
Evaluator Services for Optimised Service Placement
in Distributed Heterogeneous Cloud Infrastructures

Frederik Vandeputte,
Luc Vermoesen

Alcatel-Lucent Bell
NV, Belgium

David Griffin,
T. Khoa Phan,

Miguel Rio
University College

London, UK

Pieter Simoens,
Piet Smet

iMinds/University of
Ghent, Belgium

Dariusz Bursztynowski
Orange, Poland

Folker Schamel,
Michael Franke
Spinor, Germany

Abstract—Optimal placement of demanding real-time

interactive applications in a distributed heterogeneous cloud very
quickly results in a complex tradeoff between the application
constraints and resource capabilities. This requires very detailed
information of the various requirements and capabilities of the
applications and available resources. In this paper, we present a
mathematical model for the service optimization problem and
study the concept of evaluator services as a flexible and efficient
solution for this complex problem. An evaluator service is a
service probe that is deployed in particular runtime
environments to assess the feasibility and cost-effectiveness of
deploying a specific application in such environment. We discuss
how this concept can be incorporated in a general framework
such as the FUSION architecture and discuss the key benefits
and tradeoffs for doing evaluator-based optimal service
placement in widely distributed heterogeneous cloud
environments.

Keywords—Service-oriented networking, orchestration,
distributed heterogeneous cloud platform, placement algorithms

I. INTRODUCTION AND MOTIVATION
Over the past few years, cloud computing has quickly

become a popular paradigm for automatically deploying and
scaling various types of services such as Web services.
However, these centralized homogeneous cloud computing
infrastructures are not optimized for efficiently running geo-
localized, personalized, bandwidth and/or processing-intensive
real-time applications. For these types of applications (as well
as others), the concept of edge computing and distributed
heterogeneous clouds recently have gained a lot of interest
[2][5][12]. These infrastructures allow a much better use of
available network and computing resources, which can have a
significant impact on overall cost-efficiency and QoE.

However, optimally deploying applications with such
stringent requirements onto distributed resource-constrained
heterogeneous cloud infrastructure is a complex problem. First,
a service may have specific hardware and software resource or
performance requirements to deliver consistent QoE towards
all end users. Second, the resource capabilities as well as
perceived performance/QoS may vary significantly in such
heterogeneous environment. Third, different environments
across different data centers may vary significantly in price,
and service providers may want to decide on how much they
are willing to pay for a particular QoS provided by some pool
of (virtualized) resources.

Specifying all these requirements and trade-offs in static

manifests, extracting detailed static and runtime knowledge of
the available hardware resources, and finally combining all this
information to be able to infer feasible and optimal deployment
locations, would result in a very complex system (e.g., a rule
engine) that needs to be able to understand all requirements,
capabilities and their corresponding relationships. Moreover, it
would still be incomplete, as new applications may have
different requirements that cannot be captured, processed or
understood by current available system. It would also require to
explicitly identify and expose all application requirements or
resource capabilities and constraints, which can prove to be
difficult, complex, or may result in unacceptable overhead, or
is practically impossible due to intellectual property concerns.

In this paper, we present a framework and mechanism for
optimal service placement in widely distributed heterogeneous
cloud infrastructures. Specifically, we further study the concept
of an evaluator service introduced in [7] in more detail for
efficiently and flexibly coping with application requirements
and resource constraints in such complex environment.
Basically, a evaluator service is an active service probe that is
(deployed and) triggered prior to service deployment, and that
evaluates a particular (virtual) runtime environment by
generating a score, comprising all application-specific
functional tests and trade-offs. These scores can subsequently
be used as key input for building efficient optimal service
placement algorithms. Secondly, we present a mathematical
model for optimizing service placement in such dynamic
distributed heterogeneous environment.

The main contributions of this paper are as follows. First,
we present a framework and mechanism for optimal service
placement in a distributed heterogeneous cloud. Second, we
study evaluator services for efficiently and flexibly abstracting
the feasibility and cost-efficiency of a particular (virtual)
runtime environment for deploying a demanding real-time
interactive service. Third, we discuss how evaluator services
could be used for doing optimal service placement and discuss
how to minimize the overhead of these active probes.

Section II first discusses related work, followed by an
introduction of the FUSION architecture as a novel service
oriented network architecture for managing services in a
widely distributed cloud environment in Section III. Section IV
then discusses the service placement optimization problem in
more depth in such environment. We introduce the concept of
evaluator services in Section V, and provide an initial analysis
of the tradeoffs and benefits in Section VI. We conclude in
Section VII.

The research leading to these results has received funding from the
European Union's Seventh Framework Programme (FP7/2007-2013) in the
FUSION (Future Service Oriented Networks) project under grant agreement
n° 318205.

II. RELATED WORK
There is a large body of papers on online quality prediction

techniques in service oriented systems, e.g., [3][6][8][11]
[13][14]. Based on the general taxonomy for related techniques
[10], the FUSION evaluator service approach falls into the
scope of run-time verification and online testing methods. In a
recent paper [15], the authors propose a method for QoS
prediction of candidate services for adaptation of dynamic
composite services. Their approach builds on QoS prediction,
using historical data obtained from different users to estimate
the unknown QoS values, and thus does not requires additional
service invocations. Matrix factorization is used to derive
unknown values from relatively small set of observed QoS
data. This approach does not cater for functional metrics of
services and cannot be directly applied to evaluate data centers
where candidate services have not been deployed so far.

In [9] the authors propose a desired functional scope of a
monitoring system for assessing cloud infrastructure based on
metrics required for service deployment. Different levels of
evaluation criteria are considered, namely functional
capabilities of the infrastructure (e.g., VM CPU/memory/disc,
supported OSes, VPN models, VM measurements, available
load balancers, etc.) as well as performance assessment
capabilities of services (support for load tests, stress tests,
capacity tests). For the latter, a notion of a gauge system is
introduced to assess cloud service performance using dedicated
agents and a measuring tool. However, no implementation of
such a tool nor algorithms are proposed.

On the network side, different approaches to evaluate
latency and packet loss ratio have been developed that use
active monitoring agents deployed either in dedicated locations
or directly on user devices. For example, Akamai uses site
analyzer agents [1] that download Web objects and measure
their failure rates and download times. Those agents are
configured as a dedicated network that is independent of the
content delivery network. They are deployed in major end-user
networks worldwide to serve as landmarks and their
measurements can be used to improve the quality of network
performance map.

Conversely, the Radar approach of Cedexis [4] collects
real-time user statistics of every major cloud & CDN provider
using the end-device monitoring agent model. The
measurements are crowd-sourced by client agents accessing
websites that have a Radar tag embedded. Essentially, when a
user visits a Radar-enabled website, a small JavaScript client
agent is downloaded, it receives instructions from Cedexis
specifying which platform to measure next, and initiates a set
of specific measurements for this platform that are then
uploaded to Cedexis. Such techniques can be adopted to create
FUSION evaluator services that jointly assess data center and
network level performance.

III. FUSION ARCHITECTURE
Today, service providers only need to deploy their service

in the cloud infrastructure of a single incumbent to be globally
accessible. These cloud platforms provide supporting
technologies for load distribution and automatic scaling in a
single datacenter or redirection of users between datacenters in
a handful of regions.

Figure 1. High-level FUSION Architecture

In contrast, demanding interactive applications must be
deployed in a large set of execution nodes with a sufficient
degree of distribution to ensure that users can access the
service with the desired QoE. Preserving sufficient coverage
for users in a wide area will likely involve execution nodes
exploited by different entities (e.g. ISPs). In addition to the
complexity of dealing with various interfaces offered by
different parties, the design of logic for placement decision,
service orchestration and instance selection forms another
barrier for application providers to enter the market. To be
efficient, detailed knowledge is needed about the capabilities of
heterogeneous nodes, the IP network topology and expected
user demand patterns. This knowledge is only available at ISPs
and infrastructure providers; yet as of today a common
framework is missing that integrates service deployment
functionality with network-aware instance selection.

The FP7 FUSION project has incepted a 3-layer
architecture as shown in Figure 1. The basic operation of our
system is that orchestration domains, consisting of a potentially
large number of geographically distributed execution zones
(EZs), deploy services on behalf of service providers in one or
more EZs according to the expected user demand. This is
depicted in the upper layer of Figure 1. The middle layer
provides service resolution capabilities for finding the best
available instance. Once a specific service instance in a specific
EZ (managed by a zone manager) has been selected for the
user request, data plane communications take place in the data
forwarding plane depicted by “IP Routing” in the lower layer
of Figure 1. We refer the reader to [7] for a more detailed
description of the architecture.

IV. SERVICE PLACEMENT OPTIMIZATION PROBLEM
The decision where to place a service can be based on

various criteria, such as taking into account hardware
requirements, its proximity to external sources or the clients,
the network latency between clients and service instances, but
also costs for running the service on a specific EZ and zone
policies. Service providers have to balance these objectives
when deciding where to place their services. In this section, we
first define a utility function, which uses network performance
metrics between a user and an EZ to measure user satisfaction,
and describe service placement as a multi-objective
optimization problem in which we first guarantee max-min
fairness between users and then maximize the total utility of all
users. We also consider a trade-off between the service
deployment cost and the performance (total utility) of users.

Service
Routing

IP Routing

Execution
Plane

A. Problem description
As input to the placement problem, we consider the

estimated user requests, network performance model (e.g.
latency between users and EZs), deployment cost of service
instances in EZs and resource constraints (e.g. number of
session slots that each EZ can support). The output then is a
service placement solution that maximizes performance (total
utility) while achieving max-min fairness between users. The
objective also considers the trade-off between the performance
and the service deployment cost.

B. Mathematical model

Figure 2. Utility function vs. latency

As shown in Figure 2, depending on the service type,
different values of Rmin, Rmed and Rmax are defined. The utility
function should express the following meanings:

• For some services (e.g. voice), further reducing the
latency will not improve QoE; therefore the utility
remains constant if R <=Rmin

• If Rmin < R <= Rmed: the utility value is positive,
meaning that the QoE is good. However, the user
satisfaction is reducing when the latency is increasing.

• If Rmed < R <= Rmax: the utility value is negative but the
QoE is still in an acceptable range.

• If Rmax < R: the service request is blocked.

We model the problem as a linear programming
formulation. The key idea is that we include the utility function
into the objective of the formulation. Moreover, we add
constraints on the available session slots and the total budget
for deploying service instances at EZs. In summary, the
algorithm works in two steps:

• Step 1: we first maximize the minimum user utility. In
this step, we guarantee that the solution achieves max-
min fairness between all the users.

• Step 2: we then maximize the total utility. Moreover,
we add new constraints to ensure that the minimum
utility of all users equals the max-min fairness value.
Therefore, the output of the algorithm achieves max-
min fairness between users and also maximizes the total
utility of all the users.

There is always a trade-off between the utility and the
deployment cost. In general, given a solution, we can plot its
cost and utility on a 2-D plane as Figure 3.

Figure 3. Trade-off between total utility and cost

Given mincost and maxcost as a constraint, we can find the
corresponding utility values. Depending on the granularity of
the graph and how much time we can pay for computation, we
can choose a number of points in between [mincost, maxcost].
Finally, we get a trade-off relationship of the cost and the
utility as in Figure 3. Based on this figure, the service provider
can easily choose a solution with their desired trade-off.

In the above optimization formulation we have used
network latency to determine user utility. We can extend this to
include the capabilities and performance of heterogeneous EZs.
These capabilities can be efficiently measured by evaluation
functions, as discussed in the following section.

V. EVALUATOR SERVICES

As a service provider will be charged for running the
service, he should be able to decide what he is willing to pay
for. Rather than trying to capture all detailed service
requirements and placement policy trade-offs in a complex
static manifest (thereby also requiring the orchestration layer to
be able to interpret and cope with these complex manifests), the
core idea is to offload this complexity into active probes that
evaluate the feasibility and/or cost-effectiveness of running a
particular service in a particular execution environment and
return a score to grade the evaluation. These probes may be
generic, resource specific or service specific.

For example, services may require specific hardware or a
certain proximity to other service instances or have different
runtime requirements towards the execution environment. For
instance, a real-time rendering service may depend on a GPU,
or certain GPU capabilities, and a corresponding streaming
service nearby. These requirements may include specific
OpenGL extensions, a specific minimum OpenCL version or
supporting specific OpenCL extensions, or vendor specific
hardware and APIs such as NVIDIA CUDA support.
Effectively, most 3D games have particular minimal GPU
requirements. Additionally, a service provider may offer
specific quality modes for a particular game, which translate
into more specific hardware requirements. For example, certain
realistic real-time lighting and shadowing techniques depend
on the availability of a geometry shader.

Describing these kinds of restrictions in static manifest files
would result in requiring the orchestrator to understand all
possible use cases of all applications. The descriptions would
also need to be updated whenever new hardware or hardware
revisions become available. Particular runtime environments
would also need to be characterized to capture and expose their
runtime behavior.

Therefore, a static approach using detailed manifests
quickly becomes difficult to manage for large numbers of
services and therefore unscalable (though it could be sufficient
for an architecture designed for a specific and limited subset of
services with a priori known requirements). Instead, we
propose using evaluator services that are deployed on the actual
environments as active probes. These evaluator services can be
provided by the application service provider (or possibly an
evaluator service provider), allowing application and service
provider specific checks and cost-utility trade-offs to be made
by the service provider. They are deployed within various
execution environments of several EZs (based on the service
provider policies) and are automatically triggered by the
domain orchestrator placement function as part of service
placement for determining the optimal location(s) for
deploying new instances of a particular (set of) service(s).

A. Design considerations
The three main design considerations are simplicity,

flexibility and efficiency. Simplicity means that it should be
simple to leverage evaluation scores optimizing service
placement. As such, we envision these scores to be as basic as
a float or integer, abstracting the complex tradeoff between
static requirements, runtime behavior, QoS and cost, rather
than using complex scores containing multiple values
representing different aspects (cost, efficiency, etc.).

The second design decision is flexibility. Service providers
should be in the loop when deciding where their services
should be deployed, a feature that is naturally supported by
evaluator services. On the other hand, a domain orchestrator or
zone manager also may want to enforce some policies or
reserve some (compute or networking) resources for more
profitable services. As such, we allow for a dynamic pricing
model where the price of execution environments can change
based on changing policies or changing runtime behavior,
allowing domains and zones to steer the decisions of the
evaluator services by dynamically changing the price. The cost
of running a service in a particular environment is one of the
key input parameters of an evaluator service, allowing the
service provider to return a proper score with respect to the
cost. Note that this score can also change over time due to
changing policies of the service provider. As such, we envision
a score to be typically only valid for a limited amount of time.

 The third design decision is efficiency. Three key factors
are the overall response time and the deployment and runtime
overhead. As such, evaluator services should be optimized for
quickly returning a score upon an evaluation request. For some
evaluators, this could involve doing part of the evaluation as a
background process. Also, as evaluator services may need to be
deployed just-in-time in remote data centers, the provisioning
and deployment time should be minimal. Hence, a good
candidate for quickly provisioning and deploying new
instances in particular locations are lightweight containers such
as Docker. The issue of runtime overhead is discussed further
in Section V.

B. Modeling & implementation
In general, an evaluator service is a function that, given a

set of input parameters (including the environment, historical
data, policies, etc.), returns a value that can be considered as a
score or rank, indicating how suitable that environment is for
deploying a number of session slots of a particular service:

score = evaluator(Service,InstParams,Env,Cost(Env,t))

Service represents the service as well as its requirements,
InstParams the instantiation and configuration parameters for
deploying that service (e.g., UHD quality, premium QoS, etc.),
Env represents the execution environment, and Cost(Env, t)
represents the cost of that environment in a given time frame.

A minimal property is that the resulting scores should be
(partially) ordered for a particular service type: a (slightly)
preferred environment should have a (slightly) higher score,
allowing to simply order all tested environments based on their
score.

In the context of global multi-service placement algorithms,
we are currently also investigating the benefits of associating
additional properties to these scores, such as proportionality
(i.e., an environment that is twice as good results in a score that
is twice as high), or allow for a more specific interpretation of
the scores (e.g. as a bidding value in an auctioning placement
algorithm or an average execution time or runtime latency).

It is important to stress that these evaluators could be
implemented in any framework or environment and only need
to implement an API; in FUSION, we developed a simple
REST API for triggering these evaluators. We recommend that
these evaluators are packaged for example in lightweight
containers to minimize deployment and runtime overhead.

C. Service-centric evaluator-based service placement strategy
Evaluator services can be integrated into service placement

algorithms in various ways. One possible high-level strategy
goes as follows. First, a domain orchestrator preselects a
number of EZs in which to run an evaluator for a particular
service, for example based on a priori knowledge. Next, the
orchestrator triggers all selected zones in parallel for doing an
evaluation (possibly with a deadline). Each zone subsequently
selects a set of (virtual) execution environments onto which to
make the evaluation. This may involve first deploying the
corresponding evaluator service in such environment (if time
permits). Each zone manager then triggers all selected
evaluators to generate a score for the particular deployment
request, after which all received evaluations are collected and
returned to the domain orchestrator. The latter can then use
these scores are part of its service placement strategy.

In case of a simple service-centric placement strategy, this
may entail selecting the zone(s) and/or virtual environment(s)
with the highest relative scores. In such model, it is the
responsibility of the domain orchestrator and zone manager for
fairly pricing each environment (which can change with e.g.
time, popularity and/or internal policies).

The service placement optimization algorithm as described
in section III can be also extended to include evaluation scores
as follows. First, evaluation scores for services that have the
semantic of execution time/latency can be added to the network
latency thereby optimizing placement on a combination of
network performance, evaluation score and costs. Second, if
evaluation scores have a more complex semantic (e.g. they
imply a quality level of video resolution, accuracy of
computation, etc.) then a multi-dimensional utility function can
be used.

One way of achieving this is for a matrix of network
latency values to be supplied to allow the evaluator service to

combine network performance with other evaluation metrics in
a service-specific manner and return a mapping between
latency and evaluation score. The utility function as shown in
Figure 2 can then be replaced with one describing the
relationship between evaluation score and utility.

It should be noted that evaluation and service placement
optimization are off-line orchestration actions taken at the
epochs of service deployment and periodic service
redeployment, e.g. when user demand patterns change
significantly and new EZs are required to house additional
service instances closer to the sources of increased demand. As
such, computation time is not as significant an issue compared
to a scheme where evaluation and instantiation is undertaken
for each service request.

VI. ANALYSIS AND DISCUSSION
In this section, we discuss the benefits of evaluator services

for service placement, analyze the trade-off between efficiency
and overhead and high-light possible further optimizations.

A. Benefits for service placement
Evaluators will identify the feasible EZs in terms of their

capabilities and efficiency, while service placement will select
between them for optimizing the utility function as discussed in
section III. Prior service evaluation will ensure that the selected
EZs for placing service instances have the required software
and hardware capabilities, which will significantly reduce the
total number of EZs under consideration for the placement
optimization algorithm, improving scalability and performance.
Secondly, no detailed information of the application
specifications or available EZs resources need to be disclosed
with the central orchestrator to be able to do optimal service
placement.

B. Trade-off between efficiency and overhead
A key challenge of evaluator services is to minimize the

amount of overhead they could introduce, especially in case a
large number of these probes need to be deployed in a
distributed and heterogeneous environment. Consequently,
there is an interesting trade-off in the amount of active
evaluators compared to the number of active application
instances and the relative QoS, QoE or cost benefits which
deploying a particular amount of evaluators may induce.

As an example, the runtime overhead for a particular
service deployment can be approximated as follows:

Overhead = D*(Z*V)*E/I

In this formula, I represents the number of active
application service instances, Z represents the total number of
EZs, V the average number of environment types per zone, D
the fraction of all environments onto which an evaluator
service is deployed, and E represents the fraction of time an
evaluator service on average is running in a particular
environment. Let us assume Z=100 EZs, and V=10
environment types per zone, and D=1/10, meaning only 10%
of all environments are preselected for evaluation on average.
In case I=100 (i.e., on average, 100 service instances are
active), then E must remain below 1/10 to keep the overall
runtime overhead below 1%. This means that each evaluator
can only be active for about 2 hours per day, which should be
largely sufficient in case there are only a few evaluations per

day. In case I=1000, the coverage D could be increased to e.g.
100% when keeping the runtime overhead fixed at 1%.

Especially for services with very stringent requirements, it
may be beneficial to deploy evaluators more aggressively to
quickly find the most cost-effective environment(s) for hosting
that service. For others, or for more homogeneous
environments, deploying evaluators more sparsely may suffice.

C. Further optimizations
To further optimize the efficiency of evaluator services, we

are currently exploring the benefits of optionally splitting the
evaluation process into two sub functions, namely a probing
function and a cost-benefit analysis function. As it can easily
become very costly to deploy evaluators in a large number of
resource-constrained or expensive environments, it may be
beneficial if the probing function (i.e., where the actual
environment is evaluated w.r.t. static features and runtime
behavior) is only run very sporadically for a short period of
time on those distributed heterogeneous execution
environments. The second part of the evaluation process,
namely the cost-benefit analysis, could then be done on a
central cloud environment, where it can run in a cheaper
execution environment and closer to the global placement
function.

D. Planned evaluation
A complete and realistic evaluation of the placement

strategies in a distributed heterogeneous cloud environment is
hard to achieve through simulation. Instead, we are aiming for
a prototype deployment of the FUSION prototype on the iLab.t
testbed infrastructure [16], which allows for flexible testing in
various configurations. This testbed comprises nodes of various
hardware generations and various support of hardware
accelerators such as GPUs. To further increase the
heterogeneity, we will leverage on the existing federation of
this testbed with the CloudLab in Utah [17], which allows us to
include ARM-based servers in the set-up.

Based on these testbeds we plan to conduct experiments
based on industry-typical scenarios in the area of digital media
(e.g. VOD) and gaming. For example, we will validate the
concept of evaluator services in a thin-client multi-player
gaming scenario consisting of a game server running in Linux
being connected to multiple rendering clients requiring a
Windows operating system and GPU hardware supporting a
specific Direct 3D shader model.

VII. CONCLUSION
In this paper, we proposed a framework and mechanism for

doing optimal placement of demanding services in widely
distributed heterogeneous cloud infrastructures. We introduced
the concept of evaluator services for assessing the feasibility
and cost-efficiency of deploying services in particular
distributed execution environments, without having to rely on
complex static manifests or resource descriptions. We
discussed how these active probes could be efficiently
leveraged for doing optimal service placement, trading off
efficiency and overhead for different types of services.

In future work, we will evaluate a number of evaluator-
based global service placement strategies and investigate
mechanisms for further reducing the overhead of these probes.

REFERENCES
[1] Akamai. Akamai Site Analyzer - Service Description. July 2009.:

http://www.atoll.gr/media/brosures/Akamai_Site_Analyzer_Service_D
escription.pdf

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. of the 1st workshop on Mobile
cloud computing. ACM, 2012.

[3] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, and R.
Mirandola, "MOSES: A framework for QoS driven runtime adaptation
of service-oriented systems," IEEE Trans. Software Eng., vol. 38, no. 5,
pp. 1138-1159, 2012.

[4] Cedexis. http://www.cedexis.com
[5] A. Chandra, J. Weissman, and B. Heintz, “Decentralized edge clouds,”

Internet Computing, IEEE, vol. 17, no. 5, 2013.
[6] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs, and R. Badia,

“Semantic resource allocation with historical data based predictions,” in
CLOUD COMPUTING 2010, The First International Conference on
Cloud Computing, GRIDs, and Virtualization, 2010, pp. 104–109.

[7] D. Griffin et al., “Service oriented networking”, Proc. of EUCNC,
Bologna, 2014

[8] D. Ivanovic, M. Carro, and M. V. Hermenegildo, “Constraint based
runtime prediction of SLA violations in service orchestrations,” in Proc.
9th Intl Conf. on Service-Oriented Computing (ICSOC 2011) vol. 7084.
Springer, 2011, pp. 62–76.

[9] Hangoo Jeon, Young-Gi Min, and Kwang-Kyu Seo, “A Framework of
Performance Measurement Monitoring of Cloud Service Infrastructure
System for Service Activation, “ International Journal of Software
Engineering and Its Applications, Vol.8, No.5 (2014), pp.127-138.

[10] A. Metzger, C.-H. Chi, Y. Engel, and A. Marconi, "Research challenges
on online service quality prediction for proactive adaptation," in Proc. of
the 2012 Workshop on European Software Services and Systems
Research-Results and Challenges (S-Cube), 2012, pp. 51-57.

[11] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitoring,
prediction and prevention of SLA violations in composite services,” in
IEEE International Conference on Web Services (ICWS) Industry and
Applications Track, 2010.

[12] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[13] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl,
“Usage-based online testing for proactive adaptation of service-based
applications (short),” in COMPSAC 2011 – The Computed World:
Software Beyond the Digital Society. IEEE Computer Society, 2011.

[14] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, "QoS-aware middleware for web services composition,"
IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-327, 2004.

[15] Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu., “Towards
Online, Accurate, and Scalable QoS Prediction for Runtime Service
Adaptation, “ IEEE 34th International Conference on Distributed
Computing Systems (ICDCS), 2014

[16] iLab.t, ilabt.iminds.be
[17] https://www.cloudlab.us/

