13,498 research outputs found

    BlackWatch:increasing attack awareness within web applications

    Get PDF
    Web applications are relied upon by many for the services they provide. It is essential that applications implement appropriate security measures to prevent security incidents. Currently, web applications focus resources towards the preventative side of security. Whilst prevention is an essential part of the security process, developers must also implement a level of attack awareness into their web applications. Being able to detect when an attack is occurring provides applications with the ability to execute responses against malicious users in an attempt to slow down or deter their attacks. This research seeks to improve web application security by identifying malicious behaviour from within the context of web applications using our tool BlackWatch. The tool is a Python-based application which analyses suspicious events occurring within client web applications, with the objective of identifying malicious patterns of behaviour. This approach avoids issues typically encountered with traditional web application firewalls. Based on the results from a preliminary study, BlackWatch was effective at detecting attacks from both authenticated, and unauthenticated users. Furthermore, user tests with developers indicated BlackWatch was user friendly, and was easy to integrate into existing applications. Future work seeks to develop the BlackWatch solution further for public release

    Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures

    Get PDF
    Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments

    Do we really need to catch them all? A new User-guided Social Media Crawling method

    Full text link
    With the growing use of popular social media services like Facebook and Twitter it is challenging to collect all content from the networks without access to the core infrastructure or paying for it. Thus, if all content cannot be collected one must consider which data are of most importance. In this work we present a novel User-guided Social Media Crawling method (USMC) that is able to collect data from social media, utilizing the wisdom of the crowd to decide the order in which user generated content should be collected to cover as many user interactions as possible. USMC is validated by crawling 160 public Facebook pages, containing content from 368 million users including 1.3 billion interactions, and it is compared with two other crawling methods. The results show that it is possible to cover approximately 75% of the interactions on a Facebook page by sampling just 20% of its posts, and at the same time reduce the crawling time by 53%. In addition, the social network constructed from the 20% sample contains more than 75% of the users and edges compared to the social network created from all posts, and it has similar degree distribution

    The Footprint Database and Web Services of the Herschel Space Observatory

    Get PDF
    Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site (http://herschel.vo.elte.hu) and also as a set of REST web service functions.Comment: Accepted for publication in Experimental Astronom

    Participatory Patterns in an International Air Quality Monitoring Initiative

    Get PDF
    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.Comment: 17 pages, 6 figures, 1 supplementary fil
    corecore