base re-
lation (possibly also for disjunctive ones). In the literature, tables summarizing
permutation and composition operations are commonly referred to as permutation
tables and composition tables, respectively. Since both types of tables allow for
performing qualitative reasoning, in the scope of this work we will use the generic
term reasoning tables to refer to either permutation or composition tables.

2.2.4 Classification of Qualitative Spatial Calculi

Research in qsr has led to the birth of a plethora of qualitative calculi. They
vary widely with respect to features spanning from the modeled entities to the
development techniques and underlying theory bases and to the modeled spatial
aspects.

The research conducted so far has mainly focused on theoretical issues and
the majority of developed qualitative calculi is usually focused on a single aspect
of space—e.g. topology, distance, and direction. The main aim has been that of
identifying singularities and algebraic properties holding on accurately bounded
domains. However, according to (Egenhofer & Sharma, 1993; Renz & Nebel,
2007; Sharma, 1996), when it comes to real applications it is mostly necessary to
focus on methods for dealing with multiple aspects simultaneously .

This section provides a survey and a classification of best known qualitative
spatial calculi. The proposed sorting is similar in its nature to the work pre-
sented in (Freksa & Röhrig, 1993), and, rather than being based on algebraic
properties of spatial calculi, aims at framing the spatial calculi within a catego-
rizing coordinate system where axis dimensions represent useful characteristics
for their utilization in a real-case scenario. The classification criteria are: quali-
tative relation type, frame of reference, arity, modeled space, and modeled spatial
aspect.

2.2.4.1 Classification of Spatial Relations

According to Clementini & Di Felice (1997) spatial relations can be classified in
topological, projective, and metric. Topological relations express those geometric
properties that stay unchanged under a topological transformation. Technically,
a topological transformation is a bicontinuous mapping1 from a topological space
X to a subset of a topological space Y . Informally, a topological space is called a
“rubber sheet” and a topological transformation can be imagined as a continuous
deformation of an object into another object obtained by a manipulation of such a
rubber sheet. The manipulation can consist in shrinking, stretching, and twisting
but not in cutting and glueing.

1A bicontinuous function is a continuous function admitting a continuous inverse.
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Projective relations are those that remain invariant under projective trans-
formations which are more restrictive than topological ones as they also preserve
collinearity and cross-ratio1.

Lastly it comes to metric relations when considering properties holding in Eu-
clidean space, where quantitative concepts like angles and distances are defined.

Topological and projective relations are conceived upon topological and pro-
jective geometric spaces respectively, where such quantitative concepts are not
defined at all, therefore they naturally have a qualitative connotation. On the
other hand, metric relations are by their own nature quantitative. To turn them
into qualitative relations one has to discretize real values to obtain a set of equiva-
lence classes or, according to measure terminology introduced by Stevens (1946),
to transform “ratio” measures into “ordinal” ones .

2.2.4.2 Frames of Reference, Acceptance Areas, and Relation Arity

Practically, a spatial relation specifies a given interdependency between a primary
object and one or more reference objects. The arity of a relation is the number
of objects upon which the relation is defined and, although it primarily depends
on the modeled spatial aspect, it can also be influenced, especially for projective
relations, by the chosen frame of reference (for).

fors are investigated in many fields, e.g. philosophy, psychology, linguistics,
and geography, and as many different terminologies have been developed. On
the base of some linguistic motivations, Levinson (1996) presents a tripartite
classification:

Intrinsic: the for depends, at least partly, on some object-specific property or
feature. E.g. the front and the back of a person are determined by the
asymmetry of the human body.

Relative: the for depends on a viewpoint. E.g. from one side of a river one
sees the water stream going from left to right while, from the other side,
one sees the water streaming from right to left.

Absolute: the for is based on fixed bearings. A typical example here is about
geographic cardinal directions.

In the qualitative spatial domain a for can be intended as a partition scheme
of the modeled space that depends on the reference objects. The zones resulting
from the partition are commonly named acceptance areas (Clementini et al., 1997)
or sectors (Moratz et al., 2005) and are a useful means to provide a more practical
grasp on qualitative spatial relations.

The acceptance area Zr of a given a-ary qualitative relation r is the geometric
interpretation of the relation definition. It is a region of the modeled space

1Cross-ratio is an important property in projective spaces. Given four collinear points
a, b, c, d the cross-ratio is the real number ac·bd

bc·ad
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parametric with respect to the reference objects intervening in the relation such
that a primary object o1 is in relation r with the reference objects (o2, . . . , oa) if
and only if o1 completely falls within Zr(o2, . . . , oa). Accordingly, the arity of a
spatial calculus directly depends on the number of objects necessary to build its
for.

Example 2.4 (Direction relations) - Figure 2.5 shows three possible alternatives for a

directional for. In each case the plane is split into the same three acceptance areas: Left
(l), Center (c) and Right (r).

Figure 2.5(a) depicts an intrinsic for whose orientation depends on some property of

the modeled objects which are therefore represented as oriented points. In such a case one

reference object suffices to define the partition scheme and directional information can be

encoded via binary relations: r(o1, o2).

Figure 2.5(b) depicts a relative for. In this case the orientation is intended as a

perspective from a reference point, cannot be inferred by any object feature and requires two

points to be defined, namely o2 and o3. Accordingly the relations are ternary: r(o1, o2, o3).

Finally, Figure 2.5(c) reports an example of absolute for. The orientation is globally

fixed and represented by a vertical directed line passing through the reference object at

hand. Such a for gives rise to binary relations: r(o1, o2).
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Figure 2.5: Modeling direction relations by different frame of references (fors). The
arity of qualitative relations also depends on the chosen for

2.2.4.3 Modeled Spaces and Spatial Primitives

Early qualitative spatial calculi have been developed at the beginning of the 1980’s
and they were mainly about relations among points or line segments in 2-d space.
Such calculi provided valuable insights for the development of a solid qualitative
spatial theory; however, modeling real world objects as points and lines is not
always a satisfactory alternative.

To accommodate real world entities modeling requests, qualitative calculi
dealing with regions in the plane have started to be devised. The changeover
to such calculi immediately brought new issues into play; namely more complex
partition schemes and the possibility that an object overlaps several acceptance
areas.
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Example 2.5 (Qualitative directions for regions) - Figure 2.6 depicts a possible extension

of the partition scheme in Figure 2.5(c) which allows for dealing with regions in the plane.

This time two directed lines tangent to the reference object have to be drawn. The partition

still yields three acceptance zones and, correspondingly, the three qualitative relations: Left
(l), Center (c), and Right (r).

Note that the object o1 overlaps two acceptance areas. According to the theoretical

framework we traced so far this corresponds to saying that the relations c(o1, o2) and

r(o1, o2) hold simultaneously. This is an infringement of the condition that the set of base

relations has to be jepd.
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Figure 2.6: Frame of reference for extended objects. Single acceptance zones do not
provide a jepd relation set.

To overcome the problem of regions spanning multiple acceptance areas, ev-

ery combination of the acceptance areas compatible with the kind of modeled

primitives has to be included in the base relation set B. So, for instance, if

one is only interested in modeling simple regions1 a jepd relation set for the

toy directional calculus in the previous example is B = {l,r,c, lc,cr, lcr}.

In the literature (Goyal & Egenhofer, 2000; Skiadopoulos & Koubarakis, 2004)

the newly introduced relations, i.e. LeftAndCenter (lc), CenterAndRight (cr),

and LeftAndCenterAndRight (lcr), are termed multi-tile relations, in contrast

to the others that are referred to as single-tile relations. Note that the only com-

bination excluded from the set is the multi-tile relation LeftAndRight (lr) as it

can never occur that a primary object overlaps Left and Right acceptance areas

without also overlapping Center. However, such a relation has to be included if

multi-regions2 have to be modeled.

This work is mainly concerned with regions in 2-d space. However, for the

sake of completeness, let us conclude with a few examples about 3-d qualitative

modeling which recently has started to be investigated more actively: E.g. Billen

& Zlatanova (2003) present a framework for the treatment of qualitative relations

in 3-d cadastral applications whereas both Tassoni et al. (2011) and Bartie et al.

(2011) deal with visibility relations among polyhedron in 3-d space.

1A simple region is a convex, connected and hole-free region.
2A multi-region is a region composed of several disconnected parts.
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2.2.4.4 Spatial Aspects

It seems a shared opinion (cf. Clementini & Di Felice, 2000; Freksa & Röhrig,
1993, among others) that the most fundamental aspects of space are topology,
direction, and distance which reflect topological, projective, and metric proper-
ties, respectively. In fact, this is confirmed by some psychological findings of
Piaget & Inhelder (1967) which suggest that children first apprehend topological
concepts whereas projective and metric ones are recognized at later stages after
having learnt of different view points and understood distances.

Topology Topology is probably the best studied spatial aspect in qsr. Topo-
logical calculi typically model connectivity among extended entities in 2-d or
3-d space and the most famous ones are the Region Connection Calculus (rcc)
(Randell & Cohn, 1989; Randell et al., 1992) and the 9-Intersection Model (9-im)
(Egenhofer, 1989, 1991).

rcc is based on formal logic and derives a set of fifteen relations from the
primitive concept of connectedness among two entities. Eight of the initial fifteen
relations have been discovered to form a jepd set named rcc-8.
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Figure 2.7: 8 jointly exhaustive and pairwise disjoint binary topological relations between
extended objects: the Region Connection Calculus and the 9 Intersection Model.

Egenhofer’s approach is based on combinatorics. A region is considered to
be consisting of an interior and a boundary, whose intersection is the empty set
and whose union yields a closed point set representing the region. Beyond these
constituents, also the exterior of a region is considered and a relation between two
regions is represented by means of a 3x3 Boolean matrix: Each matrix element
stands for the intersection of one constituent element of the first region with
another element of the second one. A matrix element is 1 if the corresponding
constituents overlap, 0 otherwise. When considering simple regions, out of the
29 matrix instances only eight can be spatially realized which can be directly
mapped onto the rcc-8 ones.
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Figure 2.7 reports the eight topological relations named according to rcc-8
nomenclature. Both calculi are provided with reasoning tables (cf. Cohn et al.,
1997; Egenhofer, 1991) for both binary composition and converse operations.

Due to the way the two models have been developed each has certain advan-
tages. In particular, rcc-8 is better suited for logical and theoretical studies as it
provides a formal logic theory, while 9-im is mostly used in application domains
because of its constructive definition. Note that in the remainder of this text we
will refer to rcc-8 with the shorter notation rcc.

Direction The representation of direction information is also very well stud-
ied and a variety of models, typically further classified in relative and cardinal
directions, is available.

Relative relations can employ either a relative or an intrinsic for and some
of the the best known models are listed below. The single cross calculus (Freksa,
1992) is a binary model that assumes points in the plane as primitives. It employs
an intrinsic for and a cross-shaped partition scheme centered in one reference
point that subdivides the plane into eight sectors. The double cross calculus
(Freksa, 1992; Freksa & Zimmermann, 1992) resorts to a similar partition scheme
but it assumes a relative for and is therefore a ternary model. It splits the plane
into fifteen sectors by means of the directed line passing through the two reference
points and the two normals through these points. The Oriented Point Relation
Algebra (OPRA) (Moratz, 2006; Moratz et al., 2005) and the ST AR calculus
(Renz & Mitra, 2004) are parametrized binary calculi dealing with points. The
for is absolute but the main innovation here is that the number of fixed bearings
varies according to the value assigned to a parameter. An interesting variation is
provided by the Dipole Relation Algebra (DRA) (Moratz et al., 2000; Schlieder,
1995) that models directions between directed line segments (dipoles). A relation
is composed by a quadruplet of symbols representing the direction (left or right)
of every dipole endpoint with respect to the other dipole. A solution dealing with
extended objects is provided by the 5-intersection model (Billen & Clementini,
2004a,b) that assumes a relative for and provides a jepd set of ternary relations.
The plane is split into five acceptance areas by means of the four tangents existing
between a pair of regions. The five single-tile relations are called LeftSide,
RightSide, Between, Before, and After.

Cardinal direction models are typically based on absolute fors like the cardi-
nal direction calculus for points (Frank, 1991; Ligozat, 1998) distinguishing the
four classical cardinal directions and four intermediate bearings and coming in
two variants: with a cross-shaped and a cone-shaped partition scheme. Finally we
present two models for extended objects. The Rectangle Algebra (RA) (Balbiani
et al., 1998; Guesgen, 1989; Mukerjee & Joe, 1990) proposes a 2-d extension of
Allen’s interval calculus which deals with rectangles uniformly aligned with the
Cartesian axes: The relations among two rectangles is identified by the pair of
interval relations holding on the x- and y-projections of the rectangles under con-
sideration. Lastly, the Cardinal Direction Calculus (cdc) (Goyal & Egenhofer,
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in press, 1997) is capable of handling generic regions in the plane. The partition
scheme is based on the four lines tangent to the edges of the Minimum Bounding
Rectangle (mbr) of the reference object (cf. Figure 2.8). This model defines eight
single-tile relations corresponding to the classical cardinal bearings nw, n, ne, e,
w, sw, s, se plus a ninth relation b corresponding to the reference object mbr.
Skiadopoulos & Koubarakis (2004) present a deep investigation of the properties
of the model and they also provide a method to automatically compute reasoning
tables for the multi-tile relations starting from those for single-tile.
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W E
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2

Figure 2.8: Frame of reference of the Cardinal Direction Calculus: it splits the space into
9 acceptance zones corresponding to as many single-tile base relations corresponding to
the 8 canonical cardinal bearings plus an extra relation indicating the Minimum Bounding
Rectangle of the reference object.

Distance Generally, models for the qualitative representation of distances aim
at defining equivalence classes for metrically represented distances. Boundary
values for equivalence classes can be chosen in many ways, reflecting the fact that
distance is quite a tricky aspect to model since, usually, its conceptualization is
inherently related to different factors. For example, an object can be perceived
as close or distant according to the transportation vehicle at hand. Sometimes it
is more convenient to describe distance in terms of the time necessary to cover
the space among two points. Again, distance is usually associated with size and
scale of referred entities: the city of Bremen can be considered as close to Berlin
at a worldwide scale but far away within Germany. For such reasons usually
qualitatively represented distance is not modeled as a stand-alone spatial aspect
but within a larger qualitative framework.

Hernandez, Clementini & Di Felice (1995), for example, provide a partition
scheme for qualitative distances based on a series of concentric circumferences cen-
tered at a reference object, however when it comes to the generation of reasoning
tables, they also have to consider orientation in order to have somewhat usable
reasoning tables. This work is further extended in (Clementini et al., 1997) where
orientation is soundly incorporated in the for: a star-shaped partition scheme
centered at the reference object is superimposed on the concentric circumferences.
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Similarly, Moratz & Ragni (2008) develop a ternary calculus capable of modeling
position of a primary object with respect to a reference object observed by an
agent. The work has cognitive robotic motivation, the considered primitives are
points and the space partition scheme extends that of the single-cross calculus
(Freksa, 1992): two lines through the observed reference object and a circumfer-
ence centered on it are traced on top of the original partition scheme. It has also
cognitive robotic motivations the work from Moratz & Wallgrün (2003) that deals
with propagation of distance and orientation intervals within topological maps
based on generalized Voronoi graphs. The aim is to generate hypotheses about
cycles in the navigation environment that can be subsequently checked with quan-
titative approaches. Lastly, a different approach is undertaken in (Yao & Thill,
2006) where a modal system for qualitatively represented distances is introduced.
The system distinguishes distances not only according to metric considerations
but also taking into account the used transportation means. The authors exploit
the system for distance-based retrieval of points of interest from a geographic
database.

Other Qualitatively Represented Spatial Aspects Other kinds of qual-
itative spatial relations can possibly be expressed as a combination of topolog-
ical, directional, and metric primitives. However, since referring back to such
primitives leads to cumbersome manipulations of symbols, it is common habit
to develop dedicated models over sets of symbols that directly address relations
one is willing to reason about. Some examples are about visibility (Fogliaroni
et al., 2009; Santos et al., 2009; Tarquini et al., 2007) shape (Clementini & Di Fe-
lice, 1997; Cohn, 1995; Falomir et al., 2010) and size (Bittner & Donnelly, 2007;
Raiman, 1991; Zimmermann, 1995).

2.2.5 Qualitative Constraint Networks

One of most spread methods to perform qualitative reasoning resorts to the uti-
lization of so-called Qualitative Constraint Networks (qcns) (cf. Dechter, 1992,
2003; Montanari, 1974, for a detailed discussion).

Definition 2.17 (Qualitative Constraint Network) - A qualitative constraint network is a triple
N = (X,D,Ξ) where X = {x1, . . . , xn} is a set of variables ranging over the domain D and

Ξ = {ξ1, . . . , ξn} is a set of constraints over the variables. A constraint ξi is a pair ξi = (Si,ri)

where Si ⊆ X is a subset of the variable set and ri is a qualitative relation defined over

Si = {x1, . . . , xm} which is called the scope of the constraint.

qcns are suitable mathematical instruments for qualitatively representing a
spatial scene. They can be seen as directed (hyper)graphs (cf. Section 2.1) where
the nodes are the spatial objects occurring in the scene and the arcs stand for
the relations intervening among them.
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Example 2.6 (Qualitative Spatial Representation) - Let us consider the spatial scene

depicted in Figure 2.9(a) and the toy calculus introduced in Example 2.5 defining the

following base relations: B = {l,r,c, lc,cr, lcr}. Figure 2.9(b) reports the corresponding

qcn representation.
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Figure 2.9: A Qualitative Constraint Network (b) can be used to represent the spatial
scene whose geometric representation is given in (a). The symbols l, r, c stand for
the base qualitative relations Left, Right, Center, respectively. lcr stands for the base
multi-tile relation LeftAndCenterAndRight.

The arcs in the (hyper)graph representation of a qcn can be labeled with
disjunctive relations, meaning that the relation among two objects is uncertain
or, equivalently, underspecified. A qcn is said complete if the relations among
every a-tuple of objects is one from the set of base relations B. For instance, the
network in Figure 2.9(b) is complete: note the presence of loops1. If the relation
among two objects is unknown—it can be any from the set 2B of disjunctive
relations—the corresponding arc in the graph representation is unreported.

Definition 2.18 (Solution of a qcn) - Given a qcn N = (X,D,Ξ) a solution sol(N) of N is

an assignment from the domain D of all its variables X such that all the constraints in Ξ are

satisfied.

One major problem is that of deciding whether a solution exists for a given
qcn, that is, to decide whether the constraints in Ξ do not contradict one an-
other. This is a particular case of so-called Constraint Satisfaction Problems
(csps). If the domain D is infinite, which is for the spatial case, the consistency
of a network can be checked via the algebraic closure algorithm which was first in-
troduced in (Montanari, 1974) for binary calculi and later refined in (Mackworth,
1977). Basically, the algorithm exploits composition and converse operations to
propagate the constraints and to verify that they do not conflict with each other,
i.e. the relation yielded by an operation is a superset of the relation reported

1A loop is an arc originating and ending in the same node and has not to be confused with
a cycle (cf. Section 2.1.2).
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in the network. The algebraic closure algorithm can work with both strong and
weak operations (cf. Section 2.2.3) and executes in O(n3) worst case time where
n is the number of variables in the network. In (Dylla & Moratz, 2004) the algo-
rithm is further extended for ternary calculi, in which case the complexity rises
up to O(n4).

2.2.6 Integration of Qualitative Models

It has been already recognized in the past (Egenhofer & Sharma, 1993; Renz
& Nebel, 2007; Sharma, 1996) that, despite the investment of more than thirty
years of research efforts in the field of qsr and the development of a vast and
heterogeneous set of theoretical frameworks (cf. Section 2.2.4 for a classification),
the application of the qualitative paradigm to tackle realistic problems remains
relatively small.

One main reason is that human beings are generally capable of mixing several
aspects when communicating and reasoning about spatial knowledge. Therefore,
the exploitation of qualitative reasoning to realistic applications calls for a more
general theory that can embrace the big variety of spatial features.

The poverty conjecture, initially enunciated for qualitative kinematics (Forbus
et al., 1987) and later slightly modified (Forbus et al., 1991) to embrace spatial
properties in general, leaves few hopes for the development of such a general the-
ory. The conjecture claims that “There is no purely qualitative, general-purpose
representation of spatial properties” and is further elaborated by adducing some
elucidations: (i) Qualitative spatial representations are useful in many cases and
they are fundamental to enable commonsense reasoning; however they must be
related to quantitative information. (ii) Qualitative models have to be designed
in a task-specific manner.

An alternative to enable practical application of qsr draws upon the integra-
tion of different qualitative models. This can be done in mainly two ways: (i)
calculi fusion and (ii) inter–calculus reasoning.

The first approach consists in the combination of different calculi at both, a
representational and reasoning level to obtain a new calculus. That is, several
aspects of space are considered simultaneously to represent more complex rela-
tions and dedicated reasoning algorithms accounting for such complex aspects
are developed. The literature is full of examples for combining calculi. Some of
them are about the integration of topology and direction (Hernandez, 1994; Pa-
padias, 1994; Papadias & Sellis, 1994b; Papadias et al., 1995), topology and size
(Gerevini & Renz, 1998, 2002), direction and distance (Clementini et al., 1997),
or more complex combinations (Clementini & Di Felice, 1997; Sharma, 1996).

The second approach mainly grounds in the algebraic properties of qualitative
calculi. It consists in developing advanced reasoning techniques that allow for
exploiting interdependencies between calculi. An example is provided by the Joint
Satisfaction Problem (jsp): the problem of deciding whether the joint network
obtained by merging two consistent qcns is itself consistent. Some works in this
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direction are (Gerevini & Renz, 1998, 2002) that investigate the case of rcc-8
with a newly defined calculus for size, (Li, 2007; Li & Cohn, 2009) considering
topology, direction, and size, and (Liu et al., 2009) focusing on complexity issues
when joining rcc-8 with two cardinal direction calculi: RA and cdc.

2.2.7 On the Cognitive Adequacy of Qualitative Models

Several studies have been carried on to assess the cognitive adequacy of quali-
tative spatial models. Knauff et al. (1997) argue that “whether or not a formal
approach to qualitative spatial relations is a cognitively adequate model of human
spatial knowledge is in fact an empirical question and can be answered only on the
basis of empirical results”. Therefore they conducted experiments to assess the
cognitive adequacy of rcc and 9-im (cf. section 2.2.4.4). The results outlined
that such models correctly reflect human way of dealing with topological rela-
tions. No equally sound results have been provided for other aspect of space like,
for example, cardinal directions. However, much research supports the assump-
tion that people usually reason about directions differentiating among a small set
of qualitative directions (from four up to eight according to the level of accuracy
required), therefore legitimating the underlying assumption that qualitative di-
rectional models can suitably encode this kind of spatial information. Similarly
in the context of this work we generalize such an assumption and assume that
qualitative models, if adequately designed, can provide a suitable means to repre-
sent human spatial knowledge; proving cognitive adequacy of qualitative models
is not the aim of this work though.

2.3 Spatial Databases

A Geographic Information System (gis) is a system of hardware and software
elements that allows for surveying, storing, analyzing, manipulating, retrieving,
sharing, mapping1, and, more generally, presenting geographic data. At the core
of a gis is the storage layer, that is, a support to persistently represent data in a
computer. Storing can be done by means of standard files—e.g. shapefiles (ESRI,
1998). Nonetheless, the usage of a database in this role can notably improve data
retrieval and analysis performance. Databases allow for storing many dimensions
of data, but they are not designed to manage multidimensional data as a whole.
Therefore, given its multidimensional nature, spatial information cannot be easily
handled by plain databases without a so-called “spatial extension”.

Spatial databases are databases extended with data types and procedures
for inserting, deleting, manipulating, and retrieving spatial information. Tech-
nically, a gis needs to deal with geographically referenced spatial information,
therefore one usually makes a further differentiation between spatial databases

1Mapping in this context is intended as the action of producing a map.
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and geospatial databases (or simply geodatabases). Geodatabases are primarily
spatial databases that offer support for geo-referencing spatial objects. However,
although the findings presented in this text have been prompted by motivations
of geographic nature, they completely disregard the geographic component and
are general enough to work with spatial information in general. Therefore, in the
reminder of this text we focus on the more general spatial databases.

2.3.1 Spatial Data Modeling and Representation

In the geographic domain one is interested in modeling real and fictitious entities.
Real entities comprise physical objects, natural or artificial, that actually exist in
the world, e.g. a lake or a building, whereas fictitious entities are those entities
that are not physically distinguishable from surrounding ones, e.g. administra-
tive districts or countries. Rather, boundaries of fictitious entities are defined
artificially by humans, e.g. the borderline between two countries is an imagery
line decided according to some political issues. An ontological perspective on this
issue is taken by Smith (1995) who distinguishes between entities with bona fide
and fiat boundaries, respectively.

Modeling spatial information can be done mainly following two approaches
that in the literature (Longley et al., 2005; Worboys & Duckham, 2004) are typi-
cally referred to as field-based and object-based. The field-based approach looks
at the properties that have to be modeled as continuous fields and discretizes them
via the superimposition of a—typically regular—geometric structure, e.g. a grid.
With every cell of the structure a value is associated that summarizes features—
e.g. the average—of the modeled property ranging over the points contained in
the cell. This kind of representation is commonly referred to as raster.

The object-based approach is diametrically opposite to the field-based ap-
proach since the main focus is on the spatial entities which are modeled as
first order objects. The typical resulting representation is referred to as vector–
based since boundaries of spatial entities of interest are geometrically described
by means of directed line segments called vectors. A vector is defined by the
specification of its end points in terms of geometric coordinates.

Rasters and vectors are generated from different sources, are different at the
representational level, they better lend themselves to different modeling purposes,
and have to be managed differently.

Rasters present a good solution for modeling values varying continuously over
space—e.g. digital elevation modeling—they are very similar to bitmap images
and, indeed, are typically generated from satellite pictures. Some of the most
important types of data management operations are: identification of spatial
entities from satellite pictures (raw pixel sets), clustering and interpolation of
recorded values, and statistical operations over given areas.

Vector representations are usually obtained from digitalization of charts, from
vectorization of raster data, or from the direct collection of real–world entity
coordinates—e.g. through gps receivers. In such representations objects are
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defined explicitly and the main operations regard identification of relationship
among objects and the application of computational geometry algorithms—e.g.
intersection, union, difference, and so forth.

Given the diversity of tools and techniques needed to handle the two data
formats, a finer classification of databases dealing with rasters and vectors can
be done. According to Güting (1994), databases providing instruments to treat
raster data are better classified as image databases, whereas the term spatial
database is reserved for those dealing with vector data. Although some of the
techniques presented in this work can be adapted to work with rasters, they are
mainly designed for vector data; therefore in the reminder of the text a vector
representation is implicitly assumed and the term “spatial database" is used in
the sense of Güting.
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Figure 2.10: The geometric data type hierarchy as defined in (OpenGIS Consortium,
1998).

Although semantically different, real and fictitious spatial entities are usually
represented by means of the same geometric primitives at the modeling level. The
OpenGIS Consortium (ogc) (OpenGIS Consortium, 1998) released a hierarchical
specification of such primitives as depicted in Figure 2.10. For the findings of
this thesis, the semantic distinction of spatial entities is not relevant, therefore a
spatial feature, be it real or fictitious, will be simply addressed with the terms
geometry (or any more specific identifier in the hierarchy), object or entity; the
adjective spatial will be preposed where necessary for the sake of clarity.

2.3.2 Spatial Data Management: Spatial Operators

Management of spatial data in spatial databases is provided by so-called spatial
operators. Generally, a spatial operator is a function defined over a set of spatial
objects that performs some kind of geometric operation over the input data and
returns a result. Operators can apply to any spatial primitive or can be dedicated
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to specific ones. Table 2.1 reports generic spatial operators defined in (OpenGIS
Consortium, 1998) applicable over the whole geometric hierarchy in Figure 2.10.

Most simple type of spatial operators implement set-theoretic operations—
e.g. intersection or union—but more complex ones can also be defined to assess
spatial object properties and spatial relationships. An important typology of
spatial operators is concerned with spatial relationship determination, referred to
as topological operators in Table 2.1.

Type Name Description

Basic
operators

SpatialReference Returns the spatial reference system of the geometry

Envelope
Returns the minimum bounding rectangle of the ge-
ometry

Export Converts the geometry into a different representation

IsEmpty Returns true if the geometry is the empty set

IsSimple Returns true if the geometry i simple

Boundary Returns the boundary of the geometry

Topological
operators

Equal Tests if the geometries are spatially equal

Disjoint Tests if the geometries are disjoint

Intersect Tests if the geometries intersect

Touch Tests if the geometries touch each other

Cross Tests if the geometries cross each other

Within
Tests if the given geometry is within another given
geometry

Contains
Tests if the given geometry contains another given ge-
ometry

Overlap
Tests if the given geometry overlaps another given ge-
ometry

Relate
Returns true if the spatial relationship specified in
the given 9-Intersection matrix holds

Basic
analysis op-
erators

Distance
Returns the shortest distance between any two points
of two given geometries

Buffer
Returns a geometry that represents all points whose
distance from the given geometry is less than or equal
to the specified distance

ConvexHull Returns the convex hull of the given geometry

Intersection Returns the intersection of two given geometries

Union Returns the union of two given geometries

Difference Returns the difference of two given geometries

SymDifference
Returns the symmetric difference of two given geome-
tries

Table 2.1: Spatial operators defined in (OpenGIS Consortium, 1998) over the geometry
type (cf. Figure 2.10).
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Clementini & Di Felice (2000) point out the fact that the set of spatial op-
erators defined by the ogc is not complete and should be extended with other
fundamental operators according to the tripartite classification of spatial relations
into topological, projective, and metric discussed in Section 2.2.4.1.

Practically, spatial operators are implemented as functions within a Database
Management System (dbms) and can therefore be called through the provided
Query Language (ql) to manipulate, analyze, and retrieve spatial information
from the database. In a query statement, spatial operators can possibly be alter-
nated with standard operators—e.g. sum, subtraction, or Boolean operators.

Spatial data, thus, can be manipulated in several ways by means of different
spatial operators. The focus of this work, however, is on spatial data searches
and retrievals that will be referred to as spatial queries.

2.3.3 Spatial Queries and Indexes

A spatial query is a request to a spatial database that addresses, at least partly,
spatial data in its statement, execution, or output. More practically, a spatial
query consists in manipulation, analysis, or retrieval of spatial data that is done
injecting spatial operators within ql statements.

Query Search

Exact match All geometries identical to a given one

Point All geometries overlapping a given point

Window All geometries overlapping a given rectangular area

Intersection All geometries overlapping a given one

Enclosure All geometries enclosing a given one

Containment All geometries enclosed by a given one

Adjacency All geometries adjacent a given one

Nearest-neighbor All geometries having minimal distance from a given one

Table 2.2: Most common spatial queries as reported in (Gaede & Günther, 1998).

The most common spatial queries, according to Gaede & Günther (1998), are
reported in Table 2.2. Such queries come usually in handy for diverse purposes
and in diverse scenarios. For this reason they are usually addressed separately
in the literature and dedicated solving strategies are developed for each of them
that allow for optimizing their executions. However, for the scope of this work
it is useful to generally regard them all as spatial predicate queries in which
the predicate expresses a spatial relation that has to be satisfied. In the first
row of Table 2.2 we find the exact match query that expresses the rcc relation
equal (eq) (cf. Figure 2.7). Next three query kinds are variants of the relation
partially overlap (po): it has to be noted that the point query can be seen as
an extreme case of the window query (with the window collapsing into a point)
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which, in turn, is a special case of the more general intersection query. Therefore,
the first four listed query types, together with the enclosure, containment, and
adjacency queries, can be categorized as topological predicate queries or, simply,
as topological queries. Nearest-neighbor queries, are distance predicate queries.
Lastly Gaede & Günther (1998) report a further type of query referred to as spatial
join. Such kind of queries are also spatial predicate queries but the emphasis here
is posed on the join operation to be performed between two different datasets.
Spatial queries make use of spatial operators (cf. Table 2.1) that have already
been recognized not to be exhaustive (cf. Section 2.3.2). Similarly the spatial
queries reported in Table 2.2 do not cover all of the possible requests one may be
interested in—e.g. directional queries are missing.

Usage of spatial operators makes the syntax of spatial query statements similar
to that of non-spatial ones. However, issues related to spatial data manipulation
do not exhaust themselves with simple definition of spatial primitives and opera-
tors. There are at least two more main issues that have to be accounted for: the
development of query and visualization languages suitable to human users and
the conception of methods to speed up spatial data access. The former is a big
topic in itself that falls largely beyond the scope of this work but will be partly
addressed in section 2.3.5. The latter instead is the central theme of the next
section.

2.3.4 Spatial Access Methods

One main concern of dbmss is to provide fast access to data stored in secondary
memory. Only a small part of data present in a database can be loaded into
main memory and, despite technological improvements guaranteeing increasingly
better performance, accessing secondary memory remains the bottleneck in infor-
mation systems. For this reason, historically, dbmss are furnished with auxiliary
data structures designed to reduce the number of secondary memory accesses.
Such structures are referred to as indexes or access methods and keep data or-
ganized in such a way that it is not necessary to perform a complete scan of a
dataset when executing a search. Instead the index file, typically much smaller
than data file, can be completely loaded into main memory and used to find the
secondary memory blocks containing the searched data.

Example 2.7 (Phone book) - One of the best known examples of index is the phone book.

A phone book contains thousands of entries and it would be impossible to use if they

would not be organized in a certain manner. A typical scenario consists in looking for the

phone number of a person whose name and surname are known. Given that there are more

duplicated first names rather than surnames, entries in a phone book are alphabetically

ordered by surname. This simple artifice makes manual search possible because it allows

to quickly direct the search to the right book section.
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Typically an index is designed to work properly only for certain data types
and for a specific set of queries—e.g. the organization of entries in a phone book is
not suitable for searching the owner of a known phone number. Spatial data types
and the kind of queries one might be willing to perform on them are inherently
different from scalar types and queries, therefore a variety of dedicated indexing
techniques have been devised: they are referred to as spatial indexes or Spatial
Access Methods ( sams).

At a general level, spatial indexing approaches can be divided into hash coding,
hierarchical approaches, and space-filling curves. Given that no total order exists
in the spatial domain, hash functions are realized by means of a partition of the
working space. Hierarchical approaches resort to tree-like structures similar to
B-trees (Comer, 1979). Lastly, space-filling curves are well determined curves
with recurrent patterns that aim at traversing the working space, this way a total
order can be specified according to the sequential intersection of the space-filling
curves with spatial objects.

Spatial indexes have to be small to fit into main memory. For this reason in-
dexing data structures usually maintain approximations of spatial objects rather
than a representation of the objects themselves—e.g. a polygon can be approx-
imated by its centroid or by its Minimum Bounding Rectangle (mbr). In con-
trast to actual objects, approximations usually need a fixed, known, and smaller
amount of memory to be represented. Accordingly representing approximations
allows for producing more compact data structures and more efficient algorithms
for their management.

Indexes that encode approximations are generally subject to search processes
consisting of two phases. (i) The filter phase consists in searching index entries
to obtain a superset of the actual query results. Indeed, by considering approx-
imations, the search produces a set of candidate results containing both actual
results and false hits. False hits are later ruled out through a (ii) refinement step
when actual geometries are retrieved from the stored data and are tested against
the requested spatial predicates.

A short summary of spatial access methods relevant for this work is given
below. For a complete review refer to (Gaede & Günther, 1998; Samet, 2006).

Grid-based Approaches Some of the easiest and most powerful spatial index-
ing techniques are based on space tessellation by means of uniform grids (Bentley
& Friedman, 1979; Franklin, 1978, 1984, 1989).

The space which the objects are embedded into, is partitioned via the super-
imposition of a grid and a correspondence is created among an object and the
grid cells it overlaps.

Grid-based approaches are wonderful candidates to treat any typology of spa-
tial queries, topological, projective, and metric, since the regularity of the grid
structure allows for quickly restricting the search space. To answer a window
query, for example, it is possible to check which grid cells overlap the given
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search window and later refine the search by only considering the spatial objects
associated to such cells.

A more advanced technique, still based on grids, is the grid file (Nievergelt
et al., 1984) which employs a multi-level partition by means of non–uniform grids.

The r-tree Family One of the most spread typology of spatial indexes is the
r-tree family. The r-tree data structure was originally proposed by Guttman
(1984) to boost window queries on n-dimensional data. The main underlying
idea is that of grouping objects by proximity and represent each group by its
Minimum Bounding Rectangle (mbr). Since all the objects in a group lie within
its mbr, a query that does not intersect the mbr cannot intersect any of the
contained objects.

Similarly to a b-tree (Comer, 1979), an r-tree is a balanced search tree—i.e.
all leaf nodes are at the same level—that maintains references to database objects
in its leaves. Each node n in the tree contains index entries of the kind:

e = (r, r)

Leaf nodes are located at level 0, r is a reference to a database object o and
r = mbr(o) is its minimum bounding rectangle. In non-leaf nodes living at level
l > 0, r is a reference to a node located at the level l − 1 and r is the minimum
bounding rectangle enclosing all the mbrs in the referenced node. Each node—
except the root—contains between m and M index entries.

An r-tree is constructed iteratively, adding one object at time. When inserting
a new object o the tree is traversed from the root downwards. At each traversed
node n, the insertion procedure selects the index entry e = (r, r) whose mbr
needs least enlargement to include o and iterates on the node referenced by r.
When a leaf is reached the object is added to the corresponding node. If the
insertion causes a node-overflow—i.e. the leaf containsM+1 entries—the affected
node is split into two nodes, each containing at least m entries.

The splitting procedure represents the most critical part in the structure man-
agement: The split should be done in such a way as to minimize the possibil-
ity that both nodes generated by the split have to be visited during a search.
Guttman (1984) suggests that, since the decision of visiting a node n depends on
the area of the mbr covering n, the total area of the mbrs of the new-generated
nodes has to be minimized. He proposes two algorithms for doing the split that
execute in time quadratic and linear, respectively, with the number M of maxi-
mum entries.

Beckmann et al. (1990) propose an optimized version of Guttman’s data struc-
ture called r∗-tree. They stress the fact that the r-tree is based on a heuristic
based on the minimization of the area of node mbrs and point out that such an
optimization criterion is not demonstrated to be effectively the best one. Hence,
Beckmann et al. go through a re-engineering of the access method and detect
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that also the overlapping area among mbrs and their perimeters affect the per-
formance. Accordingly they present a new splitting algorithm that takes into
account all such parameters.

More recently, Brakatsoulas et al. (2002) proposed a novel variant of the r-
tree family called cr-tree. The authors point out that the splitting procedure is
basically a clustering problem, therefore, they resort to the k-means algorithm1

to re-distribute overflowing objects opportunely. They also investigate the possi-
bility of splitting overflowing object sets into k groups, rather than the canonical
approach that always splits into two.

Finally, the r+-tree, presented in (Sellis et al., 1987), is another well known
variant in which the overlapping of mbrs is prohibited, therefore an object can
belong to multiple nodes.

2.3.5 Spatial Query Languages

The problem of addressing spatial data is critical in spatial databases. Extensive
studies (Egenhofer, 1994; Frank, 1982) have been conducted to identify the key
requirements that a spatial Query Language has to fulfill.

For example, a variety of spatial dialects for Structured Query Language
(sql)2 has been proposed (cf. Ingram & Phillips, 1987; Roussopoulos & Leifker,
1985, among others) before coming to a standard (OpenGIS Consortium, 1998).
However, addressing spatial data through the specification of long lists of highly
accurate geometric coordinates is a cumbersome and unnatural task for the users
of a spatial database. Similarly, making sense of spatial query results presented
in a textual format might be very difficult.

Given its nature, spatial data better lends itself to be addressed and presented
in a graphical way. For this reason several attempts have been undertaken to
elaborate graphical query and visualization languages. Query languages of this
type adopt a philosophy similar to that of the, non-spatial, Query-by-Example
(qbe) language (Zloof, 1977). Main aim of qbe is to provide an easy-to-use
relational database language that does not require the user to be an expert of
databases, computer science, or mathematics. In relational databases data is
presented in tabular format, therefore qbe assists the user in directly shaping,
on screen, the expected result table. Similarly, spatial qbe languages allow the
user to provide an exemplary spatial scene to be retrieved.

Early approaches (Chang & Fu, 1980; Joseph & Cardenas, 1988) originated
from the field of pictorial (image) databases but were not backed up by a thorough
investigation on suitability requisites like the eleven ones presented in (Egenhofer,
1994).

1K-means algorithm is one of the best known clustering algorithms. It is also known as
Lloyd’s algorithm Lloyd (1982).

2sql is a programming language designed for reading, modifying, and managing data stored
in a Relational Database Management System (rdbms).
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Such requirements are later concretized in the specification of a Query-by-
Sketch (qbs) framework (Egenhofer, 1996) comprehending a touch-sensitive input
device to draw a sketch of the scene to be searched. qbs allows for annotating
drawn objects with textual tags to facilitate the search—e.g. object categories
like a forest or a lake—but does not require the user to specify in advance the
relationships he is going to draw, as requested in similar approaches (Calcinelli
& Mainguenaud, 1994; Lee & Chin, 1995). Egenhofer’s approach is based on
a user-system interaction schema according to which the sketch is continuously
parsed and, in case of an ambiguity in the interpretation, a message is displayed
to prompt the user to resolve it. The sketch is translated into a topological
constraint set and, consequently, in a spatial query to be sent to the underlying
spatial database. In the case distortions introduced into the sketch make an exact
match impossible, the query can be relaxed switching some topological constraints
with their conceptual neighbors (cf. Freksa, 1991a).

The actual execution of the query at the database level is not detailed in
(Egenhofer, 1996); however in (Clementini et al., 1994) pre-processing of topo-
logical query by means of consistency checking algorithms (c.f. Section 2.2.5)
is tackled. The main idea is that topologically inconsistent queries either have
to be relaxed or do not have to be performed at all. Egenhofer and Clementini
et al. argue that, although consistency checking is a costly operation, topological
queries usually consist of a small number of relations. In such cases the overhead
due to the pre-computation is largely preferable to an unfruitful database search.

A different approach to the development of a pictorial query language is un-
dertaken by Papadias & Sellis (1994a, 1995). They propose a Pictorial Query-
by-Example (pqbe) language requiring the specification of a symbolic skeleton
image rather than a skeleton table. The input query image is symbolic in the
sense that it consist of a grid filled with object ids in such a way that directional
relationships are correctly represented. Papadias and Sellis consider nine basic
directional relations similar to those of cdc (Goyal & Egenhofer, in press, 1997)
and also resort to qualitative reasoning in the form of relation composition when
the input query is represented by multiple skeleton images with at least one com-
mon object. pqbe provides the possibility of specifying constant and variable
objects in skeleton images, as well as the possibility of expressing intersection,
union and negation operations. The authors also describe how to use pqbe for
purposes different than retrieval: the language provides some special symbols
that can be used in skeleton images to denote objects to be inserted, deleted, or
updated. The fundamental operation on which retrieval, insertion, deletion, and
update rely is obviously the matching of skeleton images against the dataset that
is done similarly to Egenhofer’s approach: symbolic input images are encoded in
a constraint network and subsequently in a spatial query. Also in this case no
details are given about the actual query execution strategy.





Chapter 3

Qualitative Spatial Configuration Queries

In this chapter we introduce, discuss, analyze, and devise solutions to the Quali-
tative Spatial Configuration Query (qscq) problem.

3.1 Qualitative Spatial Relation Queries

In Section 2.3.3 spatial queries have been defined and the most common types
have been discussed. It has been outlined that, despite their semantic differences,
spatial queries share a ground commonality: they all encode spatial predicates
that, typically, embody some sort of qualitative spatial relation. Accordingly, the
totality of such spatial queries can be generally referred to as qualitative spatial
relation queries.

Qualitative spatial relation queries can be classified according to the “degree
of indetermination” of the spatial predicates involved, namely according to the
elements of the spatial predicate that are left unspecified. Let us consider queries
involving only one binary predicate of the form

(primary object, spatial relation, reference object)

Moreover, let us assume that the spatial predicate is taken from a set of B quali-
tative relations and that the query is defined over a spatial dataset of cardinality
N—i.e. containing N objects. Then, Table 3.1 shows a possible categorization
and nomenclature.

Given the typical size N of a spatial dataset, we can safely assume that B≪ N.
Hence, Table 3.1 also lists the different types of qualitative spatial queries ordered
according to the number of checks to be performed to resolve any query. A relation
retrieval query, for instance, has to be checked against (in the worst case) all
the B available spatial predicates in order to find out the one holding among
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Spatial Predicate

Query

Name

Primary

Object

Qualitative

Relation

Reference

Object
Spatial Request

Checks

#

Relation

Checking
given given given

Does the given relation hold

over the given objects?
O(1)

Relation

Retrieval
given ? given

Which relation does hold over

the given objects?
O(B)

? given givenObject

Retrieval given given ?

Which objects are in the

given relation with the

given object?

O(N)

Object-

Relation

Retrieval

given ? ? Which relations do hold

between the given object

and the rest of the dataset?

O(BN)
? ? given

Configuration

Retrieval
? given ?

Which objects are arranged ac-

cording to the given relation?
O(N2)

World

Snapshot
? ? ?

How are the objects in the

dataset arranged?
O(BN2)

N: dataset cardinality B: relation set cardinality

Table 3.1: Classification of qualitative spatial relation queries according to the indeter-
mination level of the spatial predicate and corresponding number of checks necessary to
resolve the query.

the specified object pair. At a basic level, without considering possible spatial
aspect interdependencies, the number of checks for queries embodying multiple
predicates can be easily obtained by multiplying the number of checks necessary
to perform for any predicate involved.

The world snapshot is the most demanding qualitative spatial relation query
type but it does not encode a realistic spatial request. Immediately below, in
terms of complexity, it follows the configuration retrieval query. It can encapsu-
late the essence of natural spatial descriptions (cf. Section 1.2.1) and it represents
the most demanding qualitative spatial relation query type a database can real-
istically be queried with.

This work is concerned with the analysis of configuration retrieval queries and
with the conception and development of Spatial Access Methods (sams) to effi-
ciently solve them. The study is not restricted to single-predicate configurations,
rather the focus is on those queries constrained by a series of possibly different
spatial predicates, each with a degree of indetermination identical to that of a
single-constraint configuration retrieval query. In the reminder of the text, such
queries will be referred to with the full-explanatory name Qualitative Spatial
Configuration Query (qscq).



3.2 qscq Enablement 45

3.2 qscq Enablement

It was already pointed out (cf. Sections 2.2.1 and 2.2.7) that humans cope with

spatial features mainly in a qualitative and relational manner. Now, it is argued

that qualitative spatial queries in general, and qscqs in particular, are a suitable

instrument to encode natural spatial descriptions and, thus, to enable spatial

querying by natural language or by sketch.
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Figure 3.1: Natural spatial description queries: transformation flow for automatic inter-
pretation into spatial query language. Gray items fall beyond the scope of this thesis and
are assumed to be given.

Figure 3.1 depicts a structured overview of the process a natural spatial de-

scription has to undertake to be automatically interpreted into a qualitative spa-

tial relation query which can be answered by a spatial database. The spatial

description is (i) interpreted into a series of predicates taken from a finite set

of spatial relations which are subsequently (ii) encoded into a qualitative spatial

relation query. Lastly, the spatial database (iii) resolves the query statement,

possibly taking advantage of some sams, and outputs the result which, option-

ally, can be further (iv) elaborated—e.g. graphically rendered—before being

presented to the user.

The focus of this work is on spatial databases, therefore we will only address

steps (ii) and (iii) in the process described above (blue items in Figure 3.1). In

particular, we are interested in determining under which assumptions an auto-

matic processing of spatial descriptions can be done and in conceiving efficient

qscq solution strategies. In the reminder of this section we will focus on the

first objective, whereas a discussion on the resolution approach is delayed to

Section 3.4 after having formally defined a qscq and its solution.
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3.2.1 Interpreting Natural Spatial Descriptions

Although, both natural language and image (sketch) interpretation processes are
disregarded in this work, we expect their output to be (i) a set of spatial variables
constrained by (ii) a set of spatial predicates.

Example 3.1 (Encoding spatial predicates) - The request reported in Example 1.1 can

straightforwardly be encoded into a set of spatial predicates in two steps. First, a variable

has to be declared for any spatial entity reported in the description:

a← Apartment u← University t← Tram/Bus Stop

m← Main Station s← Supermarket p← Park

Second, every spatial proposition has to be encoded into a qualitative relation:

Between(a,m, u) Close(a, t)

Close(a, s) V isible(p, a)

3.2.2 Spatial Query Language Encoding

As of today, except for topological and metric distance predicates, semantics of
spatial predicates is not formally defined in common spatial databases. Accord-
ingly, spatial predicates have to be manually interpreted and Query Language
(ql)-encoded by means of the spatial operators available within the underlying
spatial Database Management System (dbms).

Example 3.2 (qscq today) - Let us resume again Example 1.1 and let us assume that

the spatial dataset is stored in a Relational Database Management System (rdbms). Fur-

thermore, we assume Figure 3.2 to represent part of the logical schema of the database.

Particularly, the table Dwelling contains houses and Apartments, the table Station main-

tains both train stations and Tram/Bus Stops while the table Amenities stores entities

like Supermarkets, universities and Parks.

Dwelling

id: serial integer

type: text

name: text

address: text

for_rent: boolean

the_geom: point

Station

id: serial integer

type: text

name: text

the_geom: geometry

Amenities

id: serial integer

type: text

name: text

address: text

the_geom: geometry

Figure 3.2: Logical scheme for the Bremen dataset depicted in Figure 1.1.
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Then the request in Example 1.1 can possibly be encoded into a spatially-extended

sql language. The absence of appropriate spatial operators to express all of the required

spatial constraints (cf. Section 2.3.2) forces the database user to geometrically interpret

the spatial description and to elaborate a cumbersome query statement like the one shown

in Listing 3.1. Since no formal semantics is provided for the requested predicates, several

assumptions have been made. (i) The relation Between(a,m, u) has been considered satis-

fied by all those Apartments a located within an ellipse, with eccentricity equal to 2
3 , whose

foci are m and u (cf. lines 15-19). (ii) Similarly, the qualitative distance relation Close has

been interpreted as “less than 2 units away” (cf. lines 20 and 21), whatever a unit means.

(iii) Lastly, the visibility constraint has been heavily approximated with the condition that
no dwelling lies in between the searched Apartment and a Park (cf. lines 22-28).

Listing 3.1: Possible SQL encoding of the spatial request in Example 1.1

1 SELECT

2 a.the_geom, m.the_geom, u.the_geom,

3 s.the_geom, t.the_geom, p.the_geom

4 FROM

5 Dwelling AS d,

6 Dwelling AS a, Station AS m, Amenities AS u,

7 Amenities AS s, Station AS t, Amenities AS p

8 WHERE

9 a.type = "Apartment" AND a.for_rent = true

10 AND m.type = "Main Station"

11 AND u.type = "University"

12 AND s.type = "Supermarket"

13 AND t.type = "Tram/Bus Stop"

14 AND p.type = "Park"

15 AND (distance(a.the_geom,m.the_geom) +

16 distance(a.the_geom,u.the_geom))

17 <=

18 (distance(m.the_geom,u.the_geom) +

19 (distance(m.the_geom,u.the_geom)/2))

20 AND distance(a.the_geom,s.the_geom) < 2

21 AND distance(a.the_geom,t.the_geom) < 2

22 AND NOT intersect(

23 set_difference(

24 convex_hull(union(a.the_geom,p.the_geom)),

25 union(a.the_geom,p.the_geom)

26 ),

27 d.the_geom

28 )
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Example 3.2 blatantly demonstrates that a simple spatial request like the
one reported in Example 1.1 can lead to a relatively complicated ql statement.
Yet, it has to be noted that the sql encoding in Listing 3.1 provides an arbitrary
interpretation of the original spatial predicates—i.e. other encodings are possible.
Lastly, the visibility predicate has been heavily simplified for the sake of clarity
whereas a more appropriate encoding would require a Park not to be occluded to
the Apartment by any spatial object stored in the dataset.

In order to allow for automatic and unambiguous ql-encoding, formal seman-
tics has to be provided for any spatial predicate to be encoded. Since qualitative
spatial calculi provide formally defined qualitative relations, we propose the inter-
pretation of spatial descriptions to result into a set of qualitative spatial relations
rather than into generic spatial predicates. Accordingly, we assume there exists a
pool of available qualitative spatial calculi from which relations can be picked and
that such a pool is large enough to comprehend all the spatial relations needed
to generate an exact interpretation of the spatial description.

Definition 3.1 (Calculus, relation, and arity pool) - A calculus pool P = {M1, . . . ,Mp} is a set

of p qualitative spatial calculi such that each Mi ∈ P defines a set Bi = {ri,1, . . . ,ri,bi} of bi
basic relations of uniform arity ai ≥ 2 (ai ∈ N). Accordingly, the relation pool B = {B1, . . . ,Bp}

is the set of B =
∑p

i=1 bi base spatial relations defined by the qualitative calculi in P . Lastly,

the arity pool A ⊆ N is the set of distinct arities of the models in P .

We further assume that the calculus pool P is also available within the spatial
database as a set of boolean-valued functions: one for each a-ary relation r ∈ B.
Each function is of the form:

r(o1, . . . , oa)

and returns true if r holds over the spatial object a-tuple (o1, . . . , oa). Such
functions enrich the set of spatial operators available in the database and allow
for (i) automatic ql-encoding and (ii) much leaner query statements.

Example 3.3 (qscq encoding) - Let us resume once again Example 1.1 and, again, let

us set the assumption that the spatial dataset is stored in a rdbms whose logical scheme

is partly depicted in Figure 3.2. This time we set the further assumption that the spatial

predicates generated in Example 3.1 correspond to spatial relations from B. Then, the

original spatial description can be automatically sql-encoded into the qscq reported in

Listing 3.2. The relations Between(a,m, u), Close(a, t), Close(a, s) and V isible(p, a) are

straightforwardly mapped onto a series of operators in the where clause, as shown in

Listing 3.2.
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Listing 3.2: qscq encoding of the spatial request in Example 1.1

1 SELECT

2 a.the_geom, m.the_geom, u.the_geom,

3 s.the_geom, t.the_geom, p.the_geom

4 FROM

5 Dwelling AS a, Station AS m, Amenities AS u,

6 Amenities AS s, Station AS t, Amenities AS p

7 WHERE

8 a.type = "Apartment" AND a.for_rent = true

9 AND m.type = "Main Station"

10 AND u.type = "University"

11 AND s.type = "Supermarket"

12 AND t.type = "Tram/Bus Stop"

13 AND p.type = "Park"

14 AND Between(a,m,u)

15 AND Close(a,t)

16 AND Close(a,s)

17 AND Visible(p,a)

3.3 The qscq Problem

So far we described the challenge of enabling qualitative spatial relation queries

in a rather conceptual way to illustrate all involved constituents more clearly.

Yet, now that all the components involved in the game have been introduced and

an analysis of qscq solving procedure is to be carried out, a formalization of the

concepts of qscq and of its solution is necessary.

Definition 3.2 (Qualitative Spatial Configuration Query) - Given a calculus pool P and a

spatial dataset O. A Qualitative Spatial Configuration Query defined over (O,P) is a pair

Q = (X,Ξ) where X is a set of v variables ranging over O and Ξ is a set of c spatial constraints.

Each constraint ξ ∈ Ξ is, in turn, a pair ξ = (R, χ) where R ⊆ B is the set of relations of

uniform arity a defined over the same variable a-sequence χ ∈ Xa. The relationship between

the variable set and the constraint set is expressed by the following rule:

X = {
c⋃

i=1

χ(ξi)}

where χ(ξi) is the spatial variable a-sequence constrained by ξi
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According to such a definition a qscq can be represented as a multi-calculus

Qualitative Constraint Network (qcn) (cf. Section 2.2.5). The variables are the

nodes and the constraints the oriented hyperarcs connecting them.

Example 3.4 (qcn representation) - Assuming that the three different spatial predicates

in Example 3.1 are relations from different calculi, they can be represented as three distinct

qcns, as depicted in Figures 3.3(a)–(c). Alternatively the multi-calculus qcn shown in

Figure 3.3(d) can be generated. Note that for constraints with arity higher than 2 the

order in which the variables appear in the sequence is denoted with small numbers near the

different branches of the hyperarc.

fp
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Figure 3.3: Spatial predicates from Example 3.1 can be represented either as one
multi-calculus Qualitative Constraint Network (qcn) (d) or as three distinct single-
calculus qcns (a), (b) and (c).

In the scope of this work, we only consider inconsistency- and ambiguity-free

qscqs, i.e. the corresponding qcns can have arc labels composed of several rela-

tions provided that each such relation is a base relation from a different calculus

and that they do not contradict each other.

A spatial dataset O can also be represented as a multi-calculus qcn with the

nodes representing the dataset objects and the arcs representing the relations

from B holding over object a-tuples (for any calculus arity a in A). The latter

are obtained operating what we call a P-qualification of the spatial dataset.

Definition 3.3 (Qualified Dataset) - Given a spatial dataset O, a calculus pool P containing p

qualitative spatial calculi. The P-qualified dataset is the set RP(O) = {RMi
(O)|i = 1, . . . , p}

whose i-th elementRMi
(O) is in turn a set containing all the relations from the base relation set

Bi of the calculus Mi induced from the spatial dataset O. Any such set is named Mi-qualified

dataset.
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We stated earlier that solving a qscq consists in finding all the sets of objects
from the spatial dataset that satisfy the constraint set expressed in the query.
Equivalently, we can say that solving a qscq consists in finding all occurrences
of its qcn representation as a subgraph of the qcn representation of the spatial
dataset.

This is a well known problem in graph theory that goes under the name of
subgraph isomorphism or subgraph matching : A graphG = (VG, EG) is isomorphic
to a subgraph of a graph H = (VH , EH), denoted by G ≃ HG ⊆ H, if there exists
an injection f : VG → VH such that, for every pair of vertices vi, vj ∈ VG, if
(vi, vj) ∈ EG then (f(vi), f(vj)) ∈ EH . The definition varies slightly for directed,
labelled, hypergraphs, that is what multi-calculus qcns are:

Definition 3.4 (qscq solution) - Given a qscq Q = (X,Ξ) defined over (O,P). Given also

the functions rO,a : Oa → 2B returning the set of a-ary relations from B that hold between

a-tuples of objects from O and a similar set of functions rX,a : Xa → 2B returning the set of

a-ary relations enforced by the constraint set Ξ over a-tuples of variables from X. The solution

Σ(Q) of Q is the set of all one-to-one mappings σ : X → O such that, the following condition

holds:

rX,a(xi1 , . . . , xia) ⊆ rO,a(σ(xi1), . . . , σ(xia)) ∀ (xi1 , . . . , xia) ∈ Xa ∀ a ∈ A (3.1)

From now on, for the sake of readability, we will refer to the qcn interpre-
tations of a qscq and of a spatial dataset with the terms query graph and data
graph, respectively.

3.4 Solving qscqs

The interpretation of qscqs and spatial datasets as qcns allows for devising
query solving methods grounded on subgraph matching enumeration algorithms
(cf. Conte et al., 2004, for a thoroughly literature survey on the subject).

Practically, a subgraph matching consists in assigning each node xi of the
query graph one node oj of the data graph in such a way that (i) oj is not assigned
to multiple xi and (ii) the isomorphism condition is satisfied. For directed arc-
labeled hypergraphs such a condition is the one in Equation 3.1.

If the query graph has v nodes and the data graph has N nodes, there are
as many possible node assignments as the number of v-permutations (without
repetitions) of N elements: N!

(N−v)!
. Possibly, all such assignments can be repre-

sented by means of a tree structure: The tree has as many levels as the number
of nodes in the query graph and each tree node corresponds to an assignment
xi ∼ oj. Tree-nodes at i-th level of the tree assign the i-th query graph node each
data graph node which has not been assigned in any ancestor tree-node. The
root of the tree is located at level 0 and corresponds to the empty assignment ≁.
Accordingly, a path from the root to a leaf represents a complete assignment, but
is not guaranteed to be a matching.
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Example 3.5 - Let us assume to have a spatial dataset O as in Figure 3.4(b) which we

want to query by the qscq in Figure 3.4(a) represented by the query graph in Figure 3.4(c)

Let us also assume to have a calculus pool P = {M1 M2} such that B1 = {r1,r2,r4, · · · }

and B2 = {r3, · · · }. The data graph (O,RP(O)), whose arc set is the P-qualification of

O, is depicted in Figure 3.4(d) where, for the sake of readability, arcs unimportant for the

scope of this example are reported in light grey. Enumerating the subgraph matchings,

then, is equivalent to finding all the root-leaf paths in the assignment tree of Figure 3.4(e)

which satisfy Equation 3.1.
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(e) Tree of possible assignments.

Figure 3.4: Querying the spatial dataset in (b) by the Qualitative Spatial Config-
uration Query (qscq) in (a) is equivalent to find all subgraph matchings occurring
between the query graph (c) and the data graph (d) associated to the spatial dataset.
In turn, this is equivalent to find all the root-leaf paths within the possible assignment
tree (e) that satisfy the subgraph matching condition in Equation 3.1.
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One class of (sub)graph matching enumeration algorithms draws upon a tree
search with backtracking to identify all the possible matchings. The first algo-
rithm of this kind—and still one of the most used ones—is described in (Ullmann,
1976). Beyond the backtracking tree search, the algorithm employs a forward
checking to early detect unfruitful assignment tree paths. Forward checking draws
upon node adjacency: the assignment xi ∼ oj can be part of a complete matching
only if (i) oj has at least as many adjacent nodes as xi and (ii) for each adjacent
node xk of xi there exists at least one node adjacent to oj that can be assigned
to xk. Obviously, the smaller is i, the higher is the subtree rooted in xi and the
more numerous are the paths that we can avoid to visit (cf. Figure 3.4(e) for a
visual verification). Ullmann’s algorithm was originally designed for undirected,
unlabeled graphs but its basic strategy lends itself very well to be adapted for
other graph types.

3.4.1 Basic Retrieval Strategy

For the kind of graphs we cope with, a forward checking based on node adjacency
does not provide an efficient solution: The data graph will always be a complete
graph with a number of nodes and arcs much greater than that of the query
graph. Therefore, most of the times an assigned data graph node will have enough
adjacent nodes to allow for further assignments.

In (Wallgrün et al., 2010), a variant of Ullmann’s algorithm is used to find
the best possible matching between a pair of qcns representing Volunteered Ge-
ographic Information (vgi) sources. The authors make our same point that,
usually, volunteered spatial information comes in the form of descriptions or de-
pictions and, accordingly, investigate the possibility of doing the matching at a
qualitative constraint level. Although apparently very similar to the qscq prob-
lem, the problem tackled by Wallgrün et al. differs in two main points. (i) They
look for the best partial matchings rather than for exact matchings: they search
for partial matchings with the highest number of constraints being satisfied. This
means that they are faced with a maximum common subgraph problem instead of
a subgraph isomorphism. (ii) They also consider ambiguous qcns, i.e. arc labels
may contain disjunctive relations. Accordingly, they employ an A∗ algorithm to
drive the tree search and consistency checking as main constituent of the forward
checking function.

Our approach also stems from Ullmann’s algorithm and exploits the matching
condition in Equation 3.1 which enforces both a structural and a semantic match-
ing. The structural part concerns the conformation of the arc set: If there exists
a hyperarc among an a-tuple of x nodes, it has to exist a hyperarc of the same
arity among the matched nodes of the data graph. Moreover (semantic match-
ing), the label of the data graph hyperarc has to consist of a set of relations that
contains those occurring in the query graph hyperarc. If this condition holds on
a complete assignment, it also has to hold on any partial assignment constituting
a complete one.
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The retrieval strategy we developed tries to build the matchings incrementally
extending the empty one. Basically, it is a breadth-first search driven by the arc
structure of the query graph with a forward checking on the arc labels. The search
proceeds by e levels at once, where e is the number of nodes of the analyzed arc
that have not been assigned yet. While the search proceeds, the forward checking
rules out all the partial assignments that do not match with the query-subgraph
induced by the arcs analyzed so far.

Algorithm 3.1 reports the algorithmic realization. We assume that an input
qscq Q = (X,Ξ), with Ξ = {ξ1, . . . , ξc}, is defined over the usual pair (O,P).
A (partial) matching is denoted by a pair (χ̃, ω̃) where χ̃ is a sequence without
repetitions of variables from X and ω̃ is a similar sequence of objects from O
such that the j-th element ω̃[j] of ω̃ is assigned to the j-th variable χ̃[j] in χ̃. All
sequences ω̃ which satisfy the first i constraints in Ξ are maintained in the set Ωi.

Algorithm 3.1 Retrieve: Solves a given qscq Q via subgraph matching

Input:

Q = (X,Ξ): qscq

Output:

Σ(Q): solution of the given qscq

1: function Retrieve(Q)
2: Ω0 ← {()}; ⊲ initial partial matching
3: χ̃← (); ⊲ initialize list of assigned variables
4: for 1 ≤ i ≤ c do

5: Ωi ← ∅; ⊲ initialize extended partial matching
6: for all ω̃ ∈ Ωi−1 do

7: Ωi ← Ωi ∪ ExtendPMatching(χ̃, ω̃, ξi);

8: if Ωi = ∅ then return (() , ∅); ⊲ no matching found!

9: χ̃← χ̃ ⊎ χ(ξi); ⊲ update list of assigned variables

10: return (χ̃,Ωc);

The algorithm starts (Lines 2-3) with the empty matching ≁ represented
by the set Ω0, containing an empty sequence of dataset objects, and an empty
variable sequence χ̃. For any constraint ξi ∈ Ξ and for any ω̃ ∈ Ωi−1, the
algorithm tries to extend the partial matching (χ̃, ω̃) compatibly with ξi and
stores the results in Ωi (Line 7). If the tentative matching extension fails for
every (χ̃, ω̃)—i.e. yields Ωi = ∅—then no (partial) assignment satisfying the first
i−1 constraints satisfies the first i constraints. Accordingly, no complete matching
exists and the algorithm terminates early. Otherwise, before proceeding to the
next constraint, the algorithm extends the sequence of matched variables χ̃ by the
variables of the current constraint that have not been matched before (Line 9).
We assume this is done by the operator ⊎ that concatenates two sequences of
symbols yielding a sequence without repetitions.
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The matching expansion is assumed to be done by a function ExtendP-
Matching that takes as input a partial matching (χ̃, ω̃) and a constraint ξ =
(R, χ) of arity a. Basically the function checks the set Rω ⊆ B of relations hold-
ing over any dataset object a-tuple ω ∈ Oa against the relation set R required
by the constraint. Any ω such that Rω ⊇ R is merged with the sequence ω̃ and
returned to the main procedure. Note that the number of object a-tuples to be
considered depends on the arity a of the constraint as well as on the number e of
constrained variables that have not been assigned yet; it is equal to (N− (a− e))e.

Example 3.6 - The application of Algorithm 3.1 to the Example 3.5 is depicted in Fig-

ure 3.5. Each subfigure shows how the iteration over a certain arc of the query graph

(reported to the left) determines partial matchings (blue paths in the search tree). As-

signments that do not satisfy the matching condition are eliminated (red crosses) from

the search tree and reported in grey in the next subfigure. Note that, the first two con-

straints, reported in Figures 3.5(a)-(b), yields two complete assignments that also satisfy

the third constraint, in Figure 3.5(c). Lastly, the analysis of the last constraint, in Fig-

ure 3.5(d), allows for the removal of one of the partial matchings and yields the final result:

(χ̃,Ω4) = ((x1, x2, x3) , {(o1, o2, o3)}).

~

(a) ξ1 : (r1, (x1, x2)).

~

(b) ξ2 : (r2, (x3, x2)).

~

(c) ξ3 : (r3, (x1, x2, x3)).

~

(d) ξ4 : (r4, (x1, x3)).

Figure 3.5: Matching the query graph in Figure 3.4(c) against the data graph in
Figure 3.4(d) by Algorithm 3.1. The algorithm explores the search tree in Figure 3.4(e)
driven by the arc structure of the query graph.

3.5 Dataset Qualification

In the previous section we argued that solving qscqs is equivalent to enumerating
the subgraph matchings between a query graph and the data graph. We silently
assumed that both such graphs are given and we focused on the basic matching
procedure.

However, it has to be considered that a real geographic dataset usually consists
of millions of geometric objects (the nodes of the data graph) but does not come
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with spatial relations (the arcs of the data graph) explicitly represented. Thus, in
a realistic scenario, such relations have to be computed from the dataset objects.
Given the typical size of real geographic datasets, this is a very costly operation
that has to be carefully accounted in the retrieval process.

3.5.1 Runtime Qualification

The most straightforward approach for dataset qualification consists in qualifying
the spatial dataset while proceeding in the matching process. For this purpose we
use the operators available in the spatial dbms to compute qualitative relations
at runtime.

It is worth recalling that in Section 3.2.2 we made the assumption that the
standard spatial operator set present in a dbms is complemented by a set of
Boolean-valued functions: one for any relation in the relation pool B.

Algorithm 3.2 ComputeRelationM: Computes which of the relations defined in M holds
over an a-tuple of spatial objects

Input:

ω: a-tuple of spatial objects
Output:

r: the relation from M holding over the input a-tuple
1: function ComputeRelationM(ω)
2: for all r ∈ B do

3: if r(ω) then ⊲ checks if ω ∈ r

4: return r;

From now on, we further assume that for any a-ary calculus M ∈ P in the
calculus pool there exists a function ComputeRelationM which takes as in-
put an a-tuple of dataset objects ω and returns the base relation r ∈ B holding
over them. A general implementation for any such function is reported in Al-
gorithm 3.2 and consists in checking ω ∈ Oa against any base relation defined
by the calculus M until the relation holding on the object a-tuple is found. The
check is done via the boolean functions we recalled above. If each such function
runs in constant time and |B| = b, relation computation executes in O(b) time.

Given that any calculus in the pool provides a set of jointly exhaustive and
pairwise disjoint (jepd) base relations, one, and only one, relation from B can
hold over any dataset object a-tuple. Accordingly, the cardinality of the M-
qualified dataset RM(O) equals the number of dataset object a-tuples

|RM(O)| = Na (3.2)

and M-qualification runs in time proportional to the number of relation checks:

O (bNa) (3.3)
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Given that, in the worst case, a qscq involves relations from any calculus in
the pool P , runtime qualification affects the time of each qscq retrieval by a
factor:

O

(
∑

M∈P

b(M)Na(M)

)
(3.4)

where b(M) and a(M) stand for the number of base relations defined in M and
the arity of the calculus, respectively. Such a temporal cost is definitely unfeasible
when considering real geospatial datasets, even for a small calculus pool.

Clementini et al. (1994), showed that for the 9-Intersection Model (9-im)
(Egenhofer, 1989, 1991) the relation computation time can be drastically reduced
by performing the checks according to the relation-occurrence-frequency order.
However, such heuristics only works for models with highly unbalanced relation-
occurence-frequencies, e.g. nearly 90% of pairs of objects from a real geospatial
dataset are Disconnected.

A further drawback of this approach is that it does not allow for exploiting
and integrating purely qualitative information into the system, that is, spatial
information directly coming in qualitative terms rather than computed from a
quantitative dataset—e.g. the kind of information that can be derived from
natural spatial descriptions.

3.5.2 Pre-qualification

A typical approach used in computer science to cope with intensive computational
tasks consists in resorting to Lookup Tables (luts): data structures designed to
accommodate the results of a certain computation, which allow to replace the
runtime calculation with a faster lookup operation.

Accordingly, a different approach to tackle the dataset qualification consists
in extending the underlying spatial dbms with a qualitative storage layer, namely
enriching the database schema by some luts dedicated to accommodate qualita-
tive spatial relations. We call such tables relation tables. This solution achieves
the double effect of (i) reducing qscq retrieval time and (ii) enabling the dbms
to deal with a mix of qualitative and geometric information pieces.

Having a place to store qualitative relations allows for P-qualifying the spatial
dataset only once. Moreover, the relation tables can be indexed with standard
techniques—i.e. b-tree (Comer, 1979) or hashing (Fagin et al., 1979; Litwin,
1980)—allowing for sub-linear access times. Assuming we employ an index which
guarantees logarithmic access time, the computational overhead for qscq re-
trievals reported in Equation 3.4 becomes:

O

(
∑

M∈P

log
(
Na(M)

)
)

(3.5)
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The downside of this approach lies in the amount of extra storage space re-
quired to store the qualified dataset; according to Equation 3.2 it is proportional
to:

|RP(O)| =
∑

M∈P

|RM(O)| =
∑

M∈P

Na(M) (3.6)

Moreover, similarly to the previous approach, the time required for the pre-
qualification depends on the cardinality N of the spatial dataset and on the arity
and the number of relations in P . Although the latter ones are very small with
respect to the former, the dependency from the dataset cardinality represents an
important issue when dealing with real geographic datasets.

Example 3.7 - Let us consider the Bremen OpenStreetMap1 dataset—a small dataset for

geographic standards—with N ≈ 7 × 104 objects. Let us assume that the calculus pool

P = {cdc} only consists of the Cardinal Direction Calculus (cdc) (Goyal & Egenhofer,

in press, 1997) and that the spatial dataset contains only simple regions. cdc is a binary

calculus—i.e. a(cdc) = 2—which for simple regions, only defines b(cdc) = 218 jepd base

relations. Then, according to Equation 3.6, the qualified dataset RP(Bremen) contains a

number of relations in the range of (7× 104)2 = 4.9× 109 and, according to Equation 3.3,

the qualification process can require up to approximately 218 · (7 × 104)2 = 1.06 × 1012

relation checks.

A final drawback of having such a big amount of extra stored information
regards the maintenance of consistency in the dataset. For example, the removal
or the update of a spatial object has to be propagated along the whole qualified
dataset which, given the size of the latter, may be a very costly operation.

3.6 Summary and Focus

In this chapter we defined a generalization for spatial predicate queries that allows
for looking at them as a single query type. We classified them according to the
level of indeterminacy of the encoded spatial predicates and identified the class
hardest to solve: Qualitative Spatial Configuration Queries (qscqs).

We argued that, if the semantics of spatial predicates is described formally
and available in a dbms, qualitative spatial queries represent a valuable means
to automatically encode natural spatial descriptions. Therefore they are a key
element for the design of more natural human-Geographic Information System
(gis) interfaces: qualitative spatial queries can be used for both, contributing
information into a spatial database as well as “questioning” it. We raised the
point that qualitative spatial calculi provide the necessary semantics and that
verbal (and/or pictorial) spatial descriptions can be interpreted into a series of

1www.openstreetmap.org/
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spatial predicates. Then we assumed to have available a pool of qualitative spatial
calculi providing as many relations as necessary to capture the semantics of all
the spatial predicates resulting from the interpretation of any natural spatial
description. We concluded that, having such a calculus pool encoded as a series
of operators in a spatial dbms allows for a straightforward and automatic ql-
encoding of natural spatial descriptions.

Drawing upon this assumption, we focused on qscq solving. We provided a
formal definition and noted that a qscq can be represented as a multi-calculus
qcn which we named query graph. Similarly a spatial dataset can also be seen
as a huge qcn: the data graph. Accordingly, we showed that solving a qscq
is equivalent to enumerate all the subgraph isomorphisms occurring between the
two networks and we designed a simple graph matching procedure which exploits
properties of this kind of graphs.

Matching algorithms have to rely on the arc set—i.e. qualitative relations—of
both graphs and we pointed out that assuming the data graph to be given is a
too strong hypothesis because of the following motivations. (i) Usually spatial
datasets come in a geometric representation, i.e. qualitative relations occurring
on the geometric set are not explicit. (ii) Given the typical cardinality of spa-
tial datasets, the qualification process is a very costly operation which heavily
affects the overall matching time and, therefore, cannot be disregarded in qscq-
retrievals. Accordingly, we presented two basic approaches to tackle the dataset
qualification problem. Runtime qualification is straightforwardly realizable but
highly inefficient since it requires to compute relations occurring over the whole
dataset at any qscq-retrieval. The pre-qualification allows for qualifying the
dataset only once and even for indexing the resulting qualified dataset. Accord-
ingly this constitutes the best choice to maintain reasonable retrieval times but,
on the other hand, requires an enormous quantity of extra storage space.

In agreement with this summary, the remainder of this work is focused on two
main investigations: (i) How dataset qualification can be done to obtain a good
tradeoff between storage space and qscq-retrieval time. (ii) How the assumption
that the calculus pool contains enough qualitative calculi can be realized.

Efficient execution of spatial queries is achieved in spatial dbms through the
exploitation of so-called Spatial Access Methods (sams) (cf. Section 2.3.4). In
Chapter 4, we design a series of sams tailored for solving qscqs; we term them
Qualitative Spatial Access Methods (qsams). They draw upon a combination of
luts and Qualitative Spatial Representation and Reasoning (qsr) techniques to
maintain a good trade-off between the space occupied by the dataset qualification
and qscq retrieval time.

The variety of expressions occurring in natural spatial descriptions does not
allow for deciding in advance which spatial relations will be necessary for the
encoding: Neither one can predict what spatial aspects—i.e. topological vs.
directional—will be reported, nor which type of spatial calculi will be more suit-
able for the encoding—i.e. cardinal vs. relative directions. Consequently, the
assumption that the calculus pool has to provide enough qualitative relations
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to encode any spatial description, is better realized allowing for an extendable
pool. This shift of perspective calls for a practical approach: In Chapter 5 a
novel prototypical software framework is developed that provides a solution for
a readily integration of qualitative spatial calculi as well as a development and
benchmarking tool for qsams.



Chapter 4

Qualitative Spatial Access Methods

In Section 3.4 we designed a basic strategy for solving a Qualitative Spatial Con-
figuration Query (qscq) that is basically a subgraph isomorphism procedure. The
graphs to be matched are Qualitative Constraint Networks (qcns) representing
the given qscq and the spatial dataset being queried.

In a user-computer interaction scenario, a qscq results from the interpretation
of a spatial description produced by a human being. In a realistic case, it is licit to
assume that such a description does not convey more than a few tens of qualitative
spatial constraints. In this work, we do not cope with the interpretation process
and assume that a spatial description comes already interpreted into a qscq.

In contrast, spatial datasets typically consist of millions of geometric objects,
that is, the arcs of the qcn representing the dataset are not explicitly available.
Thus a dataset qualification (cf. Definition 3.3) has to be performed in order
to be able to resolve a qscq. Given the typical size of a spatial dataset, a full
dataset qualification is a very costly operation that have to be carefully taken
into account in the qscq solving strategy.

In Sections 3.5.1 and 3.5.2 two basic strategies for the dataset qualification
have been analyzed: runtime qualification and pre-qualification. The first one
does not require any extra storage space to be used but is highly inefficient for
what concerns the retrieval time. The second one calls for a database schema
extension—named qualitative storage layer—where the qualified dataset can be
stored explicitly. This allows for fast retrievals but has two main drawbacks:
(i) It requires an enormous quantity of extra storage space. (ii) Given that the
temporal cost of a full pre-qualification is extremely high, such a solution can
hardly manage real world dynamism. That is, by the time the pre-computation
is done, the changes that have occurred, for instance, in a city and reported in
the corresponding spatial dataset are not reflected in the qualified dataset, calling
for a new qualification.
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In this chapter we propose an alternative to improve the above-mentioned
approaches. The main underlying idea is to extend the spatial database with
a qualitative storage layer but only pre-compute a targeted subset of the whole
qualified dataset. The missing relations have to be rebuildable at retrieval time,
ideally without resorting to a full dataset qualification. For doing this we suggest
to resort to a relation reduction/reconstruction paradigm to be applied in the
qualification and retrieval phase.

Reduction and reconstruction operations can be directly encoded within Spa-
tial Access Methods (sams) specifically designed to optimize qscq executions:

Definition 4.1 (Qualitative Spatial Access Method) - Given a spatial dataset O and a calculus

pool P , a Qualitative Spatial Access Method (qsam) over (O,P) is a triple (q,D, r) such that

q : (O,P) → D is a dataset qualifier function which, given the spatial dataset, populates the
set of data structures D underlying the qsam. r : (D,P) → Σ(Q) is a retriever function that
exploits the information stored in D to solve a given qscq.

A qsam is characterized by a reduction and a reconstruction strategy that
determine the main features of the qualifier and retriever functions, as well as the
constitution of the data structure set.

In the remainder of this chapter four different typologies of qsams are pre-
sented together with a discussion on the provided space-time tradeoff. In Sec-
tions 4.1 and 4.2 two qsams are developed that embody the basic strategies
of runtime qualification and pre-qualification, respectively. Section 4.3 is dedi-
cated to the design of a qsam family drawing upon a spatial clustering reduction
strategy, whereas in Section 4.4 is devised a solution whose main idea is to use
standard Qualitative Spatial Representation and Reasoning (qsr) techniques to
rebuild missing relations. Finally, Section 4.5 concludes the chapter with a sum-
mary.

4.1 Functional qsam

According to Definition 4.1, the runtime qualification strategy presented in Sec-
tion 3.5.1 is a qsam of the form

(−,−,Retrieve-Functional)

where the qualifier function q is void as well as the set D of data structures.
The algorithmic realization of the retriever function, Retrieve-Functional,
is identical to the one in Algorithm 3.1 with the function ExtendPMatching
realized as in Algorithm 4.1.

The function fetches all the necessary information about the constraints, i.e.
the set of enforced relations R, the variable sequence χ, the arity a, and the
set of calculi Pξ which the relations in R belong to. Then, it iterates over all
the dataset object a-tuples compatible with the input—cf. Example 4.1. If the
relations Rω from Pξ holding over the object a-tuple ω at hand equal those in
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R, ω is merged with the sequence ω̃ of objects already matched and is added to
the set of extended matchings Ωξ.

Example 4.1 - Let us assume that the variables χ̃ = (x1, x2) are already assigned the

objects ω̃ = (o5, o7) and that the constraint ξ is defined over the variables χ = (x2, x3).

Then, only object pairs (oi, oj) with oi = o7 are compatible with the input.

Note that the number of object a-tuples to be considered depends on the arity
a of the constraint as well as on the number e of constrained variables that have
not been assigned yet; it is equal to (N− (a− e))e where N is the cardinality of
the spatial dataset O.

Algorithm 4.1 ExtendPMatching-Functional: Extends the partial matching (χ̃, ω̃) ac-
cording to constraint ξ

Input:

(χ̃, ω̃): partial matching
ξ = (R, χ): constraint to satisfy

Output:

Ωξ: set of matchings extended from (χ̃, ω̃) and satisfying constraint ξ

1: function ExtendPMatching-Functional(χ̃, ω̃, ξ)
2: Ωξ ← ∅; ⊲ initialize constraint matching set
3: (R, χ)← ξ; ⊲ get the relation set and the variable sequence of ξ
4: a← |χ|; ⊲ get the arity of ξ
5: Pξ ← ∅ ⊲ initialize set of calculi for ξ
6: for all r ∈ R do

7: Pξ ← Pξ

⋃
M(r); ⊲ add to Pξ the calculus r belongs to

8: for all ω ∈ Oa|ω[i] = ω̃[i] ∀ i s.t. χ[i] ∈ χ̃ do ⊲ for each compatible ω
9: Rω ← ∅; ⊲ initialize the set of relations holding on ω
10: for all M ∈ Pξ do

11: Rω ← Rω

⋃
ComputeRelationM(ω);

12: if Rω = R then

13: Ωξ ← Ωξ ∪ {ω̃ ⊎ ω};

14: return Ωξ;

4.2 Qualitative Storage Layer qsam

The pre-qualification approach presented in Section 3.5.2 is a qsam of the form

(Qualify-QSL,Dqsl,Retrieve-QSL)

The set of data structures Dqsl = {rti|∀ i ∈ A} is a set of |A| Lookup Tables
(luts) named relation tables where A is the arity pool (cf. Definition 3.1). The
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i-th relation table rti contains entries of the form

(rω, ω)

where ω is an i-tuple of dataset objects and rω is an i-ary relation from the
relation pool B.

The qualifier function, Qualify-QSL, P-qualifies the whole spatial dataset,
accommodating each relation in the appropriate relation table according to its
arity. The algorithmic realization of Qualify-QSL is reported in Algorithm 4.2.

Algorithm 4.2 Qualify-QSL: Populates the relation tables in D with the relations induced
by the spatial dataset

Input:

O: Spatial set
P : Calculus pool

Output:

luts in D are filled with relations from the P-qualified dataset RP(O)

1: function Qualify-QSL(O,P)
2: for all M ∈ P do

3: a← a(M); ⊲ get the arity of the calculus at hand
4: for all ω ∈ Oa do

5: rω ← ComputeRelationM(ω);
6: rta ← rta

⋃
(rω, ω);

Also in this case, the retriever function, Retrieve-QSL, is identical to the
one in Algorithm 3.1 with the function ExtendPMatching realized as in Al-
gorithm 4.3: It gets the arity a of the constraint ξ and calls the function Select
that retrieves from the relation table rta all the entries (rω, ω) with rω ⊆ R and
the object a-tuple compatible with the partial matching (χ̃, ω̃) in input.

Algorithm 4.3 ExtendPMatching-QSL: Extends the partial matching (χ̃, ω̃) according to
constraint ξ

Input:

(χ̃, ω̃): partial matching
ξ = (R, χ): constraint to satisfy

Output:

Ωξ: set of matchings extended from (χ̃, ω̃) and satisfying constraint ξ

1: function ExtendPMatching-QSL(χ̃, ω̃, ξ)
2: (R, χ)← ξ; ⊲ get the relation set and the variable sequence of ξ
3: a← |χ|; ⊲ get the arity of ξ
4: return Select(R, χ, χ̃, ω̃,rta);
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4.3 Spatial Clustering qsams

In this section we define a family of qsams of the form

(Qualify-SC,Dsc,Retrieve-SC)

The data structures, the qualifier function, and the retriever function of this qsam
family are presented in Sections 4.3.2, 4.3.3, and 4.3.4, respectively, after having
introduced some background notions in Section 4.3.1.

4.3.1 Background: Clustering Relations

Spatial Clustering qsam (sc-qsam) draws upon reduction and reconstruction
strategies grounded on a special typology of qualitative spatial relations:

Definition 4.2 (Clustering Relation) - An a-ary qualitative spatial relation r is called a clus-
tering relation if the following property holds for any a-tuple (o1 . . . , oa) ∈ r of objects from

the spatial domain1 D:

(o1, o2 . . . , oa) ∈ r⇒ (o1, o2, . . . , oa) ∈ r ∀ oi ⊆ oi with i = 2, . . . , a (4.1)

Practically, in the binary case, if o1 is in a clustering relation with o2, it is also
in the same relation with any given object o2 contained in o2.

Corollary 4.1 - For any given qualitative spatial calculus M, there exists a (pos-

sibly empty) subset B ⊆ B of its base relations which are clustering relations.

Since in the scope of this thesis we only consider connected regions without
holes, the following corollary directly follows from Definition 4.2.

Corollary 4.2 - If r is an a-ary clustering relation, for any a-tuple (o1, . . . , oa) ∈

r the following equation holds:

(o1, o2 . . . , oa) ∈ r⇒ (o1, o2, . . . , oa) ∈ r ∀ oi ⊆ oi with i = 1, . . . , a (4.2)

Example 4.2 (Clustering Relation) - The binary Cardinal Direction Calculus (cdc) (cf.

Section 2.2.4.4) relation NorthEast (ne) is a clustering relation. Figure 4.1(a) depicts
a possible instantiation of the relation ne(o1, o2), whereas Figure 4.1(b) shows the same

cdc relation occurring between o1 and a reference object o2 ⊆ o2. Finally, according to

Corollary 4.2, we also have that ne(o1, o2) with o1 ⊆ o1, as depicted in Figure 4.1(c).

1The spatial domain D is the infinite set consisting of any connected, simple regions in R
2

(cf. Section 2.2.2). It has not to be confused with a spatial dataset O ⊆ D that is a finite set
of domain objects.
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NE(o2)

o2

o1

(a) ne(o1, o2)

o2

o2

NE(o2)
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(b) ne(o1, o2)

o2

o2

NE(o2)

o1

o1

(c) ne(o1, o2)

Figure 4.1: The Cardinal Direction Calculus relation NorthEast (ne) is a clustering
relation.

The previous example suggests that, if the acceptance area (cf. Section 2.2.4.2)
of a given relation consists of one connected and hole-free region, the relation can
be identified to be a clustering one if the restriction of any of the reference objects
implies an enlargement of the instantiation of the acceptance area. This is shown
by the following:

Theorem 4.1 - Let r be an a-ary qualitative spatial relation and Zr its connected,

hole-free, acceptance area. Then, r is a clustering relation if, and only if, the

restriction of any reference object implies an enlargement of the acceptance area.

That is:

Zr(o2, . . . , oa) ⊆ Zr(o2, . . . , oa) ∀ oi ⊆ oi with i = 2, . . . , a (4.3)

Proof. We start proofing that if r is a clustering relation, Equation 4.3 holds.
By definition, the acceptance area Zr of r is a region of the space paramet-
ric with respect to the reference objects (o2, . . . , oa) intervening in the relation
such that (o1, . . . , oa) ∈ r ⇐⇒ o1 ∈ Zr(o2, . . . , oa) for any o1 ∈ D and for
any (o2, . . . , oa) ∈ D

a−1. Since an acceptance zone instantiation Zr(o2, . . . , oa)
is also a region of the modeled domain D which trivially satisfies the condition
Zr(o2, . . . , oa) ⊆ Zr(o2, . . . , oa), even the a-tuple (Zr(o2, . . . , oa), o2, . . . , oa) is to
be in r. Supposing that r is a clustering relation, from Definition 4.2 we have
that (Zr(o2, . . . , oa), o2, . . . , oa) ∈ r for any (o2, . . . , oa) such that oi ⊆ oi with
i = 2, . . . , a. Then, still from the definition of acceptance area, it follows that
Zr(o2, . . . , oa) ⊆ Zr(o2, . . . , oa)

We now need to proof that if Equation 4.3 holds, r is a clustering relation.

Given that a spatial object a-tuple (o1, o2 . . . , oa) is an element of r if, and only if,

o1 ⊆ Zr(o2, . . . , oa) and assumed that Zr(o2, . . . , oa) ⊆ Zr(o2, . . . , oa), it readily

follows that o1 ⊆ Zr(o2, . . . , oa). That is, (o1, o2 . . . , oa) ∈ r.
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4.3.2 Data Structure

The properties of clustering relations can be exploited to obtain a reduced qual-
ified dataset via the generation of a set of fictitious geometries, each of which
encloses a subset of the objects of the spatial dataset. We term such fictitious
spatial objects tiles in order to distinguish them from the dataset ones.

Definition 4.3 (Tileset) - Given a spatial dataset O = {o1, . . . , oN}, a set of geometries T =

{t1, . . . , tq} and a set function T : O → T , we say that T is a tileset over O—generated through
the tiling function T—if, and only if, the following conditions hold simultaneously:

∀ t ∈ T ∃ o ∈ O s.t. t ∩ o 6= ∅ (4.4)
(
⋃

t∈T

t

)
∩

(
⋃

o∈O

o

)
=
⋃

o∈O

o (4.5)

The same spatial dataset can give rise to a multitude of tilesets according to
the chosen tiling function T . For example, Figure 4.2 shows two different tilesets
over the same dataset. A tileset can be used to generate a clustering of the spatial
dataset as follows.
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Figure 4.2: Two possible tilesets over the same spatial dataset.

Definition 4.4 (Tileset-induced Spatial Clustering) - Given a spatial dataset O and a tileset

T over it, it is possible to associate a subset of the spatial dataset C ⊆ O to any tile t ∈ T

as follows: C contains the dataset objects contained in t. If a dataset object is not contained

within one tile, according to Definition 4.3, it is to be covered by the union of a subset of them

and it is assigned to each corresponding cluster. If an object is contained within multiple tiles

it is assigned to the cluster with minimum cardinality. We call the set C = {C1, . . . , Cq} of such

clusters a T -induced clustering of O.

We now have enough instruments to define what we call a spatial clustering index.

Definition 4.5 (Spatial Clustering Index) - Let O be a spatial dataset, T a tileset of q tiles

over it and C the spatial clustering induced by T . A spatial clustering index over O via T—and
C—is a set I = {e1, . . . ,eq|ei = (ti, Ci) with i = 1, . . . , q} where ti ∈ T is the i-th tile in the

tileset and Ci ∈ C is the i-th cluster in the clustering.
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For the sake of notation it is convenient to define a set of operators to easily
refer to the index elements.

Definition 4.6 - Given an entry e = (t, C) from a spatial clustering index I, we say that t(e) = t

is the tile associated with e and that C(e) = C is the cluster associated with e. Similarly, given
an a-tuple of index entries ǫ = (e1, . . . ,ea), we say that τ(ǫ) = (t(e1), . . . , t(ea)) is the tile
a-tuple associated with ǫ and that σ(ǫ) = (C(e1), . . . , C(ea)) is the cluster a-tuple associated
with ǫ.

A spatial clustering index together with a set of relation tables provide the
data structures underlying a spatial clustering qsam. Note that, in this case,
a relation table contains entries pointing either at dataset objects or at index
entries.

4.3.3 Qualification

The qualification procedure for sc-qsam resorts to a spatial clustering index to
produce a reduced set of spatial relations. Before going through the algorithm,
it is convenient, for the sake of exposition, to introduce the following concept.

Definition 4.7 - Given a dataset O indexed by a spatial clustering index I, any a-tuple of

index entries ǫ = (e1, . . . ,ea) gives rise to a set Ωǫ of dataset object a-tuples having the i-th

term taken from the cluster C(ei) associated with the i-th entry in ǫ. We say that Ωǫ is induced
by ǫ and, if |C(ei)| = Ni, we have that:

|Ωǫ| =
a∏

i=1

Ni

Given a dataset O indexed by a spatial clustering index I = (T , C) and a
calculus pool P , the dataset qualification procedure, reported in Algorithm 4.4,
resorts to the tileset T to exploit the properties of clustering relations.

For any a-ary calculus in the pool M ∈ P , the procedure iterates over every
a-tuple ǫ of entries from I. If the relation rǫ, holding over the tile a-tuple τ(ǫ)
associated with a given ǫ, is a clustering relation—i.e. rǫ ∈ B(M)—then, accord-
ing to Equation 4.2, the same relation occurs over every object a-tuple ω ∈ Ωǫ

induced by ǫ. Accordingly, computing the relations holding over any ω ∈ Ωǫ is
superfluous and we can simply store rǫ in the relation table rta. Conversely, if
rǫ is not a clustering relation, it is necessary to compute and store the relations
occurring over all the object a-tuples mentioned above. Note that, if the tile τ is
an a-tuple having all terms equal we simply compute the relations occurring over
all the objects in the corresponding cluster by resorting to the qualifier function
Qualify-QSL described in Section 4.2.
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Algorithm 4.4 Qualify-SC: Populates the relation tables in D with the relations induced
by the spatial dataset and reduced according to the spatial clustering index I

Input:

O: Spatial set
P : Calculus pool
I: Spatial Clustering index

Output:

luts in D are filled with relations from the P-qualified dataset RP(O)

1: function Qualify-SC(O,P ,I)
2: for all M ∈ P do

3: B← B(M); ⊲ get the clustering relations of the calculus at hand
4: a← a(M); ⊲ get the arity of the calculus at hand
5: for all ǫ ∈ Ia do

6: if ǫ[1] = ǫ[2] = · · · = ǫ[a] then Qualify-QSL(C(ǫ[1]),{M});
7: else

8: rǫ ← ComputeRelationM(τ(ǫ));
9: if rǫ ∈ B then rta ← rta

⋃
(rǫ, ǫ);

10: else

11: for all ω ∈ Ωǫ do

12: rω ← ComputeRelationM(ω);
13: rta ← rta

⋃
(rω, ω);

The qualification procedure reported in Algorithm 4.4 produces what we call

an I-reduced, P-qualified dataset RP,I(O) such that

RP,I(O) =
⋃

M∈P

RM,I(O) (4.6)

where RM,I(O) is the set of relations generated for a calculus M of arity a and

such that

|RM,I(O)| = |RM(O)| − ρ with ρ ≥ 0 (4.7)

The reduction ρ performed by Qualify-SC is measured with respect to the

complete M-qualified dataset RM(O) (cf. Equation 3.2). It depends on the index

I and on the number of clustering relations occurring over its tiles. A “bad” index

may yield a null reduction. Moreover, it may cause the relations occurring over

some object a-tuples to be computed multiple times. This, in turn, causes the

procedure to perform in time higher than that required by a full qualification.
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Example 4.3 (Bad Indexing) - Let us consider the case depicted in Figure 4.2(a). That

is, O = {o1, o2, o3, o4} and I = {e1, e2} with:

t(e1) = t1 ; C(e1) = C1 = {o1, o2}

t(e2) = t2 ; C(e2) = C2 = {o2, o3, o4}

Let us assume that the calculus pool P = {rcc} consists only of the Region Connection

Calculus (rcc) (cf. Section 2.2.4.4) which provides only one clustering relation: B(rcc) =

{dc}. Then, Qualify-SC performs according to Table 4.1:

(e1, e1) – (e1, e2) ec (e2, e1) ec (e2, e2) –

(o1, o1) eq (o1, o2) dc (o2, o1) dc (o2, o2) eq

(o1, o2) dc (o1, o3) dc (o2, o2) eq (o2, o3) dc

(o2, o1) dc (o1, o4) dc (o3, o1) dc (o2, o4) po

(o2, o2) eq (o2, o2) eq (o3, o2) dc (o3, o2) dc

(o2, o3) dc (o4, o1) dc (o3, o3) eq

(o2, o4) po (o4, o2) po (o3, o4) dc

(o4, o2) po

(o4, o3) dc

(o4, o4) eq

stored relations non-stored relations

repeated computations

Table 4.1: Execution summary of Qualify-SC over the dataset in Figure 4.2(a)

The table reports in blue the relations stored in the relation table rt2 and in gray the non-

stored ones. The symbol – indicates that the relation for the associated pair has not been

computed at all. The relations computed more than once are reported in red. Each column

represents the iteration over the index entry pair reported in the first row. Accordingly,

the totality of blue entries corresponds to the set Rrcc,I(O) whereas the non-gray ones give

the order of the execution time.

So, for example, the last column indicates the iteration over the pair (e2,e2): since the

2-tuple has all terms equal, the algorithm does not compute the relation occurring over it

and qualifies the associated object cluster C1.

The remainder of this section is devoted to analyze the qualification proce-

dure we just described. In particular we are interested in identifying some index

parameters that can be tuned to obtainM-qualified datasets as lighter as possible.

In order to minimize |RM,I(O)| we have to maximize ρ. First off, we need to

make explicit the cardinality of the reduced qualified dataset. To this end, let us

assume that U ⊆ T a is the set of tile a-tuples having all the terms equal. The

rest is split between the sets V and W in such a way that V contains the v tile
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a-tuples in a clustering relation. Then, according to Algorithm 4.4 we have that

|RM,I(O)| =
∑

τ j∈U

a∏

k=1

Nj,k + v +
∑

τ j∈W

a∏

k=1

Nj,k (4.8)

where Nj,k is assumed to be the cardinality of the object cluster Cj,k associated
with the k-th term of the j-th tile a-tuple τ j.

To assess the reduction amount, it is convenient to express |RM(O)| as a
function of the sets U , V and W . Given a partition of the spatial dataset, this
can be done easily (cf. Example 4.3 for an empirical demonstration). However,
since we did not impose any restriction on the way the index I is generated, the
clustering C may or may not provide a partition of the spatial dataset O. That
is, the summation of the cardinality of its object clusters exceeds the cardinality
of the spatial dataset of a quantity e ≥ 0. Nonetheless, given the clustering C =

{C1, . . . , Cq}, it is always possible to stem from it a partition Ĉ = {Ĉ1, . . . , Ĉq}
of O such that:

Ĉi =

{
Ci if i = 1

Ci \
⋃i−1

j=1 Ĉj if 2 ≤ i ≤ q

If we denote with N̂i the cardinality of the i-th cluster Ci we have that Ni−N̂i = ei
and, consequently, that

e =

q∑

i=1

ei

Then, it is possible to rewrite Equation 3.2 as follows:

|RM(O)| =
∑

τ j∈U

a∏

k=1

N̂j,k +
∑

τ j∈V

a∏

k=1

N̂j,k +
∑

τ j∈W

a∏

k=1

N̂j,k (4.9)

where N̂j,k is assumed to be the cardinality of the object cluster Ĉj,k associated
with the k-th term of the j-th tile a-tuple τ j.

Lastly, let us define the following symbols which allow for a leaner notation
and a smoother analysis:

ρU =
∑

τ j∈U

a∏

k=1

(N̂j,k)−
a∏

k=1

Nj,k

ρV =
∑

τ j∈V

a∏

k=1

(N̂j,k)− v

ρW =
∑

τ j∈W

a∏

k=1

(N̂j,k)−
a∏

k=1

Nj,k

Hence, from Equations 4.7, 4.8, and 4.9, the reduction performed by Algorithm 4.4
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can be quantified in:

ρ = ρU + ρV + ρW (4.10)

It is worth to recall that N̂j,k = Nj,k−ej,k by construction, therefore the terms
ρU and ρW are non-positive and we want their absolute values to be as small
as possible, ideally 0. Conversely, ρV is obviously non-negative and has to be
maximized. Let us go through Equation 4.10 term by term:

• ρU only depends on e. In particular we have that, if e→ 0, N̂j,k → Nj,k and
ρU → 0.

• ρV scales proportionally with the number of tile a-tuples in a clustering
relation, i.e. the higher v, the higher ρV .

• Since, by definition, W = (T a \U) \V , the term ρW depends on both e and
v. In particular, the bigger is v the smaller is ρW and, just like ρU , it tends
to zero as e tends to zero.

In conclusion, to obtain a good reduction the index I has to be tuned in order
to reduce the overlapping of the clusters in C (reduce e) and to augment the
possibility that the tuples of tiles in T are in a clustering relation (augment v).
Given that the calculus pool P possibly contains a variety of calculi, achieving
the second goal is quite hard since adjusting the index for a calculus might yield
an unsatisfactory solution for another. Accordingly, any given I is most suitable
for a specific set of spatial calculi. In any case, to obtain acceptable reductions,
a spatial clustering index will have to be tested and tuned to detect the best
parameter settings for the calculus pool and the spatial dataset at hand.

Example 4.4 (Good Indexing) - Let us resume Example 4.3. This time, we consider

the case that the spatial dataset is indexed as depicted in Figure 4.2(b). Therefore, O =

{o1, o2, o3, o4} and I = {e1, e2} with:

t(e1) = t1 ; C(e1) = C1 = {o1, o3}

t(e2) = t2 ; C(e2) = C2 = {o2, o4}

(e1, e1) – (e1,e2) dc (e2, e1) dc (e2, e2) –

(o1, o1) eq (o1, o2) – (o2, o1) – (o2, o2) eq

(o1, o3) dc (o1, o4) – (o2, o3) – (o2, o4) po

(o3, o1) dc (o3, o2) – (o4, o1) – (o4, o2) po

(o3, o3) eq (o3, o4) – (o4, o3) – (o4, o4) eq

stored relations non-stored relations

repeated computations

Table 4.2: Execution summary of Qualify-SC over the dataset in Figure 4.2(b)
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Then Qualify-SC performs according to Table 4.2 (cf. Example 4.3 for interpretation

directives). Note that, in this case the clustering C provides a partition of the spatial

dataset O—i.e. e = 0. This implies that, consistently with Equation 4.9, the cardinality

of the complete qualified dataset RM(O) equals the summation of the number of object

pairs taken from any cluster and it is equal to |RM(O)| = 8 + 4 + 4 = 16. Moreover,

according to Equantion 4.8, Qualify-SC produces a qualified dataset Rrcc,I(O) reduced

of ρ = 6 relations with respect to the complete one: |Rrcc,I(O)| = 8 + 2 + 0 = 10. Finally,

no relations are computed more than once, i.e. the algorithm runs faster than a plain

qualification.

4.3.4 Retrieval

The retriever function for a Spatial Clustering qsam (sc-qsam) can be imple-
mented as the generic one reported in Algorithm 3.1 where the function Ex-
tendPMatching is realized as in Algorithm 4.5.

Algorithm 4.5 ExtendPMatching-SC: Extends the partial matching (χ̃, ω̃) according to
constraint ξ and exploiting the index I

Input:

(χ̃, ω̃): partial matching
ξ = (R, χ): constraint to satisfy
I: Spatial Clustering index

Output:

Ωξ: set of matchings extended from (χ̃, ω̃) and satisfying constraint ξ

1: function ExtendPMatching-SC(χ̃, ω̃, ξ, I)
2: (R, χ)← ξ; ⊲ get the relation set and the variable sequence of ξ
3: a← |χ|; ⊲ get the arity of ξ
4:

(
R,R

)
← R;

5: return Select-SC(R, χ, χ̃, ω̃,rta, I) ∩ Select(R, χ, χ̃, ω̃,rta);

The algorithm extracts relevant information from the input constraint ξ. In
this case, beyond the set of constrained variables χ and the arity a, we also
assume that the enforced relation set R consists of two subsets: R contains all
the enforced relations that are clustering relations, whereas the set R contains
the non-clustering ones. Since the non-clustering relations among object a-tuples
are all stored in the relation table rta we simply retrieve them via the function
Select that we already used in Algorithm 4.3.

With regard to the clustering relations: the relation table rta only stores
those occurring among the tiles associated with index entries or among objects
in the same cluster. Therefore, we assume that the function Select-SC behaves
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similarly to Select: It retrieves from the relation table rta all the entries (r, ·)

with r ∈ R. If a relation table entry (r, ω) is about an object a-tuple, the latter

is appended to the result set. Otherwise, we have that (r,e) is about an index

entry a-tuple. In this case, by accessing I, Select-SC generates and appends

to the result the set Ωe of object a-tuples induced by I. Of course, similarly to

the function Select, Select-SC only returns tuples compatible with the input

(cf. Example 4.1). The intersection of the two retrievals is the set of (partial)

matchings extended from the input one (χ̃, ω̃) according to the constraint ξ in

input.

Example 4.5 - Consider the following qscq to be executed against the I-reduced, rcc-

qualified dataset obtained in Example 4.4:

Q = ({x1, x2, x3} , {({po} , (x1, x2)) , ({dc} , (x2, x3))}) , that is

{
x1 po x2

x2 dc x3

Then the retrieval, according to Algorithms 3.1 and 4.5, works as follows. First, the

constraint x1 po x2 is considered. Since po is not a clustering relation, only the function

Select generates a set of results. Since no variables have been assigned yet, the procedure

simply retrieves from the relation table rt2 all the entries of the form (po, ·, ·). After the

iteration over the first constraint we have a set of partial matchings represented by:

χ̃ = (x1, x2) and Ω1 =

{
(o2, o4)

(o4, o2)

}

Where χ̃ is the set of assigned variable and Ω1 is the set of object pairs satisfying the

first constraint.

Then, Algorithm 3.1 iterates over the constraint x2 dc x3 and tries to extend the two

partial matchings via the procedure ExtendPMatching-SC. Since dc is a clustering

relation only the function Select-SC participates actively to the matching extension. Let

us look at the extension of the two matchings separately. When extending the partial

matching (χ̃, ω̃) = ((x1, x2) , (o2, o4)), the function retrieves from the relation table rt2 all

the entries of the form (dc, ·, ·):

{
(dc, o1, o3)

(dc, o3, o1)

}
and

{
(dc,e1, e2)

(dc,e2, e1)

}

The first two are about dataset objects and are discarded since the object pairs are

incompatible with the input matching. The other two are about index entry pairs which

are used to access the corresponding clusters to reconstruct non-stored relations:
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(dc,e1, e2)→





(dc, o1, o2)

(dc, o1, o4)

(dc, o3, o2)

(dc, o3, o4)




and (dc, e2, e1)→





(dc, o2, o1)

(dc, o2, o3)

(dc, o4, o1)

(dc, o4, o3)





The first set is discarded in its entirety since none of the object pairs are compatible

with the input ω̃ = (o2, o4). The last two elements of the second set are compatible,

therefore the object pairs are extracted, merged with the input, and returned to the main

procedure:

{
(o2, o4, o1)

(o2, o4, o3)

}

The procedure operates similarly for the extension of the second partial matching

(χ̃, ω̃) = ((x1, x2) , (o2, o4)).

The final result is:

χ̃ = (x1, x2, x3) and Ω2 =





(o2, o4, o1)

(o2, o4, o3)

(o4, o2, o1)

(o4, o2, o3)





4.3.5 Final Remarks and Discussion

Spatial Clustering qsam (sc-qsam) makes use of a set of relation tables as un-
derlying data structures and of a tile&cluster technique (spatial clustering index)
that, possibly, allows for computing and storing a reduced number of relations
with respect to a full qualified dataset. In the retrieval phase the properties of
clustering relations are exploited to rebuild non-stored pieces of qualitative infor-
mation without resorting to direct computation through computational geometry
functions.

It is worth to remark that each calculus in the pool P has to be manually
analyzed in order to identify the set of clustering relations B. To do this the
outcomes of Theorem 4.1 can be exploited.

In Section 4.3.3, it has been shown that the reduction amount and, conse-
quently, the qscq retrieval time, strongly depend on the spatial clustering index
adopted. It has been shown that a “bad” index can easily yield worse space-time
performance than a full qualification. In particular the reduction has been ex-
pressed in terms of some index tuning parameters that have to be used in actual
qsam implementations to assure a significant reduction.
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A spatial clustering index has been constructively defined (cf. Definition 4.5)
via a two-step process: (i) definition of a tileset and (ii) association of a cluster
to each tile. However, it has to be noted that the role of clustering and tiling
can be reversed. That is, one can first generate a spatial clustering of the dataset
according to a given clustering function and then associate a geometry—e.g. the
bounding box of the clustered objects—to each cluster. As long as the resulting
data structure satisfies Equations 4.4 and 4.5, it is eligible to be considered a
spatial clustering index and can be used for applying spatial clustering qsam
techniques.

Finally, the way a spatial clustering index has been defined is general enough to
embrace a variety of standard spatial indexes—e.g. the grid file (Nievergelt et al.,
1984)—and, it is easily extensible to comprehend hierarchical data structures—
e.g. r-tree (Guttman, 1984), quad-tree (Finkel & Bentley, 1974)—as well:

Definition 4.8 (Hierarchical Spatial Clustering Index) - Given a spatial dataset O, a hierar-
chical spatial clustering index H = (I1, . . . , Il) over O is a series of l spatial clustering indexes

such that I1 indexes the spatial dataset and each Ii (with 2 ≤ i ≤ l) indexes the tileset of the

underlying index Ii−1.

Note that we do not impose any restriction on the indexes at different level
of the hierarchy, i.e. each Ii can be generated according to a different tiling func-
tion Ti, although it is easier to deal with a uniform tiling strategy. Of course,
when dealing with a hierarchical spatial clustering index a recursive version of
Algorithms 4.4 and 4.5 has to be implemented where the main logic is slightly
modified to account the level of the hierarchy under consideration; this is ad-
dressed in Section 5.2.2 where the implementation of a spatial clustering qsam
based on r∗-tree Beckmann et al. (cf. 1990) is discussed.

4.4 qsr-based qsam

In this section we define a qsam grounded on Qualitative Spatial Representation
and Reasoning (qsr) of the form

(Qualify-QSR,Dqsr,Retrieve-QSR)

The data structures, the qualifier function, and the retriever function of this
qsam are presented in Sections 4.4.2, 4.4.3, and 4.4.4, respectively, after having
introduced some background notions in Section 4.4.1.

4.4.1 Background: the Inference Graph

The main underlying idea of qsr-based qsam (qsr-qsam) is that, given a spatial
dataset O and its corresponding P-qualification RP(O), some of the relations in
RP(O) are inferable by others.
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Example 4.6 (Inferable Relation) - Let us consider the spatial dataset in Figure 4.3(a)

and let us focus on the occurring topological relations. Note that o4 is inside o1, which
is disconnected from o2. Then, it is to be that o4 is also disconnected from o2. This is

confirmed by the rcc-qualified dataset (cf. Section 2.2.4.4) in Figure 4.3(b). We say that

the relation dc (o4, o2) is inferable from the relations ntpp (o4, o1) and dc (o1, o2).

o
1

o
2

o
3

o
4

(a) A spatial dataset





eq (o1, o1) dc (o1, o2) po (o1, o3) ntppi (o1, o4)

dc (o2, o1) eq (o2, o2) po (o2, o3) dc (o2, o4)

po (o3, o1) po (o3, o2) eq (o3, o3) po (o3, o4)

ntpp (o4, o1) dc (o4, o2) po (o4, o3) eq (o4, o4)





(b) rcc-qualification

Figure 4.3: A spatial dataset and its rcc-qualification.

The qsr-qsam qualification function produces a reduced qualified dataset

obtained fromRP(O) by removing inferable relations. The dataset has to contain

enough relations to allow for rebuilding, at retrieval time, the missing ones via

qsr techniques—i.e. no need to run into computational geometry procedures.

In order to produce the reduced qualified dataset we have to be able to auto-

matically detect inferable relations in RP(O). To achieve this task we propose a

novel data structure that explicitly encodes inferential dependencies:

Definition 4.9 (Inference Graph) - Given a spatial dataset O and a calculus pool P , for

any calculus M ∈ P it is possible to build a b-graph (cf. Definition 2.1) IG = (N ,A). Its

node set N = RM(O) coincides with the M-qualified dataset—i.e. any node stands for one

relation induced by O—and it is referred to as N (IG). There exists an oriented hyper edge

a = (T , h) ∈ A if, and only if, the relation represented by h can be inferred from the relations
in T . The edge set is referred to as A(IG).



78 4 Qualitative Spatial Access Methods

Example 4.7 - Figure 4.4 depicts a very simple inference graph IG = (N ,A) consisting

of three nodes N = {ntpp (o4, o1) ,dc (o1, o2) ,dc (o4, o2)} and one hyperarc A = {a} with

T (a) = {ntpp (o4, o1) ,dc (o1, o2)} and h(a) = dc (o4, o2). It corresponds to the logical

inference process reported in Example 4.6.
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2
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a

Figure 4.4: Simple inference graph.

Although an inference graph is a hypergraph, it is convenient, for reasons that
will become clear soon, to represent it as a normal graph. To do so, it is necessary
to interpret any hyperarc a = (T , h) as an inverse arborescence1. We call each
such arborescence an inference path leading from T to h.

Example 4.8 - The inference graph in Figure 4.4 can be interpreted as in Figure 4.5.
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Figure 4.5: An inference path.

Given an inference graph IG = (N ,A) it is possible to obtain a graph rep-
resentation of it IGg = (Ng,Ag) representing every hyperarc a = (T , h) as an
inference path IP . The node set Ng = {NR,NI} of the resulting graph con-
sists of two different types of nodes. The set NR contains what we call relational
nodes and corresponds to the M-qualified dataset. The set NI contains the nodes
used to interpret hyperarcs as inference paths. Accordingly, we name such nodes
inferential nodes.

1An arborescence is a directed, rooted tree in which all edges point away from the root.
With the adjective inverse we intend that all the edges point towards the root.
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Proposition 4.1 - Inference paths always start from a set T ⊂ NR of relational

nodes called tail and always end in one relational node h ∈ NR called head.

Proof. An inference path is a graph interpretation of an inference graph hyperarc.

Since an inference graph is a b-graph (cf. Definition 4.9), each of its hyperarcs

originates in a set of nodes T and heads to one node h.

An inference path is an instantiation of an inference rule: internal nodes
represent the operations that have to be executed on the relations in the tail of
the path to obtain its head relation.

4.4.1.1 Generating the Inference Graph

A spatial calculus is typically equipped with some reasoning tables (cf. Sec-
tion 2.2.3) that represent inference operations between the relations in the calcu-
lus. Thus, inference paths can be automatically generated from such tables.

Reasoning Tables Typically, reasoning tables are of two types: permutation
and composition tables. Let us assume, without loss of generality, that the set of
base relations B of a given a-ary calculus M ∈ P are numbered from 1 to b:

B = {r1, . . . ,rb}

Then, permutation tables are vectors of size b of the following form:

r1 r2 · · · rb

P (r1) P (r2) · · · P (rb)

The i-th entry represents the relation P (ri) ∈ 2B which holds over a given per-
mutation P of any object a-tuple ω over which the relation ri holds. The object
permutation P identifies the table among the a− 1 possible ones.

Similarly, composition tables are b× b tables of the following form:

r1 r2 · · · rb

r1 r1 ◦ r1 r1 ◦ r2 · · · r1 ◦ rb

r2 r2 ◦ r1 r2 ◦ r2 · · · r2 ◦ rb

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

rb rb ◦ r1 rb ◦ r2 · · · rb ◦ rb

The entry individuated by the pair (ri,rj) represents the relation holding over
the object a-tuple ω obtained from a given concatenation of two other object
a-tuples ωi and ωj such that ri holds over ωi and relation rj holds over ωj. Two
object a-tuples can be concatenated in (a!)3 different ways, each of which raises
a different composition table.
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Example 4.9 (rcc Reasoning Tables) - Let us consider again rcc (cf. Section 2.2.4.4).

Since it is a binary calculus, it admits only one type of permutation:

ri(x1, x2)→ rj(x2, x1)

Its permutation table is given in Table 4.3(a). Again, rcc admits up to 8 different compo-

sitions tables but the one that is typically given (Cui et al., 1993) is of the kind:

ri(x1, x2) ⋄ rj(x2, x3)→ rk(x1, x3)

The corresponding composition table is reported in Table 4.3(b).

dc ec po eq tpp ntpp tppi ntppi

dc ec po eq tppi ntppi tpp ntpp

(a) Permutation table for rcc-8.

dc ec po eq tpp ntpp tppi ntppi

dc Brcc

dc, ec,
po,
tpp,
ntpp

dc, ec,
po,
tpp,
ntpp

dc

dc, ec,
po,
tpp,
ntpp

dc, ec,
po,
tpp,
ntpp

dc dc

ec

dc, ec,
po,

tppi,
ntppi

dc, ec,
po, eq,
tpp,
tppi

dc, ec,
po,
tpp,
ntpp

ec

ec, po,
tpp,
ntpp

po,
tpp,
ntpp

dc, ec dc

po

dc, ec,
po,

tppi,
ntppi

dc, ec,
po,

tppi,
ntppi

Brcc po

po,
tpp,
ntpp

po,
tpp,
ntpp

dc, ec,
po,

tppi,
ntppi

dc, ec,
po,

tppi,
ntppi

eq dc ec po eq tpp ntpp tppi ntppi

tpp dc dc, ec

dc, ec,
po, tpp,
ntpp

tpp
tpp,
ntpp

ntpp

dc, ec,
po,
tpp,
tppi,
ntppi

dc, ec,
po,

tppi,
ntppi

ntpp dc dc

dc, ec,
po,
tpp,
ntpp

ntpp ntpp ntpp

dc, ec,
po,
tpp,
ntpp

Brcc

tppi

dc, ec,
po,

tppi,
ntppi

ec, po,
tppi,
ntppi

po,
tppi,
ntppi

tppi

po,
tpp,
tppi,
ntppi

po,
tpp,
ntpp

tppi,
ntppi

ntppi

ntppi

dc, ec,
po,

tppi,
ntppi

po,
tppi,
ntppi

po,
tppi,
ntppi

ntppi

po,
tppi,
ntppi

po, tpp,
eq, ntpp,

tppi,
ntppi

ntppi ntppi

(b) Composition table for rcc-8.

Table 4.3: Reasoning tables for rcc-8.
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Inference Templates Reasoning tables can be processed in order to detect

single entries containing a base relation or series of entries containing disjunctive

relations whose intersection yields a base relation. All such entries can be readily

mapped onto so-called inference templates: inference paths defined over spatial

constraints rather than spatial relations. Given a qualified spatial dataset, infer-

ence templates can be used to instantiate inference paths holding over its spatial

relations in order to generate an inference graph.

Example 4.10 (rcc Inference Templates) - First, let us consider Table 4.3(b). The entry

individuated by the pair (ntpp,dc) gives rise to the inference template in Figure 4.6(a).

The relations in the starting and terminal nodes indicate the relations among which an

inference path can be instantiated according to this template. The variable pairs indicate

the object equalities that have to hold among the spatial object pairs over which such

relations occur. Finally, the intermediate node denotes the operation that generates the

terminal relation from the starting ones, in this case c(omposition).
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Figure 4.6: Three inference templates from the rcc reasoning tables.

The application of the above template over the qualified dataset reported in Fig-

ure 4.3(b) produces the inference path in Figure 4.5. Note that no other inference paths

of this kind are admissible in this dataset. Although there are several dc relations, none

of them occurs over object pairs such that both, relation and object equalities enforced by

the template, are satisfied.

The same process can be applied to any other available reasoning table, for example,

the first entry in Table 4.3(a) yields the inference template depicted in Figure 4.6(b), where

the intermediate node stands for the p(permutation) operation.

Again, more complex inference templates can be identified by considering intersections

of multiple disjunctive relations. For example, still from Table 4.3(b), the intersection of

the entries identified by the pairs (po,dc) and (po,ntpp) yields the base relation po.

Accordingly, the inference template reported in Figure 4.6(c) can be generated where the

intermediate nodes denote c(omposition) and i(ntersection) operations.
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As seen in the above example, inferential nodes can be of three different types.

• Permutational: generated from permutation table, they have fixed in-
degree and out-degree equal to 1. Incoming edges always originate in a
relational node whereas outgoing edges always head toward intersection or
relational nodes.

• Compositional: generated from composition table, they have fixed in-
degree and out-degree: the first equal to 2, the latter to 1. Incoming edges
always originate in a relational node whereas outgoing edges always head
toward intersection or relational nodes.

• Intersection: generated from intersection of disjunctive relations that, in
turn, result from composition or permutation operations. They have fixed
in-degree and out-degree: the first equal to 2, the latter to 1. Incoming
edges can originate in any kind of inferential node. Outgoing edges always
head toward intersection or relational nodes.

According to such properties we have that any inference template (resp. path)
is structured as follows: Moving from any tail node to the head, the first non-
relational node encountered is either permutational or compositional. It neces-
sarily follows a series of intersection nodes and, finally, the head of the inference
template (resp. path).

Definition 4.10 (Length of an Inference Graph) - An inference template (resp. path) is said

to be of length l if l is the maximal number of inferential nodes encountered when moving from

any relational node n ∈ T in its tail to its head h. Accordingly, an inference graph is said of

length l if its longest inference path has length equal to l.

From the properties of the inferential nodes and from the above definition it
readily follows the following:

Proposition 4.2 - An inference template (resp. path) of length l contains l − 1

intersection nodes and the cardinality of its tail |T | is such that: l ≤ |T | ≤ 2l.

Finally, we have that:

Proposition 4.3 - Given a calculus M ∈ P defining b = |B| base relations no

inference templates (resp. paths) longer than l = b exists. Proof. A disjunctive

relation consists at most of the disjunction of b base relations. As such a relation

results from a permutational or compositional node, then, we need at most b− 1

intersection nodes to filter out all but one base relation.
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4.4.2 Data Structure

The basic set of data structures underlying the qsr-qsam consists of (i) relation
tables and (ii) template tables. Template tables are designed to maintain infer-
ence templates. The i-th template table tti stores inference templates of length
i that are not contained in lower-indexed template tables. It contains entries of
the form:

(in1, . . . , ini,out)

The in elements are pairs of constraints where the second one is possibly empty.
They stand for the composition or permutation operations that have to be per-
formed and intersected to obtain out.

Example 4.11 - The inference templates in Figures 4.6(a) and 4.6(b) have length l = 1,

thus are stored in the template table tt1 reported in Table 4.4(a). Note that the second

template is an instance of a permutation operation; accordingly the second element of the

pair in1 is empty.

Similarly, the template in Figure 4.6(c) is of length l = 2 and is maintained in the

template table tt2 reported in Table 4.4(b).

in1 out

ntpp(x1, x3) dc(x3, x2) dc(x1, x2)

dc(x2, x1) - dc(x1, x2)
...

...
...

(a)

in1 in2 out

po(x1, x3) dc(x3, x2) po(x1, x4) ntpp(x4, x2) po(x1, x2)
...

...
...

...
...

(b)

Table 4.4: Template tables containing inference templates of length l = 1 (a) and
l = 2 (b).

4.4.3 Qualification

In Example 4.10 it was intuitively explained how to apply inference templates on a
qualified dataset to obtain an inference graph. Now, a basic algorithmic procedure
is to be presented since it is a fundamental part of the qsr-qsam qualification
function reported in Algorithm 4.9. A basic version of the procedure is reported
in Algorithm 4.6 and is explained along with Example 4.12.
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Algorithm 4.6 Make-IG: Given a spatial dataset O and a spatial calculus M constructs the
inference graph IG of given length l.

Input:

O: spatial dataset
M: qualitative spatial calculus equipped with reasoning tables
l: length of the inference graph to be generated

Output:

IG: the inference graph of length l

1: function Make-IG(O,M,l)
2: IGg = (NR,NI ,Ag);
3: NR ← Qualify(O, {M});
4: for 1 ≤ i ≤ l do

5: for all IT ∈ tti do

6: ips← Get-By-Rels(NR, IT );
7: ips← Filter-By-Out-Obj(ips, IT );
8: ips← Filter-By-In-Obj(ips, IT );
9: for all IP ∈ ips do

10: nlast ← 0;
11: for all in ∈ IP do

12: if nlast 6= 0 then

13: ni ← AddIntersectionNode(IGg);
14: AddEdge(IGg, (nlast, ni));
15: nlast ← ni;

16: if in.second = 0 then

17: np ← AddPermutationalNode(IGg);
18: AddEdge(IGg, (in.first, np));
19: if nlast 6= 0 then AddEdge(IGg, (np,→ nlast));
20: else nlast ← np;

21: else

22: nc ← AddCompositionalNode(IGg);
23: AddEdge(IGg, in.first→ nc);
24: AddEdge(IGg, in.second→ nc);
25: if nlast 6= 0 then AddEdge(IGg, (nc, nlast));
26: else nlast ← nc;

27: AddEdge(IGg, (nlast, IP.out));

28: return IGg;

Example 4.12 (Building the Inference Graph) - The procedure Make-IG requires as

input (i) a spatial dataset O, (ii) a calculus M, and (iii) an integer l. The output is an
inference graph IGg of length l. Let us consider the case that the spatial dataset is the one

depicted in Figure 4.3(a), M = rcc and l = 2. The resulting inference graph is depicted in

Figure 4.7.
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Figure 4.7: rcc inference graph of length l = 2 for the dataset in Figure 4.3(a).

First off, the procedure rcc-qualifies the spatial dataset by means of the function

qualify. Such a function works exactly as the one reported in Algorithm 4.2 with the

only difference that the qualified dataset is returned instead of being stored in the relation

tables. The qualified dataset corresponds to the relational node set NR.

Next, for any integer 1 ≤ i ≤ l the procedure iterates over the inference templates of

length i stored in the template table tti. From each inference template IT a set ips of

inference paths is generated according to three main steps. Let us go through such steps

while considering the inference template appearing in the first line of Table 4.4(b).

(i) The function Get-IP-By-Rels prepares a vector for each relation appearing in the
template. Then it scans the whole relational node set NR comparing the relation of each

node against the relations appearing in the template. When a match is found the relational
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node is placed in the corresponding vector. Finally the Cartesian product of all the vectors

is computed and returned in the following form:

in1

first second
out

ntpp(o4, o1) dc(o1, o2) dc(o1, o2)

ntpp(o4, o1) dc(o1, o2) dc(o2, o1)

ntpp(o4, o1) dc(o1, o2) dc(o2, o4)

ntpp(o4, o1) dc(o1, o2) dc(o4, o2)

ntpp(o4, o1) dc(o2, o1) dc(o1, o2)

ntpp(o4, o1) dc(o2, o1) dc(o2, o1)

ntpp(o4, o1) dc(o2, o1) dc(o2, o4)

ntpp(o4, o1) dc(o2, o1) dc(o4, o2)

ntpp(o4, o1) dc(o2, o4) dc(o1, o2)

ntpp(o4, o1) dc(o2, o4) dc(o2, o1)

ntpp(o4, o1) dc(o2, o4) dc(o2, o4)

ntpp(o4, o1) dc(o2, o4) dc(o4, o2)

ntpp(o4, o1) dc(o4, o2) dc(o1, o2)

ntpp(o4, o1) dc(o4, o2) dc(o2, o1)

ntpp(o4, o1) dc(o4, o2) dc(o2, o4)

ntpp(o4, o1) dc(o4, o2) dc(o4, o2)

Each line represents a candidate inference path according to the relation symbols ap-
pearing in the template. Such result set has to be filtered exploiting the equality constraints

enforced on the object pairs by the template. This is done in the two remaining steps of

the analyzed process.

(ii) The function Filter-By-Out-Obj exploits the equality constraints enforced by
the output relation to perform a first refinement of ips. Analyzing the template at hand

we have that the first object appearing in the relation in1.first has to be equal to the first

object in the output relation. Similarly, the second object in the relation in1.second has to

be equal to the second object of the output relation. The result of the filtering operation

is the following:

in1

first second
out

ntpp(o4, o1) dc(o1, o2) dc(o4, o2)

ntpp(o4, o1) dc(o4, o2) dc(o4, o2)

(iii) The function Filter-By-In-Obj behaves similarly. It exploits the equality con-
straints enforced by the template among the object pairs of the input relations to rule out

invalid inference paths. In the considered case, the second object appearing in the relation

in1.first has to be equal to the first object in the relation in1.second. The result of the

filtering operation is the following:



4.4 qsr-based qsam 87

in1

first second
out

ntpp(o4, o1) dc(o1, o2) dc(o4, o2)

Now, the set ips contains all the inference paths induced on the relational node set

NR by the template IT at hand. The remaining step consists in using each such inference

path to populate the inferential node set NI and edge set Ag of the graph IGg. For each

path IP ∈ ips the procedure iterates over the input relational nodes in1, . . . , ini. In our

exemplary case there is only one pair in1. Since both, in1.first and in1.second are not null,

we are dealing with a composition operation, therefore the procedure skips to line 22. The

function AddCompositionalNode adds a compositional node to the graph, specifically

to the inferential node set NI . Then, the edges (ntpp(o4, o1),c) and (dc(o1, o2),c), going

from the relational nodes indicated in the pair in1 to the fresh generated node, are added

to the edge set by means of the function AddEdge. Finally, the compositional node is

saved in the variable nlast which always contains the inferential node farthest from the

input relational nodes. Such a variable is used to generate intersection nodes and to ensure

they are correctly connected in the inference path structure.

After having iterated over all the input pairs, the procedure completes the path gener-

ating the last edge going from nlast to the output relational node stored in IP.out.

Now that the problem of building an inference graph has been tackled, let
us focus on the reduction strategy: Given a calculus from the pool M ∈ P and
the corresponding inference graph IG of length l we want to produce a qualified
dataset RM,IG(O) reduced with respect to the full one RM(O) and such that, at
retrieval time, it is possible to rebuild all the missing relations RM(O)\RM,IG(O)
by only resorting to qsr.

The first step is to find in IG groups of nodes reachable from each other:

Definition 4.11 (Relaxed Strongly Connected Component) - Let H = (N ,A) be a b-graph.

A relaxed strongly connected component (rscc) C = (NC ,AC) is a subhypergraph of H with

NC = {n1, . . . , np} such that the following conditions hold simultaneously:

• for each node ni ∈ NC in the component there exist a hyperpath ΠSi,ni
ending in ni

whose source node set Si ⊆ NC \ {ni} is completely contained in the component;

• the component node set is equal to the union of source node sets of the above hyperpaths:⋃p

i=1 Si = NC

• for each node nj ∈ NC in the component there exists at least a hyperpath ΠSi,ni
to

another node ni ∈ NC having nj ∈ Si in its source node set.

Practically, a rscc is a maximal subhypergraph of IG such that each node
can be reached by at least a subset of the other nodes in the component and
such that each node takes part in the source node set of at least a hyperpath
to another node in the component. Note that the above definition shares some
properties with hypercycles (cf. Definition 2.7), strongly connected components
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(cf. Definition 2.9) and weakly connected components (cf. Definition 2.10) but it
does not coincides with any of them. At the best of the author’s knowledge, this
is a novel concept in hypergraphs. More precisely, we have that, these concepts
are related according to the following schema

scc =⇒ rscc =⇒ wscc

and that a rscc contains at least a hypercycle.
More interestingly, a rscc in IG is always a scc in IGg. In addition, a scc

Cg = (Ng,Ag) in IGg, with Ng = {NR,NI}, corresponds to a rscc C = (N ,A)
in IG if none of the inference paths associated with the inferential nodes in NI

has tail nodes outside Cg. Let us show this by means of the following:

Example 4.13 - Let us consider the spatial dataset in Figure 4.8(a). Note that it consists

of three objects o1,o2 and o3 and that o1 and o2 coincide. The corresponding inference

graph IGg of length 2 obtained from the rcc reasoning tables in Table 4.3 is reported in

Figure 4.8(b). Figure 4.8(c) depicts the hypergraph representation IG. The red nodes in

IGg are one scc in the graph, whether the green ones stand for another component. Note

that none of the inferential nodes in the green component have incoming arcs originating

outside the component. In fact it corresponds to a rscc in IG. Conversely, the red

component does not correspond to a rscc in IG since all of the compositional nodes have

in-arcs coming from the green component. Actually, the red scc splits into two different

rscc in IG: blue and yellow.
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Figure 4.8: Relation between the strongly connected components in an inference
graph and those in its graph representation.

Consequenlty, rsccs can be generated according to Algorithm 4.7. First, the
procedure computes the sccs in IGg using a standard graph algorithm, e.g. Tar-
jan (1971) which runs in O(|IGg|) worst case time. The obtained components are
subsequently analyzed to make sure they correspond to rsccs in the hypergraph:
All the inference paths taking part in a component that have their tails originat-
ing in a different one are removed from the scc. Then, the strongly connected
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components are computed again on the residual subgraph. The last two steps are
repeated until a fixed point is reached: all the sccs in IGg are also rsccs in IG.
Note that a fixed point is always reached: in the worst case the algorithm keeps
decomposing a component until the decomposition yields single nodes that are
trivial rscc instances.

Once all the rsccs have been found, we can condensate (cf. Example 2.2)
the inference graph. We call the condensation:

Definition 4.12 (Inference Kernel) - Let IG = (N ,A) be an inference graph. The inference
kernel IK(IG) = (NIK,AIK) of IG is the b-graph obtained by contracting each rscc of IG into

a single node in IK(IG) and removing duplicate hyperarcs. Conversely, a subset NIK ⊆ NIK of

the kernel nodes identifies in IG the subhypergraph induced by the nodes in the corresponding

rsccs and denoted by IG(NIK).

Algorithm 4.7 Relaxed-Strongly-Connect: Computes the relaxed strongly connected
components for a given inference graph.

Input:

IGg = (N g,Ag): the graph representation of an inference graph
Output:

rsccs: relaxed strongly connected components in IGg

1: function Relaxed-Strongly-Connect(IGg)
2: sccs← Strongly-Connect(IGg); ⊲ computes sccs
3: rsccs← Relax-Components(sccs);
4: return rsccs;

5: function Relax-Components(sccs)
6: rsccs← ∅;
7: for all C = (NC ,AC) ∈ sccs do

8: removed← ∅;
9: for all n ∈ NC do

10: if n is inferential and Son(n) is relational then

11: ancestors← Get-Ancestors(n);
12: to-remove← false;
13: for all nanc ∈ ancestors do

14: if nanc /∈ NC then to-remove← true;

15: if to-remove then

16: removed← removed ∪Remove-Inf-Path(C, n);

17: if removed 6= ∅ then

18: sccsC ← Strongly-Connect(C);
19: rsccs← rsccs ∪Relax-Components(sccsC);
20: Put-Inf-Paths-Back(C,removed);
21: else

22: rsccs← rsccs ∪ C;

23: return rsccs;
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Now, it has to be noted that, given an inference kernel hyperarc a = (T , h) ∈
AIK, we have that all the relations corresponding to the nodes in IG(h) can be

inferred through reasoning operations by the relational nodes in IG(T ). Accord-
ingly, given a series of hyperpaths spanning the whole kernel node set NIK, the
source node sets of such hyperpaths suffice to infer all the other nodes. To find

the source nodes we propose Algorithm 4.8 that runs in O(|IG|).

Algorithm 4.8 GetSources: Computes a set of hyperpaths spanning the node set of a given
b-graph H and returns the source node set.

Input:

H = (N ,A): b-graph
Output:

S: set of source nodes from which is possible to reach all the others

1: function GetSources(H)
2: S; ⊲ global array
3: ToVisit; ⊲ global array of size |N |
4: on; ⊲ array of nodes ordered according to the number of outgoing arcs
5: while on is not empty do

6: s← on.pop();
7: if ToVisit[s] then

8: S.push(s);
9: Visit(s,H)

10: return S;

11: function Visit(n,H)
12: ToVisit[n]← false;
13: for all outgoing ao do

14: if ToVisit[h(ao)] and h(ao) /∈ S then

15: for all nt ∈ T (ao) \ n do

16: if ToVisit[nt] and nt /∈ S then

17: S.push(nt);

18: Visit(h(ao),H);

19: return ;

The same principle applies to each source rscc: it is possible to find a set of

source relational nodes that reach all the other nodes in the component. Accord-

ingly, storing only the relation corresponding to such nodes is enough to rebuild,

at runtime, (i) the relation corresponding to the nodes in the same component

and (ii) the other components.

The whole qualification procedure, as explained above, is reported in Algo-

rithm 4.9. Example 4.14 traces the execution for the inference graph obtained

from the previous examples.
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Example 4.14 (qsr-qualify) - Let us consider again the spatial dataset in Figure 4.3(a)

and assume that P = {rcc}. The corresponding inference graph IG of length 2 is depicted

in Figure 4.7. It was obtained automatically through the implementation of Algorithm 4.61.

Now, let us go through the execution of Algorithm 4.9. The function Kernel is

assumed to compute the rscc of the inference path according to Algorithm 4.7 and, from

them, to generate the condensation IK(IG). The graph version of the inference kernel for

this example is depicted in Figure 4.9(a). Note that, beyond a numerical id, for the sake

of visual clarity, each kernel node is associated a unique color. Such a color corresponds to

that associated to nodes belonging to the same rscc in the inference graph of Figure 4.7.

The call GetSources(IK) identifies the source nodes SIK = {15, 14, 9, 10} of the ker-

nel. Each such source node n ∈ SIK is used to access the corresponding rscc in IG and

to identify its source relational nodes. For instance, Figure 4.9(b) shows the rscc corre-

sponding to the leftmost kernel node—numbered 15. In this case, all the relational nodes

have equal out-degree, therefore the visiting procedure used by GetSources can start the

visit from any of them. Assuming it starts from the node po(o4, o3) it finds the spanning

hyperpath reported in Figure 4.9(c). Accordingly, by calling GetSources(IG(15)), the

source node set S = {po(o4, o3)} is identified.

Finally, each relation corresponding to the nodes (only one in this case) in S is stored

in the opportune relation table according to its arity—2 in this example.
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Figure 4.9: Reducing the inference graph in Figure 4.7 through Algorithm 4.9.

1Graph visualization is done through Graphviz (http://www.graphviz.org/)
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Algorithm 4.9 Qualify-QSR: Populates the relation tables in D with the relations induced
by the spatial dataset and reduced according to the inference graph IG of length l

Input:

O: spatial dataset
P : calculus pool
l: length of the inference graph to be generated

Output:

luts in D are filled with relations from the P-qualified dataset RP(O)

1: function Qualify-QSR(O,P , l)
2: for all M ∈ P do

3: IG ←Make-IG(O,M, l);
4: IK ← Kernel(IG); ⊲ compute the kernel hypergraph of IG
5: SIK ← GetSources(IK); ⊲ retrieve the sources of K
6: for all n ∈ SIK do

7: S ← GetSources(IG(n)); ⊲ retrieve the sources of a rscc

8: for all r(ω) ∈ S do

9: a← |ω|;
10: rta ← rta

⋃
(r, ω);

11: return ;

Algorithm 4.9 produces an IG-reduced, P-qualified dataset RP,IG(O) such
that

RP,IG(O) =
⋃

M∈P

RM,IG(O)

where RM,IG(O) is a subset of the full qualified dataset RM(O) generated for the
single calculus M and such that

|RM,IG(O)| = |RM(O)| − ρ with ρ ≥ 0

The cardinality of RM,IG(O) grows inversely with the length l of the inference
graph IG. In particular we have that, if the graph length l = 0 is equal to zero
the edge set is empty and each node is a component on itself. Accordingly the
performed reduction ρ = 0 is also equal to zero.

If l > 0, the amount of the reduction depends on the structure of the reasoning
tables coming with the calculus M as well as on the arrangement of the objects
in the spatial dataset—i.e. the relations in the qualified dataset. Note that the
structure of the reasoning tables reflects, in turn, the algebraic properties of the
calculus: a calculus with weak properties tends to have reasoning tables contain-
ing many disjunctive relations. As a consequence, the stronger the properties of
a calculus, the higher the number of templates of a given length l.

The mere existence of an inference template does not guarantee a reduction
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since the qualified dataset may not induce any instance of it in IG. However, the
higher the number of inference templates, the higher the probability to instantiate
inference paths from them. The number of inference templates for a calculus can
be augmented equipping it with multiple reasoning tables.

Example 4.15 (Number of Inference Templates for rcc) - The number of inference tem-

plates generable from Tables 4.3(a) and 4.3(b) is reported in Table 4.5 according to the

length l. Note that, for l > 6 no new templates are generable from such tables.

Lenght Inference Templates

1 35

2 160

3 1867

4 8483

5 17079

6 19287

7 19287

8 19287

Table 4.5: Number of inference templates for rcc.

The cardinality of a IG-reduced, M-qualified dataset also depends on the
detection of spanning hyperpaths: The smaller the cardinality of the source node
set of the hyperpaths spanning the inference kernel, the higher the reduction.
The same applies to hyperpaths spanning source rsccs in the inference graph.

Algorithm 4.8 is a greedy algorithm, thus it does not guarantee to find a
global optimum. Indeed, the procedure GetSources assumes that the array
of nodes to visit is ordered according to their out-degree that is a realization
of the following heuristics: the smaller the out-degree of a node, the smaller the
probability that hyperpaths having such a node in their source node set can cover
the full hypergraph. Such a heuristics does not guarantee to produce a minimal
number of spanning hyperpaths. This, in turn, implies that the cardinality of the
source node set may not be minimal and, eventually, that the reduction is not
guaranteed to be maximal.

Maximal reduction can be guaranteed by slightly modifying the procedure
GetSources in such a way that it produces all the sets of possible spanning
hyperpaths in order to pick one with minimal source node set cardinality. Such
a modification obviously yields a computational overhead due to the increased
number of hyperpaths that has to be generated.

Finally, if a calculus M is provided with as many reasoning tables as necessary
to generate any possible inference template for that calculus, the IG-reduced, M-
qualified dataset corresponds to the minimum relation set which fully describes
a spatial dataset. If this would not be the case it means that RM,IG(O) contains
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relations that can be inferred from other relations. This is obviously impossible
given that the algorithm is designed to detect all the inferable relations.

4.4.4 Retrieval

The basic retrieval function for qsr-qsam draws upon standard qsr techniques.
Given its constructive properties, the IG-reduced, P-qualified dataset RP,IG(O)
contains enough spatial relations to rebuild all the missing ones by only applying
symbolic reasoning.

Accordingly, the algorithm to solve a qscq consists of two main steps: for
each calculus M involved in the query (i) run the algebraic closure algorithm (cf.
Section 2.2.5) on RM,IG(O) to rebuild the full qualified dataset RM(O). (ii) Solve
the query with the basic retrieval procedure reported in Algorithm 3.1 with the
function ExtendPMatching realized as in Algorithm 4.3

4.4.5 Final Remarks and Discussion

qsr-based qsam (qsr-qsam) makes use of the inference graph (cf. Definition 4.9)
to identify inferential dependencies among the relations in a full qualified dataset
RP(O). Inferable relations are not stored since they can be rebuilt at retrieval
time via qualitative reasoning techniques.

In Section 4.4.3 a basic qualification procedure has been presented that pro-
duces reduced, but not minimum, qualified dataset. It was pointed out that such
a procedure can be slightly modified to compute any possible set of spanning
hyperpaths. This would allow for selecting the set with the smallest source node
set and, thus, for producing minimal qualified datasets.

The problem of finding minimum qualitative representations has been raised,
for example, in (Egenhofer & Sharma, 1992, 1993) where it is claimed that con-
sistency checking algorithms can be used to find minimum topological represen-
tations. The idea of Egenhofer & Sharma is to remove the arcs of a complete
Qualitative Constraint Network (qcn) one by one until it becomes ambiguous.
In this way it is possible to identify the smallest possible set of relations form-
ing a consistent description for the scene. In (Egenhofer & Sharma, 1993) the
identification of minimal relation set is obtained as a side-product of consistency
and the algorithm to find it is obviously not optimized. The qualification proce-
dure we presented, instead, is purposely designed for reducing a qualified dataset,
i.e. the arcs in a qcn. In Section 4.4.3 it was also argued that, if a calculus is
provided with as many reasoning tables as necessary to generate any possible
inference template, Qualify-QSR generates a qualified dataset with absolute
minimal cardinality, i.e. a minimum qualitative representation.

In Section 4.4.1.1 it was shown how inference templates can be automatically
generated from reasoning tables. However, it has to be noted that the set of
inference templates can be enriched with manually-defined ones. In this way,
for example, one can introduce inter-calculi inferential dependencies that allow
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for unifying inference graphs generated for different calculi and, accordingly, for
producing even more compact P-qualified datasets. For example, one might
observe that if o1 is North of o2 then it has to be that o1 and o2 are Disconnected :
n(o1, o2) → dc(o1, o2) and n(o1, o2) → dc(o2, o1). Of course this requires to
define new types of inferential nodes. For example, in this case one might define
a new type named implication and manually add to the template tables a series of
templates based on this operation. In his Ph.D thesis, Sharma (1996) developed
a series of inter-calculus reasoning tables that can be exploited for this purpose.

Lastly, it is worth to remark that the strategies presented in the previous
sections are basic strategies that can be improved in several ways. For example,
the set of data structures underlying the qsam can be extended to allow for
memorizing which inference templates are used to perform the reduction. The
retrieval approach can exploit this information to “guide” the algebraic closure
algorithm during the reconstruction phase.

4.5 Summary

In this chapter we defined Qualitative Spatial Access Methods (qsams): a ty-
pology of Spatial Access Method (sam) suited for solving Qualitative Spatial
Configuration Queries (qscqs). A qsam has been formalized (cf. Definition 4.1)
as a triple (q,D, r) where q is a dataset qualifier function that populates the set D
of data structures underlying the qsam and r is a retriever function that exploits
the information stored in D to solve a given qscq.

Four kinds of qsams have been developed: Functional qsam (f-qsam), Quali-
tative Storage Layer qsam (qsl-qsam), Spatial Clustering qsam (sc-qsam), and
qsr-based qsam (qsr-qsam). They all draw upon the basic retrieval strategy
presented in Section 3.4.1, but tackle differently the dataset qualification problem
(cf. Section 3.5).

f-qsam (cf. Section 4.1) encodes the runtime qualification strategy presented
in Section 3.5.1. Accordingly, it has a void qualifier function and an empty set of
data structures. The retriever function qualifies the dataset at qscq execution
time. Such a solution provides the best option in terms of storage space but is
extremely costly with respect to retrieval time.

qsl-qsam (cf. Section 4.2) encodes the pre-qualification strategy presented
in Section 3.5.2. The qualifier function performs a full qualification of the spatial
dataset and stores the resulting qualitative relations into a set of appositely de-
signed Lookup Tables (luts) called relation tables. Such an approach allows for
transforming qscq solving into a series of look-up operations. Although allowing
for high retrieval time performance, this solution presents two main drawbacks:
(i) It requires an enormous quantity of extra storage space needed to maintain
the qualified dataset. (ii) The high computational cost demanded by a full pre-
qualification makes hard to deal with the dynamism of the real world. Indeed,
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by the time a spatial dataset is qualified, the produced qualified dataset might
be already out-of-date, calling for a new pre-qualification.

The sc-qsam family is introduced in Section 4.3. It draws upon the joint
exploitation of a special type of spatial relations called Clustering Relations to-
gether with a spatial clustering index (cf. Definition 4.5). If opportunely tuned,
the spatial clustering index produces a subdivision of the spatial dataset that
allows the qualifier function to compute and store a reduced number of qualita-
tive relations. Beyond the relation tables, the set of data structures underlying
a sc-qsam contains other data structures designed to represent the spatial clus-
tering index used to make the subdivision. At qscq execution time, the retriever
function exploits the index structure to rebuild the qualitative relations missing
in the relation tables. This approach provides a valuable compromise between
the previous solutions: it shorten the retrieval time with respect to f-qsam as
well as the pre-qualification time and produces more compact qualified datasets.
The main shortcoming of this approach is that it requires a careful calibration
of the spatial clustering index parameters. Indeed, as shown in Section 4.3.3, a
“bad” index may yield worse space-time performance than a full pre-qualification.
Consequently this solution requires a mindful tuning of the index parameters that
also depends on the spatial calculi in the calculus pool P .

Finally qsr-qsam is presented in Section 4.4. It exploits a novel data struc-
ture named inference graph (cf. Definition 4.9) to obtain a reduced qualified
dataset from which it is possible to infer back all the missing relations by only
resorting to symbolic reasoning. The advantages of this strategy are that it is
independent of the spatial calculus and it might be used to produce the minimum
set of qualitative relations needed to describe a spatial dataset (cf. discussion on
the reduction at the end of Section 4.4.3). The main drawbacks are that, in or-
der to perform the reduction, qsr-qsam requires a full pre-qualification plus the
instantiation of an inference graph. This is a very costly operation, that make
this solution unsuitable for being applied on a full spatial dataset.

A possible alternative that takes advantage of both sc-qsam and qsr-qsam
is described in the Outlook section of Chapter 7.



Chapter 5

Developing and Benchmarking

Qualitative Spatial Access Methods

In this chapter we tackle the problem of developing and benchmarking Qualitative
Spatial Access Methods (qsams) from a practical perspective. The chapter is
split into two main parts: Section 5.1 introduces a software framework called
MyQual whose main purpose is to provide a development, testing, and production
environment for Spatial Access Methods (sams) suited for qualitative spatial
queries, with a particular focus on qsams and Qualitative Spatial Configuration
Queries (qscqs). MyQual has been used to implement, test and compare all of
the qsams presented in Chapter 4 (cf. Chapter 6 for the experimental results).

As explained in the previous chapter, the Spatial Clustering qsam (sc-qsam)
family (cf. Section 4.3) requires a careful choice of the spatial clustering index
as well as a mindful tuning of its parameters according to the spatial calculi that
have to be treated. Section 5.2 is devoted to present the implementation of two
instances of the sc-qsam family.

5.1 MyQual: an Extensible Development and Bench-

mark Framework

MyQual is a novel software framework realized in the scope of this thesis to
facilitate the development of sams for qualitative spatial queries (cf. Section 3.1).
It has been designed as an extension for spatially-enabled PostgreSQL1 databases

1http://www.postgresql.org/
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(Douglas & Douglas, 2005). The spatial extension for PostgreSQL is provided by
a software layer called PostGIS1 (Ramsey, 2005).

PostGIS

PostgreSQL

MyQual

Toolbox

Test

App

Base

Figure 5.1: MyQual, logical framework overview

As depicted in Figure 5.1 MyQual lies upon PostGIS and consists of four main
components:

• MyQual-Base: provides management functionalities;

• MyQual-Toolbox: allows for extensibility;

• MyQual-Test: provides a test environment;

• MyQual-App: provides a production environment.

Each component raises a new schema in the database where all the tables and
functions required from the component itself are installed. This design choice al-
lows for maintaining a lean interaction with the underlying layers and for reducing
the possibility of conflicts with underlying database tables and functions.

MyQual-Base provides a set of database functions that implement the basic
qualification and retrieval strategies described in Section 3.4. Such functions
implement features common to each calculus and qsam and call user-defined
functions when some specific operations are needed. This approach allows for
reaching generality through the definition of five user-generated functions:

• relation-computer : depends on a set of a-ary spatial calculi. Given an
a-tuple of geometries, it executes opportune computational geometry oper-
ations to detect, for each calculus, which relation holds on the input tuple.

• data-structure-table-maker : depends on one qsam. It takes care of prepar-
ing a set of database tables aimed at representing the data structures un-
derlying the qsam within the database.

• data-structure-computer : depends on one qsam. It fills in, if necessary, the
data structure tables.

1http://www.postgis.org/
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• qualifier : depends on a set of calculi and one qsam. Qualifies the spatial
dataset according to the qsam-specific reduction strategy.

• retriever : depends on a set of calculi and one qsam. Given one spatial con-
straint retrieves from the relation tables all the entries that satisfy the con-
straint, opportunely exploiting the associated qsam to rebuild non-stored
relations.

The framework function implementing the basic matching algorithm (cf. Sec-
tion 3.4.1) to solve a qscq has been designed to exploit the database execution
plan optimization. It is implemented as a series of join operations, i.e. each con-
straint in a qscq is solved separately by calling the appropriate retriever function
and the equality constraints on the query variables are used to join the results.

MyQual also allows for defining some auxiliary functions that can be used
in the functions above. User-defined functions can be implemented in sql or
pl/pgsql (the PostgreSQL procedural query language) as internal database
functions. Alternatively they can be defined as external functions in one of
the many programming languages supported by PostgreSQL. For example, Post-
greSQL allows for defining external functions written in any c-like language. This
makes the framework greatly flexible and scalable: allowing for possibly resorting
to third-party external libraries.

5.1.1 MyQual-Base

MyQual has been designed to be a distributed framework, in the sense that a
local installation can use the components installed in local or remote MyQual
installations to operate on local or remote spatial databases.

Figure 5.2 shows the database schema of the Base component. It mainly
consists of a small set of tables designed to keep trace of bound databases and
to store access credentials. Moreover it allows for maintaining information about
the actual installation and activation status of MyQual components on the listed
databases.

Host_credential

id BIGSERIAL P

host_id BIGINT F

username TEXT

salt TEXT

password TEXT

Database_credential

id BIGSERIAL P

database_id BIGINT F

username TEXT

salt TEXT

password TEXT

Database

id BIGSERIAL P

host_id BIGINT F

name TEXT

toolbox_installed BOOLEAN

toolbox_active BOOLEAN

app_installed BOOLEAN

test_installed BOOLEAN

app_active BOOLEAN

test_active BOOLEAN

Host

id BIGSERIAL P

name TEXT

port TEXT

Figure 5.2: MyQual-Base, database schema.
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MyQual provides a clean web-based interface that allows for easily adminis-
tering the installation and the management of the different components as well
as for putting new databases under control.

Figure 5.3 depicts a screenshot of the interface. The top part is a status-bar
that continuously reports about the location of active components. Immediately
below, follows the menu-bar which allows for readily moving among the four
different parts of the application. Each part provides basic Graphical User Inter-
faces (guis) for the main framework functionalities that are outlined in the next
sections.

Figure 5.3: MyQual, interface screenshot.

5.1.2 MyQual-Toolbox

The Toolbox component is an extensible repository for spatial calculi and qsams.
As such, it provides a practical realization to the assumption that the calculus
pool (cf. Definition 3.1) is rich enough for encoding any spatial description (cf.
Section 3.2). Its diagrammatic representation is reported in Figure 5.4 where
the elements used to represent spatial calculi are reported in blue and those for
qsams in green. Auxiliary elements are reported in red.

MyQual is capable of dealing with both single-tile as well as multi-tile cal-
culi (cf. Section 2.2.4.3). An a-ary spatial calculus is represented by (i) a set of
qualitative relations, (ii) a set of reasoning tables and (iii) a relation-computer
function. Basically, a qualitative relation consists of a symbol—i.e. the name of
the relation—and of a reference to the calculus it belongs to. A reasoning table
embodies either a permutation or a binary composition operation. It has associ-
ated a reasoning-type that specifies the type of operation the table represents. As
explained in Section 2.2.3, for an a-ary calculus can be defined up to a!− 1 types
of permutation operations and up to (a!)3 types of binary compositions. MyQual
allows for possibly defining all of them.



5.1 MyQual: an Extensible Development and Benchmark Framework 101

QSAM_type

id BIGSERIAL P

name TEXT

params_num INTEGER

Relation_computer

id BIGSERIAL P

calculus_id BIGINT F

function_id BIGINT F

selected BOOLEAN

Relation

id BIGSERIAL P

calculus_id BIGINT F

name TEXT

Data_structure_computer

id BIGSERIAL P

QSAM_type_id BIGINT F

function_id BIGINT F

selected BOOLEAN

Function

id BIGSERIAL P

schema TEXT

name TEXT

selected BOOLEAN

for_what TEXT

external BOOLEAN

ext_file TEXT

ext_name TEXT

Reasoning_table

id BIGSERIAL

reasoning_type_id BIGINT F

rel_1_id BIGINT F

rel_2_id BIGINT F

result_rel_id BIGINT F

calculus_id BIGINT F

Retriever

id BIGSERIAL P

calculus_id BIGINT F

QSAM_type_id BIGINT F

function_id BIGINT

selected BOOLEAN

Qualifier

id BIGSERIAL P

calculus_id BIGINT F

QSAM_type_id BIGINT F

function_id BIGINT F

selected BOOLEAN

Data_structure_table_maker

id BIGSERIAL P

QSAM_type_id BIGINT F

function_id BIGINT F

selected BOOLEAN

Calculus

id BIGSERIAL P

name TEXT

arity INTEGER

multitile BOOLEAN

Reasoning_type

id BIGSERIAL P

x_1 INTEGER

y_1 INTEGER

z_1 INTEGER

x_2 INTEGER

y_2 INTEGER

z_2 INTEGER

x_3 INTEGER

y_3 INTEGER

z_3 INTEGER

QSAM_instance

id BIGSERIAL P

QSAM_type_id BIGINT F

name TEXT

params TEXT

Figure 5.4: MyQual-Toolbox, database schema.

A qsam has been defined (cf. Definition 4.1) as a triple (q,D, r) where q is a
qualifier function, D is a set of data structures and r is a retriever function. In
MyQual, the qualifier and retriever functions are represented as first-class objects,
whereas the set of data structures is specified by means of two functions: the
data-structure-table-maker function and the data-structure-computer function.

The framework differentiates between qsam-type and qsam-instance. A qsam-
type has a variable number of tuning parameters e.g. the Qualitative Spatial
Representation and Reasoning (qsr) qsam type has the parameter length that
is the length of the underlying inference graph. A qsam-instance is identified by
a given assignment of the tuning parameters.

Extending the Toolbox The Toolbox can be extended in mainly two ways:
defining new calculi and defining new qsams. The graphical interface provides
suitable means for easily defining all the necessary elements explained above, pos-
sibly at different times. The extension goes through two main and uncorrelated
points: the definition of a new entity (calculus or qsam) and the definition of the
corresponding functions.
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MyQual allows for defining multiple functions for each calculus (resp. qsam),
but only one can be selected at any given time. This allows for possibly preparing
a variety of implementations of the same function and for choosing the most
appropriate one.

5.1.3 MyQual-Test: the Test Environment

MyQual-Test provides functionalities to execute performance tests on spatial cal-
culi and qsams defined in the Toolbox component. Figure 5.5 depicts most
relevant information about its database schema which can be conceptually split
into two parts: pink colored entities are about testing whereas the yellow ones
are concerned with backup/restore operations.

The main purpose of MyQual-Test is that of providing a benchmark envi-
ronment to find best qsam parameter values according to some spatial dataset
properties, e.g. average object size. Such an environment allows for running,
backing-up, restoring and re-running performance tests for dataset qualifications
and qscqs executions.

BK_QSCQ_result_3_tuple

id BIGSERIAL P

obj_1_id BIGINT

obj_2_id GEOMETRY

obj_3_id BIGINT

QSCQ_test_id BIGINT

BK_QSCQ_result_n_tuple

QSCQ_test

id BIGSERIAL P

test_configuration_id BIGINT F

QSCQ TEXT

result_num INTEGER

response_time INTERVAL(6)

start_time TIMESTAMP

end_time TIMESTAMP

tested BOOLEAN

BK_QSCQ_result_4_tuple

Qualification_test

id BIGSERIAL P

test_configuration_id BIGINT F

spatial_dataset_cardinality INTEGER

full_qualified_dataset_cardinality INTEGER

reduced_qualified_dataset_cardinality INTEGER

QSAM_preparation_time INTERVAL(6)

qualification_time INTERVAL(6)

start_time TIMESTAMP

end_time TIMESTAMP

tested BOOLEAN

BK_ternary_rel

id BIGSERIAL P

relation_id BIGINT F

obj_1_id BIGINT

obj_2_id BIGINT

obj_3_id BIGINT

qualification_test_id BIGINT

BK_QSCQ_result_2_tuple

id BIGSERIAL P

obj_1_id BIGINT

obj_2_id GEOMETRY

QSCQ_test_id BIGINT
BK_binary_rel

id BIGSERIAL P

relation_id BIGINT F

obj_1_id BIGINT

obj_2_id BIGINT

qualification_test_id BIGINT

Relation

id BIGSERIAL P

calculus_id BIGINT F

name TEXT

BK_QSAM_instance

BK_spatial_dataset

id BIGSERIAL P

spatial_dataset_id BIGINT F

geom_id BIGINT

geom_the_geom GEOMETRY

QSAM_instance

id BIGSERIAL P

QSAM_type_id BIGINT

name TEXT

params TEXT

Test_configuration

id BIGSERIAL P

QSAM_instance_id BIGINT F

name TEXT

calculus_id BIGINT F

spatial_dataset_id BIGINT F

Calculus

id BIGSERIAL P

name TEXT

arity INTEGER

multitile BOOLEAN

Spatial_dataset

id BIGSERIAL P

schema_name TEXT

table_name TEXT

id_column TEXT

geom_column TEXT

avg_obj_width DOUBLE PRECISION

avg_obj_heigth DOUBLE PRECISION

cardinality INTEGER

id_1 INTEGER

Figure 5.5: MyQual-Test, database schema.
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Preparing a test At the core of this component lies the test-configuration
which allows for preparing 3-tuples of the form

(qsam-instance, spatial calculus, spatial dataset)

to be tested. Spatial datasets are intended to be database tables containing
geometric objects. They can be uniquely located within the database by pairs of
the kind

(schema name, table name)

which are collected in the spatial-dataset table. An entry in the spatial-dataset
table can be enriched by some dataset-related parameters that might turn useful
for the evaluation.

Running a dataset qualification test Once a test-configuration has been
prepared, it is possible to run a dataset qualification test. The process is fully
automated and the main workflow is the following: (i) Create empty relation
tables to store the qualified dataset according to the calculi in the configuration.
(ii) Prepare all data structures needed by the qsam in the configuration by
sequentially calling the corresponding functions: data-structure-table-maker and
data-structure-computer. (iii) Execute the dataset qualification by calling the
qualifier function associated with the calculi and qsam in the configuration. (iv)
Backup the geometric and the qualified dataset. (v) Store the test results in the
qualification-test table. (vi) Delete the tables used for the test.

Running a qscq execution test A qscq execution test requires, besides a
test-configuration, the specification of the qscq to be tested. The framework
has an integrated qscq builder module that allows for easily defining a qscq
by means of the basic gui depicted in Figure 5.6. The query builder allows for
adding spatial variables (objects to be searched) at will and for specifying spatial
constraints over them, taking from the relations provided by the spatial calculi
in the Toolbox component.

Before executing a qscq-test the application checks if the associated test-
configuration has been already used in a previous test. If this is the case the
qualified dataset is restored from the backup tables; otherwise a qualification-test
is executed first and the qualified dataset is not deleted. The main execution
workflow is the following: (i) If the qsam specified in the test-configuration re-
quires a dataset qualification and a qualification-test was already executed, re-
store the qualified dataset and qsam data structures. Otherwise, create a new
qualification-test and execute it. (ii) Encode the qscq into a sql statement.
(iii) Execute the sql statement. (iv) Backup the query results. (v) Store the
test results in the qscq-test table. (vi) Delete the tables used for the test.



104 5 Developing Qualitative Spatial Access Methods

Figure 5.6: Qualitative Spatial Configuration Query builder interface.

Note that, since the relation symbols are available in the toolbox component,

the sql encoding can be done automatically (cf. Section 3.2.2). This operation is

delayed until the test has to be executed to allow the user to prepare a qscq test

even if the functions necessary for its execution have not been defined yet. Before

performing any test, the application checks that all the necessary functions are

available and, if this is not the case, skip the test.

5.1.4 MyQual-App: the Production Environment

MyQual-App has been designed to provide the production environment : a pub-

licly accessible web interface for qscq-based spatial searches. The most relevant

part of its database schema is depicted in Figure 5.7. It basically traces the part

of the test environment dedicated to the configuration specification.

Once a qsam has been sufficiently tested and opportunely tuned in the test

environment, the best performing test-configuration can be moved to the produc-

tion environment in order to make it available to the users of the actual service.

That is, when a user accesses MyQual-App and specifies a qscq, the system uses

the qsam indicated in the app-configuration table to resolve the query.
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QSAM_instance

id BIGSERIAL P

QSAM_type_id BIGINT

name TEXT

params TEXT

App_configuration

id BIGSERIAL P

QSAM_instance_id BIGINT F

name TEXT

calculus_id BIGINT F

spatial_dataset_id BIGINT F

Calculus

id BIGSERIAL P

name TEXT

arity INTEGER

multitile BOOLEAN

Spatial_dataset

id BIGSERIAL P

schema_name TEXT

table_name TEXT

id_column TEXT

geom_column TEXT

avg_obj_width DOUBLE PRECISION

avg_obj_heigth DOUBLE PRECISION

cardinality INTEGER

id_1 INTEGER

Figure 5.7: MyQual-App, database schema.

5.2 Implemented Spatial Clustering qsams

In this section two possible instances of the sc-qsam family are presented. They
are exemplary implementations that embody the most relevant peculiarities of
this qsam family. The first one, discussed in Section 5.2.1, resorts to a space
tessellation based on a grid as a spatial clustering index. It aims at showing a
case when the clustering does not provide a partition of the spatial dataset (cf.
Section 4.3.3). The second implementation (Section 5.2.2) employs an r∗-tree (cf.
Section 2.3.4) as spatial clustering index and illustrate the case of a hierarchical
indexing that always provides a partition of the spatial dataset.

Two binary spatial calculi are considered: the Region Connection Calculus
(rcc) to model topological relations and the Cardinal Direction Calculus (cdc)
for directional ones (cf. Section 2.2.4.4).

Spatial Clustering Relations rcc provides a set B(rcc) = {dc,ec,po,eq,
tpp,tppi,ntpp,ntppi} of eight base relations (cf. Section 2.2.2). According to
Definition 4.2 only one is a clustering relation: B(rcc) = {dc}.

cdc is a multi-tile calculus (cf. Section 2.2.4.2) and defines a set B(cdc) =
{nw,n,ne,e,b,w, sw, s, se} of nine single-tile base relations and 218 multi-tile
base relations (when dealing with simple regions). Of these, four are clustering
relations: B(cdc) = {nw,ne, sw, se}.

Relation Computer Functions According to the “Simple Features Specifica-
tion for sql” (OpenGIS Consortium, 1998), PostGIS includes the definition of
topological operators (cf. Section 2.3.2) which are used in the implementation of
the rcc relation-computer function (cf. Section 5.1.2).

Since PostGIS does not provide directional operators, the cdc relation-computer
function resorts to computational geometry.
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5.2.1 Grid-based Spatial Clustering qsam

Grid -based Spatial Clustering qsam (grid sc-qsam) is an instance of the sc-
qsam family. Grid sc-qsam adopts a tiling strategy based on space tessellation
by means of a grid aligned with the Cartesian axes and composed of uniform
square cells with edge length c. The tileset T (cf. Defintion 4.3) consists of all
the grid cells that overlap with at least one dataset object. The corresponding
clustering C is done according to Definition 4.4, i.e. an object belongs to each
cluster associated with the cells that it spans. Note that, a grid -induced clustering
is not guaranteed to provide a partition of the spatial dataset O (cf. Example 5.1).

Example 5.1 (Grid -based clustering) - Let us consider the dataset depicted in Fig-

ure 5.8(a). The clustering induced by the grid in Figure 5.8(b) is a partition of the dataset.
This is not the case for the grid in Figure 5.8(c) since o1 and o3 fall in more than one

cell—i.e. they are included in more than one cluster.

o
1

o
2

o
3

(a)

o
1

o
2

o
32

1

1 2

(b)

o
1

o
2

o
3

2

1

1 2

(c)

Figure 5.8: A spatial dataset (a) clustered by means of two grids. One (b) generates
a partition of the dataset but not the other (c).

For Grid sc-qsam, both parameters e and v which, according to Equa-
tion 4.10, affect the reduction ρ depend on the grid cell dimension. Thus, c is the
only parameter of interest when applying grid -based spatial clustering index.

Data Structure Given a grid, each of its cells is uniquely identified by a pair
of integers (X, Y ) indicating the row and the column it is located at. We shall
refer to such a pair as grid-coordinates. In Figure 5.8(b), for example, the cell
containing o1 is identified by the pair (1, 2).

To produce the clustering C the bounding box of the objects is considered
rather than their actual geometry. On the one hand, this approach slightly wors-
ens the performed reduction ρ since it augments the cluster overlapping—i.e.
the parameter e. On the other hand, it allows for a quick computation of the
clustering. Given the cell size c and the Minimum Bounding Rectangle (mbr)
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mbr(o) = ((xmin, ymin), (xmax, ymax)) of a dataset object o, the set of cells spanned
by mbr(o) can be computed as follows:

Xmin =
⌊xmin

c

⌋
;Ymin =

⌊ymin

c

⌋
;Xmax =

⌊xmax

c

⌋
;Ymax =

⌊ymax

c

⌋
;

where ⌊·⌋ is the floor operator and, (Xmin, Ymin) and (Xmax, Ymax) indicate, re-
spectively, the bottom-left and the top-right cell of the spanned ones.

Example 5.2 (Minimum bounding box approximation affects cluster overlap.) - Let us

consider the situation depicted in Figure 5.9 where the minimum bounding box mbr(o) of

o is reported in dashed lines. Note that o only spans three cells, whereas its bounding box

spans four.
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Figure 5.9: Grid-clustering with minimum bounding boxes.

The grid spatial clutering index is encoded in a database table like the one
depicted in Figure 5.10: The field pair (X,Y) identifies the cluster and the field
obj-id refers the id field of the geometric table being indexed. The name of such
an id field is maintained in the Spatial-dataset table of the test (resp. production)
environment, whose schema is reported in Figure 5.5 (resp. 5.7).

Grid_index

id BIGSERIAL P

X INTEGER

Y INTEGER

obj_id INTEGER

Figure 5.10: Database representation of a grid spatial clustering index.

Qualification The regularity of the grid structure benefits the qualification
phase for both the considered calculi: The tile-relation holding among two cells
can be directly implied by their grid-coordinates.
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rcc A grid -reduced, rcc-qualified dataset is obtained by computing only
the topological relations among pairs of objects in the same cluster.

Relations among objects taken from different clusters are completely disre-
garded, that is like assuming that all the tile pairs are in the only clustering
relation dc. In fact, this is not true for pairs of adjacent cells since they share a
boundary line but the assumption is justified by the manner in which we build
the clusters: in the limit case when an object o touches the boundary line among
two cells it is included in the clusters associated to both such cells. Accordingly,
o will be considered in the relation computation of the two object clusters. This
ensures that all the non-clustering relations holding among o and any other object
are stored in the relation tables.

cdc A grid -reduced, cdc-qualified dataset is obtained as follows. For each
cluster C associated to a tile (grid cell) t = (X, Y ), we compute

• the relations among pairs of objects in C

• the relations among pairs of the kind (oi, oj) where oi is in C and oj is in
one of the clusters associated to the cells having one grid -coordinate equal
to (X, Y )

This approach perfectly fits the theoretical framework traced in Section 4.3.3:
The relations excluded from the computation are those between object pairs
(oi, oj) where oi is in C and oj is in one of the clusters associated to the cells that
are not in a clustering relation with t.

Retrieval The retriever functions for rcc and cdc draw upon the same main
logic described in Section 4.3.4. However, given that rcc provides only one
clustering relation, for the reconstruction of missing relations it is possible to
resort to a technique known as negation as failure (Clark, 1978) which allows for
a more efficient implementation (see below).

rcc Let ξ = (r, χ) be the constraint to be satisfied, then the rcc retriever
function is implemented as follows:

• If r is not a clustering relation (r /∈ B), the retrieval consists in a look-up
from the relation table rt2.

• Otherwise, the retrieval strategy comprehends a relation reconstruction
stage since, in the qualification phase, only a subset of clustering relations
holding between object pairs have been computed and stored in rt2. Miss-
ing relations are rebuilt via a set-difference operation: subtracting from the
set of all object pairs the set of those among which relation r does not hold
(negation as failure).
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cdc Let ξ = (r, χ) be the constraint to be satisfied. The cdc retriever
function differs from the one for rcc in the relation reconstruction phase: If r is
a clustering relation (r ∈ B), for each tile pair (t1, t2) in rt2 such that r(t1, t2)
return all the object pairs (oi, oj) with oi ∈ C1 and oj ∈ C2. Where C1 and C2

are the object clusters associated with the tiles t1 and t2, respectively.

5.2.2 r
∗-tree-based Spatial Clustering qsam

r∗-tree-based Spatial Clustering qsam (r∗-tree sc-qsam) employs an r∗-tree (cf.
Section 2.3.4) as a spatial clustering index. The r∗-tree fits with Definition 4.8
and is therefore a hierarchical spatial clustering index: The lower layer of the three
provides a spatial clustering index for the dataset and any other layer provides a
spatial clustering index for the tiles in the layer below.

The shape of the r∗-tree data structure depends on a small set of parameters
that also affect the reduction ρ; they are:

• m: the minimum number of entries in a tree node

• M : the maximum number of entries in a tree node

• rp: the percentage of nodes to reinsert in case of node overflow

• cs: the maximum number of nodes considered in the choose-sub-tree func-
tion called in the insertion phase

Beyond such parameters we shall also consider a further one that indicates
the level of the tree which the operations of qualification and retrieval are applied
recursively downwards from. We call such a parameter sl (starting level).

Data Structure The r∗-tree spatial clustering index is encoded in a database
table like the one depicted in Figure 5.11. Each entry represents a tree node.
The parent-id field reports the id of the parent node, the b-box field maintains
information about the geometric extent of the node and the lvl field indicates the
level of the tree the node is located at. The leaves of the tree are bounding boxes
of dataset objects and are located at level zero. Entries corresponding to leaves
also maintain, in the field obj-id, a reference to the id of the contained object.

RtreeStar_index

id BIGSERIAL P

parent_id BIGINT

b_box GEOMETRY

lvl INTEGER

obj_id BIGINT

Figure 5.11: Database representation of an r∗-tree spatial clustering index.
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Qualification Differently than a grid, the construction process of an r∗-tree
is data-driven and its final structure depends on, besides the index parameters,
the spatial arrangement of the indexed dataset. Accordingly, it is not possible to
know in advance what the relation among two tiles (directory rectangles of the
tree nodes) is.

The qualifier functions for rcc and cdc realize a recursive variant of the
general procedure described in Algorithm 4.4 (Section 4.3.3). Namely, the ba-
sic qualification is applied on the tiles at the starting level sl. The procedure
computes the relation r holding on each tile pair (ti, tj) in the current level. If
r ∈ B is a clustering relation, all the children of the tree node corresponding to
ti are to be in the same relation r with all the children of tj. Then the qualifier
function store the relation r(ti, tj) in the relation table rt2. Otherwise, if the
level in consideration is not the leaf one and r /∈ B is not a clustering relation,
the procedure recurses on the lower level, only considering the tree nodes having
ti or tj as parent node. Note that the relations holding on objects at the leaf level
are computed using the actual geometries of the dataset objects instead of their
bounding box.

Retrieval Similarly to the qualifier functions, the retriever functions for rcc
and cdc realize a recursive variant of the general procedure described in Algo-
rithm 4.5 (Section 4.3.4). Let ξ = (r, χ) be the constraint to be satisfied, then
the retriever function is implemented as follows:

• If r is not a clustering relation (r /∈ B), the retrieval consists in a look-up
from the relation table rt2.

• Otherwise, for each level lvl ≤ sl and for each tile pair (t1, t2) in rt2 such
that t1 and t2 are at level lvl of the tree and such that r(t1, t2), retrieve all
the children leaf nodes of t1 and t2. Return all the object pairs (oi, oj) with
oi being a child of t1 and oj being a child of t2.

Note that, as for grid -based sc-qsam, also in this case for the rcc retriever
function the reconstruction phase can be empowered by applying negation as
failure technique.

5.3 Summary

In this chapter a novel software framework called MyQual has been presented .
Its main purpose is to provide a development, test and production environment
for sams for qualitative spatial queries, with a particular focus on qsams and
qscqs.

MyQual has been designed as an extension for PostGIS-enabled PostgreSQL
databases and is logically divided in four parts: MyQual-Base, MyQual-Toolbox,
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MyQual-Test and MyQual-App. Each part, when installed in a database, pro-
duces a dedicated schema where all the tables, functions and indexes used by the
component are kept separated from the rest of the database.

MyQual-Base encodes all the basic functionalities of the framework which
comprehend the management of bound databases. All the other components can
be installed separately and can be used from different instances of MyQual-Base.

MyQual-Toolbox is an extensible repository for qualitative spatial calculi and
qsams. It provides both a realization of the assumption that the calculus pool
(cf. Definition 3.1) is rich enough for encoding any natural spatial description
(cf. Section 3.2) and a development environment for qsams.

MyQual-Test is the test environment where different configurations of qsams
and spatial calculi can be tested upon different spatial datasets. It provides
two main test typologies: qualification tests and qscq execution tests. The
environment provides guis to readily prepare and run such tests. The results are
automatically backed-up to allows for comparison and reproduction. qscqs can
be generated via a web-form gui.

MyQual-App has been thought as the production environment where most
promising qsams and spatial calculi can be made available to casual users willing
to execute qualitative spatial queries.

MyQual achieves generality by being grounded in the definition of five user-
defined functions. Such functions depends on spatial calculi and qsams and can
be implemented in a variety of programming languages.

The second part of the chapter has been devoted to present the implementa-
tion of two instances of sc-qsam within MyQual. The first instance presented,
resorts to a simple grid as spatial clustering index and serves as an example of
the case in which the clustering does not provide a dataset partition. The second
implementation grounds in the r∗-tree data structure and provides an exemplary
case of hierarchical spatial clustering index.





Chapter 6

Empirical Evaluation

This chapter provides an empirical evaluation of the Qualitative Spatial Access
Methods (qsams) presented in Chapter 4. In Section 6.1 the main evaluation
criteria are outlined. Section 6.2 is devoted to testbed definition. Section 6.3
discusses experiments on Functional qsam and Qualitative Storage Layer qsam.
Performance of grid -based and r∗-tree-based Spatial Clustering qsam are ana-
lyzed in Sections 6.4 and 6.5, respectively; whereas qsr-based qsam is discussed
in Section 6.6. Section 6.7 is devoted to a comparison of the most promising
qsams on a real geospatial dataset. The chapter ends with a comparison of the
results in Section 6.8.

6.1 Evaluation Criteria and Experiments Setup

In order to assess the qsams presented in Chapter 4, we are interested in eval-
uating the following features as the cardinality of the addressed spatial dataset
changes: (i) dataset qualification time, (ii) space occupancy of the qualified
dataset, and (iii) Qualitative Spatial Configuration Query (qscq) execution time.

Qualified dataset occupancy directly depends on the number of pre-computed
relations, which is independent of the characteristics of the hosting machine.
Accordingly, we measure point (ii) in terms of the cardinality of the produced
qualified datasets.

qscq retrieval time scales with the output size, i.e. the number of returned
configurations. This, in turn, depends on the number and on the type of relations
encoded in the qscq. Accordingly, we also discuss the correlation between the
retrieval time of a given qscq and the size of its output.

MyQual (cf. Section 5.1) has been used to implement and test all the qsams
presented in this work (cf Chapter 4 and Section 5.2) with two binary qualitative
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spatial calculi:the Region Connection Calculus (rcc) and the Cardinal Direction
Calculus (cdc).

Experiments have been run in two main stages: spatial dataset qualification
and qscq execution. The qualification stage is executed first. MyQual automati-
cally backs up the qualified dataset and the data structures underlying the tested
qsam, if any, in order to allow for reproducing the experiment. Once backed up,
these items are deleted from the database. For each qscq execution the qualified
dataset and the qsam data structures are restored from the backup tables, then
the qscq is resolved and timed. Also in this case MyQual automatically backs up
the results of the query and deletes all the restored items. Note that, if two qscqs
have to be tested against the same qualified dataset, the latter is restored and
deleted twice (even if the executions are consequential). This is done to reduce to
the minimum the interference of the optimization instruments of the underlying
Database Management System (dbms) in the timing: A freshly restored table is
treated as a new object by the dbms, i.e. no statistics are available for the query
optimizer that can be used to boost the execution of a query.

Finally, note that the relation tables, where qualified datasets are stored, have
been purposely designed and implemented without any indexing technique in or-
der to reduce to the minimum the interference of dbms optimization components
on the outcomes. However, as claimed in Section 3.5.2 one of the advantages of
pre-qualification is that the resulting dataset can be indexed by means of standard
indexing techniques such as b-trees that allow to further shorten qscq response
times.

The reported computing times refer to an Apple iMac mounting a 2.7 ghz
Intel Core i5 (4 cores) processor and a 12 gb 1333 mhz ddr3 ram unit.

6.2 Evaluation Testbed

Most of the qsams have been tested over a common testbed in order to allow for a
direct comparison of the results. When a different testbed has been used, because
of some qsam-specific features, it is specified in the corresponding section.

We shall discriminate the testbed according to the two experiment types:
The qualification testbed consists of a set of randomly generated spatial datasets.
Each dataset consists of convex polygons1 uniformly distributed in a D × D =
500 × 500 fixed-size workspace. The dataset cardinality N ranges over the set
{100, 250, 500, 750, 1000}. Figure 6.1(a) depicts a random dataset with N = 1000.
The average dataset object extent on each dimension (x- and y- projection) d
varies over the set {7.5, 15}—refer to Figure 6.1(b) for a pictorial explanation.
The qualification testbed consists of 10 dataset instances for every pair (N, d) ∈
{{100, 250, 500, 750, 1000} × {7.5, 15}}, for a total of 100 randomly generated

1The polygons have a variable number of vertices ranging between 3 and 8. Note, however,
that the number of vertices is unimportant in the scope of this evaluation since it does not
affect the outcomes of the experiments.
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(a)

d

d

(b)

Figure 6.1: A dataset from the qualification testbed (a) consisting of 1000 uniformly
distributed polygons with average extent d (b) equal to 15.

spatial datasets. Note that the dataset statistical parameter d is useful only for
grid Spatial Clustering qsam (sc-qsam), therefore, for all the other qsams it is
not used as a dataset discriminant.

The execution testbed is reported in Table 6.1 and consists of 3 qscqs for
each tested calculus. Such qscqs have been accurately chosen on the base of
some preliminary experiments as samples of the different qscq response per-
formance. All other qscqs behave similarly to one of those in the testbed, for
example the preliminary experiments showed that there is no relevant difference
in performance between single-tile and multi-tile cdc constraints. Qrcc,1 and
Qcdc,1 are instances of single-constraint qscqs with a high selectivity on quali-
fied datasets—i.e. they produce a small number of results—whereas Qrcc,2 and
Qcdc,2 are single-constraint qscqs with low selectivity. Qrcc,3 and Qcdc,3 represent
instances of multi-constraint qscqs.

Calculus Name Spatial Variables Constraints ID in Graphics

rcc
Qrcc,1 x1, x2 po(x1, x2) po
Qrcc,2 x1, x2 dc(x1, x2) dc
Qrcc,3 x1, x2, x3 po(x1, x2),dc(x2, x3) po + dc

cdc
Qcdc,1 x1, x2 n(x1, x2) n
Qcdc,2 x1, x2 nw(x1, x2) nw
Qcdc,3 x1, x2, x3 n(x1, x2),nw(x2, x3) n + nw

Table 6.1: The execution testbed consists of 2 single-constraint and 1 multi-constraint
qscqs for each tested calculus.

The outcomes of the experiments have been used to draw conclusions about
what are the more suitable values for qsams’ parameters, i.e. the values providing
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best space-time performance. Such information has been used to tune up the
most promising qsams in a final comparison experiment run on a real geospatial
dataset: the OpenStreetMap dataset of the city of Bremen (Germany).

6.3 Functional and Qualitative Storage Layer qsams

Functional qsam (f-qsam) and Qualitative Storage Layer qsam (qsl-qsam)
have been introduced in Sections 4.1 and 4.2, respectively. They embody the
basic dataset qualification strategies presented in Section 3.5 and do not have
any tuning parameter. These qsams have been tested on the testbed described
in Section 6.2.

Qualification f-qsam does not require any pre-qualification, thus it has null
qualification time and null storage space occupation.

Its direct counterpart is qsl-qsam which pre-qualifies the whole dataset into
the opportune relation tables. Figure 6.2 shows the results of the dataset quali-
fication procedure for both rcc and cdc.
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dataset cardinality varies.
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(c) Qualification time as the qualified
dataset cardinality varies.

Figure 6.2: Spatial dataset qualification by means of the Qualitative Storage Layer qsam.

As depicted in Figure 6.2(b), since these are both 2-ary calculi, the cardi-
nalities of the corresponding qualified datasets Rrcc(O) and Rcdc(O) coincide.
According to Equation 3.2, they are equal to

|Rrcc(O)| = |Rcdc(O)| = N2
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where N is the cardinality of the spatial dataset O.
The graphics in Figure 6.2(a) reports the average qualification time while

varying the spatial dataset cardinality N. Figure 6.2(c) shows the linear depen-
dency between qualification time and qualified dataset cardinality. The deviation
between the two curves indicates that the cdc relation computer function (cf.
Section 5.1) used in the qualification procedure runs in longer time with respect
to the rcc relation computer function. In particular, according to the shown
results, cdc relation computation takes approximately twice the time than rcc.
This behavior is due to the way the relation computer functions (cf. Section 5.1)
for the two calculi have been implemented and to the number of relations that
have to be checked: 8 for rcc vs 128 for cdc. As a consequence, we expect this
bias to occur in all qualification time results.

qscq Average qscq response times for f-qsam are reported in Figures 6.3(a)
and 6.3(b): rcc and cdc, respectively.
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(a) Average Response Time rcc.
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(b) Average Response Time cdc.

Figure 6.3: qscq execution outcomes when applying Functional qsam.

The graphics show that response time grows quadratically with the spatial
dataset cardinality N independently of the solved qscq and, thus, of the number
of retrieved configurations. This is due to the fact that, at any qscq execution,
f-qsam performs a full dataset qualification. Consistently, response times for
single-constraint qscqs coincide (approximately) with qualification times of qsl-
qsam reported in Figure 6.2: qualification times are slightly higher since they
comprehend disk writing operations. Note that multi-constraint qscqs (Qrcc,3 :
{po(x1, x2),dc(x2, x3)} and Qcdc,3 : {n(x1, x2),nw(x2, x3)}), run in time double
than single-constraint queries. This is due to the manner the general solving
procedure has been implemented in MyQual: the two constraints are resolved
independently and the variable equalities are used to join the two result sets.

Figure 6.4 summarizes qscq execution outcomes for rcc (upper graphics)
and cdc (lower graphics) when resorting to qsl-qsam.

The graphics on the left report average execution times while varying the spa-
tial dataset cardinality N. On the right, average qscq output sizes are reported.
Note that graphics for rcc and cdc report on different scales. For both rcc and
cdc the graphics on the left show that response times for single-constraint qscqs
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(a) Average Response Time rcc.
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(b) Average Output Size rcc.
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(c) Average Response Time cdc.
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Figure 6.4: qscq execution results when applying Qualitative Storage Layer qsam. Re-
sponse times for rcc (a) and cdc (c) grow proportionally with the number of retrieved
configurations shown in (b) and in (d), respectively.

are quadratic with N but grow proportionally with the corresponding number of
retrieved results reported on the right.

Beyond the number of returned results, response times obtained for multi-
constraint qscqs are affected by two more factors related to the join operation
intervening when solving a qscq and to the query optimizer of the underlying
dbms: (i) The join operation increases the response time by a factor that grows
proportionally with the output size of every single constraint in the query. (ii)
Given that all the relations are stored in the same database table, answering a
multi-constraint query requires accessing such a table twice. Since the accesses
are in read-mode, the table does not undergo any change and this allows the
underlying dbms to optimize the second access, e.g. resorting to caching.

For the multi-constraint rcc qscq—i.e. Qrcc,3 : {po(x1, x2),dc(x2, x3)}—
the high number of results and, thus, the time increase adduced by the join
operation dominate the reduction provided by the optimizer. This is not the
case for Qcdc,3 : {n(x1, x2),nw(x2, x3)}. In this case the boost introduced by the
optimizer allows for response times very close to those obtained for the single-
constraint qscq with low selectivity—i.e. Qcdc,2 : nw(x1, x2).

Discussion f-qsam and qsl-qsam provide some goodness thresholds for our
evaluation. f-qsam corresponds to run-time qualification, hence it provides an
upper bound for qscq response time: a qsam answering qscqs in longer time
than f-qsam constitutes a bad solution for qscq execution. qsl-qsam fully
pre-qualifies a spatial dataset, thus it provides an upper bound for the extra
storage space: a qsam producing larger qualified datasets than qsl-qsam is a
bad solution for dataset qualification.
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6.4 Grid-based Spatial Clustering qsam

Grid -based Spatial Clustering qsam (grid sc-qsam) is a particular instance of
the Spatial Clustering qsam (sc-qsam) family described in Section 4.3. As
discussed in Section 5.2.1, grid sc-qsam clusters the spatial dataset by superim-
posing a grid aligned with the Cartesian axes and composed of uniform square
cells. The cell edge length c is the only tuning parameter.

Grid sc-qsam has been tested over the qualification and execution testbed
described in Section 6.2. The cell size c has been ranged over the value set
{4, 8, 16, 64, 256} giving rise to a total of 500 dataset qualification experiments
and 4000 qscq execution tests.

The goal of the experimentation1 is to trace the behavior of the qsam as the
dataset statistical parameters and the grid cell c change to possibly detect optimal
values for c. That is, the size of the grid cell that produces qualified datasets of
minimum cardinality and shortest qscq response times. As a reference value
to judge the goodness of the boost introduced by grid sc-qsam the results are
compared with Qualitative Storage Layer qsam (qsl-qsam).

Qualification The outcomes of the dataset qualification experiments are re-
ported in Figure 6.5. The results show that grid sc-qsam always outperforms
qsl-qsam in both qualified dataset cardinality and qualification time and for
both the tested calculi.

200 400 600 800 1000

Dataset Cardinality

0

20000

40000

60000

80000

100000

120000

140000

Q
u
a
lifi

c
a
ti
o
n
 T

im
e
 (

m
s
) QSL

c = 4

c = 8

c = 16

c = 64

c = 256

(a) rcc-Qualification Time.

200 400 600 800 1000

Dataset Cardinality

0

200000

400000

600000

800000

1000000

Q
u
a
lifi

e
d
 D

a
ta

s
e
t 
C

a
rd

in
a
lit

y

QSL

c = 4

c = 8

c = 16

c = 64

c = 256

(b) rcc-Qualified Dataset Cardinality.
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(c) cdc-Qualification Time.
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(d) cdc-Qualified Dataset Cardinality.

Figure 6.5: Spatial dataset qualification by means of grid -based Spatial Clustering qsam.
Qualification times for rcc (a) and cdc (c) scale proportionally with the cardinality of the
qualified dataset shown in (b) and in (d), respectively.

1Note that part of the results presented in this section have been published in (Fogliaroni
et al., 2011).
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The graphics in Figure 6.5(b) depicts the behavior of a set of (colored) curves
representing the rcc-qualified dataset cardinality for different values of the cell
size c as the dataset cardinality N varies. Although the cardinality of the grid -
reduced rcc-qualified dataset |Rrcc,grid(O)| grows with N in a manner similar to
|Rrcc(O)|, the grid approach performs several orders of magnitude better as c
decreases. Figure 6.5(d) shows a similar behavior for cdc.

Figures 6.5(a) and 6.5(c) report qualification times for rcc and cdc, respec-
tively. As in the case of qsl-qsam, qualification time for grid sc-qsam grows
quadratically with the spatial dataset cardinality N but is linear with the cardi-
nality of the qualified dataset.

Such results let infer that the smaller the cell size c, the better grid sc-qsam
performs. However, for uniformly distributed spatial datasets, if c is smaller
than the average object size d, an object spans, on average, multiple cells and
thus is assigned to multiple clusters. According to the analysis of the reduction
performed by sc-qsam (cf. Section 4.3.3), this yields an increase of the parameter
e (indicating the amount of overlap among object clusters) and, consequently, a
performance degradation. Similarly, if cells are greater than or equal to the
whole workspace D, one cell contains all the dataset objects and grid sc-qsam
degenerates into qsl-qsam.

The expectation is that by reducing c, the cardinality of the qualified dataset
shrinks to a minimal value when c reaches the optimal value ĉ, whereas reducing
c beyond this limit causes |Rrcc,grid(O)| to increase again.

The graphics in Figure 6.6 show a different view of the previous results that
allows for easily verifying the above argumentation. Each curve represents the
average qualification outcomes for a given spatial dataset cardinality N while
varying the cell dimension c.
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(a) rcc-qualification, d = 7.5.
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(b) rcc-qualification, d = 15.
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(c) cdc-qualification, d = 7.5.
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(d) cdc-qualification, d = 15.

Figure 6.6: Qualified dataset cardinality while varying grid cell dimension c.
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Figures 6.6(a) and 6.6(b) report rcc-qualified dataset cardinality for spatial
datasets with average object size d = 7.5 and d = 15, respectively. Note that for
any given N the number of computed relations decreases with c until a minimum
value below which it suddenly rises. The value of c for which the curves reach
the minimum represents the searched optimal cell size ĉ. It is independent of the
dataset cardinality and approximately equal to the average dataset object size d.

The main difference between the two graphics lies in the growing rates of
the qualified dataset cardinality when c < ĉ. This is due to the fact that the
bigger the average object size, the more the cell an object spans and the more
the augmentation of the parameter e.

Figures 6.6(a) and 6.6(b) show that cdc-qualification behaves similarly.

qscq Figure 6.7 depicts average response times for rcc qscq experiments
when resorting to grid -based Spatial Clustering qsam. In this case we only
report graphics showing the results of the experiments run on spatial datasets
with average object dimension d = 7.5. Experiments on datasets with d = 15
yields similar results.
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(a) Qrcc,2 : {dc(x1, x2)}.
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(b) Qrcc,1 : {po(x1, x2)}.
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(c) Qrcc,3 : {po(x1, x2),dc(x2, x3)}.

Figure 6.7: Response times for qscqs encoding rcc constraints when applying grid -based
Spatial Clustering qsam.

Figure 6.7(b) shows the results obtained for the Qrcc,2 : {dc(x1, x2)}. The
curves depicted in the graphics on the left represent the average response time
for different cell size c (colored curves) while varying the spatial dataset cardinal-
ity N. As usual, also the outcomes obtained for qsl-qsam are reported (black
curve) to provide a goodness reference value. Similarly to the dataset qualifi-
cation experiments, the graphics demonstrates that grid sc-qsam outperforms
qsl-qsam: the smaller the cell size, the better the performance. The graphics
on the right traces the average response times while varying the cell size c. Each
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curve represents the behavior for spatial datasets of a given cardinality. Simi-
larly to the qualification experiments qscq execution performance improves as
the cell size decreases until an optimal value ĉ is reached. Below this value the
qsam performance suddenly deteriorates. The empirical results show that also
in this case the best performance is obtained for grids with cell size nearly equal
to the average object size: ĉ ≈ d.

Figures 6.7(a) and 6.7(c) show graphics representing the average response
times for qscqs Qrcc,1 : {po(x1, x2)} and Qrcc,3 = {po(x1, x2)+dc(x2, x3)}. The
graphics demonstrate a behavior similar to the case of Qrcc,1 we just discussed.
Also in this case the empirical results indicate the best performance to occur
when resorting to a grid with cell size approximately equal to the average object
dimension.

The graphics in Figure 6.8 summarize response times for qscqs with cdc con-
straints tested on spatial datasets with average object size d = 15. Experiments
on datasets with d = 7.5 yield similar outcomes.

Figure 6.8(a) depicts graphics summarizing the experimentation on the qscq
Qcdc,1 : {n(x1, x2)}. The graphics on the left shows a behavior similar to that
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(a) Qcdc,1 : {n(x1, x2)}.
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(b) Qcdc,2 : {nw(x1, x2)}.
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(c) Qcdc,3 : {n(x1, x2),nw(x2, x3)}.

Figure 6.8: Response times for qscqs encoding cdc constraints when applying grid -based
Spatial Clustering qsam.
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obtained for Qrcc,1 and reported in Figure 6.7(b). The main difference lies in the
fact that for Qcdc,1 and cell size c = 4 grid sc-qsam performs worse than qsl-
qsam. The graphics on the right show that the best performance are obtained
for grids with cell size approximately equal to the average object dimension d.

The graphics in Figure 6.8(b) summarize the outcomes obtained for the qscq
Qcdc,2 : {nw(x1, x2)}. Note that when employing grids with cell size smaller
than the average object size—i.e. c = 4 and c = 8—grid sc-qsam performs
significantly worse than qsl-qsam. Moreover the grid with c = 16 produces
response times very similar to qsl-qsam. The graphics on the right, provides
a better view of such results: In this case best performance is reached for c =
64. This behavior is due to the way the retriever function (cf. Section 5.2.1)
implements the reconstruction of clustering relations: The function iterates over
all cells associated with an object cluster. For each of such cells the retriever
looks up from the relation table all the cells located nw of the given one in order
to rebuild object pairs arranged according to the searched relation. Accordingly,
in this case there is a new factor affecting the response time: the number of cells
produced by the grid partition. The smaller the cell size, the higher the number
of cells and, consequently, the higher the response time.

Finally, Figure 6.8(c) summarizes response times for the multi-constraint
qscq Qcdc,3 : {n(x1, x2),nw(x2, x3)}. The curves representing the results show a
trend very similar to the case of Qcdc,2 letting intend that the retrieval times for
clustering relations (nw in this case) dominate those for non-clustering ones (n).

Summary Dataset qualification experiments demonstrate that, for both the
tested calculi, grid sc-qsam performs as much better as the grid cell size reduces
and reaches the optimum when it is nearly equal to the average object size: d.

qscq execution experiments show that for rcc best performance is obtained
when c is approximately equal to d, whereas for cdc, and for the tested parameter
values, sc-qsam performs better with c = 64.

6.5 r∗-tree-based Spatial Clustering qsam

r∗-tree-based Spatial Clustering qsam (r∗-tree sc-qsam) has been introduced
in Section 5.2.2. It resorts to an r∗-tree (Beckmann et al., 1990) as a hierar-
chical spatial clustering index (cf. Definition 4.8) and has been tested with the
qualification and execution testbed described in Section 6.2.

r∗-tree is an instance of the r-tree (Guttman, 1984) family (cf. Section 2.3.4)
resulting from an engineering analysis of the original r-tree. The result of such an
analysis yielded the definition of four index parameters which are used in different
phases of the data structure management in order to optimize its performance.
The parameters are the maximum (M) and minimum (m) number of entries a
tree node is allowed to contain, the percentage (rp) of nodes that are reinserted
when a node overflow occurs, and the number (cs) of nodes considered at each
level of the tree to choose the most suitable subtree to accommodate an object
being inserted.
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Beckmann et al. (1990) conducted an extensive empirical evaluation of r∗-tree
which led to the identification of parameter values producing best performance.
In our experiments we ranged M , m, rp, and cs consistently with such findings:
The parameter M influences the number of tree levels. We calibrated it according
to the cardinality of the spatial datasets under consideration in order to obtain
trees of different height: We opted for ranging M on the values {4, 6}, obtaining
trees of height comprised between 3 and 5.
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Figure 6.9: Spatial dataset qualification by means of r∗-tree-based Spatial Clustering
qsam. Qualification times for rcc (a) and cdc (c) grow proportionally with the cardinality
of the qualified dataset shown in (b) and in (d), respectively.

Beckmann et al. showed that r∗-tree produces best retrieval performance
when the minimum number of node entries m and the percentage of reinserted
nodes rp are set, respectively, to 40% and to 30% of M . Accordingly we ranged
m on the value set {2, 3} and kept rp fixed to 30% of M .

Finally, Beckmann et al. found that, when indexing objects in 2-d space, the
best value for the parameter cs is 32. This setting is incongruous with the values
we chose for the other parameters. Given that our trees have a branching factor
at most equal to 6, setting cs = 32 would correspond to checking all the subtrees
rooted in any node traversed when inserting an object in order to find the most
suitable one. Then, we decided to keep cs fixed and equal to m in all our tests.
This value still ensures a good optimization in the r∗-tree insertion phase.

Beyond r∗-tree parameters, r∗-tree sc-qsam has a further parameter: sl
indicates the starting level of the tree from which the qualification and retrieval
operations are carried out. We ranged sl on the values {1, 3} as, according to the
previous settings and to the cardinality of the spatial datasets in the testbed, an
r∗-tree is always guaranteed to have at least 3 levels.
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The settings above produced 6 different qsam setups which, in turn, gave
rise to a total of 600 dataset qualification experiments and 3600 qscq execution
tests.

Qualification Given its constructive properties, r∗-tree provides always a par-
tition of the spatial dataset. Accordingly, the reduction performed in the dataset
qualification phase (cf. Section 4.3.3) is not affected by the parameter e (since
it is always equal to 0). As a consequence the reduction only depends on the
parameter v (which indicates the number of tile 2-tuples in a clustering relation).

The outcomes of the dataset qualification experiments are reported in Fig-
ure 6.9. The graphics in the upper subfigures refer to rcc and show that
r∗-tree sc-qsam (colored curves) always outperforms qsl-qsam (black curve)
in both qualification time—Figure 6.9(a)—and qualified dataset cardinality—
Figure 6.9(b).

The set of curves in Figure 6.9(d) represent average cardinality of cdc-
qualified datasets for different qsam parameter setups, whereas Figure 6.9(c) re-
ports about average qualification time. The graphics show that r∗-tree sc-qsam
executes in time slightly longer than qsl-qsam but produces a qualified dataset
of cardinality remarkably smaller than that of the full cdc-qualified dataset.
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(a) rcc-qualified dataset cardinality.
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Figure 6.10: Qualified dataset cardinality for different values of r∗-tree parameter sl as
the spatial dataset cardinality varies.

For both the tested calculi, the cardinality of qualified dataset obtained when
applying r∗-tree sc-qsam is mainly influenced by parameter sl: Independently
of the other parameters, tests with sl = 3 produced more compact qualified
datasets. This is better highlighted in the graphics in Figure 6.10 which show
the cardinality of the qualified datasets for the two values of sl as the dataset
cardinality varies.

This behavior is due to the qualifier function (cf. Section 5.2.2) that avoids
to compute the qualitative relation holding among two dataset objects if the tiles
they are contained into have been found to be in a clustering relation. Accord-
ingly, the higher the level of the tree in which a tile 2-tuple is found to be in a
clustering relation, the higher the number of object-relation the algorithm does
not compute.
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qscq The results for qscq execution are reported in Figures 6.11 and 6.12:
respectively for rcc and cdc. Each subfigure refers to a given qscq from the
execution testbed in Section 6.2. The graphics on the left show response time
while varying the spatial dataset cardinality N with the main aim of providing
performance comparison with respect to qsl-qsam (black curve). Note that
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(a) Qrcc,1 : {po(x1, x2)}.
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(b) Qrcc,2 : {dc(x1, x2)}.
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(c) Qrcc,3 : {po(x1, x2),dc(x2, x3)}.

Figure 6.11: Response times for qscqs encoding rcc constraints when applying r∗-tree-
based Spatial Clustering qsam.

different graphics report on different scales. The graphics on the right show the
dependency between the response time and the parameter sl. They report data
on a uniform scale; thus they also provide an immediate means for comparing the
results obtained for different qscqs.

The results obtained for rcc (Figure 6.11) show that r∗-tree sc-qsam out-
performs qsl-qsam independently of the parameter setting and of the qscq.
Moreover, performance mainly depends on the parameter sl: Settings with sl = 3
led, on average, better performance than the corresponding cases with sl = 1.

The graphics on the right allow for drawing more specific conclusions. Qrcc,2 :
{po(x1, x2)} is resolved significantly faster than the other qscqs. This is due
to the fact that po is not a clustering relation; therefore all its occurrences are
stored and can be readily looked up from the relation table. Response time for
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the multi-constraint qscq Qrcc,3 : {po(x1, x2),dc(x2, x3)} equals the sum of the
response times of the single constraints plus the time needed to join the two result
sets. The optimization components of the underlying dbms slightly improve the
retrieval of the second constraint and, thus, the overall performance.

100 200 300 400 500 600 700 800 900 1000

Dataset Cardinality

0

500

1000

1500

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

QSL

M = 4, m = 2, sl = 1

M = 4, m = 2, sl = 3

M = 6, m = 2, sl = 1

M = 6, m = 2, sl = 3

M = 6, m = 3, sl = 1

M = 6, m = 3, sl = 3

0

1200

2400

3600

4800

6000

100 250 500 750 1000

R
e
s
p

o
n

s
e
 T

im
e
 (
m

s
)

Dataset Cardinality

sl = 1
sl = 3

(a) Qcdc,1 : {n(x1, x2)}.
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(b) Qcdc,2 : {nw(x1, x2)}.
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(c) Qcdc,3 : {n(x1, x2),nw(x2, x3)}.

Figure 6.12: Response times for qscqs encoding cdc constraints when applying r∗-tree-
based Spatial Clustering qsam.

The results reported in Figure 6.12 show a different behavior for qscqs en-
coding cdc constraints. First-off, the graphics on the right show that setting
sl = 3 improves retrieval performance independently of the qscq under exami-
nation, although the gain in performance is nearly null for qscqs encoding non-
clustering relations, i.e. Qcdc,2 : {n(x1, x2)}. Again, the graphics on the left of
Figure 6.12(a) indicates that, when dealing with non-clustering relations, r∗-tree
sc-qsam outperforms qsl-qsam independently of the parameter setup.

Finally, more interesting results are those represented in the graphics on the
left of Figures 6.12(b) and 6.12(c), i.e. qscqs containing clustering relations. In
these cases, the majority of the tested parameter setups produced response times
significantly longer than qsl-qsam. The motivation is related to the reconstruc-
tion process that has to be undertaken to rebuild the clustering relations.
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Best performance is obtained for parameter setups with having M = 6 and
sl = 3. This behavior is probably due to the parameter M : Allowing for a higher
number of entries in each tree node yields an r∗-tree with a smaller number of
levels and tiles. Consequently the retriever function performs a reduced number
of loops in the reconstruction phase.

Summary Dataset qualification experiments demonstrate that, for both the
tested calculi, r∗-tree sc-qsam performs as much better as the parameter sl
is higher. In our tests best results have been obtained for sl = 3. The other
parameters do not affect the performance significantly. Note, however, that r∗-
tree sc-qsam performs cdc-qualification in time slightly longer than qsl-qsam,
obtaining more compact qualified datasets though.

qscq execution experiments showed that the best performance is obtained
for sl = 3. For queries encoding rcc constraints r∗-tree sc-qsam always outper-
forms qsl-qsam, independently of the other parameters.

For queries encoding cdc spatial clustering relations best performance is ob-
tained with parameter setups with M = 6.

6.6 qsr-based qsam

qsr-based qsam (qsr-qsam) has been introduced in Section 4.4. It is grounded
in a novel data structure named inference graph (cf. Section 4.4.1) that aims
at highlighting the inference patterns existing among the qualitative relations
holding on a spatial dataset O. Each node of an inference graph IG represents
a relation in the qualified dataset RP(O) where P is the pool of calculi under
consideration. A hyperarc a in IG is called inference path; it always originates
in a set of nodes T (the tail of the path) and heads to one node h (the head
of the path). An inference path of length l represents a series of l reasoning
operations that have to be undertaken to infer h from T . An inference path
is an instantiation of an inference template which, in turn, is generated from
the reasoning tables (cf. Section 2.2.3) of the calculus under consideration. An
inference graph of length l does not contain inference paths longer than l.

The length l of the inference path is the only parameter of qsr-qsam and
is bounded above by the number of base relations in the calculus. Generating
an inference graph of length l for a calculus M requires to check every inference
template of length smaller or equal to l against the relations of the full qualified
dataset RM(O).

To build the inference templates we implemented a template generator. For
rcc the generation of inference templates of any length from the reasoning tables
reported in Table 4.3 took approximately 5 seconds. The number of generated
templates as the length l varies is reported in Table 4.5.
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For cdc, using the reasoning tables provided in (Skiadopoulos & Koubarakis,
2004; Wang & Hao, 2010), the template generator produced 1839 inference tem-
plates of length 1 in approximately 7 seconds. However, given the size of the
reasoning tables, the generation of templates of length 2 took approximately 6
hours and yielded 32354339 inference templates. We did not go over l = 2.

Due to the computational cost of its algorithms, qsr-qsam has been tested
only on a subset of the qualification testbed described in Section 6.2. More specif-
ically, rcc has been tested on spatial datasets of cardinality 100, 250, and 500,
whereas cdc only on datasets of cardinality 100 and 250. Finally, still due to
the computational costs and to the high number of inference templates, only ex-
periments with l = 1 have been conducted for both calculi in order to retain
comparable results.

Qualification The graphics in Figure 6.13 show the cardinality of the qualified
datasets produced by qsr-qsam in comparison with the best results obtained
with grid -based and r∗-tree-based Spatial Clustering qsam. Qualification times
for both calculi are several orders of magnitude bigger than the other solutions:
the qualification of datasets of cardinality 250, for instance, took approximately 43
minutes for rcc and approximately 8.8 hours for cdc; whereas best performance
of grid sc-qsam was approximately 1 second and 4 seconds, respectively.
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Figure 6.13: Spatial dataset qualification by means of qsr-based qsam. Cardinality
of qualified datasets produced for rcc (a) and cdc (b) compared with the best results
obtained with grid -based and r∗-tree-based Spatial Clustering qsam.

The experiments with rcc showed that qsr-qsam produces qualified datasets
of cardinality approximately equal to half of the full rcc-qualified |Rrcc(O)|.
This behavior can be explained by analyzing the statistical distribution of the
relations in the qualified dataset and the rcc reasoning tables—cf. Table 4.3(a):
On average, approximately 99.5% of rcc relations holding on the random datasets
used for the experiments are dc. Since, the composition of dc with any other rcc
relation yields a disjunctive relation, no inference path of length 1 having dc in
its tail is generated from the composition table—cf. Table 4.3(b). Moreover, since
dc permutes in dc, the inference graph of length 1 mostly consists of cycles of
two nodes (and two simple arcs). Each such cycle is a relaxed strongly connected
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component (cf. Definition 4.11) having only one source node that is the one
stored by the qualification procedure.

The graphics in Figure 6.13(a) shows that both grid r∗-tree sc-qsam and
r∗-tree sc-qsam outperform qsr-qsam by producing rcc-qualified datasets of
cardinalities much smaller than those generated by qsr-qsam.

The experiments run on cdc show a completely different behavior: the graph-
ics in Figure 6.13(b) indicates that qsr-qsam produces very compact cdc-
qualified datasets, outperforming both grid r∗-tree sc-qsam and r∗-tree sc-
qsam. Again this is due to the statistical distribution of the relations in the
qualified dataset and to the cdc reasoning tables (cf. Skiadopoulos & Koubarakis,
2004; Wang & Hao, 2010): The datasets used in the experiments gave rise to a
well-variegated set of cdc relations and the constitution of the reasoning tables
allow for producing an inference graph with a complex hyperarc structure. This,
in turn, allowed for identifying strongly connected components consisting of sev-
eral nodes, eventually yielding a higher reduction of the qualified datasets.

qscq The retriever function for qsr-qsam has been implemented as follows:
First it applies algebraic closure algorithm (cf. Section 2.2.5) to rebuild the full
qualified dataset which is stored in the relation tables and queried via the retriever
function of qsl-qsam. Note that in case of multi-constraint qscqs, given the
computational cost of algebraic closure algorithm, the reconstruction is executed
only when resolving the first constraint.

The results of the experiments showed that in the retrieval phase qsr-qsam
performs largely worse than all the other discussed solutions, f-qsam included.
On spatial datasets of cardinality N = 250, for instance, all the qscqs in the
testbed encoding rcc constraints have been resolved in approximately 1 minute,
against the nearly 7 seconds taken by f-qsam. cdc performed even worse: all of
the cdc qscqs in the testbed have been answered in approximately 1 hour.

The huge time difference occurring between rcc and cdc is mainly related
to the different number of base relations provided by the two models (8 vs 218)
and thus to the size of the reasoning tables that are used in the algebraic closure
to perform the reasoning.

These results yield the main conclusion that a plain application of qsr-qsam
on a full spatial dataset is definitely unsuitable in terms of query response times.

Summary Dataset qualification experiments showed that for rcc qsr-qsam
produces reduced qualified datasets of cardinality approximately equal to half
of the cardinality of a full qualified dataset. For cdc the reduction was much
greater. The obtained qualified datasets are extremely compact, outperforming
all the qsams presented before. However, the qualification time is extremely
high, making this qsam unsuited for being used on complete datasets.

qscq execution experiments showed that for both calculi the retrieval time
is definitely too high. This is due to the high computational cost of algebraic
closure algorithm. However it has to be considered that in this work we tested
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a basic version of qsr-qsam: We did not apply any heuristics for speeding up
the algebraic closure. Moreover, the reconstruction process can be further sped
up by using a more sophisticated version of this qsam which in the qualification
phase, beyond the qualitative relations, stores the inference paths used to perform
the reduction. At retrieval time this information can be exploited to guide the
reasoning performed with algebraic closure algorithm.

6.7 A Real-World Experiment

As a final experiment, we tested the most promising solutions presented above on
a part of the OpenStreetMap1 dataset of the city of Bremen, Germany. The tested
dataset is depicted in Figure 6.14: it consists of polygons and lines, for a total of
N = 6995 objects. The purpose of this experiment, beyond a mere comparison of
the tested qsams, is to demonstrate that the presented solution can work nicely
also with datasets of higher cardinality, with spatial objects of different kinds
(polygons and lines), and with dataset objects non-uniformly distributed.

Figure 6.14: Bremen: test dataset.

We compared the performance of Qualitative Storage Layer qsam (qsl-qsam),
grid -based Spatial Clustering qsam (grid sc-qsam), and r∗-tree-based Spatial
Clustering qsam (r∗-tree sc-qsam). The parameters of the two sc-qsam in-
stances have been calibrated according to the results obtained in the experiments
run on random datasets(cf. Sections 6.4 and 6.5, respectively).

1http://www.openstreetmap.org/
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For grid sc-qsam, a single scan of the spatial dataset allowed for the com-

putation of the average object dimensions: The average object width is 141 and

the average object height is 153. Accordingly we set the grid cell size c = 147.

For r∗-tree sc-qsam we opted for settingM = 10 in order to obtain an r∗-tree

of 5 levels and set the other parameters accordingly: m = 4, rp = 30%, cs = 4

and sl = 4.

We tested both dataset qualification and qscq execution for both rcc and

cdc. The results of the qualification experiments are reported in Table 6.2. qsl-

qsam produced worst results for both calculi and for both qualification time

and qualified dataset cardinality. For rcc-qualification, grid sc-qsam produced

the most compact qualified dataset in time only slightly longer than r∗-tree sc-

qsam. For cdc-qualification we obtained an opposite situation: r∗-tree sc-

qsam produced the qualified dataset with lowest cardinality but grid sc-qsam

performed in shorter time.

Calculus qsam
Qualif. Time
(hh : mm : ss)

Qualif. Dataset
Cardinality

rcc
qsl-qsam 01 : 48 : 55 48930025

grid sc-qsam 00 : 16 : 12 1594411
r∗-tree sc-qsam 00 : 12 : 54 2151993

cdc
qsl-qsam 03 : 38 : 32 48930025

grid sc-qsam 02 : 38 : 15 32247983
r∗-tree sc-qsam 03 : 26 : 18 14222455

Table 6.2: Qualification outcomes for the OpenStreetMap dataset of the city of Bremen.

For qscq execution we tested one single-constraint and one multi-constraint

qscq for each calculus. In order to be able to keep all the returned results in ram,

we opted for qscqs with a high selectivity on the qualified spatial dataset. The

main motivation beyond this choice is to avoid swapping to secondary memory

which would affect the timing.

For rcc we tested the queries: {po(x1, x2)} and {po(x1, x2),ntpp(x2, x3)}.
For cdc we also tried a qscq with three constraints; the tested queries are:

{n(x1, x2)} and {s(x1, x2), s(x3, x2),e(x3, x1)}.

The outcomes of the experimentation are summarized in Table 6.3. Again,

qsl-qsam is outperformed by sc-qsam. More precisely, grid sc-qsam performed

only slightly better than r∗-tree sc-qsam for resolving qscqs encoding rcc

constraints. In comparison with the retrieval time obtained with qsl-qsam such

a difference is negligible. For cdc, grid sc-qsam performed almost as bad as

qsl-qsam whereas r∗-tree sc-qsam retained much better performance.
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Calculus qscq qsam
Resp. Time

(hh : mm : ss)
Retrieved

Config.

rcc

{po(x1, x2)}
qsl-qsam 00 : 02 : 11

996grid sc-qsam 00 : 00 : 02
r∗-tree sc-qsam 00 : 00 : 03

{
po(x1, x2)

ntpp(x2, x3)

} qsl-qsam 00 : 02 : 10
961grid sc-qsam 00 : 00 : 02

r∗-tree sc-qsam 00 : 00 : 03

cdc

{n(x1, x2)}
qsl-qsam 00 : 01 : 59

268597grid sc-qsam 00 : 01 : 20
r∗-tree sc-qsam 00 : 00 : 25





s(x1, x2)
s(x3, x2)
e(x3, x1)





qsl-qsam 00 : 01 : 54
987970grid sc-qsam 00 : 01 : 06

r∗-tree sc-qsam 00 : 00 : 24

Table 6.3: Outcomes for qscq executions on the OpenStreetMap dataset of the city of
Bremen.

6.8 Summary and Comparison

This chapter presented an empirical evaluation aimed at analyzing space-time
tradeoff provided by the qsams introduced in Chapter 4. The criteria we eval-
uated are (i) dataset qualification time, (ii) space occupancy of the qualified
dataset, and (iii) qscq execution time.

We ran two kinds of experiments—spatial dataset qualification and qscq
execution—on two qualitative spatial calculi: rcc and cdc. Dataset qualifica-
tion experiments have been carried out on a qualification testbed consisting of
randomly generated datasets of different cardinalities. For qscq experimenta-
tion, we designed an execution testbed consisting of a set of 6 qscqs—3 for each
tested calculus. Such queries have been selected on the base of some preliminary
experiments. They are sample qscqs representing classes of execution behaviors,
i.e. all the other qscqs behave similarly to one of the selected queries.

In this section we provide and discuss an overall performance comparison of
the presented solutions. For more specific details on the evaluation, refer to the
previous sections.

In Section 6.3 we discussed Functional qsam (f-qsam) and qsl-qsam. We ar-
gued that, since such qsams embody the two basic dataset qualification strategies
presented in Section 3.5—runtime qualification and full pre-qualification—they
provide goodness thresholds for the evaluation of the other qsams. f-qsam pro-
vides an upper bound for qscq execution that should not be exceeded: A qsam
providing longer qscq execution times is not a good solution for query answer-
ing. Similarly qsl-qsam provides a goodness threshold for dataset qualification:
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A qsam requiring more storage space than that required by qsl-qsam does not
provide a good solution for space occupancy. The experimental results, however,
showed that most of the presented qsams behave better or nearly the same as
qsl-qsam in both dataset qualification and qscq execution. Accordingly, in the
remainder of this section we use such an access method as a reference point for
the comparison.

Grid -based and r∗-tree-based sc-qsam have been evaluated in Sections 6.4
and 6.5, respectively. The results obtained in the qualification experiments con-
firmed the reduction analysis carried out in Section 4.3.3: in order to allow for a
good reduction, sc-qsams require a careful tuning of the spatial index used for
doing the clustering. Our experiments demonstrate that, for both tested calculi,
grid sc-qsam performs optimally when the grid cell size c (approximately) equals
the average dataset object size d. In our experiments r∗-tree sc-qsam showed to
perform as better as the parameter sl is higher: For the tested parameter setups,
sl = 3 provides the best performance.

In Section 6.6 we discussed qsr-based qsam (qsr-qsam). We pointed out
that, given the big amount of inference templates and the computational cost of
its qualification and retrieval algorithms, this qsam has been only tested on a
subset of the qualification testbed and only for one parameter value: l = 1.

Tables 6.4 and 6.5 report a comparison of the average performance obtained for
the best parameter values with respect to qsl-qsam. In Table 6.4 we computed
the percentage of storage space reduction, whereas Table 6.4 summarizes the
corresponding dataset qualification times.

Calculus qsam N = 100 N = 250 N = 500 N = 750 N = 1000

rcc

grid sc-qsam 96.20% 98.08% 98.72% 98.94% 99.04%
r
∗-tree sc-qsam 87.78% 92.94% 94.94% 96.14% 96.52%

qsr-qsam 49.50% 49.80% 49.90% − −

cdc

grid sc-qsam 66.96% 70.90% 71.74% 72.31% 72.35%
r
∗-tree sc-qsam 42.21% 54.73% 61.05% 65.90% 67.50%

qsr-qsam 84.07% 88.45% − − −

Table 6.4: Average qualified dataset reduction (in percentage) with respect to Qualitative
Storage Layer qsam as the cardinality N of the spatial dataset varies.

For rcc, grid -based sc-qsam showed to be the best solution, providing a spa-
tial reduction comprised approximately between 96% and 99% of the full qualified
dataset. It also provides the best solution in terms of qualification times, running
in no longer than 36.52% of a full pre-qualification. Moreover, the values shown
in the tables seem to have an asymptotic behavior, with the space reduction and
qualification time asymptotes being approximately 99% and 4.8%, respectively.

For cdc the best spatial reduction is provided by qsr-qsam. However, the
qualification time is excessively high, making this solution unsuitable to be used
on full spatial datasets. At the second place we find again grid sc-qsam with
a reduction comprised between 66.96% and 72.35% of the full qualified dataset.
It also provides best qualification times, running in no longer than 45.96% of a
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Calculus qsam N = 100 N = 250 N = 500 N = 750 N = 1000

rcc

grid sc-qsam 36.52% 15.86% 8.58% 6.05% 4.86%
r
∗-tree sc-qsam 31.62% 18.09% 13.04% 10.24% 9.93%

qsr-qsam 4718% 29423% 116553% − −

cdc

grid sc-qsam 45.96% 36.61% 33.79% 33.24% 33.39%
r
∗-tree sc-qsam 165.91% 126.51% 111.71% 99.63% 95.85%

qsr-qsam 17609% 182645% − − −

Table 6.5: Average qualification time (in percentage) with respect to Qualitative Storage
Layer qsam as the cardinality N of the spatial dataset varies.

full pre-qualification. Also in this case the space-time performance seem to have
an asymptotical behavior, with the reduction tending approximately to 72% and
the qualification time to 33% of the performance obtained with qsl-qsam.

Calculus qscq qsam N = 100 N = 250 N = 500 N = 750 N = 1000

rcc

Qrcc,1

grid sc-qsam 138.06% 1.82% 0.32% 0.21% 0.19%
r
∗-tree sc-qsam 64.81% 1.67% 0.74% 0.58% 0.57%

qsr-qsam 195099% 78420% 143870% − −

Qrcc,2

grid sc-qsam 78.53% 21.63% 15.84% 15.62% 17.01%
r
∗-tree sc-qsam 86.16% 21.76% 16.35% 15.54% 16.74%

qsr-qsam 15070% 25848% 46085% − −

Qrcc,3

grid sc-qsam 72.83% 28.07% 26.51% 24.22% 25.41%
r
∗-tree sc-qsam 78.38% 28.77% 26.80% 24.45% 25.52%

qsr-qsam 28194% 25073% 46223% − −

cdc

Qcdc,1

grid sc-qsam 76.62% 3.02% 17.59% 26.90% 26.55%
r
∗-tree sc-qsam 102.98% 4.82% 34.48% 35.52% 27.78%

qsr-qsam 22278687% 1730227% − − −

Qcdc,2

grid sc-qsam 641.18% 39.12% 45.76% 40.16% 50.39%
r
∗-tree sc-qsam 424.60% 79.91% 128.34% 121.80% 134.88%

qsr-qsam 2234344% 422093% − − −

Qcdc,3

grid sc-qsam 456.00% 40.24% 54.51% 44.37% 51.98%
r
∗-tree sc-qsam 314.95% 78.83% 137.87% 133.48% 139.43%

qsr-qsam 3173486% 405640% − − −

Table 6.6: Average qscq response time (in percentage) with respect to Qualitative Storage
Layer qsam as the cardinality N of the spatial dataset varies.

Performance comparison for qscq execution is summarized in Table 6.6 which
reports the average retrieval time with respect to the qsl-qsam retrieval.

The results show that for qscqs encoding rcc relations the performance
of grid sc-qsam and r∗-tree qsam are comparable. When dealing with non-
clustering relations—i.e. Qrcc,1 in our tests—these qsams provide a notable boost
in response time: grid sc-qsam executes in up to 0.19% of the time required by
qsl-qsam. The boost worsens in the execution of qscqs encoding clustering
relations because of the relation reconstruction that takes place during the re-
trieval: Qrcc,2 and Qrcc,3 are resolved, in up to approximately 17% and 25.5% of
the time required by qsl-qsam, respectively.

For qscqs with cdc constraints, the results obtained show that grid sc-qsam
always outperforms r∗-tree qsam. Similarly to the case with queries encoding
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rcc relations, the performance boost provided by the qsam is higher when deal-
ing with non-clustering relations than with clustering relations.

In conclusion, the result of the conducted experiments show that grid sc-
qsam provides the best performance on random generated datasets for both rcc
and cdc and for both dataset qualification and qscq execution. However, the
experimentation conducted on the OpenStreetMap dataset of Bremen (cf. Sec-
tion 6.7) showed that r∗-tree qsam behaves better in terms of spatial reduction
(cf. Table 6.2) as well as in qscq retrievals (cf. Table 6.3). The motivation is
that the higher the cardinality of the spatial dataset, the more relevant the role
played by the hierarchical structure of r∗-tree.

As explained before, qsr-qsam, in the basic version presented in this work,
does not provide a suitable solution for real applications. More sophisticated
versions of this qsam can be developed and tested which we expect to lead to
better performance.



Chapter 7

Summary and Outlook

This chapter concludes the thesis with a summary and a discussion of the results
achieved. Additionally it outlines some possible directions for future investiga-
tions stemming from the presented work.

7.1 Summary of Results

Despite continuous improvements, Geographic Information Systems (gis) keep
lacking instruments for interpreting and coping with spatial queries expressed
in a human-friendly format, i.e. qualitative spatial descriptions. They provide
interfaces mainly tailored for experts, denying the casual user the possibility to
exploit their potentials and, consequently, drastically reducing the number of
potential spatial data contributors and consumers.

As of today the casual user can exploit gis capabilities mainly by resorting
to some pre-defined interfaces which allow for accessing spatial information in a
limited number of ways. One typology of access to spatial information, today
largely unaccounted for, concerns the cases in which one wants to retrieve spatial
information on the basis of a set of spatial constraints. In this work we faced the
challenge of filling this gap.

Human beings have a natural predisposition for acquiring, reasoning on, and
communicating spatial information that allows them to deal with spatial matters
in a quite effortless manner. The processes underlying spatial reasoning in hu-
mans, mainly draws upon qualitative spatial representation. Qualitative Spatial
Representation and Reasoning (qsr) is a well established field that also finds
applications in gis in that most typologies of spatial queries encode some sort
of qualitative spatial relation: a predicate that spatial entities have to satisfy.
Typically, in the literature, queries encoding different spatial predicates are stud-
ied separately and specialized solving strategies are developed for each type. In
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this thesis we stressed the fact that all such spatial queries can be regarded as
a single query type that we named Qualitative Spatial Relation Query. We pre-
sented a classification and a nomenclature of these queries. The classification is
based on the level of indeterminacy of the spatial predicates encoded in a query
whereas the nomenclature reflects the type of spatial request. Moreover, Quali-
tative Spatial Relation Queries have been ranked according to the computational
cost required to resolve any of their instances. We decided to focus our work
on the type hardest to solve that we named Qualitative Spatial Configuration
Queries (qscqs).

qscqs can encode constraints from different qualitative spatial calculi, there-
fore they can be interpreted as a multi-calculus Qualitative Constraint Network
(qcn), which, in turn can be represented as a directed hypergraph. The quali-
tative spatial relations among the objects in a spatial dataset can be computed
into a so-called qualified dataset which can also be interpreted as a multi-calculus
qcn (cf. Example 3.4). Accordingly, the problem of solving a qscq is equivalent
to finding all the isomorphisms between the hypergraph representing the qscq
and that representing the qualified dataset.

Initially, we assumed that the hypergraph representation of both the qscq and
the spatial dataset were given and we derived from Ullmann’s famous algorithm
a basic matching procedure (cf. Section 3.4.1) suited for the special type of
hypergraphs we treat.

Later on, we pointed out that, given the typical size of a real spatial dataset,
the qualification operation required to generate a qualified dataset is computa-
tionally too onerous. Therefore, assuming that the hypergraph representation
of the spatial dataset is given is not a reasonable hypothesis. Rather, dataset
qualification has to be carefully accounted for in the qscq resolution process.

We presented two basic dataset qualification strategies (cf. Section 3.5): run-
time qualification and pre-qualification. Runtime qualification is a purely func-
tional approach that executes the qualification at retrieval time. It does not
require any extra storage space but is highly inefficient for what concerns qscq
retrieval time. Pre-qualification requires to extend the schema of the underlying
spatial database with a set of Lookup Tables (luts) designed to accommodate the
qualified dataset. We called such luts relation tables and the schema extension
qualitative storage layer. Pre-qualification allows for significantly speeding up the
retrievals but requires an enormous amount of space to store the qualified dataset.
Moreover the elevated time required by qualification operation makes hard to deal
with the dynamism of the real world: by the time the pre-qualification is com-
pleted the world has changed as well as its representation in the spatial database,
calling for a new qualification.

In Chapter 4 we introduced the concept of Qualitative Spatial Access Method
(qsam). A qsam (cf. Definition 4.1) is a special class of spatial access methods
which applies a qualitative relation reduction/reconstruction paradigm to opti-
mize the space-time tradeoff inevitably adduced by qscq solving strategies. The
main purpose of a qsam is to provide a solving strategy that takes into account
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the dataset qualification problem by extending the spatial database with a qual-
itative storage layer and by only pre-computing a targeted subset of the whole
qualified dataset. Non-stored relations have to be rebuildable at qscq execution
time.

More specifically, a qsam is composed of three elements: a qualifier function,
a set of data structures, and a retriever function. The qualifier function takes
care of qualifying the spatial dataset into a set of relation tables and, possibly, of
storing some additional bits of information summarizing the strategy adopted to
perform the reduction (if any). The retriever function exploits the information
stored in the set of data structures to resolve a given qscq, possibly rebuilding
missing qualitative spatial relations.

Four kinds of qsams have been proposed: Functional qsam (f-qsam), Qual-
itative Storage Layer qsam (qsl-qsam), Spatial Clustering qsam (sc-qsam),
and qsr-based qsam (qsr-qsam). They all resort to hypergraph matching to
solve a qscq but tackle differently the dataset qualification problem.

f-qsam and qsl-qsam (cf Sections 4.1 and 4.2, respectively) encode runtime
qualification and full pre-qualification, respectively. As such, they provide good-
ness reference values to assess other qsams: A qscq retrieval should not take
longer than the time employed by f-qsam. Similarly, a qsam producing a qual-
ified dataset larger than that produced by qsl-qsam does not provide a good
approach for qualification.

sc-qsam (cf. Section 4.3) is a family of qsams that resorts to a tile&cluster
approach: It jointly exploits a special type of qualitative spatial relations called
clustering relations (cf. Definition 4.2) together with a spatial clustering index
(cf. Definition 4.5) to produce a reduced qualified dataset. If opportunely tuned,
the spatial clustering index produces a subdivision of the spatial dataset that al-
lows the qualifier function to compute and store a reduced number of qualitative
relations. This approach provides a valuable compromise between the previous
solutions: it shorten the retrieval time with respect to f-qsam and produces more
compact qualified datasets in a shorter time with respect to qsl-qsam. At qscq
execution time, the retriever function exploits the structure of the spatial clus-
tering index to rebuild qualitative relations missing in the relation tables. The
main shortcoming of this approach is that it requires a careful calibration of the
spatial clustering index. Otherwise sc-qsam might lead worse qualification and
retrieval performance than those obtained with qsl-qsam and f-qsam, respec-
tively. In this work we presented two special instances of sc-qsam: (i) grid -based
sc-qsam (cf. Section 5.2.1) employs a uniform grid as a spatial clustering index.
(ii) r∗-tree-based sc-qsam (cf. Section 5.2.2) resorts to r∗-tree.

qsr-qsam (cf. Section 4.4) exploits a novel data structure named inference
graph (cf. Definition 4.9) to obtain a reduced qualified dataset from which it
is possible to infer back all the missing relations by only resorting to symbolic
reasoning. The advantages of this qsam are that it is independent of the spatial
calculus and it might be used to produce the minimum set of qualitative relations
needed to describe a spatial dataset (cf. discussion on the reduction at the end
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of Section 4.4.3). However, the temporal costs required by the qualifier and
retriever functions makes qsr-qsam unsuitable for being applied on a whole
spatial dataset. Note that, in this work we have been mainly interested in drawing
the foundations of this qsam by defining the inference graph and a basic version of
the reduction and reconstruction strategies. As will be discussed in Section 7.2.2,
such basic strategies leave ample room for improvement.

In Chapter 5 we presented MyQual: a software framework for developing
and benchmarking qsams. MyQual has been used to implement and test all
the qsams introduced in this thesis, providing an empirical demonstration of its
usefulness.

MyQual Toolbox is one of the four components provided by MyQual: it is
an extensible repository for qualitative spatial calculi and qsams. As such, it
provides a practical realization of a fundamental assumption of this work: We
assumed the existence of a pool of qualitative relations rich enough to contain all
the relations necessary to encode any qualitative spatial description produced by
humans into a qualitative spatial relation query. Given the variety of expressions
typical of spatial descriptions produced by humans, it is impossible to predict
which relations will be needed. Contrarily, having an extensible repository of
spatial calculi allows for enriching the pool at will when necessary.

Beyond being a development environment, MyQual aims at providing a dis-
tributed tool for bringing at the casual user reach the possibility of querying a
gis in a more intuitive way, i.e. via Qualitative Spatial Relation Queries.

In conclusion, the presented theoretical findings and the empirical results,
prove that an accurate interplay of spatial access methods and a qualitative reduc-
tion/reconstruction paradigm is fundamental for enabling and efficiently solving
Qualitative Spatial Configuration Queries in Geographic Information Systems.
In particular, the empirical results indicated the Spatial Clustering qsam family
to be the most promising solution.

7.2 Future Work

The work presented in this thesis can be extended in several ways. In the following
sections we outline some of the most attractive perspectives.

7.2.1 Minimum Qualitative Spatial Representation

The inference graph has been introduced in Section 4.4.1. We showed how it
can be generated from the reasoning tables of a given qualitative spatial calcu-
lus and how it can be used to detect a reduced number of qualitative relations
describing a spatial scene. We also provided a qualitative analysis of the reduc-
tion properties provided by this data structure and argued that it can be used to
produce the minimum set of qualitative relations necessary to describe a spatial
scene. A further investigation is required to formally verify the validity of this
argumentation and to detect under which conditions a maximum reduction—i.e.
a minimum description—is possible.
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7.2.2 Empowering qsr-based qsam

As demonstrated by the empirical evaluation carried out in Section 6.6 the pre-
sented version of qsr-qsam is highly inefficient for what concern dataset qualifica-
tion and qscq retrieval times. However, the presented solution can be empowered
in several ways:

• The definition of Relaxed Strongly Connected Component (cf. Defini-
tion 4.11) can be modified to allow for the specification of a maximal length
that the spanning hyperpaths connecting the nodes of each relaxed com-
ponent do not have to exceed. This provides a certain control on the time
required for the computation of the components. Defining such a maximal
length allows for avoiding the exploration of long paths that, at the end,
might not be relevant for computing a component. Of course, fixing the
maximal allowed length at a too small value will produce components con-
sisting of a reduced number of nodes, and consequently affect the overall
reduction. Therefore, a more careful investigation has to be undertaken in
order to define the best value for this new parameter.

• The inference paths used for doing the reduction, can be stored in an ap-
posite data structure. Such information can be used in the retrieval phase
as a sort of “reasoning map” to guide the reasoning operations performed
by the algebraic closure algorithm: When iterating over a certain relation
r(oi, oj) the algorithm can access the stored inference paths to immediately
detect the relations which r(oi, oj) has to be composed with in order to
re-generate one of the missing relations. Of course, also in this case there
is a space-time tradeoff that has to be accounted for. The storage of infer-
ence paths allows for speeding up the relation reconstruction phase, and,
thus, the qscq response time, but on the other hand requires an increased
amount of storage space. This tradeoff has to be investigated to detect
what is the percentage of inference path that can be stored without leading
to an excessive worsening of the storage performance.

• The actual reduction and reconstruction phases allow for using inter-calculi
inference templates. That is, new inference rules connecting relations from
different calculi can be used in the dataset qualification and in the qscq
execution phases. For example one might note that, if an object oi is to the
north of and object oj then it follows that oi is also disconnected from oj.
This inference rule can be encoded as an inter-calculus inference template.
Some work in this direction has been done, for example, by Sharma (1996)
who developed a series of inter-calculus reasoning tables. Inter-calculus tem-
plates allow for instantiating inference paths that connect inference graphs
otherwise disconnected—i.e. generated from different calculi. It is of special
interest to investigate how such a connection influences the reduction and
the reconstruction performed by qsr-qsam.
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7.2.3 Other Qualitative Spatial Calculi and Inter-calculus

qscqs

One main objective of this work was to develop a theoretical framework general

enough to deal with qualitative spatial calculi of any arity. Moreover, the frame-

work also allows for dealing with qualitative relation queries encoding simulta-

neously relations concerning multiple spatial aspects—i.e. belonging to different

calculi.

In this work, we limited ourselves to implementations of basic cases: we only

dealt with two binary calculi—the Region Connection Calculus (rcc) and the

Cardinal Direction Calculus (cdc)—and with qscqs encoding relations from

the same calculus. Further investigations may concern the implementation of

other calculi, possibly of higher arity, and the experimentation of the presented

techniques on queries encoding relations from multiple calculi.

7.2.4 Further Investigation on Spatial Clustering qsam

The Spatial Clustering qsam (sc-qsam) family has been introduced in Sec-

tion 4.3. In this work we presented and implemented two possible instances

of such a family: one based on a grid index, the other on an r∗-tree. Further

investigations can be carried out that aim at analyzing other sc-qsam instances,

that is, the employment of other data structures and space partitioning methods

to be used as a spatial clustering index.

Moreover, of special interest is the development of techniques to automatically

detect spatial clustering relations among those provided by a qualitative spatial

calculus. For this investigation, the results of Theorem 4.1 can be used as a

starting point.

7.2.5 Mixed sc–qsr qsam

It was pointed out in the discussion of qsr-based qsam (qsr-qsam) (and con-

firmed by the empirical evaluation) that the high temporal cost required by the

qualification and retrieval functions, make qsr-qsam not suited for being applied

to whole spatial datasets. A possible solution to overcome this inconvenience is

that of developing a mixed Spatial Clustering–qsr qsam. Dataset qualification

consists in applying first Spatial Clustering qsam (sc-qsam) to exploit cluster-

ing relations for computing a reduced number of inter-cluster object relations.

Then, applying qsr-qsam on each object cluster allows for reducing the number

of in-cluster relations. qscq execution can be done by applying algebraic closure

on each cluster and subsequently calling the sc-qsam retriever function.
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7.2.6 Dynamic and Parallel qsams

In Section 3.1 we introduced a generalization for queries encoding spatial pred-

icates that allow for looking at them as a single query type. We called such a

generalization qualitative spatial relation query and presented Qualitative Spatial

Access Methods (qsams) in Chapter 4: a class of Spatial Access Methods (sams)

tailored for solving the hardest variant of qualitative spatial relation query. In

this thesis we investigated how to efficiently access qualitative spatial informa-

tion from a spatial database, restricting ourselves to the consideration of static

datasets, i.e. we only focused on insert and search operations. In order to make

the presented solutions practically usable, they have to be provided with algo-

rithms for dealing with dynamic datasets, that is functions for taking into account

deletion and update operations have to be developed.

A further possible investigation direction concerns the parallelization of the

algorithmic framework we presented. In Chapter 5 we discussed MyQual, a soft-

ware framework for the development of qsams. MyQual has been designed to be

a distributed framework, in the sense that a local installation can use tools located

on a remote bounded machine and simultaneously provide tools to be used by re-

mote installations of MyQual. So far, the hardware and computational resources

required for the execution of a certain operation, are provided by the machine

hosting the tool being used. The parallelization of the algorithmic framework

would allow to further enhance the distributed fashion of MyQual, allowing for

moving a step towards cloud computing: the computation required by a certain

method can be split and distributed over the network of MyQual installations.

7.2.7 Treating Disjunctive Relations and Inconsistency

This work focused on the definition of a theoretical framework and on the devel-

opment of basic methods and techniques for the resolution of Qualitative Spatial

Configuration Queries (qscqs). To allow for a lean analysis we set the assump-

tion that the qscqs under consideration were consistent—i.e. they do not encode

spatial relations conflicting with each other. Moreover, we narrowed down our

investigation to the case in which the relations encoded in a qscq were base

relations—i.e. no disjunction of relations appears in a query.

A further extension of the presented solutions consists in the development

of techniques that can deal with uncertainty and inconsistency. Some work have

already been conducted on these issues (cf. Clementini et al., 1994; Wallgrün et al.,

2010, for instance). A possible research direction, then, concerns the integration

of previous work with the results presented in this thesis in order to develop qscq

solving techniques capable of dealing with queries encoding disjunctive relations

and of opportunely handling inconsistency.
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7.2.8 Contributing Qualitative Spatial Information in vgi

Projects

Volunteered Geographic Information (vgi) is a particular form of user-generated
content in that it assumes the involvement of volunteers to collect and disseminate
spatial information. Probably, the most known form of vgi, is represented by web-
based projects like OpenStreetMap1, which aims at collaboratively producing a
free editable map of the world.

There are several ways a volunteer can contribute spatial information into a
web gis. One of the easiest consists in surveying spatial data by means of a
Global Positioning System (gps) device and uploading it to the server hosting
the gis.

However, the number of real contributors is strongly affected by the techno-
logical barriers risen by such a method: (i) Although gps technology is spreading
very fast, not everyone posseses a device with a gps antenna. (ii) Not everyone
having a gps device knows how to use it. (iii) In order to be uploaded, the sur-
veyed data has to be cleaned and tagged. This requires a certain level of expertise
in gis.

As discussed in (Fogliaroni et al., 2010), providing the casual user with the
possibility of contributing geographic information via natural spatial descriptions
(cf. Sections 1.2.1 and 2.2.1) would allow for overcome such technological barriers.

MyQual, the software framework we developed for enabling qscqs, can serve
a fundamental role in this perspective: It provides the basic components to allow
the underlying spatial database to store and retrieve qualitative spatial infor-
mation. As a consequence, it also provides basic methods for inputting spatial
information given in a qualitative form. That is, a volunteer can give a textual
or pictorial description of the spatial entities he wants to contribute on, relating
them to a set of entities in the spatial database underlying a gis. The given
spatial description can be encoded into a qualitative spatial relation query whose
single relations can be stored in the qualitative storage layer. Although not hav-
ing geometries associated, the new spatial entities are now present in the database
and can be retrieved via a qualitative spatial relation query.

Therefore, the ideas presented in this thesis can be used as a base for develop-
ing a new contribution form of spatial information that can be used to empower
already established vgi projects like OpenStreetMap.

1http://www.openstreetmap.org/
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