3,350 research outputs found

    Highly accurate model for prediction of lung nodule malignancy with CT scans

    Get PDF
    Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX

    The Bionic Radiologist: avoiding blurry pictures and providing greater insights

    Get PDF
    Radiology images and reports have long been digitalized. However, the potential of the more than 3.6 billion radiology examinations performed annually worldwide has largely gone unused in the effort to digitally transform health care. The Bionic Radiologist is a concept that combines humanity and digitalization for better health care integration of radiology. At a practical level, this concept will achieve critical goals: (1) testing decisions being made scientifically on the basis of disease probabilities and patient preferences; (2) image analysis done consistently at any time and at any site; and (3) treatment suggestions that are closely linked to imaging results and are seamlessly integrated with other information. The Bionic Radiologist will thus help avoiding missed care opportunities, will provide continuous learning in the work process, and will also allow more time for radiologists’ primary roles: interacting with patients and referring physicians. To achieve that potential, one has to cope with many implementation barriers at both the individual and institutional levels. These include: reluctance to delegate decision making, a possible decrease in image interpretation knowledge and the perception that patient safety and trust are at stake. To facilitate implementation of the Bionic Radiologist the following will be helpful: uncertainty quantifications for suggestions, shared decision making, changes in organizational culture and leadership style, maintained expertise through continuous learning systems for training, and role development of the involved experts. With the support of the Bionic Radiologist, disparities are reduced and the delivery of care is provided in a humane and personalized fashion

    LungVISX:explaining lung nodule malignancy classification

    Get PDF

    Applying Deep Learning To Identify Imaging Biomarkers To Predict Cardiac Outcomes In Cancer Patients

    Get PDF
    Cancer patients are a unique population with increased mortality from cardiovascular disease, however only half of high-risk patients are medically optimized. Physicians ascertain cardiovascular risk from several risk predictors using demographic information, family history, and imaging data. The Agatston score, a measure of total calcium burden in coronary arteries on CT scans, is the current best predictor for major adverse cardiac events (MACE). Yet, the score is limited as it does not provide information on atherosclerotic plaque characteristics or distribution. In this study, we use deep learning techniques to develop an imaging-based biomarker that can robustly predict MACE in lung cancer patients. We selected participants with screen-detected lung cancer from the National Lung Screening Trial (NLST) and used cardiovascular mortality as our primary outcome. We applied automated segmentation algorithms to low-dose chest CT scans from NLST participants to segment cardiac substructures. Following segmentation, we extracted radiomic features from selected cardiac structures. We then used this dataset to train a regression model to predict cardiovascular death. We used a pre-trained nnU-Net model to successfully segment large cardiac structures on CT scans. These automated large cardiac structures had features that were predictive of MACE. We then successfully extract radiomic features from our areas of interest and use this high-dimensional dataset to train a regression model to predict MACE. We demonstrated that automated segmentation algorithms can result in low-cost non-invasive predictive biomarkers for MACE. We were able to demonstrate that radiomic feature extraction from segmented substructures can be used to develop a high-dimensional biomarker. We hope that such a scoring system can help physicians adequately determine cardiovascular risk and intervene, resulting in better patient outcomes
    • …
    corecore