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Abstract 

APPLYING DEEP LEARNING TO IDENTIFY IMAGING BIOMARKERS TO 

PREDICT CARDIAC OUTCOMES IN CANCER PATIENTS 

Aishwarya K. Nene, Crystal Cheung, Arman Avesta, Sajid Hossain, Harlan 

Krumholz, and Sanjay Aneja, Department of Therapeutic Radiology, Yale 

University, School of Medicine, New Haven, CT. 

 

Cancer patients are a unique population with increased mortality from 

cardiovascular disease, however only half of high-risk patients are medically 

optimized. Physicians ascertain cardiovascular risk from several risk predictors 

using demographic information, family history, and imaging data. The Agatston 

score, a measure of total calcium burden in coronary arteries on CT scans, is the 

current best predictor for major adverse cardiac events (MACE). Yet, the score is 

limited as it does not provide information on atherosclerotic plaque characteristics 

or distribution. In this study, we use deep learning techniques to develop an 

imaging-based biomarker that can robustly predict MACE in lung cancer patients. 

We selected participants with screen-detected lung cancer from the National Lung 

Screening Trial (NLST) and used cardiovascular mortality as our primary outcome. 

We applied automated segmentation algorithms to low-dose chest CT scans from 

NLST participants to segment cardiac substructures. Following segmentation, we 

extracted radiomic features from selected cardiac structures. We then used this 

dataset to train a regression model to predict cardiovascular death. We used a pre-

trained nnU-Net model to successfully segment large cardiac structures on CT 
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scans. These automated large cardiac structures had features that were predictive 

of MACE. We then successfully extract radiomic features from our areas of interest 

and use this high-dimensional dataset to train a regression model to predict MACE. 

We demonstrated that automated segmentation algorithms can result in low-cost 

non-invasive predictive biomarkers for MACE. We were able to demonstrate that 

radiomic feature extraction from segmented substructures can be used to develop 

a high-dimensional biomarker. We hope that such a scoring system can help 

physicians adequately determine cardiovascular risk and intervene, resulting in 

better patient outcomes. 
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Chapter 1: Introduction 

1.1 Cardiovascular disease 

Mortality and healthcare burden from cardiovascular disease has been 

increasing globally. In 2020, ~19 million deaths were due to cardiovascular death 

globally, which represented an increase of 18.7% from 20101. The total costs of 

cardiovascular disease (CVD) were estimated to be $378.0 billion in 2017-2018, 

as compared to $103.5 billion from 1996 to 1997. Furthermore, CVD was 

responsible for 12% of total US health expenditures from 2017-2018.  

Cardiovascular disease is broadly defined as heart disease, including 

coronary heart disease, stroke, hypertensive disease, and other circulatory 

conditions, including the peripheral circulatory system. The dominant cause of 

cardiovascular disease is atherosclerosis. Atherosclerosis is an 

immunoinflammatory disease of medium and large arteries that is generally fueled 

by lipids, leading to the thickening or hardening of the arteries, with the most 

devastating consequences being stroke or myocardial infarction (MI)2. While 

cardiovascular disease remains a leading cause of morbidity and mortality in the 

United States1, major adverse cardiac events (MACE) from atherosclerotic 

cardiovascular disease (ASCVD) are often undetected until their clinical 

presentation.  

1.2 Cardiovascular disease and cancer 

Cancer patients have an increased mortality risk from cardiovascular 

disease3, yet only half of the high-risk patients are medically optimized with 

guideline-directed medical therapy4. While this increased risk might be explained 
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by common risk factors, it is important to note a high correlation between 

atherosclerosis and cancer even after adjusting for possible confounders such as 

gender, race, or smoking. A recent study using participants from the Multi-Ethnic 

Study of Atherosclerosis demonstrated higher atherosclerotic burden was 

associated with an increased risk of cancer (HR: 1.53, CI: 1.21-2.39)5. In patients 

with atherosclerosis, prostate cancer was the most common cancer diagnosed 

(21% of cases), followed by lung cancer (14% of cases).  

Cancer patients have readily available imaging information, staging, and 

therapy-planning CT scans, which provide a unique opportunity to intervene based 

on cardiovascular risk. In this study, we are specifically interested in identifying 

cardiovascular risk for cancer patients in the National Lung Screening Trial (NLST). 

Lung cancer is the leading cause of cancer death in the United States and more 

than 80% of these deaths may be attributed to tobacco exposure6. Of note, 

smoking is also a well-known cardiovascular risk factor, contributing to the 

increased cardiovascular risk in lung cancer patients7.  

The NLST enrolled 53,454 people at high risk for lung cancer from August 

2002 to April 20048. Participants were randomized to two groups to either undergo 

three annual screenings with low-dose helical CT or single-view chest x-ray. 

Participants were followed through December 31, 2009, and data was collected on 

lung cancer diagnoses, cancer deaths, and deaths from other causes such as 

cardiovascular deaths. The study found that screening with the use of a low-dose 

CT scan for screening was significantly better than x-ray in improving all-cause 
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mortality8. More than 70,000 CT scans from the NLST are now publicly available 

for research. 

1.3 Cardiovascular risk-stratification 

Studies examining the prevention of CVD often focus on atherosclerotic 

cardiovascular disease risk or major adverse cardiac events. Clinical ASCVD is 

defined as a single established clinical event in any arterial bed, such as unstable 

angina requiring revascularization; while sub-clinical ASCVD is asymptomatic 

coronary or peripheral artery disease traditionally defined by imaging or risk factors 

such as cholesterol9. Oftentimes studies aimed at the prevention of cardiovascular 

events focus on a 10-year risk percentage, which is defined as the risk of having 

a cardiovascular event, such as a MI or stroke in 10 years. Other studies have now 

commonly used MACE as a composite endpoint in randomized control trials. A 

review identified peer-reviewed articles published from 2010-2020 and found that 

the most common definition for MACE included acute myocardial infarction and 

stroke (15.5%), and other studies often included all-cause death or cardiovascular 

death in the MACE outcome10.  

Many prospective cohort studies have tried to identify risk factors for 

ASCVD development using demographic and lab data starting with the 

Framingham Heart Study in 194811. The study led to the identification of three risk 

factors associated with the development of coronary heart disease (CHD): 

elevated serum cholesterol levels, hypertension, and the presence of left 

ventricular hypertrophy on electrocardiogram12. By the 1970s, the risk factors 

thought to be most important expanded to include physical inactivity, diabetes, 
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glucose intolerance, serum triglycerides, high LDL cholesterol, low HDL 

cholesterol, atrial fibrillation, LVH, and heart failure13.  These studies eventually led 

to the development of the new pooled ASCVD risk equations14, which included 

cohorts of African-American and white participants with 12 years of follow-up data. 

This led to the creation of a 10-year risk score of ASCVD for African American and 

white men and women who were 40-79 years of age. This score uses age, sex, 

blood pressure, cholesterol, diabetes, smoking, and current hypertension 

treatment to sort patients into risk categories from low to very high-risk guide the 

medical management of ASCVD. This score was then validated in the community 

and found to overestimate 5-year cardiovascular risk15. While ASCVD is currently 

used to guide medical management, it may not be accurate for patients that are 

not African-American or white15,16, or without comorbidities such as diabetes15. 

ASCD risk was also found to not account for socioeconomic status17.  

Genetic data has also been used for cardiovascular risk calculations. 

Individuals with familial hypercholesteremia have extreme ASCVD risk. Familial 

hypercholesteremia is due to mutations in the LDL receptor gene, apolipoprotein 

B gene, or PCSK9 genes causing elevated levels of LDL cholesterol usually >190 

mg/dL. Homozygotes, about 1-6 per million people, usually begin to develop 

angiographically detectable coronary artery disease (CAD) by age 1318,19. 

Heterozygotes, about 1 in 500 people, demonstrate angiographically detectable 

disease by age 17-2518,19. Genetic FH is associated with a 22-fold increased risk 

for CAD20. Furthermore, genome-wide association studies have identified several 

loci associated with plaque development, as well as suggested a causal role 
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between genetic predisposition and ASCVD21,22.   However, screening based on 

genetics does not seem to be effective for community screening since 7% of adults 

in the USA have severe hypercholesterolemia and the majority of these adults do 

not have a genetic cause20.  

Imaging is another modality that has been used to risk-stratify patients, 

including brachial artery reactivity testing, vascular compliance testing, aortic and 

carotid MRI, and US, and CT scans. B-mode carotid ultrasound is used to measure 

carotid intima-media thickness (IMT), which has been widely used as a surrogate 

for the presence of atherosclerosis23. A meta-analysis demonstrated that the 

relative risk of stroke was 1.32 per 1-standard deviation difference in carotid artery 

IMT, and similarly, the relative risk of myocardial infarction was 1.26 per 1-standard 

deviation difference in carotid artery IMT24. This led to the inclusion of carotid IMT 

in the assessment of the cardiovascular risk of CVD in 201025. However, studies 

demonstrated that although the carotid IMT was associated with future 

cardiovascular events, carotid IMT did not outperform traditional risk factor 

calculations and did not significantly change risk calculation when added23. In 

2013, routine IMT was no longer recommended for clinical risk assessment14. A 

few studies have shown the presence of plaques on ultrasonography might be 

more predictive for future cardiovascular events26,27, however, its routine use 

remains controversial23. Perhaps the most well-defined risk score is CT-derived 

coronary artery calcium (CAC) scores, which quantify the burden of atherosclerotic 

plaques in coronary vessels28 through coronary artery calcium (CAC) scores.  
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1.4 Agatston Score 

Current guidelines primarily use CAC for cardiovascular risk assessment 

and suggest its use to determine if a borderline-risk patient should start statin 

therapy29,30. In the 1990s, Agatston et. al. demonstrated that coronary artery 

calcium burden could be calculated using CT scans31. The Agatston score (AS) 

was calculated as the sum of coronary artery calcium plaque volumes, assigning 

a weighted calcium peak CT attenuation factor (Hounsfield units) to the highest 

density of calcification in that plaque31.  

A variety of studies have since demonstrated that an increasing Agatston 

score is highly predictive of MACE and outperforms other risk factors in 

asymptomatic populations32–34. The NHLBI’s MESA demonstrated that CAC was 

predictive of CHD events across ethnicities and ages33,35. Specifically, participants 

with a CAC score of 1-100 had a four times higher risk of coronary events, and 

those with a score > 100 were seven to ten times more likely to have a coronary 

event33. When analyzing the MESA results over a 12 year follow-up, CAC showed 

the best performance from 735 variables from non-invasive tests, questionnaires, 

and biomarker panels34. The Dallas Heart Study, a prospective study, also 

demonstrated the addition of CAC to the traditional risk factor model resulted in 

the increased predictive ability of coronary events36. In another landmark study, 

the Heinz Nixdorf Recall Study demonstrated CAC predicted stroke independently 

of traditional risk factors in low and intermediate risk populations37. A meta-analysis 

pooling data across 3 studies showed that the relative risk of stroke with CAC > 0  

was 2.9538.  
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The calcium score has also been studied in cancer patients. NLST 

participants8 were evaluated by three methods of calcium scoring: visual 

assessment, vessel-specific scoring, and the Agatston score39. For overall visual 

assessment, radiologists described the calcium burden as none, mild, moderate, 

or heavy upon initial visual assessment. For vessel-specific scoring, radiologists 

calculated a calcium score for each of the 10 coronary vessel segments and 

summed these scores. Using multivariate cox regression for time to CHD death, 

they found that all three methods were comparable for risk assessment, with high 

calcium scores in each category corresponding to a hazard ratio of greater than 6 

for death from CHD39. 

More recently, Zeleznik et. al. applied deep learning methods to automate 

calcium score calculations using the Agatston method40. In this proof-of-concept 

study, they evaluated over 20,00 individuals from the Framingham Heart Study11 

and NLST, using ASCVD mortality as the outcome. They developed a deep-

learning-based coronary calcium measurement, which relied on heart 

segmentation of the CT scans followed by volumetric implementation of AS31.  

In another study, Atkins et. al. demonstrated that deep learning-based CAC 

was significantly predictive of MACE when applied to treatment planning CT scans 

for lung cancer patients. Another study in breast cancer patients demonstrated 

automated CAC scoring was strongly associated with coronary artery disease41. 

1.5 Limitations to the Agatston Score 

While the current AS is predictive of MACE, the AS does not provide 

information on the location or distribution of the plaque. Multiple studies have 
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looked at CAC distribution amongst coronary vessels by manual segmentation. 

These studies demonstrated the number of coronary vessels with calcium burden 

and the presence of CAC in the proximal dominant coronary artery independently 

predict MACE and significantly improved the discriminatory capacity of AS to 

predict MACE42,43.  

Another study extracted previously defined radiomic features from 

segmented CAC and generated a radiomic score using 20 of these key features. 

They demonstrated that when the radiomic score was used with AS, it significantly 

improved MACE prediction44. Machine learning has been applied to CT 

angiography data to identify radiomic feature importance but has not yet been 

applied for feature extraction45,46.  

Another limitation of the current AS is that it measures calcium scores as a 

product of volume and density. However, previous studies have demonstrated that 

while the volume of calcium burden does correlate with increased risk of major 

cardiovascular events, density might be inversely correlated and protective of 

adverse events47,48.  

Given recent literature demonstrating the utility of applying deep learning 

methods to automate calcium scoring and the known limitations of the Agatston 

scoring method, we aim to use deep learning to develop a more robust imaging-

based predictive biomarker of MACE. We hope this new biomarker would increase 

predictive power, enabling clinicians to appropriately risk-stratify and provide 

preventive care for patients.  
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1.6 Deep learning and cardiology 

Physicians are routinely required to integrate data from multiple different 

modalities including but not limited to imaging, lab findings, and exam findings to 

make an actionable clinical judgment. The field of artificial intelligence was founded 

to describe human intelligence so precisely that a machine would be able to mimic 

it. Deep learning is a type of machine learning that relies on multi-layered neural 

networks to integrate multiple data streams and infer intelligently from that data49. 

A neural network consists of many connected neurons or processors that produce 

a sequence of activations, either influenced by the environment or other 

processors. The task of a neural network is to identify the weights or states that 

make a neural network exhibit the desired behavior, such as identifying a tumor. 

Given the advancements in computation, deep learning could help augment 

clinical decision-making in the future, thereby improving clinical outcomes50.  

Cardiovascular medicine is well suited to deep learning applications. For 

instance, clinical information is captured continuously through electrocardiograms 

or wearable devices. Deep learning has also been used to classify images from 

arrhythmia detection to image segmentation for cardiac MRIs, echocardiography, 

and CT scans50. Deep learning can further be subdivided into supervised and 

unsupervised learning. Supervised learning requires the input data to be labeled, 

i.e., this structure is the left atrium, providing direct feedback for training. 

Unsupervised learning is unbiased and asks for the machine to find hidden 

structures in the data, clustering all similar structures as left atriums. This approach 

allows for identifying novel patterns of features within the data49.  
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1.7 Automated image segmentation 

Deep learning approaches often involve isolating a region of interest, such 

as the total heart. Segmentation may be manual or deep learning based. Manual 

segmentations are time-consuming and subject to observer bias51. Deep-learning 

methods often require a trial and error process, adapting and training a neural 

network to the specific task, making decisions about data augmentation or post-

processing52. Recently, nnU-Net was developed to overcome these challenges. 

The segmentation method nnU-Net performs automated configuration of pre-

processing, network architecture, training, and post-processing for segmentation-

based tasks53. This algorithm was then validated on 23 public datasets and 

outperformed other existing approaches. An ongoing study developed a hybrid 

algorithm54 that applied the nnU-Net model to segment the whole heart and then 

applied a multi-atlas-based mapping of cardiac substructures55. Atlas-based 

segmentation relies on mapping labeled image structures onto the target image. 

Previously, a study looking at participants in the National Lung Screening Trial 

used multi-atlas-based mapping of coronary vessels and valves to calculate 

Agatston scores spatially using a slab approach56. They found that while slab-

based Agatston scores outperform patient characteristic-based risk calculators, 

the total Agatston score performed similarly to the slab-based Agatston score. This 

may be a result of approximations used to map coronary features onto the heart. 

While multi-atlas approaches have been able to accurately segment the 

whole heart and its chambers, there has not been much success with smaller 

structures such as coronary vessels57,58. The multi-atlas-based mapping of cardiac 
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substructures resulted in the mapping of 17 cardiac substructures on the dataset, 

including chambers and coronary vessels55. The accuracy of these automated 

segmentations was calculated using Dice scores, where 1 corresponds to a pixel-

perfect match between the model output and the manually segmented image. It 

was found that whole heart segmentation had a Dice coefficient of 0.94, suggesting 

high accuracy, and Dice coefficients for the four chambers averaged around 0.85. 

However, the Dice scores for the coronary arteries were as low as 0.03, suggesting 

this multi-atlas approach might not be appropriate for smaller structures such as 

vessels55.  

1.8 Radiomic Features 

Radiomics is a field focused on extracting quantitative data from medical 

images59. Extraction of these radiomic features often includes segmenting the 

region of interest, processing the image segment, and radiomic feature calculation. 

Image processing attempts to standardize uptake values as well as denoise the 

data. Radiomics relies on using advanced mathematical analysis of the spatial 

distribution of signal intensities and relationships between pixels to describe image 

features51. These features can further be divided into classes: statistical 

(histogram-based and texture-based, model-based, transform-based and shape-

based)60. Transform-based features analyze the image matrix in a different space, 

following a Fourier, Gabor, or wavelet transformation. Due to different software 

implementations of these steps, radiomic features from published studies have 

been hard to reproduce61–63. Following these studies, the Image Biomarker 

Standardization Initiative set out to standardize a set of 169 radiomic features60. 
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Importantly, the initiative used the most common image processing steps and 

provided reference values using these methods. These guidelines allow for 

standardized feature calculations to capture tissue properties such as shape or 

heterogeneity. These radiomic features then allow for high-dimensional 

information to be captured about medical images and has applications for 

biomarker development for MACE. 
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Chapter 2: Statement of purpose 

Cancer patients provide a unique population for which there is increased 

risk of MACE and available CT data. We aim to use the NLST cohort as our training 

and validation cohort. The NLST lung screening trial8 has low-dose non-contrast 

CT scans for 26,722 participants. 

Aim 1: Previous studies have demonstrated successful segmentation of large 

cardiac substructures, yet there has been less success with segmenting smaller 

substructures. We will use deep learning methods to segment both large and small 

cardiac structures on CT scans. 

• Aim 1A: We will apply the pre-trained nnU-Net model to low-dose non-gated 

CT scans from the NLST dataset. We will then validate if we correctly 

segmented large and small cardiac features. 

• Aim 1B: For cardiac substructures that we were not able to segment 

correctly, we will train a deep learning model using nnU-Net on manually 

segmented features on the NLST CT scans. 

Aim 2: We will seek to better understand if these automated cardiac segments are 

predictive of MACE as they provide a low-cost non-invasive way to predict 

cardiovascular risk. 

• Aim 2A: Previous studies largely rely on image features contained within 

the coronary vasculature, and we wish to identify if there are any other 

features in CT scans including heart volume that may be predictive of 

MACE.  
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Aim 3: Because of the limitations of the Agatston score, we wish to better 

understand unique image features that are predictive of MACE.  

• Aim 3A: We will extract radiomic features from our automatically segmented 

coronary structures to give us a high-dimensional dataset. We will use 

multivariate logistic regression to train a predictive model for MACE using 

these radiomic features. 

• Aim 3B: We will compare our imaging-based biomarker to the Agatston 

score for its ability to predict MACE. 
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Chapter 3: Materials and Methods 

3.1 Dataset 

The National Lung Screening Trial (NLST)8 enrolled 53,454 participants 

from August 2022 to April 2004 at 33 U.S. medical centers. The NLST was 

approved by the institutional review board at each of the 33 sites. Before 

randomization, participants provided written informed consent. 

Participants were eligible for the trial if they were between 55 and 74 years 

of age, had a smoking history of at least 30 pack-years, and had quit within the 

previous 15 years. Demographic data were collected at the time of randomization 

through questionnaires. This demographic data included information on age, 

gender, ethnicity, education level, and smoking behavior8. Participants were 

excluded at the time of randomization if they had a diagnosis of lung cancer, had 

a chest CT in the previous 18 months, or had hemoptysis or unexplained weight 

loss of more than 15 lbs.  Participants were then randomized to screenings by low-

dose CT or x-ray.  

 For the 26,722 participants that underwent CT screening, they were invited 

to undergo three screenings (T0, T1, T2) at 1-year intervals. All low-dose CT scans 

were acquired with multidetector scanners with a minimum of 4 channels64. The 

average effective dose of the screening CT was selected to be 1.5 mSv, lower than 

the average of 8 mSv used for diagnostic chest CT. All of the scanning machines 

met the technical standards set by the American College of Radiology64. 

The NLST CT data is publicly available and was obtained with approval from 

the National Cancer Institute (NCI) through the NCI’s Cancer Data Access System 
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(CDAS) on June 2, 2022, with access until June 2, 2027. When we obtained 

access to the NLST CT scans, the CT data had been previously split into training 

and testing datasets. For our initial data analysis, we selected participants with 

screen-detected lung cancer in the training dataset. Because of the strong 

association between cancer and poor cardiovascular outcomes, we sought to 

identify image-based biomarkers within this dataset. This results in 307 

participants being selected for our initial analysis as shown in Figure 1. We further 

enhanced this dataset for preliminary analysis by selecting participants with deaths 

from cardiovascular causes (see 3.3 NLST Outcomes): 15 participants with cardiac 

deaths and 79 participants with no cardiac deaths during the follow-up period. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. National Lung Screening Trial Flowchart. This flowchart details the total number of 
participants in the NLST trial and the selection criteria for our sample dataset. 
 

3.2 Cardiac Segmentation 

For the automated cardiac segmentation on CT scans, we implemented a 

model based on nnU-Net architecture. nnU-Net is a deep-learning segmentation 
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method that automates configuration, pre-processing, network architecture 

selection, training, and post-processing53. Given a new segmentation-based task, 

the algorithm extracts dataset properties to infer rule-based parameters for 

segmentation and combines these with fixed parameters. The nnU-Net then 

determines the optimal ensemble of these models. Finnegan et. al. developed a 

hybrid algorithm that implemented this nnU-Net model to perform heart 

segmentations on CT scans54. Following the identification of the heart structure, 

multi-atlas cardiac segmentation was implemented55 to map 17 cardiac sub-

structures including large and small coronary arteries, ventricles, atriums, heart 

valves, and conduction nodes. This code was available through the PlatiPy library, 

a processing library and toolkit for medical imaging in Python65. 

NLST CT scans were downloaded from the Cancer Data Access System 

and uploaded onto a secure Amazon Web Services S3 bucket. NLST CT scans 

were selected for the subset of 84 participants. Each patient had multiple scans 

each year following the time of randomization. To ensure accurate follow-up times, 

the T0 scan was used which was the CT scan the year the patient was randomized 

during the NLST trial. Scans were further selected to be axial images and have 

soft-tissue reconstruction. 

The selected CT scans were processed and segmented on a secure 

Amazon Web Services EC2 instance (4 vCPUs, Deep Learning AMI GPU PyTorch 

1.12.0 (Amazon Linux 2)). Using code from the PlatiPy library, selected scans were 

converted from DICOM to NiFTI formats, and the automated segmentation 

algorithm was applied by running a Python script on the EC2 instance.  
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Once we validated that the code ran successfully, we worked with the 

research team at Visage Imaging© to upload our images on their secure research 

API as well as integrate the segmentation code from PlatiPy. Khaled Bousabarah 

helped us to implement this code. We then batch-processed 84 scans to generate 

18 cardiac substructures that we could visualize as structures within the Visage 

API.  

We first focused on large cardiac substructures and coronary arteries. To 

test the accuracy of these segments, Arman Avesta, a trained radiologist, helped 

check the accuracy of select substructures for every 10th CT scan. For structures 

that had low accuracy, manual segmentation was performed. This was done by 

Aishwarya Nene and Crystal Cheung, following training provided by Arman Avesta. 

Manual segmentations were reviewed by Sanjay Aneja, Assistant Professor of 

Therapeutic Radiology. These structures will then be used to train a new nnU-Net 

model to correctly identify these cardiac substructures on our NLST CT dataset. 

3.3 NLST Outcomes 

NLST data has a follow-up time until 12/31/09, hence mortality, survival, 

and incidence analyses were all done by adjusting the follow-up time to this date 

for participants that were followed until a later timepoint. If a patient had not died, 

a fixed number of 58.2 days was subtracted from the follow-up time.  

The NLST trial did not contain data for non-fatal MI or stroke, hence 

mortality from cardiovascular disease was used as the primary outcome for our 

study. Chiles et. al. previously used coronary heart disease death, which they 

defined by ICD codes I20-I25, I46, and I50; as well as all-cause mortality to assess 
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coronary artery calcification scoring methods in the NLST trial39. The World Health 

Organization defines mortality from cardiovascular diseases as including 

specifically diseases of the heart, essential hypertension and hypertensive renal 

disease, and cerebrovascular diseases66. However, the most inclusive definition 

restricts all deaths from cardiovascular disease as ICD codes I10-I79. We used 

these three different definitions of cardiac deaths (Table 1) across all NLST 

participants who received CT screening.  

 Diseases ICD Codes 

Coronary heart disease CHD I20-I25, I46, I50  

Specific CVD CHD, diseases of the heart, 
Essential hypertension and 
hypertensive renal disease, 
Cerebrovascular diseases 

I100-109, I11, I13, I20-51, 
I10, I12, I15, I60-169 

All CVD CHD, diseases of the heart, 
Essential hypertension and 
hypertensive renal disease, 
Cerebrovascular diseases, 
aneurysms, HHT, etc. 

I10-I79 

Table 1. Cardiovascular death definitions. Definitions for cardiovascular death are listed from 
most specific to most inclusive. The diseases associated with each label as well as their ICD-10 
codes are listed. 

 

 For each definition of cardiovascular death, all participants in the NLST CT 

database were categorized by ICD-10 codes provided. About 19.5% of participants 

passed away during the follow-up period (N=26722). Coronary heart disease-

related deaths were responsible for 14.4% of deaths, while deaths from any 

cardiovascular cause were responsible for 23.9% of deaths (Figure 2). To have 

discerning power in our model, we chose the definition that included deaths from 
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all cardiovascular causes. Furthermore, we selected cardiovascular death in our 

subset of 84 participants for which we initially trained our model. 

Figure 2. NLST cardiovascular outcomes for different cardiac diseases. Pie charts represent 
the fraction of participants that passed away due to a cardiac cause for each definition of 
cardiovascular death. The percentage of participants that passed away and the percentage of 
total deaths is listed below each figure. 

 

3.4 Radiomic Feature Extraction  

For radiomic feature extraction, we used Pyradiomics, a flexible open-

source platform implemented in Python67. These features comply with the feature 

definitions described by the Imaging Biomarker Standardization Initiative60. 

Working with Visage Imaging© research team, we implemented the radiomic 

feature extraction code on the Visage API. We selected cardiac substructures of 

interest, extracting radiomic features from both the original image as well as the 

wavelet-filtered image. The wavelet filter yield 8 decompositions per level by 

applying a high or low pass filter across the three dimensions of the CT image67. 

Total=26722

Cardiac Death from CHD

No  cardiac death

2.8% of patients

14.4% of deaths

4.4% of patients

22.5% of deaths

4.7% of patients

23.9% of deaths

Total=26722

Cardiac Death from 

specific CVD

No  cardiac death

Total=26722

Cardiac Death from all CVD

No  cardiac death

Coronary heart disease Specific CVD All CVD
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This transformation allowed for a higher dimensional dataset for model training and 

development. 

3.5 Feature Scaling and Selection  

Before model training, it is necessary to appropriately scale the data and 

select features of high importance. Standardization of a dataset is commonly 

required for many machine learning techniques that perform assuming all features 

are centered around 0 and have a variance of that same order. Since radiomic 

features all have varying scales, we implemented a standard scaler from the scikit-

learn library. This scaler removes the mean and scales each variable to unit 

variance. We first aggregated radiomic features from all selected cardiac 

substructures, scaled the dataset, and then selected features associated with 

cardiac death. 

Following scaling, we used minimum redundancy maximum relevance 

(mRMR) feature selection to sort the different radiomic features. The mRMR 

algorithm was developed first using microarray gene expression data68. 

Commonly, filter methods for feature selection select the top X variables that are 

associated with the outcome. mRMR goes one step further to remove variables 

that are highly correlated amongst themselves. This allows for the selection of 

efficient features as well as broad features that are capturing a variety of different 

information about the dataset. Python was used to implement mRMR for selection 

on our dataset, for categorical feature selection of the categorical variable of 

cardiac death, as defined above. 
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3.5 Model Training 

 For our model development, we focused on developing a cardiac risk score 

that was based on CT-imaging based features. We focused on developing a score 

using three levels of information from the CT scan. Because the widely used 

Agatston score currently relies on calcifications from the coronary arteries, our first 

composite score relies on radiomic features from segmented coronary arteries 

alone. The other two composite scores we wished to discover were based on the 

whole heart and its major substructures, and a score based on imaging features 

present in the whole chest CT scan including the lungs. 

 For our model design, we used CT scans from the NLST with our primary 

outcome as death from all cardiovascular diseases. We used both automated and 

manual segmentations to identify cardiac substructures including the cardiac 

chambers and small coronary arteries. Following segmentation, radiomic features 

were extracted as detailed above for the selected cardiac substructures. Features 

were scaled and selected using mRMR with cardiac death as the outcome.  

We used the top 40 radiomic features to train our logistic regression model. 

The dataset of 84 participants was split into training (N = 63) and validation cohorts 

(N = 21). For the training dataset, we first used univariate selection with a 

significance level of P ≤ 0.15 to select variables that were significantly associated 

with our outcome variable. We then used backward elimination on a logistic 

regression model to iteratively remove features until all remaining features had a 

significance level of P ≤ 0.05. We then validated the model on the validation cohort 

and reported the AUC. 
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Figure 3. Experimental design flowchart. Starting with whole CT scans, we first segmented our 
images to areas of interest. We extracted radiomic features from these structures and trained our 
model to develop a composite score based on coronary arteries, whole heart, and whole CT.  

 

3.6 Statistical Analysis 

Prism and Matplotlib were used for the visualization of the data. To compare 

two groups of patient characteristics, unpaired parametric t-tests were performed 

to identify statistically significant (P < 0.05) differences. 

For univariate feature selection, we ran univariate linear regression tests 

using the scikit-learn library, returning F-statistics and p-values. The p-values were 

used to select for features that would be used for the model training. Logistic 

regression was run using the scikit-learn library and p-values were reported for the 

coefficient of each variable, where the null hypothesis was that the coefficient is 

equal to zero (no effect). 

Receiver operating characteristic curves were used to report the 

performance of our classification model. The area under the curve is reported to 

represent the probability the model score will be able to predict future cardiac death 

correctly. 
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3.7 Student Contributions 

 The application to obtain the NLST CT scans was written and submitted by 

the student. The student was responsible for designing the experiment, writing, 

and implementing the code, performing the data analysis, and creating the  figures 

and writing the thesis under the supervision of Sanjay Aneja and Harlan Krumholz. 

 The student received help from the Visage research team to upload imaging 

data, implementing the pre-trained cardiac segmentation code into the Visage API, 

and batch processing radiomic extraction data. Arman Avesta assisted in 

validating automated segmentations and training Crystal Cheung and the student 

to perform manual segmentations of cardiac substructures. Sanjay Aneja validated 

the manual segmentations. Arman Avesta assisted in exporting the manual 

segmentations from the Visage API and running the nnU-Net model to retrain the 

coronary artery segmentations. 
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Chapter 4: Results 

4.1 Patient Selection 

Patient demographics for all NLST CT scan participants and our selected 

sample dataset are provided in Table 2. Participants in our sample dataset were 

significantly older (P <0.001) by 2 years compared to the total dataset, smoked 12 

more pack-years (P <0.001), had shorter follow-up times (P < 0.001). This is likely 

due to our selection criteria that selected for participants with screen-detected lung 

cancer and a high proportion of cardiovascular deaths (17.9%). We saw a similar 

proportion of male and female participants in both datasets. 

Characteristic All Participants (N = 26722) Sample Dataset (N = 84) 

 
Mean ± SD 

 

Age (yrs) 61.4 ± 5.0 63.9 ± 5.3 

Smoking history (Pack-

years) 

56.0 ± 24.0 68.2 ± 30 

Follow-up time (yrs) 6.3 ± 1.1 5.2 ± 2.2 

Sex no. (%) 
 

   Male 15769 (59.0) 54 (64.3) 

   Female 10953 (41.0) 30 (35.7) 

CVD Death 
  

   Yes 1266 (4.7) 15 (17.9) 

   No 25456 (95.3) 79 (94.0) 

Table 2. National Lung Screening Trial Patient Characteristics. Selected self-reported patient 
characteristics are shown for NLST participants who were randomized to CT screening 
(N=26722) and our cardiovascular death enhanced subset (N=84). 
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4.2 Cardiac Segmentation 

We implemented a hybrid algorithm54 onto the NLST CT scans. The 

algorithm uses a nnU-Net model to automate heart segmentation and uses multi-

atlas segmentation to map the other 17 cardiac substructures. The resulting axial, 

coronal and sagittal views are shown in Figure 4 below, with masks for the large 

chambers shown individually.  

 

 

 

 

 

 

 

 

 

 
Figure 4. Pre-trained nnU-Net cardiac segmentation model identifies large cardiac 
substructures. The cardiac pre-trained model segments the heart and 17 other cardiac 
substructures. The cardiac chambers are highlighted in this image. 
 

 To validate if these automated segmentations were correct, we 

implemented this code in Visage and visualized it on the Visage API. A sample CT 

scan with cardiac segmentation in Visage is shown in Figure 5. We ran the 

segmentation algorithm on all 84 participants selected for the study. 

Heart

R Atrium

L Ventricle

R Ventricle
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Figure 5. Segmentations visualized on Visage API. Cardiac Segmentation for CT scans on 
Visage API. The cardiac segmentation button applies the hybrid cardiac segmentation model to 
automatically segment 18 cardiac structures. 

 
Visualizing the cardiac segmentations on the Visage API, we had a trained 

radiologist review the segmentations for the total heart, atriums, ventricles, and 

small coronary arteries. For every 10th sample, starting with sample 1, segments 

were validated for accuracy. Total heart segmentation was accurate for all 9 

samples selected, and large structures such as the right atrium, right ventricle, and 

left ventricle had >75% accuracy. However, the left atrium was only accurate on 

2/9 scans and the coronary arteries were never correctly identified in the sampled 

CT scans. Results for each sample are shown in Table 3. Figure 6 shows how the 

coronary arteries and left atrium were erroneously segmented. 
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Table 3. Validating segmentations on Visage API. For each scan, a radiologist reviewed each 
segmentation for accuracy and determined if the segment was accurate (y) or not accurate (n). 
 

 
Figure 6. Pre-trained nnU-Net erroneously segments coronary arteries and L Atrium. (A) 
Calcifications appear as bright signals in the coronary arteries and are not correctly segmented 
as indicated by the lack of a yellow structure label. The left atrium, yellow label, is erroneously 
segmented and does not identify the correct dimensions or location. (B) The right coronary artery 
and left circumflex appear as round vessels on the CT scan, indicated by the red arrows, and are 
incorrectly identified by the segmentation algorithm, yellow labels, which are offset for both 
vessels. 
 

 For the incorrectly segmented coronary arteries and left atrium, we 

manually segmented 80 CT scans. Sample manual segmentations are shown for 

coronary arteries in Figure 7. These manual segmentations were validated by a 

radiologist. Following manual segmentation, we are currently in the process of re-

LAD (not segmented)

L Atrium 

(erroneously 

segmented)

L Main (not segmented)
L Cflx (not segmented)

R Coronary 
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training the nnU-Net model to correctly identify the four coronary arteries and the 

left atrium. 

 
Figure 7. Coronary arteries are manually segmented on Visage API. (A) The right coronary, 
labeled RCA_CTs, is marked in yellow. The left anterior descending artery, LAD_CTs, is marked 
in green and is anterior to the blue-labeled left circumflex, LCflx_CTs. (B) The LAD and LCflx are 
seen branching off the left main artery, LCA_CTs, labeled in turquoise. 

 

4.3 Cardiac substructure characteristics 

 Given the automated segmentations successfully identified the total heart 

and both ventricles, we aimed to understand if these characteristics of these 

features could predict MACE. Since left ventricular hypertrophy is a known risk 

factor of MACE12, we evaluated whether ventricular or total heart volume was 

predictive of MACE. Volume was calculated using the mesh volume generated by 

PyRadiomics. Because these CT scans were non-gated, we wanted to ensure the 

volumes calculated for the heart chambers were within range. We compared the 

left ventricle volumes to reference ranges from cardiovascular magnetic resonance 

left ventricular end-diastolic volume (LVEDV). For NLST CT images, the left 

ventricle volume was 164.8 ± 29.29 mL for men and 140.5 ± 34.6 for women. 

Reference ranges for LVEDV were 155 ± 30 for men and 112 ± 21 for women69. 

Because LVEDV calculations did not include the ventricular wall, measurements 

A B
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in the NLST CT scans were larger as they did include the ventricular wall and 

cavity. For both CT left ventricular volume and LVEDV, volume measurements 

were greater for men than women.  

 We further asked if automated volumetric measurements from non-gated 

CT scans were predictive of MACE. For this, we categorized participants according 

to whether they had a cardiac death during the NLST follow-up period. Total heart 

volume was significantly larger in the participants who had a cardiac death (P = 

0.002, Figure 8A). Ventricular volumes also showed similar differences between 

participants who experienced a cardiac death and not. Left ventricular and right 

ventricular volumes were significantly increased for participants with cardiac death 

(P = 0.001, P < 0.001, Figure 8B). 

 The difference between total heart volume across cardiac death status 

becomes more apparent when looking at participants in quartiles. For the upper 

quartile of total heart volumes, 1 out of 3 participants had a cardiac death during 

the follow-up time. In contrast for the lowest quartile of total heart volumes, no 

participants had a cardiac death (Figure 8C). A Kaplan-Meier survival curve is 

shown in Figure 9 for participants with the upper quartile and lower quartile of total 

heart volume. The hazard ratio of having an upper quartile heart volume compared 

to a lower quartile heart volume was 6.68 (95% CI: 1.42 to 31.6). 
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Figure 8. Heart volumes are increased in participants who had a cardiovascular death. (A) 
Participants who had a cardiac death had significantly increased total heart volume. (B) Ventricle 
volumes are larger for participants with cardiac death. (C) In the lower quartile of heart volume, 
participants did not have a cardiac death during the study follow-up period. However, 1/3 of 
participants with heart volume in the upper quartile had a cardiac death.  

 
Figure 9. Total Heart is predictive of survival. Kaplan-Meier curve is shown for patients with a 
lower quartile of total heart volume and an upper quartile of total heart volume. 

0 1000 2000 3000

0

50

100

Days elapsed

P
ro

b
a
b
ili

ty
 o

f 
S

u
rv

iv
a
l 

fr
o
m

 C
a
rd

ia
c
 D

e
a
th

Lower Quartile Heart Volume

Upper Quartile Heart Volume



 37 

 

4.4 Model Training and Validation 

 We then extracted radiomic features from these automated segments to 

generate a high-dimensional dataset to train a predictive model for MACE. We 

successfully extracted 960 radiomic features for each automated segment. After 

aggregating and scaling the features for both ventricles and the total heart, we 

used a minimum redundancy maximum relevance feature selection algorithm to 

select for the top radiomic features. These features were selected for the ability to 

categorize participants who had a cardiac death and those who did not. The top 

ten features are shown in Figure 10. 

 
 

Figure 10. MRMR feature selection from the ventricle and total heart radiomic features. 
Features were selected for the ability to categorize cardiac death and have been scaled by 
subtracting the mean and scaling to unit variance. 
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 After feature selection, we trained a model on the data from the 84 

participants. We split participants into a training cohort of 75% of the participants 

(N = 63) and a validation cohort with 25% of the participants (N = 21). In the training 

cohort, the top 40 features were screened using univariate selection with P ≤ 0.15. 

This resulted in 38 radiomic features being selected across all three cardiac 

segments. We then trained a logistic regression model with backward selection 

using these 38 radiomic features selecting for regression coefficients with P  ≤ 

0.05. The resulting model had four radiomic features that significantly predicted 

cardiovascular death. These features included two radiomic features from the total 

heart segment and one from each ventricle. Three were measures of heterogeneity 

within the image. The resulting ROC curve is shown in Figure 11, and the model 

had an AUC of 0.62 in the validation cohort (N = 21). The accuracy of cardiac death 

predictions was 0.86.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. ROC Curve for radiomic feature model prediction in the validation cohort. This 
logistic model regression has been trained on a training cohort using radiomic features from the 
ventricles and total heart segments on CT scans. 
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Chapter 5: Discussion 

5.1 Significance 

We demonstrate that nnU-Net successfully segments the total heart. Multi-

atlas-based segmentation onto this automated heart segmentation is also 

successful at identifying large cardiac substructures, such as the left and right 

ventricles. We also integrated this code into the Visage API, which is currently 

widely used across the Yale New Haven Health System, demonstrating the ability 

to automate segmentations on clinical CT scans in real-time. This automation of 

cardiac segmentation has tremendous potential to help expedite Agatston score 

calculations and allow for efficient imaging-based biomarker development. 

The automated cardiac substructures had features that were predictive of 

MACE, offering a low-cost non-invasive predictive biomarker. Both ventricular and 

total heart volumes were significantly larger in patients that had a cardiac death 

during the NLST follow-up time. The hazard ratio for cardiac death was over 6 

between patients who had the largest quartile of heart volume versus those in the 

smallest quartile. This hazard ratio is comparable to that found in previous studies 

looking at MACE predictive ability of calcium scores39. 

We were able to extract high-dimensional radiomic features from each of 

these cardiac substructures. This high-dimensional dataset allowed us to capture 

information about image texture, shape, and heterogeneity60. We found that 

heterogeneity-based radiomic features were predictive of MACE with an accuracy 

of 0.86. 
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Low-dose CT (LDCT) scans have been well-established as life-saving for 

cancer screening8. This study suggests that CT scans may also have utility in 

improving cardiovascular outcomes. This is a unique study that utilizes readily 

available imaging studies for cancer patients to ascertain cardiovascular risk. Our 

findings have the potential to be applied to other cancer patients who receive chest 

CT scans for screening or staging. 

5.2 Challenges and Limitations 

 Our chosen dataset is artificially selected for increased cardiovascular 

death outcomes. As a result, the dataset is significantly different in comparison to 

the total National Lung Screening Trial study. Patients have more extensive 

smoking histories and more mortality due to lung cancer and cardiovascular 

disease. Since smoking and lung cancer are known risk factors for developing 

cardiovascular disease30, our model’s predictive ability may be limited to this very 

sick population. While these experimental design decisions were aimed at 

improving the model signal, it will be important to stress test this model against 

different variables, including smoking history, demographic data, and mortality 

from lung cancer. It will also be important to test this model in patients who do not 

develop cancer for external validity. 

 Consistent with previous studies57,58, multi-atlas-based segmentations were 

not successful in identifying small structures such as coronary arteries. This 

imperfect contouring could be due to cardiac motion in the non-gated CT scans 

which were not isolated to systole or diastole, resulting in variability of vessel 

architecture. It will be important to see whether a nnU-Net approach trained on 
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manually segmented small structures will be able to overcome these limitations 

and correctly delineate these small structures.  

 Although the NLST CT scans were non-gated, automated segmentations of 

the cardiac substructures had calculated volumes that were appropriately within 

range compared to reference values from cardiac MRIs69. It will be important to 

validate these automated volumes with calculated volumes from manual 

segmentations on NLST CT scans.   

 While our composite predictive biomarker did show some predictive ability 

for MACE, our study was underpowered and only focused on large cardiac 

substructures. Our validation cohort consisted of 21 patients and only had 4 

cardiac deaths, out of which 3 patients were correctly classified, leading to a poor 

AUC of 0.62. In future studies, it will be important to expand the number of patients. 

Furthermore, following the successful automation of smaller cardiac substructures, 

it will be important to include radiomic features from these segments in the model 

training and validation.  

5.3 Future Directions 

 We will apply a nnU-Net approach to segment the left atrium and smaller 

coronary arteries successfully. To validate successful segmentation, for all 

automated structures, we will use a paired t-test to compare volume calculations 

for these automated segments with volume calculations from radiologist-validated 

manual segmentations. We will increase our sample size by applying this 

automated approach to all NLST participants. 
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 Once we have successful segmentations for all cardiac substructures, we 

will work towards developing a three-tiered biomarker. The biomarker we have 

found in this study only utilizes large cardiac substructures. We wish to develop a 

biomarker based on the coronary arteries, the total heart and its substructures, and 

the whole CT scan. For the whole CT scan, we wish to use radiomic features from 

the segmentations of the thoracic aorta and lungs.   

 Once we have trained our radiomic feature-based biomarker on our NLST 

patients at each level, we wish to compare it against standard-of-care Agatston 

score calculations for our NLST participants. Previous literature demonstrates 

calcium scoring varies across demographic data (sex, race, age) and imaging 

parameters9. We hope to also stress test our automated biomarker against 

demographic and imaging parameters to understand how our model performs in 

different populations. 

 Our ultimate goal is to develop a low-cost non-invasive imaging-based 

biomarker to accurately predict a person’s risk of developing MACE. We wish to 

integrate our biomarker with current imaging application software so clinicians will 

be able to calculate risk in real-time each time a patient receives a CT scan. 
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Dissemination 

This study has currently not been made available to the public through oral 

presentations or peer-reviewed publications. The manuscript is being prepared 

and will be submitted for review at a peer-reviewed publication soon.  



 44 

 

References 

1.  Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics—
2020 Update a Report from the American Heart Association. Vol 141.; 2020. 
doi:10.1161/CIR.0000000000000757 

2.  Falk E. Pathogenesis of Atherosclerosis. J Am Coll Cardiol. 2006;47(8 SUPPL.):0-
5. doi:10.1016/j.jacc.2005.09.068 

3.  Sturgeon KM, Deng L, Bluethmann SM, et al. A population-based study of 
cardiovascular disease mortality risk in US cancer patients. Eur Heart J. 
2019;40(48):3889-3897. doi:10.1093/eurheartj/ehz766 

4.  Al-Kindi SG, Oliveira GH. Prevalence of Preexisting Cardiovascular Disease in 
Patients with Different Types of Cancer the Unmet Need for Onco-Cardiology. 
Mayo Clin Proc. 2016;91(1):81-83. doi:10.1016/j.mayocp.2015.09.009 

5.  Handy CE, Desai CS, Dardari ZA  et al. The association of coronary artery 
calcium with noncardiovascular disease from the Multi-Ethnic Study of 
Atherosclerosis. JACC Cardiovasc Imaging. 2016;9(5):568-576. 
doi:10.1016/j.jcmg.2015.09.020 

6.  United States Department of Health and Human Services. The Health 
Consequences of Smoking—50 Years of Progress A Report of the Surgeon 
General. A Rep Surg Gen. 2014:1081. 

7.  Critchley JA, Capewell S. Smoking cessation for the secondary prevention of 
coronary heart disease. Cochrane Database Syst Rev. 2012. 
doi:10.1002/14651858.cd003041.pub3 

8.  The National Lung Screening Trial Research Team *. Reduced Lung-Cancer 
Mortality with Low-Dose Computed Tomographic Screening. N Engl J Med. 
2011;365(5):395-409. 

9.  Rosenblit PD. Extreme Atherosclerotic Cardiovascular Disease (ASCVD) Risk 
Recognition. Curr Diab Rep. 2019;19(8). doi:10.1007/s11892-019-1178-6 

10.  Bosco E, Hsueh L, McConeghy KW, Gravenstein S, Saade E. Major adverse 
cardiovascular event definitions used in observational analysis of administrative 
databases: a systematic review. BMC Med Res Methodol. 2021;21(1):1-18. 
doi:10.1186/s12874-021-01440-5 

11.  DAWBER TR, MEADORS GF, MOORE FE. Epidemiological approaches to heart 
disease: the Framingham Study. Am J Public Health. 1951;41(3):279-281. 
doi:10.2105/ajph.41.3.279 

12.  KANNEL WB, DAWBER TR, KAGAN A, REVOTSKIE N, STOKES J. Factors of 
risk in the development of coronary heart disease--six year follow-up experience. 
The Framingham Study. Ann Intern Med. 1961;55:33-50. doi:10.7326/0003-4819-
55-1-33 

13.  Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density 
lipoprotein as a protective factor against coronary heart disease. The Framingham 
study. Am J Med. 1977;62(5):707-714. doi:10.1016/0002-9343(77)90874-9 

14.  Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the 
assessment of cardiovascular risk: A report of the American college of 
cardiology/American heart association task force on practice guidelines. 
Circulation. 2014;129(25 SUPPL. 1):49-73. 
doi:10.1161/01.cir.0000437741.48606.98 

15.  Rana JS, Tabada GH, Solomon MD, et al. Accuracy of the Atherosclerotic 
Cardiovascular Risk Equation in a Large Contemporary, Multiethnic Population. J 



 45 

 

Am Coll Cardiol. 2016;67(18):2118-2130. doi:10.1016/j.jacc.2016.02.055 
16.  Y.C. C, H.M. L, S.M. C. Does use of pooled cohort risk score overestimate the 

use of statin?: a retrospective cohort study in a primary care setting. BMC Fam 
Pract. 2014;15:172. 
http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L
609766475%0Ahttp://dx.doi.org/10.1186/s12875-014-0172-y. 

17.  Henderson KH, Kaufman BG, Stearns S, et al. Validation of the Atherosclerotic 
Cardiovascular Disease (Ascvd) Pooled Cohort Risk Equations By Education 
Level: the Atherosclerosis Risk in Communities (Aric) Study. J Am Coll Cardiol. 
2016;67(13):1842. doi:10.1016/s0735-1097(16)31843-5 

18.  Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial 
hypercholesterolaemia: New insights and guidance for clinicians to improve 
detection and clinical management. A position paper fromthe Consensus Panel on 
Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur 
Heart J. 2014;35(32):2146-2157. doi:10.1093/eurheartj/ehu274 

19.  Mabuchi H, Koizumi J, Shimizu M, Takeda R. Development of coronary heart 
disease in familial hypercholesterolemia. Circulation. 1989;79(2):225-332. 
doi:10.1161/01.cir.79.2.225 

20.  Khera A V., Won HH, Peloso GM, et al. Diagnostic Yield and Clinical Utility of 
Sequencing Familial Hypercholesterolemia Genes in Patients With Severe 
Hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578-2589. 
doi:10.1016/j.jacc.2016.03.520 

21.  Franceschini N, Giambartolomei C, de Vries PS, et al. GWAS and colocalization 
analyses implicate carotid intima-media thickness and carotid plaque loci in 
cardiovascular outcomes. Nat Commun. 2018;9(1):1-14. doi:10.1038/s41467-018-
07340-5 

22.  Gan W, Bragg F, Walters RG, et al. Genetic predisposition to type 2 diabetes and 
risk of subclinical atherosclerosis and cardiovascular diseases among 160,000 
Chinese adults. Diabetes. 2019;68(11):2155-2164. doi:10.2337/db19-0224 

23.  Nezu T, Hosomi N, Aoki S, Matsumoto M. Carotid Intima-media thickness for 
atherosclerosis. J Atheroscler Thromb. 2016;23(1):18-31. doi:10.5551/jat.31989 

24.  Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical 
cardiovascular events with carotid intima-media thickness: A systematic review 
and meta-analysis. Circulation. 2007;115(4):459-467. 
doi:10.1161/CIRCULATIONAHA.106.628875 

25.  Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for 
assessment of cardiovascular risk in asymptomatic adults: Executive summary: A 
report of the American College of cardiology foundation/American Heart 
association task force on practice guidelines. Circulation. 2010;122(25):2748-
2764. doi:10.1161/CIR.0b013e3182051bab 

26.  Störk S, Van Den Beld AW, Von Schacky C, et al. Carotid artery plaque burden, 
stiffness, and mortality risk in elderly men: A prospective, population-based cohort 
study. Circulation. 2004;110(3):344-348. 
doi:10.1161/01.CIR.0000134966.10793.C9 

27.  Belcaro G, Nicolaides AN, Ramaswami G, et al. Carotid and femoral ultrasound 
morphology screening and cardiovascular events in low risk subjects: A 10-year 
follow-up study (the CAFES-CAVE study). Atherosclerosis. 2001;156(2):379-387. 
doi:10.1016/S0021-9150(00)00665-1 

28.  Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary 
Artery Calcification: From Mechanism to Molecular Imaging. JACC Cardiovasc 
Imaging. 2017;10(5):582-593. doi:10.1016/j.jcmg.2017.03.005 



 46 

 

29.  Grundy SM, Stone NJ, Bailey AL, et al. 2018 
AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA 
Guideline on the Management of Blood Cholesterol: A Report of the American 
College of Cardiology/American Heart Association Task Force on Clinical Practice 
Guidelines. Vol 139.; 2019. doi:10.1161/CIR.0000000000000625 

30.  Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the 
Primary Prevention of Cardiovascular Disease: A Report of the American College 
of Cardiology/American Heart Association Task Force on Clinical Practice 
Guidelines. Vol 140.; 2019. doi:10.1161/CIR.0000000000000678 

31.  Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. 
Quantification of coronary artery calcium using ultrafast computed tomography. J 
Am Coll Cardiol. 1990;15(4):827-832. doi:10.1016/0735-1097(90)90282-T 

32.  Hoffmann U, Massaro JM, D’Agostino RB, Kathiresan S, Fox CS, O’Donnell CJ. 
Cardiovascular Event Prediction and Risk Reclassification by Coronary, Aortic, 
and Valvular Calcification in the Framingham Heart Study. J Am Heart Assoc. 
2016;5(2):1-11. doi:10.1161/JAHA.115.003144 

33.  Detrano R, Guerci AD, Carr JJ, et al. Coronary Calcium as a Predictor of 
Coronary Events in Four Racial or Ethnic Groups. N Engl J Med. 
2008;358(13):1336-1345. doi:10.1056/nejmoa072100 

34.  Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular Event Prediction by 
Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 
2017;121(9):1092-1101. doi:10.1161/CIRCRESAHA.117.311312 

35.  Tota-Maharaj R, Blaha MJ, Blankstein R, et al. Association of coronary artery 
calcium and coronary heart disease events in young and elderly participants in the 
multi-ethnic study of atherosclerosis: A secondary analysis of a prospective, 
population-based cohort. Mayo Clin Proc. 2014;89(10):1350-1359. 
doi:10.1016/j.mayocp.2014.05.017 

36.  Paixao ARM, Ayers CR, El Sabbagh A, et al. Coronary artery calcium improves 
risk classification in younger populations. JACC Cardiovasc Imaging. 
2015;8(11):1285-1293. doi:10.1016/j.jcmg.2015.06.015 

37.  Hermann DM, Gronewold J, Lehmann N, et al. Coronary artery calcification is an 
independent stroke predictor in the general population. Stroke. 2013;44(4):1008-
1013. doi:10.1161/STROKEAHA.111.678078 

38.  Chaikriangkrai K, Jhun HY, Palamaner Subash Shantha G, et al. Coronary artery 
calcium score as a predictor for incident stroke: Systematic review and meta-
analysis. Int J Cardiol. 2017;236:473-477. doi:10.1016/j.ijcard.2017.01.132 

39.  Chiles C, Duan F, Gladish GW, Ravenel JG. Association of Coronary Artery 
Calcification and Mortality in the National Lung Screening Trial. 2016;276(1):82-
90. doi:10.1148/radiol.15142062.Association 

40.  Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to 
predict cardiovascular risk from computed tomography. Nat Commun. 2021;12(1). 
doi:10.1038/s41467-021-20966-2 

41.  Gal R, Van Velzen SGM, Hooning MJ, et al. Identification of Risk of 
Cardiovascular Disease by Automatic Quantification of Coronary Artery 
Calcifications on Radiotherapy Planning CT Scans in Patients with Breast Cancer. 
JAMA Oncol. 2021;7(7):1024-1032. doi:10.1001/jamaoncol.2021.1144 

42.  Blaha MJ, Budoff MJ, Tota-Maharaj R, et al. Improving the CAC Score by Addition 
of Regional Measures of Calcium Distribution: Multi-Ethnic Study of 
Atherosclerosis. JACC Cardiovasc Imaging. 2016;9(12):1407-1416. 
doi:10.1016/j.jcmg.2016.03.001 

43.  Ferencik M, Pencina KM, Liu T, et al. Coronary Artery Calcium Distribution Is an 



 47 

 

Independent Predictor of Incident Major Coronary Heart Disease Events: Results 
from the Framingham Heart Study. Circ Cardiovasc Imaging. 2017;10(10):1-9. 
doi:10.1161/CIRCIMAGING.117.006592 

44.  Eslami P, Foldy B, Scholtz JE, et al. Radiomics of coronary artery calcium in the 
framingham heart study. Radiol Cardiothorac Imaging. 2020;2(1). 
doi:10.1148/ryct.2020190119 

45.  Yang S, Koo BK, Hoshino M, et al. CT Angiographic and Plaque Predictors of 
Functionally Significant Coronary Disease and Outcome Using Machine Learning. 
JACC Cardiovasc Imaging. 2021;14(3):629-641. doi:10.1016/j.jcmg.2020.08.025 

46.  Tesche C, Bauer MJ, Baquet M, et al. Improved long-term prognostic value of 
coronary CT angiography-derived plaque measures and clinical parameters on 
adverse cardiac outcome using machine learning. Eur Radiol. 2021;31(1):486-
493. doi:10.1007/s00330-020-07083-2 

47.  Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque 
and risk of incident cardiovascular events. Jama. 2014;311(3):271-278. 
doi:10.1001/jama.2013.282535 

48.  Criqui MH, Knox JB, Denenberg JO, et al. Coronary Artery Calcium Volume 
and Density: Potential Interactions and Overall Predictive Value: The Multi-Ethnic 
Study of Atherosclerosis. JACC Cardiovasc Imaging. 2017;10(8):845-854. 
doi:10.1016/j.jcmg.2017.04.018 

49.  Schmidhuber J. Deep Learning in neural networks: An overview. Neural 
Networks. 2015;61:85-117. doi:10.1016/j.neunet.2014.09.003 

50.  Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for 
cardiovascularmedicine: A practical primer. Eur Heart J. 2019;40(25):2058-
2069C. doi:10.1093/eurheartj/ehz056 

51.  van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics 
in medical imaging—“how-to” guide and critical reflection. Insights Imaging. 
2020;11(1). doi:10.1186/s13244-020-00887-2 

52.  Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image 
analysis. Med Image Anal. 2017;42(December 2012):60-88. 
doi:10.1016/j.media.2017.07.005 

53.  Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-
configuring method for deep learning-based biomedical image segmentation. Nat 
Methods. 2021;18(2):203-211. doi:10.1038/s41592-020-01008-z 

54.  Finnegan R, Chin V, Chlap P  et al. Open-source, fully-automated hybrid cardiac 
substructure segmentation: development and optimisation. Phys Med Biol. 
2022;Under Revi. 

55.  Finnegan R, Dowling J, Koh ES, et al. Feasibility of multi-atlas cardiac 
segmentation from thoracic planning CT in a probabilistic framework. Phys Med 
Biol. 2019;64(8):0-20. doi:10.1088/1361-6560/ab0ea6 

56.  de Vos BD, Lessmann N, de Jong PA, Išgum I. Deep learning–quantified calcium 
scores for automatic cardiovascular mortality prediction at lung screening low-
dose ct. Radiol Cardiothorac Imaging. 2021;3(2). doi:10.1148/ryct.2021190219 

57.  Zhou R, Liao Z, Pan T, et al. Cardiac atlas development and validation for 
automatic segmentation of cardiac substructures. Radiother Oncol. 
2017;122(1):66-71. doi:10.1016/j.radonc.2016.11.016 

58.  Zhuang X, Rhode K, Arridge S, et al. An atlas-based segmentation propagation 
framework using locally affine registration - Application to automatic whole heart 
segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell 
Lect Notes Bioinformatics). 2008;5242 LNCS(PART 2):425-433. doi:10.1007/978-
3-540-85990-1_51 



 48 

 

59.  Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl 
Med. 2020;61(4):488-495. doi:10.2967/JNUMED.118.222893 

60.  Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker 
standardization initiative: Standardized quantitative radiomics for high-throughput 
image-based phenotyping. Radiology. 2020;295(2):328-338. 
doi:10.1148/radiol.2020191145 

61.  Berenguer R, Del Rosario Pastor-Juan M, Canales-Vázquez J, et al. Radiomics of 
CT features may be nonreproducible and redundant: Influence of CT acquisition 
parameters. Radiology. 2018;288(2):407-415. doi:10.1148/radiol.2018172361 

62.  Welch ML, McIntosh C, Haibe-Kains B, et al. Vulnerabilities of radiomic signature 
development: The need for safeguards. Radiother Oncol. 2019;130:2-9. 
doi:10.1016/j.radonc.2018.10.027 

63.  Meyer M, Ronald J, Vernuccio F, et al. Reproducibility of CT radiomic features 
within the same patient: Influence of radiation dose and CT reconstruction 
settings. Radiology. 2019;293(3):583-591. doi:10.1148/radiol.2019190928 

64.  * NLSTRT. The national lung screening trial: Overview and study design. 
Radiology. 2011;258(1):243-253. doi:10.1148/radiol.10091808 

65.  Chlap P, Finnegan R. Platipy documentation. https://pyplati.github.io/platipy/. 
Published 2022. 

66.  Organization WH, Geneva. ICD-10: International Statistical Classification of 
Diseases and Related Health Problems. Vol 2004. Second. 

67.  Van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics 
system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104-
e107. doi:10.1158/0008-5472.CAN-17-0339 

68.  Ding C, Peng H. Minimum redundancy feature selection from microarray gene 
expression data. Proc 2003 IEEE Bioinforma Conf CSB 2003. 2003;3(2):523-528. 
doi:10.1109/CSB.2003.1227396 

69.  Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al. Reference Ranges 
(“Normal Values”) for Cardiovascular Magnetic Resonance (CMR) in Adults and 
Children: 2020 Update. Vol 22. BioMed Central; 2020. doi:10.1186/s12968-020-
00683-3 

 

 


	Applying Deep Learning To Identify Imaging Biomarkers To Predict Cardiac Outcomes In Cancer Patients
	Recommended Citation

	Abstract
	Acknowledgments
	Chapter 1: Introduction
	1.1 Cardiovascular disease
	1.2 Cardiovascular disease and cancer
	1.3 Cardiovascular risk-stratification
	1.4 Agatston Score
	1.5 Limitations to the Agatston Score
	1.6 Deep learning and cardiology
	1.7 Automated image segmentation
	1.8 Radiomic Features

	Chapter 2: Statement of purpose
	Chapter 3: Materials and Methods
	3.1 Dataset
	3.2 Cardiac Segmentation
	3.3 NLST Outcomes
	3.4 Radiomic Feature Extraction
	3.5 Feature Scaling and Selection
	3.5 Model Training
	3.6 Statistical Analysis
	3.7 Student Contributions

	Chapter 4: Results
	4.1 Patient Selection
	4.2 Cardiac Segmentation
	4.3 Cardiac substructure characteristics
	4.4 Model Training and Validation

	Chapter 5: Discussion
	5.1 Significance
	5.2 Challenges and Limitations
	5.3 Future Directions
	Dissemination

	References

