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The Bionic Radiologist: avoiding blurry pictures and providing
greater insights
Marc Dewey 1 and Uta Wilkens2

Radiology images and reports have long been digitalized. However, the potential of the more than 3.6 billion radiology
examinations performed annually worldwide has largely gone unused in the effort to digitally transform health care. The Bionic
Radiologist is a concept that combines humanity and digitalization for better health care integration of radiology. At a practical
level, this concept will achieve critical goals: (1) testing decisions being made scientifically on the basis of disease probabilities and
patient preferences; (2) image analysis done consistently at any time and at any site; and (3) treatment suggestions that are closely
linked to imaging results and are seamlessly integrated with other information. The Bionic Radiologist will thus help avoiding missed
care opportunities, will provide continuous learning in the work process, and will also allow more time for radiologists’ primary
roles: interacting with patients and referring physicians. To achieve that potential, one has to cope with many implementation
barriers at both the individual and institutional levels. These include: reluctance to delegate decision making, a possible decrease in
image interpretation knowledge and the perception that patient safety and trust are at stake. To facilitate implementation of the
Bionic Radiologist the following will be helpful: uncertainty quantifications for suggestions, shared decision making, changes in
organizational culture and leadership style, maintained expertise through continuous learning systems for training, and role
development of the involved experts. With the support of the Bionic Radiologist, disparities are reduced and the delivery of care is
provided in a humane and personalized fashion.
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“For almost all conclusions the degree of
their probability should be determined, if
possible expressed in numbers.”
- Eugen Bleuler, Autistic-undisciplined

thinking in medicine and overcoming it,
19221

INTRODUCTION
Economic landscape
From an economic perspective, the inappropriate use and overuse
of diagnostic testing is important as it accounts for a substantial
portion of the $340 billion reported annually for all unnecessary or
inefficiently delivered services in the United States.2 Moreover, the
higher utilization of expensive imaging procedures in the United
States is striking when compared with the European Union and
the Euro Area (Fig. 1). This difference is possibly driven by the
availability of universal health coverage systems in Europe,3 which
has been shown to lead to highest equity, access, quality, and
resource savings.4 Nevertheless, values that matter most to
patients, such as quality of life and avoiding complications,5 have
become secondary at best in most health care systems around the

world and economic considerations instead of physician ethos are
driving medicine.6,7

Problem formulation
Beyond the economic forces driving medicine into directions that
are not directed at benefiting patients first, there are three major
self-made problems in diagnostic imaging that warrant considera-
tion. First, clinical service lines rarely calculate degrees of disease
probabilities of individual patients before diagnostic decision
making. Second, radiology images of the same body part are often
inconsistently analyzed even within a health care center.8 Third,
reports of radiology findings often lack adequate structure and
frequently use idiosyncratic terminology9 that does not match
with data needed for personalized treatment decisions resulting in
missed care opportunities as shown for reported aortic
aneurysms.10

Value-based radiology
The goal of value-based medicine is to improve patient outcomes
while at the same time reducing cost.11 To be successful in
supporting the implementation of value-based medicine,12 value-
based radiology needs to ensure integration of diverse sources of
information and patient centeredness.13 Value-based radiology
will also assume a central role in solving the above economic
problems, with attention to the three problem formulated above:
(1) Improving decision making about when to obtain diagnostic
imaging tests, (2) Increasing consistency in image analysis, and (3)
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Enhancing the link between test results and treatment recom-
mendations (Box 1).14 To be successful in these three areas, the
Bionic Radiologist14 needs to be established in order to make
judicious use of advances in artificial intelligence and digital
medicine in radiology.15

Vision of the future
Wouldn’t it be great if patient decisions about diagnostic testing
were influenced by degrees of disease probabilities and patient
preferences, if radiology images would be analyzed consistently at
any time of the day and at all sites, and if treatment
recommendations were closely linked to radiology imaging results
building on high physicians’ trust in and commitment to such new
processes to avoid missed care opportunities? The vision is thus to
avoid blurry pictures and provide greater insights for treatment
recommendations by the Bionic Radiologist.

TOWARDS THE BIONIC RADIOLOGIST FROM A
SOCIO–TECHNICAL PERSPECTIVE
The Bionic Radiologist is an approach to radiology combining
machine intelligence,16–18 developed using well-curated medical
data,19 and a human radiologist to leverage both the consistency
of automatic analysis and individual nuances of human perception
and interpretation.14,20 This approach is similar to the integration
of technology and humanisms portrayed by Dr Leonard McCoy in
Star Trek.21,22 This convergence of human and artificial intelli-
gence and its relevance for high-performance medicine has
recently been described in detail by Eric J. Topol.23 From an overall
system development perspective it is crucial that the integration
of machine intelligence systems with human radiologists leads to
an advanced human-computer-interaction with new forms of
collaboration24 enhancing the expertise in diagnosis and decision
making,25 while individual reservation and resistance to

collaborate with computers in decision making26 needs to be
considered as an implementation barrier (Table 1). There are
certain models providing a deeper understanding of resistance to
change in technology-intensive work environments. The technol-
ogy acceptance model from Davis27 argues that technology
acceptance is a matter of the perceived usefulness of a technology
and its ease of use. This implies that the black-box nature of
artificial intelligence solutions need to be overcome as they are
perceived as having an opaque design and limited transparency
of decisions.28 To increase the chance that the integration of
machine and human intelligence works, automated suggestions
should become understandable for instance using uncertainty
quantification.29 Transparency and clear decision structure can be
estimated as a necessary prerequisites for technology acceptance
but they do not define sufficient conditions. The social acceptance
of new technologies, individual behavior and attitudes need to be
integrated in the conceptual outline.30 In this regard the
consideration of perceived justice with the respect to the
physicians’ expert role31 is an issue. Wilkens & Artinger25

emphasize the mindfulness of individual expertise in workplaces
with distributed intelligence in order to explain counterproductive
work behavior respectively pro-active use of technologies.
Another crucial issue is the learning scenario which is provided
as part of the socio–technical system design. The radiology AI
tools, described in detail below in the impact section, provide new
opportunities for continuous learning systems that help in training
radiologists and radiology residents and integrating the advance-
ment of medical proficiency. But at the same time physicians need
to know how to feed back observations, critical remarks, potential
solutions etc. to the overall system. With respect to social
acceptance it is important to avoid conditions under which
individuals continuously learn from machines but where it is not
clear how machines learn from individuals. A mutual learning
process between machine and the human beings can be
considered as indicator for advancements in the social–technical
work system.

IMPACT OF THE BIONIC RADIOLOGIST
Guiding decision making
The foremost impact of the Bionic Radiologist is getting the right
imaging tests done, if any at all, in the right patients at the right
point in time.32 The prevalent issue of too much imaging in the
wrong patients could be overcome by better decisions about
which patients should undergo a specific imaging procedure and
when.33 This requires the integration of patient’s history into
decision support modules of electronic clinical decision support
systems. Such systems should be based on validated clinical
prediction rules that generate individual probabilities of disease,
before and after diagnostic tests according to Bayes theorem, and
can thus improve decision making about referral for diagnostic
imaging. Computer-based clinical decision support systems can
increase appropriateness of imaging for several diagnostic
imaging scenarios,34 and are also suitable for shared decision
making incorporating individual patient values.35 Values that
matter most to individual patients can thus be integrated into the
decision whether or not to perform certain diagnostic imaging
procedures and what to do with imaging test results based on
treatment preferences expressed by patients. The recent eGUIDE
initiative of the European Society of Radiology teaches medical
students and clinical residents about the principles of estimating
disease probabilities and the subsequent appropriate selection of
diagnostic tests and thus has the potential to bring this part of the
concept of the Bionic Radiologist to medical undergraduate
curricula as well as radiology resident training (http://www.
eurosafeimaging.org/esr-eguide).36

Fig. 1 Number of CT and MRI examinations per 1000 inhabitants for
the European Union, the Euro Area, and the United States. Data are
shown for those countries in the European Union and Euro Area for
which total numbers of CT (computed tomography) and MRI
(magnetic resonance imaging) exams were available, i.e. the sum of
in- and outpatient data. None of the European Union countries had
higher utilization than the United States. Data sources: Barmer GEK
Arztreport 2011 (for data from Germany). OECD (2018), Computed
tomography (CT) and Magnetic resonance imaging (MRI) exams
(indicator). https://doi.org/10.1787/3c994537-en and https://doi.org/
10.1787/1d89353f-en

Box 1: aims of the Bionic Radiologist

- Guiding decisions about which, if any at all, imaging test should be done in
individual patients
- Augmenting human perception and interpretation tasks of image findings
analysis
- Facilitating treatment suggestions by integrating all available evidence with
imaging results
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Moreover, providing diagnostic decision making tools, as well as
automatically and human-labeled images and structured reports
(see below), electronically to referring physicians and patients will
facilitate more active involvement of patients in their own testing.
This provides the opportunity for greater involvement of
radiologists in shared decisions making with patients, which in
turn is a solution in itself to avoid poor work satisfaction,37

because of otherwise reduced decision making roles (Table 1).
There are already at present several examples for guiding

decision making about imaging tests with the help of other
clinical information for instance from the medical records or
laboratory tests.34 For instance, neural networks can be used to
predict the probability of brain injuries in elderly patients
presenting with head injury after a fall which may be used for
guiding testing decision.38 Natural language processing of clinical
information provided by referring physicians and demographic
data can be used to predict the protocol and priority of brain MRI
examinations.39 Clinical prediction models can provide probabil-
ities for instance of pulmonary embolism which has shown to
improve the yield of imaging and avoid imaging in those not
needing it.40 It is also know that patients with stable chest pain
and low-to-intermediate clinical probability of coronary artery
disease (7–67%) benefit most from coronary CT angiography.41

This information can readily be integrated into decision making
about further testing in patients presenting with chest pain. An
important barrier to implementation of such decision support
systems in clinical practice is the hesitation of physicians to refrain
from diagnostic testing in patients who are actually suggested to
not need further imaging tests.42 Another practical challenge is
that the half-life of clinical data for training decision support
systems is just four months indicating that most recent data are
needed and continuous updating is crucial.43

Augmenting human image analysis
A true augmented radiologists’ image analysis by machine
intelligence may increase consistency and avoid perception and
interpretation errors when reviewing patients’ radiology images.15

The potential of this becomes clear when noting that present-day
artificial neural networks are as accurate as radiologists in
detecting breast cancer on a mammogram.44 However, there are
also more false positive findings using current deep learning
image analysis techniques for instance for detection of critical
findings in head CT,45 which may lead to radiologists’ fatigue
posing a safety risk and should thus be avoided using better
technology. The Bionic Radiologist as a combined approach to
leverage both the consistency of automatic analysis and individual

nuances of human image analysis would possibly have greater
value for clinical practice. This however implies considerable
changes in the work flow and will require a revolutionary shift in
how radiology is practiced today: data science and artificial
intelligence will be practically and physically integrated into the
workplace of radiologists and interrelated functions. The Bionic
Radiologist will be a radiologist supervising the results generated
by machine learning algorithms and integrating them with other
clinical data for the final interpretation.14 Interestingly, such a
hybrid approach might also be most acceptable to patients
according to a survey at Charité among 100 patients clinically
referred to computed tomography; 85% preferred an analysis by
radiologists and computers compared to either of them alone.
The Bionic Radiologist approach would be similar to the

situation in the airplane cockpit where the autoflight system is
used most of the time, but for the situations in which human
interaction cannot be replaced one prefers to have a pilot on
board. Interestingly, the human pilot can better control for
anomalies than the autopilot46 and shared control architecture
should thus be considered for medical use. We also need to
continue to advance the currently rather basic information
technology infrastructure in health care so that it can integrate
multifaceted information from all disciplines including radiology.47

This will allow radiologists more time for what should be their two
primary roles in addition to interpreting images: talking empathe-
tically to patients who are undergoing procedures and consulting
with referring physicians. In general, this effect has potential to
revitalize the patient-physician relationship. However, if the role
shifts toward only supervising results generated by artificially
intelligence a decrease in image perception and interpretation
skills among physicians has to be expected to occur in the future.
Expertise should thus be maintained through training that
includes automated and individualized feedback systems to the
human reader about his or her cases which is fed by patient
events and outcomes (Table 1). Also, the training of radiology
residents according to structured approaches such as the
European Training Assessment Program needs to include teaching
future radiologists about artificial intelligence and specifically
augmented image interpretation. Moreover, gaming approaches
to image analysis and randomly selected comparisons of pure
human reads with augmented reads by the Bionic Radiologist can
keep motivation high and may even improve skills be increasing
the knowledge base and feedback mechanisms. Digital compe-
tencies are an important prerequisite to make use of new
technologies for better and innovative solutions.48 A participatory
process development is inevitable for enhancing physicians’

Table 1. Implementation barriers for the Bionic Radiologist and possible solutions

Implementation barriers Possible solutions

Reluctance to delegate physician decision making, even if only in part,
to black-box systems

Uncertainty quantification for such decision making to increase
transparency of predictions
Advanced human-computer-interaction enhancing the expertise in
diagnosis and decision making

Poor work satisfaction of physicians because of an apparently reduced
decision making role

Greater involvement in shared decision making with patients for increased
work satisfaction
Acceptance beyond technological usability e.g. through development of
physicians roles

Expected decrease in image interpretation knowledge among
physicians in the near future

Maintained expertise through automated feedback systems fed by patient
events and outcomes
Changes in culture and leadership style for enhancing physicians’
commitment

Perception that patient safety and trust are at stake by automated
treatment suggestions

Human quality control and oversight of any treatment decisions put
into effect
Considering perceived justice in the care process through human-
computer interaction
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commitment and successful implementation can also imply
changes in institutional culture and leadership style.49

There are already at present examples for augmenting human
image analysis in radiology. These are mostly based on deep
learning yet also include texture analysis using radiomics50 or
fractal analysis.51 In brief, deep learning has been successfully
applied to several fields using convolutional neural networks:
scoring knee osteoarthritis on radiographs,52 improving detection
of wrist fractures on radiographs,53 detecting breast cancer on
mammograms,44 augmenting the ability of radiologists to detect
cancer on screening mammograms without increased reading
times,54 classifying breast masses on ultrasound,55,56 prioritizing
the worklist of radiologists for suspected intracranial bleeding on
CT,57 detecting and possibly sub-classifying intracranial bleeding
on CT,58 identifying critical findings on head CT with somewhat
limited sensitivity for stroke,59 predicting ischemic stroke onset
time on MR imaging,60 classifying six common liver tumor
entities,61 triaging chest radiographs for urgent findings,62

pulmonary nodule detection on chest radiographs,63 and predict-
ing 2-year survival in patients with non-small cell lung cancer
based on standard-of-care CT images of the chest.64

Texture analysis from radiomics may be used independently or
as an input for deep learning. A combination of radiomics features
and a convolutional neural network can for instance be used for
identifying complete response of muscle-invasive bladder cancer
on CT imaging65 and coronary flow reserve can be estimated
based on CT angiography data using machine learning.66 More-
over, bone age assessment based on radiographs of the hand can
be automated using convolutional neural networks that result in
greater consistency than human reads67 and a recent challenge
showed consistent results with small mean age differences when
convolutional neural networks were applied for this task.68 Fractal
analysis allows to characterize the underlying nature of the
vascular tree in cancer grading51 and also myocardial perfusion
assessment.69 As fractal analysis is inspired by pathophysiological
changes it may also function well as an input for deep learning or
for deriving quantitative maps of perfusion for human or
augmented interpretation.

Facilitating treatment suggestions
The Bionic Radiologist will also be the authority in developing and
realizing structured radiology reports.9 Structured radiology
reports are searchable and quantifiable descriptions of radiology
images for all different kinds of imaging tests for instance of
tumors or abnormalities in the cardiovascular system.70,71 Such
structured reports maximize objectivity and reduce variability of
prose text most often used in reports and enhancing the link
between radiology findings and treatment suggestions.72 Struc-
tured radiology reports may either be automatically generated
from unstructured human radiology reports using advanced
language processing,73,74 which does not require any cultural
changes in clinical radiologic practice at the institutions, or they
could be achieved by the more difficult cultural transition to
structured reporting by radiologists. Structured reports generated
by the Bionic Radiologist described above would also facilitate the
linkage of the results to the wording of evidence-based and
personalized treatment recommendations. The integration of
evidence-based recommendations facilitated by data sharing75

to radiology results reporting would certainly be a sweet spot for
the use of data and computer science developments as nowadays
the doctors, despite sub-specialization, cannot keep track of the
volume of the relevant literature published for instance about
cardiac imaging.76 To become successful at scale, integration
requires collaborations such as the American College of Radi-
ology’s Data Science Institute (www.acrdsi.org) as well as efforts
leading to more widespread use of quantitative imaging
biomarkers such as the Quantitative Imaging Biomarkers Alliance

(www.rsna.org/QIBA) and global health data sharing from pivotal
clinical trials in radiology.75

Structured reporting will thus transform the culture of radiology
reporting practice from prose text documents towards structured
reports which have greater standardization and enable search-
ability. This requires acceptance on the human side for changes in
the workplace which affect the culture of radiology as a clinical
discipline. This includes overcoming the perception that patient
safety and trust may be at stake if treatment recommendations
are automatically generated by algorithms based on integration of
imaging findings with other clinical information using computer-
led systems.77 This can be addressed—in analogy to the interplay
between human pilot and autopilot—by e.g. a greater role of
humans in quality control and oversight of any treatment
decisions before they are put into effect (Table 1). This greater
involvement in the entire process of patient care from diagnostic
and prognostic to therapeutic tasks will become possible by
avoiding physicians having to perform repetitive and mundane
tasks.78 Job design and job development have to face the criteria
which are related to such a role development and open mindset
for new forms of human-computer collaboration.31

Several examples of structured reporting for improved linking
of imaging findings with treatment suggestions exist. For instance,
structured reporting of multiphasic CT of pancreatic cancer
improves the completeness of reports while structured rectal
cancer MR imaging reports reduce the need for further treatment
planning consultations.72 Similar electronic solutions are available
for breast,79 coronary artery,80 and prostate imaging. There are
also IT solutions that standardize radiology reports of abdominal
aortic aneurysms and facilitate communication of results and
patient follow-up.81 Importantly, natural language processing
methods now allow to automatically extract and characterize
the clinical significance of findings in radiology reports82 and
convolutional neural networks have better accuracy for radiology
text report classification than rule-based models,83 which holds
potential to facilitate linking treatment recommendations with
findings provided that a sufficient level of standardization is
present in reports.73

IMPLEMENTATION OF THE BIONIC RADIOLOGIST
Enabling better decisions by the Bionic Radiologist about whether
or not to do an imaging test depends on a consistently obtained
patient history and clinical background, clinical prediction rules,
and models for decision making. To implement this integration of
human and machine decision making in medical care requires
uncertainty quantifications for decisions and predictions in order
to obtain acceptance by the human radiologists. Integration of
artificial and individual intelligence will also benefit from the
digital transformation as a socio–technical system with dynamics
that balance interests on all sides.84 Using the opportunities of
artificial intelligence for image analysis in clinical practice requires
a seamless integration with human image analysis. This will also
provide the radiologist with greater freedom for involvement in
shared decision making with patients which will increase work
satisfaction.85 This is in line with a recent survey of radiologists
who expect an increase in the time spent with patients as a result
of artificial intelligence implementations as well as a lower risk of
imaging-related medical errors.86 Acceptance by human radiolo-
gists will be further increased by automated and individualized
feedback systems to the human readers about outcomes of his or
her patients and thus enhancement of the expert role. Bionic
radiologists will use structured reports that include automatically
generated reminders about imaging findings that require follow-
up as well as treatment recommendations to avoid missed care
opportunities and increase patient safety and trust of all
stakeholders involved in health care by oversight of treatment
decisions. The overall goal is to provide better integrated health
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care through the Bionic Radiologist combining digitalization with
human input at all stages. Success in the implementation will
ensure that advances in artificial intelligence and digital medicine
benefit diagnostic management decisions by providing calculated
disease probabilities to avoid disparities and provide humane and
personalized health care universally. The implementation of the
Bionic Radiologist depends on the interplay between the new
technological potential, individual behavior and institutional
organizational properties whether the positive outcome in terms
of better decisions and medical care can be attained.87,88 The
most critical influencing factors are summarized in Fig. 2.

CONCLUSION AND OUTLOOK
The Bionic Radiologists promises better outcomes and lower costs
through better integration of diagnostic imaging in clinical care
processes. In this perspective we outlined the characteristics and
facilitating factors with respect to the technology development
itself, the surrounding institutional conditions and resistance due
to the required change in culture as well as the prerequisites for
individual acceptance and adaptation (see Fig. 2). Further
advancements imply a socio–technical system development
where these factors are related to each other in a fruitful and
productive manner overcoming socio-cultural barriers to deploy-
ment of the AI augmented radiology and creating a win-win
constellation for all involved stakeholders such as patients,
physicians and cost-keepers in healthcare.
It is an issue of future research to further analyze what the

interaction between these fields can look like and what the
specific characteristics of relevant variables are for gaining better
outcomes in terms of appropriateness, completeness, and time-
liness. A longitudinal socio–technical system analysis with time-
series analysis of health care data which are related to the
characteristics of the workplace is supposed to be a suitable
approach. This also implies that medical technology research
could and should be further aligned to organizational studies and
that the question of trust in AI-assisted medical imaging should
play a central role in future research.
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