1,793 research outputs found

    Mobile augmented reality techniques for emergency response

    Get PDF
    FCT/MCTES PEstUID/CEC/04516/2019In an emergency situation, each response agent must act quickly and accurately. The support of a mobile device that can provide an appropriate insight of the surroundings and that allows users to exchange information with the other members of the emergency teams, can prevent harm and even save many lives. This paper presents a mobile application that integrates a georeferenced system with augmented reality techniques, in order to serve the needs of the operatives in emergency situations. The work intends to introduce solutions which optimize the performance with which the user takes advantage of the mobile application, such as the organization of the data flow that is displayed and the augmentation of the surrounding area. User studies were conducted with members of the National Navy. The results were positive although there are still some aspects that should be improved.publishersversionpublishe

    New Trends in Using Augmented Reality Apps for Smart City Contexts

    Get PDF
    The idea of virtuality is not new, as research on visualization and simulation dates back to the early use of ink and paper sketches for alternative design comparisons. As technology has advanced so the way of visualizing simulations as well, but the progress is slow due to difficulties in creating workable simulations models and effectively providing them to the users. Augmented Reality and Virtual Reality, the evolving technologies that have been haunting the tech industry, receiving excessive attention from the media and colossal growing are redefining the way we interact, communicate and work together. From consumer application to manufacturers these technologies are used in different sectors providing huge benefits through several applications. In this work, we demonstrate the potentials of Augmented Reality techniques in a Smart City (Smart Campus) context. A multiplatform mobile app featuring Augmented Reality capabilities connected to GIS services are developed to evaluate different features such as performance, usability, effectiveness and satisfaction of the Augmented Reality technology in the context of a Smart Campus

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    Improving the user knowledge and user experience by using Augmented reality in a smart city context

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe idea of Virtuality is not new, as research on visualization and simulation dates back to the early use of ink and paper sketches for alternative design comparisons. As the technology has advanced so the way of visualizing simulations as well, but the progress is slow due to difficulties in creating workable simulations models and effectively providing them to the users (Simpson, 2001). Augmented Reality (AR) and Virtual Reality (VR), the evolving technologies that has been haunting the tech industry, receiving excessive attention from the media and growing tremendously are redefining the way we interact, communicate and work together (Shamalinia, 2017). From consumer application to manufacturers these technologies are used in different sectors providing huge benefits through several applications. In this work, we demonstrate the potentials of AR techniques in a smart city context. Initially we present an overview of the state of the art software and technology for AR in different domains of smart cities, and outline considerations from a user study about the effectiveness and user performance of AR technique: real environment with augmented information, everything in the context of a smart city. The evaluation results from the participants show promising results, providing opportunities for improvements and implementation in smart cities

    Developing a User Interface for the Live 3D Mapping of Wildfires

    Get PDF
    Our project aimed to help our sponsor, Simtable LLC, bring real-time visual communication to fire personnel. Simtable LLC is developing a software called LiveTexture, which will collect imagery of wildfires from several sources and generate a three dimensional (3D) model of the situation. The technology will enable firefighters to view and annotate 3D maps and exchange information in real time. We researched the limitations of current wildfire management communications systems, and interviewed wildfire response personnel to determine the functions their jobs require. The end result of our project included non-functional mock-up user interfaces that visually outlined how users will interact with LiveTexture to more efficiently reach their goals

    Augmented reality for emergency situations in buildings with the support of indoor localization

    Get PDF
    Augmented reality is showing a continuous evolution due to the increasing number of smart glasses that are being used for different applications (e.g. training, marketing, industry, risk avoidance, etc.). In this paper, we present an implementation that uses augmented reality (AR) for emergency situations in smart buildings by means of indoor localization through the use of subGHz beacons. This also includes the mapping of emergency elements in the three-dimensional building, together with some example cases

    Virtual and Augmented Reality in Basic and Advanced Life Support Training

    Get PDF
    The use of augmented reality (AR) and virtual reality (VR) for life support training is increasing. These technologies provide an immersive experience that supports learning in a safe and controlled environment. This review focuses on the use of AR and VR for emergency care training for health care providers, medical students, and nonprofessionals. In particular, we analyzed (1) serious games, nonimmersive games, both single-player and multiplayer; (2) VR tools ranging from semi-immersive to immersive virtual and mixed reality; and (3) AR applications. All the toolkits have been investigated in terms of application goals (training, assessment, or both), simulated procedures, and skills. The main goal of this work is to summarize and organize the findings of studies coming from multiple research areas in order to make them accessible to all the professionals involved in medical simulation. The analysis of the state-of-the-art technologies reveals that tools and studies related to the multiplayer experience, haptic feedback, and evaluation of user’s manual skills in the foregoing health care-related environments are still limited and require further investigation. Also, there is an additional need to conduct studies aimed at assessing whether AR/VR-based systems are superior or, at the minimum, comparable to traditional training methods

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Applications of 5G Communications in Civil Protection

    Get PDF
    Τα δίκτυα πέμπτης γενιάς θεωρούνται ευρέως ως μία από τις πιο θεμελιώδεις τεχνολογικές εξελίξεις του τρέχοντος αιώνα, προσφέροντας υψηλή ταχύτητα, χαμηλή καθυστέρηση και κλιμάκωση. Τα επόμενα χρόνια, τα δίκτυα πέμπτης γενιάς αναμένεται να δημιουργήσουν τη χωρητικότητα, την απόδοση και την ευελιξία του ασύρματου δικτύου για να υποστηρίξουν μια εκρηκτική αύξηση στις συνδεδεμένες συσκευές, μαζί με πρωτοποριακές εφαρμογές. Αυτή η καινοτόμος νέα τεχνολογία μπορεί να βελτιώσει όλο το φάσμα της καθημερινής ζωής από την υγεία στην ψυχαγωγία και από τη γεωργία στην πολιτική προστασία. Οι κρίσιμες επικοινωνίες, ο ακρογωνιαίος λίθος της Πολιτικής Προστασίας, θα επωφεληθούν σε μεγάλο βαθμό από το 5G. Η παρούσα εργασία μελετά πώς νέα στοιχεία και τεχνολογίες του 5G όπως η επαυξημένη πραγματικότητα, η ηλεκτρονική υγεία και η βελτιστοποιημένη δρομολόγηση ασθενοφόρων μπορούν να υποστηρίξουν την Πολιτική Προστασία ενισχύοντας παράλληλα το περιβάλλον και την οικονομία.5G networks are widely considered as one of the most fundamental technology developments of our century, providing ultra-high-speed, low-latency and scalability. Over the coming years, 5G is expected to create the wireless network capacity, performance and flexibility to support an explosive increase in connected devices, along with exciting new use cases. This innovative technology can improve the whole spectrum of everyday life from health to entertainment and from agriculture to civil protection. Mission critical Communications, the cornerstone of civil protection, are to be greatly impacted by 5G. This thesis studies how new 5G components and technologies such as augmented reality, ehealth and optimized routing of ambulances are able to support the role of civil protection while enhancing the protection of the environment and the economy
    corecore