80,783 research outputs found

    Efficiently Combining Human Demonstrations and Interventions for Safe Training of Autonomous Systems in Real-Time

    Full text link
    This paper investigates how to utilize different forms of human interaction to safely train autonomous systems in real-time by learning from both human demonstrations and interventions. We implement two components of the Cycle-of-Learning for Autonomous Systems, which is our framework for combining multiple modalities of human interaction. The current effort employs human demonstrations to teach a desired behavior via imitation learning, then leverages intervention data to correct for undesired behaviors produced by the imitation learner to teach novel tasks to an autonomous agent safely, after only minutes of training. We demonstrate this method in an autonomous perching task using a quadrotor with continuous roll, pitch, yaw, and throttle commands and imagery captured from a downward-facing camera in a high-fidelity simulated environment. Our method improves task completion performance for the same amount of human interaction when compared to learning from demonstrations alone, while also requiring on average 32% less data to achieve that performance. This provides evidence that combining multiple modes of human interaction can increase both the training speed and overall performance of policies for autonomous systems.Comment: 9 pages, 6 figure

    Driving with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driving

    Full text link
    Behavior and motion planning play an important role in automated driving. Traditionally, behavior planners instruct local motion planners with predefined behaviors. Due to the high scene complexity in urban environments, unpredictable situations may occur in which behavior planners fail to match predefined behavior templates. Recently, general-purpose planners have been introduced, combining behavior and local motion planning. These general-purpose planners allow behavior-aware motion planning given a single reward function. However, two challenges arise: First, this function has to map a complex feature space into rewards. Second, the reward function has to be manually tuned by an expert. Manually tuning this reward function becomes a tedious task. In this paper, we propose an approach that relies on human driving demonstrations to automatically tune reward functions. This study offers important insights into the driving style optimization of general-purpose planners with maximum entropy inverse reinforcement learning. We evaluate our approach based on the expected value difference between learned and demonstrated policies. Furthermore, we compare the similarity of human driven trajectories with optimal policies of our planner under learned and expert-tuned reward functions. Our experiments show that we are able to learn reward functions exceeding the level of manual expert tuning without prior domain knowledge.Comment: Appeared at IROS 2019. Accepted version. Added/updated footnote, minor correction in preliminarie

    Discovering Blind Spots in Reinforcement Learning

    Full text link
    Agents trained in simulation may make errors in the real world due to mismatches between training and execution environments. These mistakes can be dangerous and difficult to discover because the agent cannot predict them a priori. We propose using oracle feedback to learn a predictive model of these blind spots to reduce costly errors in real-world applications. We focus on blind spots in reinforcement learning (RL) that occur due to incomplete state representation: The agent does not have the appropriate features to represent the true state of the world and thus cannot distinguish among numerous states. We formalize the problem of discovering blind spots in RL as a noisy supervised learning problem with class imbalance. We learn models to predict blind spots in unseen regions of the state space by combining techniques for label aggregation, calibration, and supervised learning. The models take into consideration noise emerging from different forms of oracle feedback, including demonstrations and corrections. We evaluate our approach on two domains and show that it achieves higher predictive performance than baseline methods, and that the learned model can be used to selectively query an oracle at execution time to prevent errors. We also empirically analyze the biases of various feedback types and how they influence the discovery of blind spots.Comment: To appear at AAMAS 201

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar
    corecore