3,046 research outputs found

    Spectrum-Based Fault Localization in Model Transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the essential mechanisms for manipulating and transforming models. The correctness of software built using MDE techniques greatly relies on the correctness of model transformations. However, it is challenging and error prone to debug them, and the situation gets more critical as the size and complexity of model transformations grow, where manual debugging is no longer possible. Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty. In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different stateof- the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the best techniques, namely Kulcynski2, Mountford, Ochiai, and Zoltar, lead the debugger to inspect a maximum of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a static approach for fault localization in model transformations, observing a clear superiority of the proposed SBFL-based method.Comisión Interministerial de Ciencia y Tecnología TIN2015-70560-RJunta de Andalucía P12-TIC-186

    Contrasting dedicated model transformation languages versus general purpose languages: a historical perspective on ATL versus Java based on complexity and size

    Get PDF
    Model transformations are among the key concepts of model-driven engineering (MDE), and dedicated model transformation languages (MTLs) emerged with the popularity of the MDE pssaradigm about 15 to 20 years ago. MTLs claim to increase the ease of development of model transformations by abstracting from recurring transformation aspects and hiding complex semantics behind a simple and intuitive syntax. Nonetheless, MTLs are rarely adopted in practice, there is still no empirical evidence for the claim of easier development, and the argument of abstraction deserves a fresh look in the light of modern general purpose languages (GPLs) which have undergone a significant evolution in the last two decades. In this paper, we report about a study in which we compare the complexity and size of model transformations written in three different languages, namely (i) the Atlas Transformation Language (ATL), (ii) Java SE5 (2004–2009), and (iii) Java SE14 (2020); the Java transformations are derived from an ATL specification using a translation schema we developed for our study. In a nutshell, we found that some of the new features in Java SE14 compared to Java SE5 help to significantly reduce the complexity of transformations written in Java by as much as 45%. At the same time, however, the relative amount of complexity that stems from aspects that ATL can hide from the developer, which is about 40% of the total complexity, stays about the same. Furthermore we discovered that while transformation code in Java SE14 requires up to 25% less lines of code, the number of words written in both versions stays about the same. And while the written number of words stays about the same their distribution throughout the code changes significantly. Based on these results, we discuss the concrete advancements in newer Java versions. We also discuss to which extent new language advancements justify writing transformations in a general purpose language rather than a dedicated transformation language. We further indicate potential avenues for future research on the comparison of MTLs and GPLs in a model transformation context.Universität Ulm (1055)Peer Reviewe

    On the Value of Quality Attributes for Refactoring Model Transformations Using a Multi-Objective Algorithm

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152454/1/QMOOD_for_ATL__Copy_.pd

    Assessing and improving the quality of model transformations

    Get PDF
    Software is pervading our society more and more and is becoming increasingly complex. At the same time, software quality demands remain at the same, high level. Model-driven engineering (MDE) is a software engineering paradigm that aims at dealing with this increasing software complexity and improving productivity and quality. Models play a pivotal role in MDE. The purpose of using models is to raise the level of abstraction at which software is developed to a level where concepts of the domain in which the software has to be applied, i.e., the target domain, can be expressed e??ectively. For that purpose, domain-speci??c languages (DSLs) are employed. A DSL is a language with a narrow focus, i.e., it is aimed at providing abstractions speci??c to the target domain. This makes that the application of models developed using DSLs is typically restricted to describing concepts existing in that target domain. Reuse of models such that they can be applied for di??erent purposes, e.g., analysis and code generation, is one of the challenges that should be solved by applying MDE. Therefore, model transformations are typically applied to transform domain-speci??c models to other (equivalent) models suitable for di??erent purposes. A model transformation is a mapping from a set of source models to a set of target models de??ned as a set of transformation rules. MDE is gradually being adopted by industry. Since MDE is becoming more and more important, model transformations are becoming more prominent as well. Model transformations are in many ways similar to traditional software artifacts. Therefore, they need to adhere to similar quality standards as well. The central research question discoursed in this thesis is therefore as follows. How can the quality of model transformations be assessed and improved, in particular with respect to development and maintenance? Recall that model transformations facilitate reuse of models in a software development process. We have developed a model transformation that enables reuse of analysis models for code generation. The semantic domains of the source and target language of this model transformation are so far apart that straightforward transformation is impossible, i.e., a semantic gap has to be bridged. To deal with model transformations that have to bridge a semantic gap, the semantics of the source and target language as well as possible additional requirements should be well understood. When bridging a semantic gap is not straightforward, we recommend to address a simpli??ed version of the source metamodel ??rst. Finally, the requirements on the transformation may, if possible, be relaxed to enable automated model transformation. Model transformations that need to transform between models in di??erent semantic domains are expected to be more complex than those that merely transform syntax. The complexity of a model transformation has consequences for its quality. Quality, in general, is a subjective concept. Therefore, quality can be de??ned in di??erent ways. We de??ned it in the context of model transformation. A model transformation can either be considered as a transformation de??nition or as the process of transforming a source model to a target model. Accordingly, model transformation quality can be de??ned in two di??erent ways. The quality of the de??nition is referred to as its internal quality. The quality of the process of transforming a source model to a target model is referred to as its external quality. There are also two ways to assess the quality of a model transformation (both internal and external). It can be assessed directly, i.e., by performing measurements on the transformation de??nition, or indirectly, i.e., by performing measurements in the environment of the model transformation. We mainly focused on direct assessment of internal quality. However, we also addressed external quality and indirect assessment. Given this de??nition of quality in the context of model transformations, techniques can be developed to assess it. Software metrics have been proposed for measuring various kinds of software artifacts. However, hardly any research has been performed on applying metrics for assessing the quality of model transformations. For four model transformation formalisms with di??fferent characteristics, viz., for ASF+SDF, ATL, Xtend, and QVTO, we de??ned sets of metrics for measuring model transformations developed with these formalisms. While these metric sets can be used to indicate bad smells in the code of model transformations, they cannot be used for assessing quality yet. A relation has to be established between the metric sets and attributes of model transformation quality. For two of the aforementioned metric sets, viz., the ones for ASF+SDF and for ATL, we conducted an empirical study aiming at establishing such a relation. From these empirical studies we learned what metrics serve as predictors for di??erent quality attributes of model transformations. Metrics can be used to quickly acquire insights into the characteristics of a model transformation. These insights enable increasing the overall quality of model transformations and thereby also their maintainability. To support maintenance, and also development in a traditional software engineering process, visualization techniques are often employed. For model transformations this appears as a feasible approach as well. Currently, however, there are few visualization techniques available tailored towards analyzing model transformations. One of the most time-consuming processes during software maintenance is acquiring understanding of the software. We expect that this holds for model transformations as well. Therefore, we presented two complementary visualization techniques for facilitating model transformation comprehension. The ??rst-technique is aimed at visualizing the dependencies between the components of a model transformation. The second technique is aimed at analyzing the coverage of the source and target metamodels by a model transformation. The development of the metric sets, and in particular the empirical studies, have led to insights considering the development of model transformations. Also, the proposed visualization techniques are aimed at facilitating the development of model transformations. We applied the insights acquired from the development of the metric sets as well as the visualization techniques in the development of a chain of model transformations that bridges a number of semantic gaps. We chose to solve this transformational problem not with one model transformation, but with a number of smaller model transformations. This should lead to smaller transformations, which are more understandable. The language on which the model transformations are de??ned, was subject to evolution. In particular the coverage visualization proved to be bene??cial for the co-evolution of the model transformations. Summarizing, we de??ned quality in the context of model transformations and addressed the necessity for a methodology to assess it. Therefore, we de??ned metric sets and performed empirical studies to validate whether they serve as predictors for model transformation quality. We also proposed a number of visualizations to increase model transformation comprehension. The acquired insights from developing the metric sets and the empirical studies, as well as the visualization tools, proved to be bene??cial for developing model transformations

    Assessing and improving quality of QVTo model transformations

    Get PDF
    We investigate quality improvement in QVT operational mappings (QVTo) model transformations, one of the languages defined in the OMG standard on model-to-model transformations. Two research questions are addressed. First, how can we assess quality of QVTo model transformations? Second, how can we develop higher-quality QVTo transformations? To address the first question, we utilize a bottom–up approach, starting with a broad exploratory study including QVTo expert interviews, a review of existing material, and introspection. We then formalize QVTo transformation quality into a QVTo quality model. The quality model is validated through a survey of a broader group of QVTo developers. We find that although many quality properties recognized as important for QVTo do have counterparts in general purpose languages, a number of them are specific to QVTo or model transformation languages. To address the second research question, we leverage the quality model to identify developer support tooling for QVTo. We then implemented and evaluated one of the tools, namely a code test coverage tool. In designing the tool, code coverage criteria for QVTo model transformations are also identified. The primary contributions of this paper are a QVTo quality model relevant to QVTo practitioners and an open-source code coverage tool already usable by QVTo transformation developers. Secondary contributions are a bottom–up approach to building a quality model, a validation approach leveraging developer perceptions to evaluate quality properties, code test coverage criteria for QVTo, and numerous directions for future research and tooling related to QVTo quality

    A Quality Model in a Quality Evaluation Framework for MDWE methodologies

    Get PDF
    Nowadays, diverse development methodologies exist in the field of Model-Driven Web Engineering (MDWE), each of which covers different levels of abstraction on Model-Driven Architecture (MDA): CIM, PIM, PSM and Code. Given the high number of methodologies available, it is necessary to evaluate the quality of existing methodologies and provide helpful information to the developers. Furthermore, proposals are constantly appearing and the need may arise not only to evaluate the quality but also to find out how it can be improved. In this context, QuEF (Quality Evaluation Framework) can be employed to assess the quality of MDWE methodologies. This article presents the work being carried out and describes tasks to define a Quality Model component for QuEF. This component would be responsible for providing the basis for specifying quality requirements with the purpose of evaluating quality.Ministerio de Educación y Ciencia TIN2007-67843-C06-03Ministerio de Educación y Ciencia TIN2007-30391-

    Enabling the Reuse of Stored Model Transformations Through Annotations

    Get PDF
    International audienceWith the increasing adoption of MDE, model transformations , one of its core concepts together with metamodeling, stand out as a valuable asset. Therefore, a mechanism to annotate and store existing model transformations appears as a critical need for their efficient exploitation and reuse. Unfortunately, although several reuse mechanisms have been proposed for software artifacts in general and models in particular , none of them is specially tailored to the domain of model transformations. In order to fill this gap, we present here such a mechanism. Our approach is composed by two elements 1) a new DSL specially conceived for describing model transformations in terms of their functional and non-functional properties 2) a semi-automatic process for annotating and querying (repositories of) model transformations using as criteria the properties of our DSL. We validate the feasibility of our approach through a prototype implementation that integrates our approach in a GitHub repository

    Model Transformation Testing and Debugging: A Survey

    Get PDF
    Model transformations are the key technique in Model-Driven Engineering (MDE) to manipulate and construct models. As a consequence, the correctness of software systems built with MDE approaches relies mainly on the correctness of model transformations, and thus, detecting and locating bugs in model transformations have been popular research topics in recent years. This surge of work has led to a vast literature on model transformation testing and debugging, which makes it challenging to gain a comprehensive view of the current state of the art. This is an obstacle for newcomers to this topic and MDE practitioners to apply these approaches. This paper presents a survey on testing and debugging model transformations based on the analysis of \nPapers~papers on the topics. We explore the trends, advances, and evolution over the years, bringing together previously disparate streams of work and providing a comprehensive view of these thriving areas. In addition, we present a conceptual framework to understand and categorise the different proposals. Finally, we identify several open research challenges and propose specific action points for the model transformation community.This work is partially supported by the European Commission (FEDER) and Junta de Andalucia under projects APOLO (US-1264651) and EKIPMENT-PLUS (P18-FR-2895), by the Spanish Government (FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación) under projects HORATIO (RTI2018-101204-B-C21), COSCA (PGC2018-094905-B-I00) and LOCOSS (PID2020-114615RB-I00), by the Austrian Science Fund (P 28519-N31, P 30525-N31), and by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development (CDG

    A Proposal for Modelling Usability in a Holistic MDD Method

    Full text link
    Holistic methods for Model-Driven Development (MDD) aim to model all the system features in a conceptual model. This conceptual model is the input for a model compiler that can generate software systems by means of automatic transformations. However, in general, MDD methods focus on modelling the structure and functionality of systems, relegating the interaction and usability features to manual implementations at the last steps of the software development process. Some usability features are strongly related to the functionality of the system and their inclusion is not so easy. In order to facilitate the inclusion of functional usability features from the first steps of the development process and bring closer MDD methods to the holistic perspective, we propose a Usability Model. The Usability Model gathers conceptual primitives that represent functional usability features in a sufficiently abstract way so that the model can be used with different holistic MDD methods. This paper defines all the primitives that can be used to represent functional usability features. Moreover, we have defined a process to include the Usability Model in any MDD method without affecting its existing conceptual model. The proposal is based on model-to-model and model-to-code transformations. As proof of concept, we have applied our proposal to an existing MDD method called the OO-method and we have measured its efficiency. (C) 2013 Elsevier B.V. All rights reserved.This work has been developed with the support of MICINN (PROS-Req TIN2010-19130-C02-02), UV (UV-INV-PRECOMP13-115032), GVA (ORCA PROMETEO/2009/015), and co-financed with ERDF. We acknowledge the support of the ITEA2 Call 3 UsiXML (20080026) and funding by the MITYC (TSI-020400-2011-20).Panach Navarrete, JI.; Aquino Salvioni, N.; Pastor López, O. (2014). A Proposal for Modelling Usability in a Holistic MDD Method. Science of Computer Programming. 86:74-88. https://doi.org/10.1016/j.scico.2013.06.008S74888
    • …
    corecore