

Assessing and improving quality of QVTo model
transformations
Citation for published version (APA):
Gerpheide, C. M., Schiffelers, R. R. H., & Serebrenik, A. (2016). Assessing and improving quality of QVTo model
transformations. Software Quality Journal, 24(3), 797-834. https://doi.org/10.1007/s11219-015-9280-8

DOI:
10.1007/s11219-015-9280-8

Document status and date:
Published: 01/09/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1007/s11219-015-9280-8
https://research.tue.nl/en/publications/4461197d-1520-4726-900c-0df3a1571150

Assessing and improving quality of QVTo model
transformations

Christine M. Gerpheide1 • Ramon R. H. Schiffelers2 •

Alexander Serebrenik1

Published online: 3 June 2015
� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We investigate quality improvement in QVT operational mappings (QVTo)

model transformations, one of the languages defined in the OMG standard on model-to-

model transformations. Two research questions are addressed. First, how can we assess

quality of QVTo model transformations? Second, how can we develop higher-quality

QVTo transformations? To address the first question, we utilize a bottom–up approach,

starting with a broad exploratory study including QVTo expert interviews, a review of

existing material, and introspection. We then formalize QVTo transformation quality into a

QVTo quality model. The quality model is validated through a survey of a broader group

of QVTo developers. We find that although many quality properties recognized as im-

portant for QVTo do have counterparts in general purpose languages, a number of them are

specific to QVTo or model transformation languages. To address the second research

question, we leverage the quality model to identify developer support tooling for QVTo.

We then implemented and evaluated one of the tools, namely a code test coverage tool. In

designing the tool, code coverage criteria for QVTo model transformations are also

identified. The primary contributions of this paper are a QVTo quality model relevant to

QVTo practitioners and an open-source code coverage tool already usable by QVTo

transformation developers. Secondary contributions are a bottom–up approach to building

a quality model, a validation approach leveraging developer perceptions to evaluate quality

properties, code test coverage criteria for QVTo, and numerous directions for future re-

search and tooling related to QVTo quality.

& Christine M. Gerpheide
christine.ger@phei.de

Ramon R. H. Schiffelers
r.r.h.schiffelers@tue.nl; ramon.schiffelers@asml.com

Alexander Serebrenik
a.serebrenik@tue.nl

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 ASML N.V., De Run 6501, 5504 DR Veldhoven, The Netherlands

123

Software Qual J (2016) 24:797–834
DOI 10.1007/s11219-015-9280-8

http://orcid.org/0000-0001-6904-4704
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9280-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9280-8&domain=pdf

Keywords Software quality � QVTo �Model transformations � Quality model � Developer
tooling � Test coverage

1 Introduction

Model-driven engineering (MDE) can be used to develop highly reliable software, offering

benefits from analysis to code generation (Stahl and Voelter 2006). In MDE, models are

created by domain experts and then transformed into other models or code using model

transformations. One language for implementing model transformations is QVT op-

erational mappings, aka. QVTo, specified in the 2007 Object Management Group (OMG)

standard for model-to-model transformation (MMT) languages (OMG 2011).

As a standard, QVTo is used today in academia (e.g., onl 2014g) and industry (e.g.,

France Telecom 2014). In particular, ASML (onl 2014a), the leading provider of complex

lithography systems for the semiconductor industry, uses QVTo as its primary language for

implementing MMTs. Currently ASML has tens of thousands of lines of QVTo code

supporting activities from real-time schedule analysis to servo controller initialization

during machine start-up (Schiffelers et al. 2012).

While for general purpose languages (GPLs) developers have built up many common

notions to judge whether a piece of code is of high or low quality, such agreed-upon best

practices and quality indicators do not yet exist for QVTo. Given the many specific

language features of QVTo (outlined in Sect. 2.1), it is even unclear whether quality

properties for traditional languages apply to QVTo at all. This lack of standardized and

codified best practices has already been identified as one of the largest current challenges in

assessing model transformation quality (Syriani and Gray 2012). Moreover, the lack of

tooling embodying transformation quality is identified as one of the biggest limitations in

developing high-quality model transformations in practice today (Syriani and Gray 2012).

Therefore, in this research we address two research questions. First, how can we assess

quality of QVTo model transformations? Here, we investigate what code properties, best

practices, and in general quality concerns currently exist for QVTo. To maximize the

relevance of our research to industry, a focus on practitioners is maintained. We therefore

explicitly adopt a pragmatist stance (Easterbrook et al. 2008), which states that knowledge

is judged by how useful it is for solving practical problems. This stance drives many of our

design decisions as well as our validation strategies. We use the data gathered to address

our second research question: how can we develop higher-quality model transformations?

Here, we employ our quality model to identify opportunities for developer support tooling.

We then develop a code test coverage tool for QVTo and evaluate its success in helping

developers improve quality of QVTo transformations.

We begin with an introduction to QVTo and software quality in Sect. 2. To guarantee

that the notions of quality we identify are relevant for QVTo practitioners, we follow a

bottom–up approach, described in Sect. 3, starting with a broad exploratory study in-

cluding expert interviews, a review of existing material, and introspection. We then for-

malize the exploratory study results into a quality model for QVTo transformations,

presented along with a selection of best practices and difficulties in Sect. 3.3. The

validation of our quality model is presented in Sect. 3.4. We then describe potential

directions for tooling based on our quality model in Sect. 4. The development approach

and requirements of our chosen tool are described in Sect. 4.1 and its implementation is

798 Software Qual J (2016) 24:797–834

123

elaborated in Sect. 4.3. An evaluation of the tool is presented is Sect. 4.4. Finally, we

discuss additional related work in Sect. 5 and conclusions and future work in Sect. 6.

The primary contribution of this paper is a QVTo quality model relevant to QVTo

practitioners and an open-source code coverage tool already able to be effectively used by

QVTo transformation developers to develop higher-quality transformations. Secondary

contributions are first our bottom–up approach to building a quality model, and second, our

validation approach, which we argue provides more convincing evidence than approaches

from literature that the quality model is indeed useful for assessing QVTo transformation

quality. Finally, numerous directions for future research and tooling related to QVTo

quality are also presented.

2 Preliminaries

2.1 QVT operational mappings

A QVTo transformation (Barendrecht 2010; Nolte 2010; OMG 2011) transforms models

conforming to one or more metamodels. The transformation declaration specifies the

source and target metamodels. An example of a simple but complete transformation is

given in Listing 1 utilizing the ABC metamodel from Fig. 1. The main function serves as

the entry point for the transformation.

Mappings are the core of a QVTo transformation. They specify how an object from an

instance of a source metamodel is transformed into an object of a target metamodel

instance. Mappings have three sections: an optional init section for object initialization,

a population section for mapping input element fields to the output, and an optional

end section for post-processing. Mappings can also include pre- and post-conditions

defined in OCL (OMG 2012), indicated with the when and where keywords,

Fig. 1 ABC metamodel

Software Qual J (2016) 24:797–834 799

123

respectively, such as in line 33 of Listing 1. When inside a mapping, the self keyword

can be used to access the input element and result to access the output element.

A query is an operation to obtain data from the input object(s), for example a subset of

its elements from the model. According to the specification, queries may not have side

effects of their parameters. Helpers, declared with keyword helper, are like queries but

may have side effects. Finally, constructor functions can be used to explicitly con-

struct an element from a metamodel. In this paper, we refer to queries, helpers, and

constructors as functions. The imperative constructs of QVTo, similar to those available in

GPLs, are forEach and while loops, variables with block scope, switch statements,

return, and break statements. QVTo also allows developers to add assert state-

ments for checking conditions and log statements to output text to the console.

Listing 1: A simple QVTo transformation using the ABC metamodel

As the transformation executes, a trace is recorded for every source element trans-

formed by a mapping. By inspecting these traces, developers can see for example the order

in which mappings were invoked, giving increased insight into the transformation process

(Santiago et al. 2013). Traces also enable resolving, a feature very useful for the model

transformation domain and difficult to implement in GPLs: when an object of the source

800 Software Qual J (2016) 24:797–834

123

model is transformed to an object of the target model, and then later in the transformation

the same source object is referenced, the reference can be resolved to the earlier trans-

formed object by calling resolve on the source object. Resolving in the opposite di-

rection is also possible using invresolve. To accommodate the case that resolve is

called but the object has not yet been transformed, the late keyword can be used to

signify that the object should be resolved at the end of the transformation.

QVTo also makes available a number of reuse mechanisms, including composition, al-

lowing one transformation to explicitly invoke another transformation, and extension, where

one transformation can build upon another transformation. Functions that are reused by

multiple transformations can be placed in libraries. Libraries and transformations are both

referred to as modules in QVTo. Reuse is also supported at the mapping level. A mapping be

abstract or can inherit from another mapping, causing the other mapping to be called after the

init section of the first mapping has run, or merge a number of other mappings, where the

specified mappings are to be run after the end section of the first mapping. Mappings can

also disjunct a number of mappings, where the first mapping which can accept the input

object, typically specified by when clauses on the mapping, is executed.

In addition to the classes and properties already defined within the source and target

metamodels, it is also possible to define intermediate classes and properties which store

transient information during the execution of the transformation. Global parameters can be

declared outside of a transformation using the configuration property keyword.

QVTo also allows calling black-box functions written in other languages. Typically, black-

boxes are used when a function or transformation is too complex to write in just QVTo and

is instead implemented in a language like Java or QVT Relations.

2.2 Software quality

Software quality can be approached from many perspectives (Kitchenham and Pfleeger

1996), some of which we adopt a priori. First, we are primarily interested in internal

quality, which means measuring quality by looking inside the software product (e.g.,

analyzing source code), rather than measuring the software during execution (e.g., testing)

(Ferenc et al. 2014). It follows from this focus on internal quality that the primary ‘‘cus-

tomers’’ of our investigation are developers rather than testers, which would be more

closely targeted when focusing on external quality. We also focus on direct measurements

of transformation quality, which measure the transformation itself, rather than indirect

measurements, which measure other artifacts involved in model transformation (e.g.,

models) to assess transformation quality (van Amstel 2012). We chose these perspectives

because they are most likely to provide insights immediately useful to produce higher-

quality transformations, our goal with the pragmatist stance.

Fig. 2 Quality characteristics for software products in ISO/IEC 25010 (ISO/IEC 25010 2011)

Software Qual J (2016) 24:797–834 801

123

Internal quality is often formalized in a quality model. According to ISO/IEC 25010

(ISO/IEC 25010 2011), the standard on system and software quality, a quality model

contains high-level quality characteristics, quality attributes, and evaluation procedures.

The standard also presents a quality model for software products, containing all charac-

teristics and attributes relevant to software quality in general. The top-level quality char-

acteristics defined there are depicted in Fig. 2. Evaluation methods, however, are not

provided in the standard product quality model, so it cannot be used directly to assess code

quality. Furthermore, although the quality model is comprehensive, it is not a priori clear

given the unique range of features and applications of QVTo that it is the optimal model

for QVTo in practice. An extensive overview of the standards is available in ISO/IEC

25000 (2014).

Exploring quality in MDE, van Amstel et al. (2010) defined a set of metrics to evaluate

model transformation quality, including QVTo transformations. These metrics included

size metrics, function complexity metrics, modularity metrics, inheritance metrics, de-

pendency metrics, consistency metrics, input/output metrics, and QVTo-specific metrics.

However, because these metrics were proposed based on language features and prior

research for GPLs, it is not evident that this set of metrics is useful to assess QVTo quality.

Later, van Amstel (2012) provided an evaluation of these metrics with respect to main-

tainability for ATL and ASF ? SDF. There, an average of three experts rated thirteen code

samples on seven quality characteristics. The expert ratings were then correlated with

metric measurements. For ATL, no significant correlations were found, and for

ASF ? SDF, while some significant correlations were observed, the high correlations

between metrics made it difficult to assess the impact of individual metrics. Identifying

individual metrics is particularly important because having too many metrics is one of the

reasons metrics programs fail in practice (Hall and Fenton 1997; Moody 2003). Therefore,

although quality models have been proposed that are applicable at least in theory to QVTo,

there is little empirical evidence that these models represent a useful notion of QVTo

quality. We call these approaches starting exclusively from theory top–down approaches.

3 Formalizing QVTo quality

To identify the most important aspects for QVTo quality, we follow a bottom–up approach

based on grounded theory (Seaman 1999). This way, the most pressing concerns in QVTo

quality are captured, which are most important according to our pragmatist stance. Fur-

thermore, utilizing a bottom–up approach already provides high empirical validity (Moody

2005), particularly valuable in domains where validation is difficult. Our approach consists

of two phases. The first is a broad exploratory study to gather substantial support for what

affects quality in QVTo. The second phase is formalizing the information gathered into

cohesive format which can be used to assess QVTo transformation quality.

3.1 Exploratory study

The exploratory study focuses on gathering qualitative data. Since producing high-quality

code heavily depends on developer actions, namely how developers write code, qualitative

data can provide the richest insights into the complex reasoning processes that developers

use (Seaman 1999). Since qualitative methods are sometimes considered ‘‘fuzzier’’ than

quantitative methods in computer science (Easterbrook et al. 2008), care was taken in

802 Software Qual J (2016) 24:797–834

123

selecting methods and conducting the study, leveraging in particular the extensive expe-

rience with qualitative methods from social science research. To guarantee that the ex-

ploratory study produces generalizable data and builds upon previous research and

experience, we utilize a triangulation approach: expert interviews, a review of existing

material, and introspection.

3.1.1 Expert interviews

Four semi-structured interviews of QVTo experts at ASML were conducted. By gathering

data directly from developers, we gain access to potentially years of best practices and

learning involved with becoming an experienced programmer. Additionally, by speaking

with developers directly, we can quickly obtain insights into which aspects of QVTo are

most important for quality today. As with all interview research, the data gathered in this

component of the exploratory phase may be very specific to the individuals interviewed.

Mitigating this bias while still leveraging rich developer experience is a primary moti-

vation for our triangulation approach.

Table 1 Interview guide used by interviewer during QVTo expert interviews

QVTo expert interview guide

Logistical info Name, date, location, start/end time

General development process

– Can you describe a typical development process for you?

– What are the key triggers for development? (bug fixing, etc)

– How do you use SCM or bug tracking during a project?

– What other tools do you utilize?

– How often do you personally refactor code?

Quality

– If you looked at a piece of QVTo code that you considered high quality, what traits would it have? And
low quality?

– What problems do you or your users typically encounter in the code?

– How do you typically discover a problem?

Other languages

– What are the biggest differences between developing in QVTo and other languages?

– What do you like/dislike about QVTo?

– Are there tools/IDEs you have had for GPLs or other tools you would like?

– Do you use design patterns in QVTo or other languages?

QVTo

– What parts of QVTo development did you or others struggle with most?

– What kind of problems do you typically encounter while developing?

– For your team, what parts go more smoothly than they did in the past?

– Can you identify specific practices for QVTo you try to use in your code?

Metrics and visualizations

– Have you used tools which measure quality, for example TIOBE TICS?

– Have you used visualizations? Which?

Software Qual J (2016) 24:797–834 803

123

State-of-the-art techniques for interviews were followed, in particular recommendations

from Seaman (1999) and Hove and Anda (2005). Each interview lasted 45–60 min and was

audio recorded and later transcribed. A one-page interview guide displayed in Table 1 was

used by the interviewer to help direct the interview, containing questions about develop-

ment processes, typical bugs, QVTo versus other languages, as well as poor practices

exhibited by those learning QVTo. To assess the interview format, a mock interview was

performed with an independent developer beforehand.

Examples of information gathered during the interviews are that common refactorings

include converting imperative-style programming to declarative (since the latter is more

readable as well as faster in execution), that a transformation is easiest to work with if its

structure mirrors the hierarchy of either the input or output metamodel (but not both), and

that unit testing is used extensively by the team, but there does not exist any measure of test

coverage.

3.1.2 Existing material review

To leverage the vast amount of knowledge on code quality, an extensive review of existing

materials was performed. This review included not only literature, but also other sources such

as online forums. The latter are particularly important since the amount of scientific literature

on QVTo is still limited and much insight can instead be gained from online sources.

For literature, a systematic literature review (Kitchenham et al. 2009) was performed.

Per the guidelines for conducting systematic literature reviews (Kitchenham 2004), a

review protocol was first developed to reduce researcher bias. The topics included in our

protocol were chosen according to our pragmatist stance and are presented along with

specific search terms used in Table 2. There, each keyword was combined with a tech-

nology term to form the search query (e.g., ‘‘QVTo best practices’’). ‘‘Tooling’’ is included

as a topic because of its importance to writing high-quality code. ATL and Java were

chosen for additional specific technologies since ATL has similar imperative constructs to

QVTo and both ATL and Java are prominently used for model transformation. For topics

where the amount of research available specifically for QVTo would still be quite limited,

the inclusion criteria dictating which papers to include in the review were set to include a

broader range of technologies, such as other transformation languages or code in general.

Table 2 Topics, keywords, and technologies used as inclusion criteria during the systematic literature
review

Topic Keywords Included technologies

Best
practices

Best practices, standards, guidelines,
recommendations

QVTo, model transformations, ATL,
QVTr

Metrics Code metrics, quality metrics QVTo, model transformations, ATL,
QVTr, Java

Tools Tools, tooling, developer tools, productivity, plug-
ins

QVTo, model transformations, ATL,
QVTr

Limitations Limitations, difficulties, problems, drawbacks,
challenges

QVTo, model transformations

Quality Code quality, assessment, verification QVTo, model transformations, ATL,
QVTr, Java

804 Software Qual J (2016) 24:797–834

123

Table 3 Most relevant papers resulting from the systematic literature review

Author Genres Most relevant contributions

van Amstel and van den Brand
(2011)

Tools •Three tools for analysis improving maintainability
•Metrics
•Metamodel coverage analysis
•Tools implement for ATL, QVTo

van Amstel et al. (2011) Best practices •Performance of MDE language constructs

van Amstel (2012) Metrics •Quality metrics for ATL
•Validation through correlation with attributes via
expert surveys

van Amstel et al. (2012) Tools •Visualization of traceability to improve development
•Higher-order transformations

Ciancone et al. (2010) Tools •Novel unit testing approach for QVTo
•Evaluation performed in practice

Fabro and Valduriez (2009) Best practices •Automation of transformation development to
increase quality

van Dongen (2012) Tools •Visualization of QVTo transformations to improve
quality

Ergin and Syriani (2013) Best practices •Patterns for refactoring to improve quality metrics
•Quality framework followed

Gniesser (2012) Best practices •‘‘Bad smells’’ in MDE languages
•Refactorings
•Validation performed

Guduric et al. (2009) Best practices •Recommendations for QVTo code reuse

Kapová et al. (2010) Metrics •Transformation maintainability metrics
•Metric categories

Kolahdouz-Rahimi et al.
(2014)

Metrics •Evaluation framework for languages for
transformation refactoring

•Goal-quality-metric framework
•Results of factors affecting ISO quality
characteristics

Kusel et al. (2013) Best practices •Current reuse techniques used in practice and the
merits thereof

McQuillan and Power (2009) Testing •Transformation test coverage measures

Nguyen (2010) Tools •Metrics for QVTo
•Tool to measure metrics

Paige and Varró (2012) Tools •Guidelines for creating MDE tooling

Planas et al. (2011) Best practices •Correctness properties for ATL
Rentschler et al. (2013a) Tools •Transformation Analysis tool for QVTo

•Validation performed of effect on quality

Rose et al. (2014) Tools •Observations from transformation tool contest
judgments

Selim et al. (2012b) Best practices,
testing

•Appropriateness of various MDE languages for
projects

•Case studies
•Tool to measure quality of MTM transformations
•Expert questionnaire for validation
•Analysis of quality goals

Selim et al. (2012a) Best practices •Static and dynamic analysis techniques
transformations

Stahl and Voelter (2006) Best practices,
tools

•QVTo language usability
•MDE tool standards compliance and consistency

Software Qual J (2016) 24:797–834 805

123

The technology terms also served as our sole exclusion criteria for literature found, where

search queries already returning a great deal of literature for technologies closest to our

focus terms (e.g., ‘‘QVTo’’ or ‘‘model transformation’’) were not pursued for the more

distant technologies (e.g., ‘‘Java’’). No papers were excluded according to publication date.

Google Scholar was used to perform all searches, therefore covering a large portion of

peer-reviewed online journals as well as books and other non-reviewed journals (onl

2013a). Offline and non-English language sources were not reviewed. The title, publication

date, and a list of extracted key points were recorded for each source. Whether the source

provided an explicit evaluation of their contributions was also noted to indicate the

source’s credibility. Rich online sources reviewed were the forum for the Eclipse QVTo

implementation (onl 2014d) and the publicly available comments from the transformation

tool contest (onl 2013b).

A list of the most relevant papers resulting from the systematic literature review are

presented in Table 3. An example of information gathered during this review is that mixing

notations (e.g., text, graphical) can reduce understandability. A number of metric sets that

have been proposed in model transformation literature (e.g., Kapová et al. 2010; Vignaga

2009) were also encountered.

3.1.3 Introspection

The third component of the exploratory study was learning QVTo by the first author. Here,

a series of QVTo tutorials and examples was followed (e.g., Stahl and Voelter 2006).

During the learning process, all aspects related to quality were recorded, such as difficulties

and realizations about better ways to implement certain functionalities. Since it is im-

portant for software engineer interviewers to be knowledgeable of the domain at hand

(Hove and Anda 2005), this component was performed before the interview component of

the triangulation approach. This component complements the other two by providing the

author with firsthand information on novice practices, a cause of low-quality software.

An example of information gathered during introspection is that a novice tends to create

large init sections inside mappings to initialize the output elements, since that is similar

to GPL programming, as opposed to using the more concise implementation with a

population section.

3.2 Constructing the quality model

With the qualitative data from exploratory study, we perform what is known in classic

theory generation as the constant comparison method (Seaman 1999). All key points

Table 3 continued

Author Genres Most relevant contributions

Syriani and Gray (2012) Best practices •Challenges in quality assessment, including metrics
•Need for transformation refactoring and design
assistance

Voelter (2009) Best practices •Best practices from DSLs
•Validation performed

Voelter and Kolb (2006) Best practices •Best practices for writing model-to-text
transformations

•IDE/tool support

806 Software Qual J (2016) 24:797–834

123

related to transformation quality are extracted, approximately one sentence per point. Each

point is tagged, or coded (Seaman 1999), with keywords describing why it is relevant for

quality, e.g., ‘‘conciseness,’’ matching the wording used in the raw data as closely as

possible. Then, an iterative approach is applied where similar points are grouped together,

while always maintaining traceability links back to the original sources. The set of quality

tags is then reduced by combining closely related tags, e.g., ‘‘readability’’ was combined

with ‘‘understandability.’’

Until this point, to avoid researcher bias, it was not assumed that a formal quality model

would be the result of our investigation of QVTo quality. It became clear, however, that most

of our key points and tags could be effectively formalized within a quality model. The quality

tags became the quality goals of our model, representing the primary quality concerns for

QVTo transformations today. We then translated each point into a short phrase. These phrases

comprise the quality properties of the QVTo quality model. To give an indication of whether

the property helps or hurts quality, we also assigned a directionality to the property. Direc-

tions were chosen so that every property generally increases transformation quality. To ac-

commodate for quality goal trade-offs, however, each quality goal associated with the

property was also marked with a direction. For example, ‘‘Using mappings instead of helpers

increases understandability, but can hurt performance due to the additional tracing added by

the engine’’ was converted to property ‘‘More mappings than helpers’’ with goals ‘‘Under-

standability (?)’’ and ‘‘Performance (-).’’ We use the term property rather than attribute

because attributes generally do not have directionality (ISO/IEC 25010 2011).

Quality properties with insufficient support from our triangulation approach were then

discarded. Specifically, properties with fewer than two original sources (for example being

mentioned by only a single paper) were removed from the model. Properties which were

only proposed in literature with no validation were also removed. This latter step is

required by our pragmatist stance to avoid including properties for which there is still no

evidence of usefulness in practice. To complete the model, evaluation procedures are

added for each property. An elaboration of our approach is given in (Gerpheide 2014).

3.3 Resulting quality model

In Table 4, the QVTo quality model resulting from the exploratory study is presented. It

consists of 37 quality properties and four quality goals, namely functionality, under-

standability, performance, and maintainability. Although the list of properties may seem

large, our validation approach (Sect. 3.4) distinguishes their relative importance. The

properties have been classified as specific to QVTo, MMT, or neither, in which case they

are also applicable to GPLs. The proposed classification is based on the traceability links

from our quality model, therefore reflecting why the property is in the model. For example,

‘‘Deletion uses trashbin pattern’’ is classified QVTo specific because it relates to the QVTo

implementation used by the interviewed developers. According to our classification

scheme, 13 properties are QVTo specific, four are MMT specific, and 20 are applicable to

GPLs. The evaluation procedures identified are also of a largely quantitative nature,

lending them to being used as automated metrics in future work.

The quality properties have been further organized in Table 4 according to their nature.

These ‘‘natures’’ are similar to the transformation quality objects presented in the trans-

formation quality framework by Mohagheghi and Dehlen (2007). Two of the properties are

presentation related, since they focus on style and are unrelated to transformation behavior.

Nine of the properties concern the high-level architecture of a set of transformations

modules in a project. Four properties are related to the current QVTo engine

Software Qual J (2016) 24:797–834 807

123

Table 4 QVTo quality model resulting from the exploratory study

Quality propertya Quality
goals

Evaluation procedure Applicability

Presentation

Detailed comments throughout
code

U? Comment/LOC ratio GPL

Formatting conventions
followed

U? # Violations of a coding standard GPL

High-level architecture

Few black-boxes U?, M? # Black-boxes QVTo

Few configuration properties U?, P- # Configuration properties QVTo

Few dependencies on other
modules

U?, M? Module fan-out GPL

Few input/output models U?, M? # Input/output models and metamodels MMT

Few intermediate properties U? # Intermediate properties QVTo

Low code duplication with
other modules

M? # Instances where at least five lines repeated GPL

Pre- and post-conditions
specified

F?, M? Presence of formal specification MMT

Small interfaces to other
modules

U?, M? Function fan-out to other modules GPL

Small transformation size U? Module LOC GPL

Transformation local

Confluence satisfied F? Proof of confluence MMT

Few dependencies between
functions

U?, M? Function fan-out within module GPL

Few end sections U? # end sections QVTo

Few mapping arguments P?, U? # Arguments per mapping GPL

Few nested if statements U? Nesting depth GPL

Few when and where clauses U? # when and where clauses QVTo

High test coverage F?, M? Test code coverage GPL

High usage of design patterns U? Comparison of patterns used to a pattern
catalog

GPL

Inheritance usage matches
metamodel

U? # Abstract classes in common with
metamodel

MMT

Interdependent functions near
each other

U?, M? Custom semantic similarity measure GPL

Little dead code U?, M? # Unused LOC GPL

Little imperative programming U?, M? # forEach loops QVTo

Little overloading U? # Instances of overloaded functions GPL

Low code duplication within
module

U?, M? # Instances where at least two lines repeated GPL

Low syntactic complexity U? Syntactic complexity measure (Kolahdouz-
Rahimi et al. 2014)

GPL

Minimal reassignment of
objects

F? # Instances when object assigned to multiple
sets

QVTo

More mappings than helpers U?, P- Ratio # mappings to # helpers QVTo

More queries than helpers U?, P? Ratio # helpers to # queries QVTo

Short function chains U? Length of chains GPL

808 Software Qual J (2016) 24:797–834

123

implementation, and therefore may differ between implementations. For example, ‘‘Few

queries with side effects’’ is implementation dependent because in the Eclipse QVTo im-

plementation, queries are implemented as helpers, therefore allowing side effects, despite

this not being allowed by the QVTo specification. The remaining 22 properties can be

considered quality properties local to a transformation, since they are specific to how a single

transformation has been written. This categorization helps determine when and where each

property could be leveraged to improve transformation quality. For example, if a developer

has the opportunity to modify a transformation but is not able to re-architecture his or her

project, then the transformation-local properties may be most useful. As another example, if

a new version of the QVTo engine is released, it may be necessary to reevaluate the

implementation-dependent properties. The high proportion of transformation-local properties

is likely a result of our approach, since existing quality models also have high proportions of

properties local to a single module or class (e.g., van Amstel et al. 2010; Kapová et al. 2010),

and the developers interviewed work also most frequently on modifying single transfor-

mations. We do not consider the effect of our approach on the properties a threat to validity,

however, since our approach was designed to capture the most pertinent concerns in QVTo

quality. Instead, this suggests that the most useful model to assess QVTo quality contains a

variety of properties but with an emphasis on transformation-local concerns.

It is clear from the quality model that understandability and maintainability were the

most ubiquitous (though not necessarily most important) quality goals for QVTo practi-

tioners. This is expected, however, due to our focus on internal quality and because

understandability and maintainability are more complex goals to describe than perfor-

mance or functionality, therefore requiring more properties. Furthermore, although per-

formance may be most related to external quality, it is still incorporated in our model

because it was clear from our exploratory study that any description of QVTo quality

without a consideration for performance would be incomplete.

Some properties in the model are of particular interest. For example, ‘‘Little imperative

programming’’ may seem unintuitive, since QVTo was specifically designed to include

Table 4 continued

Quality propertya Quality
goals

Evaluation procedure Applicability

Small function size U? Function LOC GPL

Small init sections U? LOC inside init sections QVTo

Termination checked F? Proof of termination GPL

Implementation-dependent

Few queries with side effects U? # Queries with side effects QVTo

Deletion uses trashbin pattern P? # Instances where trashbin pattern not used QVTo

Low execution time P? Execution speed with typical model GPL

Mappings only used when
tracing needed

U-, P? # Instances when mapping used but not
tracing

QVTo

F, U, P, and M indicate quality goals functionality, understandability, performance, and maintainability,
respectively. Properties are organized according to category and then alphabetically
a ‘‘Function’’ refers to a mapping, query, or helper. ‘‘LOC’’ is lines of code. ‘‘Module’’ refers to a trans-
formation or a library. ‘‘Function chain’’ refers to a chain of function calls. ‘‘Confluence’’ is a property of
declarative languages where output is independent of execution order. Tracing internally links input and
output elements. Clauses with when and where specify pre- and post-conditions on mappings. Interme-
diate properties store transient data during execution, and configuration properties have global scope

Software Qual J (2016) 24:797–834 809

123

imperative constructs. However, our exploratory study suggests that although these con-

structs are indeed useful for creating more complex transformations, where the alternative

would be using a black-box containing Java code, they should be minimized where pos-

sible. In the experience of one of the developers interviewed, ‘‘80 % of transformations can

be written in a purely declarative fashion, making them much easier to understand and

work with later on.’’ Property ‘‘Mappings only used when tracing needed’’ is also notable,

since although mappings are a core concept of QVTo and avoiding them decreases un-

derstandability, it emerged as more important to improve performance, therefore serving as

an example where a quality model not considering execution performance may be less

useful for developers.

That the model was built bottom–up can also be seen. For example, the property ‘‘Small

init sections’’ is included, while for end sections, ‘‘Few end sections’’ is included. This

reflects that according to our exploratory study, the amount of code inside init sections

affects quality, whereas for end sections, it was only suggested that the frequency of use

may affect quality. Recall also that no direct attempt was made to cover QVTo language

features in the exploratory study, so the QVTo-specific properties included in the model are

there because they emerged as relevant to quality during the triangulation approach.

3.3.1 Model scope

Because our approach was not restricted to specific types of QVTo transformations, we

assert that our model is relevant to all strata of the model transformation taxonomy pro-

posed by Mens and Van Gorp (2006) that are applicable to QVTo. Specifically, the quality

model can be used to assess quality of QVTo transformations with one or multiple-source

and/or target models. Since QVTo supports source and target models having different

metamodels, the quality model can be used on both endogenous and exogenous QVTo

transformations. Similarly, the model can be used to assess both horizontal transformations

(i.e., performing refinements or abstractions) and vertical transformations (i.e., which do

not change the level of abstraction). The experts interviewed also worked regularly with all

of these transformation types. However, we do not claim that the quality model is appli-

cable to MMT languages other than QVTo without further study.

We also place our model in the context of the transformation intents proposed by

Amrani et al. (2012). Since QVTo could be theoretically used for each of the 17 most

common intents identified there, the quality model proposed here is also applicable to

transformations with those intents. Of the 17 intents, however, the experts interviewed had

less experience in working with transformations addressing the ‘‘approximation’’ and

‘‘model generation’’ intents. Due to the importance of the interview data in constructing

our quality model, we therefore consider this a threat to validity when using our quality

model to describe QVTo transformations with those intents.

3.3.2 Similarities to other models

The model most closely related to our QVTo quality model is the set of QVTo quality

metrics proposed by van Amstel et al. (2010), introduced in Sect. 2.2. Of our 37 quality

properties, approximately one-third have corresponding metrics in their metric set (which

coincidentally also contained 37 entries). Some of the similar metrics are nearly identical

(e.g., metric ‘‘# Overloaded mappings’’ and our property ‘‘Little overloading’’), while

others are similar but not equivalent (e.g., metric ‘‘# Trace resolution calls’’ and property

‘‘Mappings only used when tracing needed’’). These similarities appear in each of the

810 Software Qual J (2016) 24:797–834

123

metric categories identified by van Amstel et al. (2010), suggesting that our synthesis

approach also succeeds in covering a similar range of concerns as a top–down approach.

The similar metrics, however, comprise the more straightforward properties from our

model (e.g., ‘‘Few input/output models’’). Our more complex properties (e.g., ‘‘Deletion

uses trashbin pattern’’ and ‘‘Interdependent functions near each other’’), on the other hand,

do not have counterparts in the metric set. In some cases, a metric may seem similar to a

property, but as a result of the bottom–up approach, the property is substantially more

nuanced. For example, while the set from van Amstel et al. (2010) includes the metric ‘‘#

Abstract mappings,’’ our model includes the property ‘‘Inheritance usage matches meta-

model’’ because according to our study, it was not simply the number of abstract mappings

that affected quality, but the extent to which they represent the abstract classes in a

metamodel. The properties in our quality model are also in general more concise than the

metrics. For example, five individual metrics are proposed for number of unused mappings,

helpers, parameters, and local variables, whereas our quality model simply includes ‘‘Little

dead code,’’ which in our model is evaluated by measuring lines of unused code. Con-

ciseness is valuable since it again reduces the risk of overwhelming practitioners with too

many metrics, as mentioned in Sect. 2.2.

Notably, a number of properties identified as important during our exploratory study are

not present in van Amstel et al. (2010). For example, ‘‘Little imperative programming’’

was recognized in each of our developer interviews in addition to some literature as

important for maintainability and understandability, but has no counterpart in the metrics

from van Amstel et al. (2010). Our model also includes more QVTo-specific properties

(e.g., ‘‘Few end sections’’). These may be excluded from van Amstel et al. (2010),

however, because there are simply too many language-specific constructs to add a property

for each construct. This difficulty to distinguish the most important features of new domain

is in our opinion a fundamental problem with top–down approaches.

In Van Amstel’s quality model for MMT languages in general (van Amstel 2012)(cf. in

Sect. 2.2), a number of additional quality attributes are present. Some are similar to our

quality model, e.g., ‘‘Depth of inheritance tree’’ proposed for ATL which is closer to our

‘‘Inheritance usage matches a metamodel’’ property. However, due to the top–down ap-

proach, van Amstel’s metrics (van Amstel 2012) describe relatively shallow properties

compared to the rich data incorporated in our quality properties.

Kapová et al. (2010) presented a set of maintainability metrics for QVTr. There a

combination of ‘‘automated’’ and ‘‘manual’’ metrics was proposed. The automated metrics,

like those from van Amstel et al. (2010) and van Amstel (2012), are simple, including ‘‘#

Local variables’’ and ‘‘# when predicates’’ (the latter of which corresponds directly with

our property ‘‘Few when and where clauses’’). The manual metrics, however, contained

‘‘Similarity of relations,’’1 ‘‘# Relations that follow a design pattern,’’ and ‘‘Type cut

through source/target metamodel.’’ The last in particular is similar in essence to our

‘‘Inheritance usage matches a metamodel’’ property, since it measures the match between

metamodel elements and the elements addressed by relations. The metric is presented,

however, only in the context of increasing metamodel coverage (chosen as a quality goal

by the authors), rather than contributing to understandability like our property. Because

this property was voiced as important by multiple interviewees for transformation read-

ability and understandability, its explicit link to understandability is a valuable addition to

our model.

1 QVTr relations are similar to QVTo mappings

Software Qual J (2016) 24:797–834 811

123

Therefore, while there is some overlap between top–down models and our quality

properties, we advocate the use of bottom–up approaches in future quality research to

obtain the data most relevant in practice.

3.3.3 Conformance to ISO/IEC 25010

As an international standard, ISO/IEC 25010 represents a broad consensus for how to

describe software quality. It is therefore valuable to show that our QVTo quality model

conforms to the software product quality model. According to the standard, conformance

can be demonstrated either by using the standard models directly or by showing trace-

ability links between the standard model and a tailored model. We demonstrate confor-

mance using the latter method, showing the links from the software product quality model

to our QVTo quality model. First, we map our quality goals to the quality characteristics of

the standard: functionality is mapped to functional suitability, performance to performance

efficiency, understandability to usability, and maintainability to maintainability. In each

case, the reason for using a different name in our model is that these terms were more

natural for developers. Notably, our model excludes the characteristics compatibility, re-

liability, security, and portability. They are excluded since, according to our exploratory

study, they are lesser concerns in QVTo development at this time. Finally, our quality

properties can each be mapped to a quality attribute in the standard quality model by

removing the directionality.

3.3.4 Best practices

As a result of not restricting the exploratory study to building a quality model from the

beginning, some data from the study can be formalized better as best practices than as

quantifiable quality properties. Here, we present a selection of best practices gleaned in

particular from the expert interviews, constructed by performing the constant comparison

approach using just the interview data. Although not validated in Sect. 3.4 and highly

specific to the experts’ experiences, these can be used as a starting point for other QVTo

practitioners to formalize their own best practices. They also provide an example of the

rich data gathered using a bottom–up approach.

First, navigation over models should be separated from mappings as much as possible,

ideally by creating a query library for each metamodel. This way the functions used to

traverse a given metamodel can easily be reused by transformations. Second, init sec-

tions are appropriate only when objects need to be explicitly constructed, e.g., selecting the

concrete type of an object from the abstract type. Otherwise, developers should leverage

the implicit initialization done by the population section. Third, when multiple objects

must be generated and assigned from one input object, a constructor should be used

instead of the assignment operator since then it is guaranteed that a new object is created

rather than resolving to a previously created object. Finally, if performing incremental

transformations with large input models, the traces can be utilized to avoid unnecessary

regeneration of the target model, improving performance.

3.3.5 Difficulties

In addition to best practices, many current issues were identified which can serve as areas

for future work in QVTo research. First, lack of documentation as well as lack of (non-

812 Software Qual J (2016) 24:797–834

123

buggy) tooling were both identified as major problems. Eclipse editor support could be

improved, for instance preventing accidental reassignment of objects. There are also many

limitations in the debugger, such as poor support for chains of transformations, so de-

velopers often default to using log statements instead. Testing frameworks are still

considered immature, and in particular no measure of test coverage exists. Finally, there

are also inconsistencies between the QVTo specification and Eclipse implementation used

by many developers, for example side effects being allowed in queries and not supporting

deep recursive calls.

3.4 Validating the quality model

Although the bottom–up approach guarantees initial support for each property, validation

is still required for confirmation and to show generalizability. Before introducing our

validation approach, however, we discuss the drawbacks of the approach used in the most

closely related work (e.g., van Amstel 2012; Lehrig 2012). There, transformation quality

models were validated by conducting a survey where experts rated code samples on quality

goals, which were later correlated with the measured quality metrics. In addition to the

conclusions being drawn from this validation approach being generally weak, it is clearest

to see its drawbacks by simulating it on our quality model.

We observe that in this method, experts are required to make snap judgments based on a

visual sample of the code. This method therefore first strongly biases judgments toward

visual properties, such as properties related to readability. Therefore, properties related to

other quality goals (e.g., ‘‘Termination checked’’) could incorrectly receive lower corre-

lations. Second, properties which cannot be deduced visually at all (e.g., ‘‘Low execution

time’’) or cannot be deduced quickly (e.g., ‘‘Few dependencies to other modules’’) would

likely go unnoticed by the reviewer. Furthermore, there are simply so many properties that

it is not possible to control for each individually, making it impossible to evaluate the

relative importance of the properties; to do so would require preparation of an extremely

large set of code samples for experts to review, which is infeasible within reasonable time

constraints. This effect would in particular lead to lower correlations for less-common

properties (e.g., ‘‘Small init sections’’). Hence, a large portion of our quality model

would likely go unvalidated if we were to use this method, regardless of whether the

properties are important for QVTo transformation quality.

We propose a different validation approach for our quality model. With our assumption

that developers themselves are one of the best resources to determine what high-quality

code is, we validate our quality model by performing a survey of developer perceptions of

each quality property. Using perceptions is based on the pragmatist stance, directly

leveraging practitioner experience. By addressing each property individually, we assess the

model on a very fine-grained level.

The validation survey consisted of an introduction to the research, instructions, a field

for the developer to describe their experience with QVTo, and finally, a question regarding

each quality property. Definitions of each quality goal as they relate to transformation

quality were also clearly presented (see Gerpheide (2014) for the complete text). Each

property question was a compound Likert-style (Johns 2010) question asking about the

relationship between the property and the four quality goals. An example question is shown

in Fig. 3. All property questions were worded similarly, since although acquiescence bias

(where respondents passively indicate responses which agree with the question) is a

drawback of Likert scales, it is more important to have this bias consistently throughout the

survey (Barnette 2000). After each question was a field for comments and for less-known

Software Qual J (2016) 24:797–834 813

123

QVTo or programming terms, a short explanation was provided. The survey instructions

stressed that the developer should answer the questions in terms of typical QVTo trans-

formations and should reflect their own experiences. A mock survey was carried out with

an independent developer to test the survey clarity and completion time. The survey was

distributed online by posting on the QVTo forum and the QVTo developer mailing list, and

the link was sent directly to the ASML QVTo developers.

Fifteen respondents filled out the survey, including the original four experts interviewed

during the exploratory study and the two remaining ASML QVTo developers. The re-

maining QVTo experts included three from industry, five graduate-level students, as well

as one of the four primary committers of the Eclipse QVTo implementation. Respondents

had between 1 and 9 years of experience working with QVTo.

The survey results are summarized in Table 5. To measure overall agreement, we

calculated Kendall’s coefficient of concordance W (Field 2005), a measure of respondent

agreement where 1 implies perfect agreement. For our response set, W = 0.42 (p val-

ue\ .01),2 which can represent weak overall concordance (Vidmar and Rode 2007),

implying that at least some properties may have high disagreement. To better interpret the

coefficient, we examined the interquartile ranges for each quality property/goal pair, where

an interquartile range of one represents 50 % of developers having a responses which

neighbor each other on the Likert scale. We find that 80 % of pairs had an interquartile

range of one or less, which we interpret as high agreement for most properties.

In general, presentation-related properties had the highest agreement. The GPL-appli-

cable properties also had higher agreement in general than the MMT- or QVTo-specific

properties. The pair which was least agreed-upon was ‘‘Few dependencies on other

modules’’/Maintainability. By reading the survey comments, we find that while some

developers consider dependencies bad for quality, others consider the alternative to be

higher code duplication, in which case more dependencies are preferred.

Comparing the ASML team to the public, W = 0.44 and W = 0.32, respectively, so

there is more agreement within the ASML team than among members of the public. This is

most likely because the general public do not have a common context in which they use

QVTo, and therefore, their opinions about the best way to write QVTo differ. The median

answers for ‘‘Termination checked’’ and ‘‘Confluence satisfied’’ were also considerably

higher for the ASML team than for the public. This we explain by differences in academic

background (two ASML team members have PhDs in formal computer science topics,

whereas members of the public did not have formal computer science backgrounds).

Fig. 3 Example question from validation survey

2 Calculated in R with correction for ties using the irr package command
kendall(df,correct=TRUE)

814 Software Qual J (2016) 24:797–834

123

Table 5 Validation results

Validation
Quality property F U P M
Detailed comments throughout
code

0 (0, .5) 2 (2, 3) 0 (0, 0) 2 (1, 2.5)

Formatting conventions fol-
lowed

0 (0, 0) 2 (1.5, 2) 0 (0, 0) 2 (1, 2)

Few blackboxes 0 (-1, 0) 1 (.25, 2) 0 (-1, 0) 2 (1, 2)
Few configuration properties 0 (0, .75) 0 (0, 1) 0 (0, 0) 0 (0, 1)
Few dependencies on other
modules

0 (0, .5) 1 (0, 1.5) 0 (0, 1) 0 (-2, 2)

Few input/output models 0 (-1, 0) 1 (1, 1.5) 0 (0, 1) 1 (1, 2)
Few intermediate properties -.5 (-1, 0) 0 (-1, .75) 0 (0, 0) 0 (-.75, 1)
Low code duplication with oth-
er modules

0 (0, .5) 1 (1, 2) 0 (0, 0) 2 (1.5, 2)

Pre- and post-conditions spec-
ified

0 (0, 1) 1 (1, 2) 0 (0, 0) 1 (.5, 2)

Small interfaces to other mod-
ules

0 (0, 0) 1 (.25, 2) 0 (0, 0) 1.5 (.25, 2)

Small transformation size 0 (0, 0) 2 (1, 2) 0 (-1, 1) 1 (1, 2)
Confluence satisfied 0 (0, 1.75) 0 (-.75, 0) 0 (0, 0) 0 (0, 1.75)
Few dependencies between
functions

0 (0, 0) 1 (0, 1) 0 (0, 0) 1 (0, 1)

Few sections 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1)
Few mapping arguments 0 (0, 0) 1 (-.5, 2) 0 (0, 1) 0 (-1, 1.5)
Few nested statements 0 (-.5, 0) 1 (1, 2) 0 (0, 0) 1 (1, 2)
Few and clauses 0 (-.75, 0) .5 (0, 1) 0 (-.75, .75) 0 (0, 1)
High test coverage 2 (0, 2) 0 (0, .5) 0 (0, 0) 1 (0, 1)
High usage of design patterns 1 (0, 1) 1 (1, 2) 0 (0, 1) 1 (1, 2)
Inheritance usage matches
metamodel

.5 (0, 1) .5 (0, 2) 0 (0, 0) 0 (-.75, 1.75)

Interdependent functions near
each other

0 (0, 0) 2 (1, 2) 0 (0, 0) 1 (1, 2)

Little dead code 0 (0, 0) 2 (1.5, 2) 0 (0, 1) 2 (1.5, 2)
Little imperative programming 0 (-.5, 0) 1 (0, 1.5) 0 (-.5, .5) 1 (.5, 1.5)
Little overloading 0 (-1, 0) -1 (-1, 1) 0 (0, .5) -1 (-1, 1)
Low code duplication within
module

0 (0, 0) 1 (1, 2) 0 (0, 0) 2 (2, 2)

Low syntactic complexity 0 (-1, 0) 1 (1, 1) 0 (0, 0) 1 (1, 1)
Minimal reassignment of ob-
jects

0 (-.5, 1) 0 (-1, 2) 1 (0, 1) 0 (-1, 2)

More mappings than helpers 0 (0, .5) 0 (0, 1) 0 (0, 0) 0 (0, .75)
More queries than helpers 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1)
Short function chains 0 (0, 0) 1 (0, 1.5) 0 (0, 1) 1 (0, 1.5)
Small function size 0 (-.5, .5) 2 (1.5, 2) 0 (-1, 0.5) 2 (1, 2)
Small sections 0 (0, 0) 1 (0, 1) 0 (0, 0) 1 (0, 1)
Termination checked 0 (0, 2) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Deletion uses trashbin pattern 0 (0, 0) -1 (-1, 0) 1.5 (0, 2.75) 0 (-.75, 0)
Few queries with side-effects 0 (-1, 0) 2 (1, 2) 0 (0, 0) 1 (1, 2)
Low execution time 0 (0, 0) 0 (0, 0) 3 (2, 3) 0 (0, 0)
Mappings only used when trac-
ing needed

0 (0, 0) 0 (-1, 0) 1 (0, 2) 0 (-1, 0)

init

end

if
when where

Software Qual J (2016) 24:797–834 815

123

To see the relationship between individual survey respondent answers, we calculated the

pairwise correlations between responses, shown in Fig. 4. Respondents 1–6 were the

members of the ASML team. Correlations were calculated using the nonparametric statistic

Kendall’s s as well as the parametric Spearman’s q, giving equivalent correlations with

both statistics, thereby increasing the confidence in the coefficient values. It is clear that

some respondents had much more similar responses than others, for example respondent 12

correlated highly with 14 and 15. Looking deeper, this high correlation came largely from

GPL-applicable properties, and these three respondents in fact reported having the least

experience in QVTo. So, the correlation may be explained because these respondents are

answering the survey questions based more on prior knowledge of code quality from GPLs

than QVTo experience.

Next, we consider which property/goal pairs are perceived as having the strongest

impact on quality by comparing median responses. The pair with the highest median was

‘‘Low execution time’’/Performance followed by properties ‘‘Little dead code,’’ ‘‘High test

coverage,’’ and ‘‘Few black-boxes,’’ among others. Four pairs yielded negative medians,

indicating that developers perceive these to decrease quality rather than increase it. For one

of these, ‘‘Deletion uses a trashbin pattern,’’3 a trade-off is clearly acknowledged by the

respondents where it decreases understandability but increases performance.

Finally, and arguably most importantly, we define two criteria which must be met by a

property/goal pair before we consider it validated by the survey. First, the median answer

must be at least ‘‘Somewhat increases.’’ Second, at least 75 % of the responses must have

been at least ‘‘Has little/no effect.’’ The results which satisfied these criteria are shaded

gray in Table 5. Of our original 37 properties, 26 are therefore validated for being im-

portant for at least one quality goal. Of those validated, nine were considered MMT- or

QVTo-specific.

A sensitivity analysis was also performed where each respondent was removed one at a

time and the two criteria were rechecked. The three pairs which did not satisfy the criteria

in every round are struck through in Table 4, suggesting that these pairs in particular may

benefit from additional validation. There are also four pairs which satisfied the criteria only

when one respondent was removed. These pairs are displayed in boxes. Since these pairs

also appear highly sensitive to the specific set of respondents used and because these pairs

are all MMT or QVTo specific, they also make interesting candidates for additional

validation techniques.

3.4.1 Threats to model validity

Our approach is not without limitations. First, the quality model is not a complete picture

of QVTo quality, since it only contains the properties representing the most important

issues at the time of our research. Similarly, although we argue these properties are indeed

useful to practitioners, they may not be independent, requiring future work such as factor

analysis to pinpoint any independent or underlying attributes. Second, a large portion of

our approach is based on perceptions, which are inevitably biased. So, even though we

build our quality model with no prior conception of what quality in QVTo should mean,

developer perceptions can nonetheless be based on previous impressions of software

quality. Third, the validation survey format could be improved. It was noted by some

respondents that the strict question format makes some answers obvious while others feel

oversimplified. These feelings could hurt response validity or cause others to opt not to

3 In the ‘‘trashbin pattern’’ objects are assigned to a parent object before deletion.

816 Software Qual J (2016) 24:797–834

123

take the survey. Finally, although our validation method is more likely than other methods

to lead to fine-grained results already useful to practitioners, both our quality model and

validation results are susceptible to overfitting due to small sample sizes. For example,

ASML may have a particular development style which is not shared by other QVTo

developers, providing non-representative interview data. Also, because QVTo is still a

young language, many of the QVTo developers today are the same as those creating the

QVTo implementations and tooling, and therefore may have different quality needs than

future QVTo developers. This overfitting, in fact a common concession in the pragmatist

stance (Easterbrook et al. 2008), is the primary motivation of using a triangulation ap-

proach. Nonetheless, conducting additional interviews with developers from other domains

and backgrounds is an important step for future validation.

4 Leveraging the model in developer tooling

The QVTo quality model presented in Sect. 3 primarily addresses our first research

question, namely how do we assess QVTo quality? However, the quality model presented

there provides minimal practical value without complementary tooling. Fortunately, we

can leverage the QVTo quality model to investigate our second research question: how do

we develop higher-quality QVTo transformations? Specifically, since developers create the

transformations, how can we distill the QVTo quality model in tooling which helps de-

velopers create higher-quality model transformations?

The need for tooling is further stressed in literature. Rahim and Whittle (2015) note that

although the importance of metrics tools for transformations is still at an early stage, the

need for tools is quickly increasing as transformations become more complex. Syriani and

Gray (2012) also identified the distinct lack of tooling for MDE as one of the biggest

current challenges in developing high-quality model transformations. Moreover, according

Fig. 4 Pairwise correlations of responses between respondents calculated with Spearman’s q

Software Qual J (2016) 24:797–834 817

123

to the pragmatist stance, developing tooling based on the quality model to be used in

practice serves as additional and extremely valuable validation of the quality model itself.

The attributes from our quality model support many directions for tooling, which we

classify here in informal categories. Given their benefit to effectively producing code, tools

in many of these categories are already part of standard development environments for

many GPLs.

First there are tools which solely measure and report metrics. These could for instance

measure the best-validated attributes from the QVTo quality model over time and/or across

projects and could be implemented as either stand-alone assessment tools or integrated

developer tooling. Another category is visualization tools. In additional to visualizing

metrics, they can also visualize structure of a piece of code, which can again be performed

statically, between projects, or over time. An example is the transformation analysis tool

by Rentschler et al. (2013b), a visualization tool to help developers reduce intramodule

dependencies and increase development speed by displaying a visual of dependencies

between transformation mappings. Similar visual treatment could be provided for some of

the high-level architecture or transformation-local metrics from the QVTo quality model,

including ‘‘Small interfaces to other modules,’’ ‘‘Short function chains,’’ and ‘‘Interde-

pendent functions near each other.’’ Although not well validated by the expert survey,

‘‘Inheritance usage matches a metamodel’’ could also yield interesting, novel visualization

tool opportunities. Other examples of a visualization tools are the TraceVis tool presented

by van Amstel for visualizing the traceability links in model transformations (van Amstel

et al. 2012) and the MDE code generation environment tool developed by Guana and

Stroulia (2014). The trace analysis tool discussed by Santiago et al. (2013) can also be

considered a visualization tool. A third category is analysis tools. Such tools could check

formal behavioral conditions such as ‘‘Termination checked’’ and ‘‘Confluence satisfied,’’

both which have long been attractive components of automated software development

tooling (Ramamoorthy and Ho 1975). For model transformations, little tooling has been

developed for these properties, though much research exists on proving them (e.g., Ehrig

et al. 2005; Orejas et al. 2009). Neither of these properties, however, were validated with

our survey, so they make less attractive tool candidates at this time. An analysis tool

addressing a well-validated attribute would be a profiling tool, namely addressing attribute

‘‘Low execution time.’’ Finally, there are process-oriented tools which are most closely

related to integrated developer tooling. One such tool is a code coverage tool which

measures and displays test coverage of the transformations, thereby addressing attribute

‘‘High test coverage attribute,’’ which was validated to be important for both functionality

and maintainability. Another candidate is refactoring support, already available for many

GPLs directly from the IDE. Generally speaking, bad smell detection (e.g., Fowler 1999) is

a precursor for refactoring tooling. Refactoring and design patterns, for GPLs as well as

model transformations, have received much attention in research (Fowler 1999; Ergin and

Syriani 2013; Syriani and Gray 2012). In our model, refactoring support could address

‘‘Formatting conventions followed,’’ ‘‘Few queries with side effects,’’ ‘‘Deletion uses

trashbin pattern,’’ ‘‘High usage of design patterns,’’ and the attributes concerning code

duplication.

Of the options presented above, we have chosen to implement the test coverage tool.

The ‘‘High test coverage’’ attribute was well validated for both functionality and main-

tainability, and moreover, the lack of a test coverage tool was mentioned by every de-

veloper during the expert interviews as an area requiring attention, as it is a standard part of

the GPL developer toolset. Therefore, a test coverage tool provided the clearest benefit in

improving the identified transformation quality goals. Such a tool thus provides an actual

818 Software Qual J (2016) 24:797–834

123

practical application of the quality model for QVTo practitioners. We use the terms code

coverage and test coverage interchangeably, since both are commonly used in industry to

refer to test coverage tools. To increase the usefulness of the tool, we develop this tool so

that it can indeed support both attributes ‘‘High test coverage’’ and ‘‘Little dead code.’’

4.1 Tool development approach

To support replicating our development approach for the development of other tools, such

as for those identified in Sect. 4 or for additional code coverage tools targeting other

transformation languages, we make explicit our context, assumptions, and when and why

design decisions were made. Hall and Fenton (1997) provide a number of general rec-

ommendations for implementing successful metrics programs. Since many forms of de-

veloper tooling require presenting useful metrics about code to developers, many of these

recommendations apply to our tool development, including incremental implementation,

transparency of data collection, that the usefulness of the tool should be apparent to all

practitioners, developer participation in defining metrics, practitioner confidence in the

metric collection, automated data collection, and practitioner training. Paige and Varró

(2012) also noted in their experience of developing MDE tooling for 10 years that in

general rich graphical views of models are more useful than editing tools. As we are

targeting tools for the same domain, we also take these recommendations into account

when designing our tool.

Already leveraging two suggestions from Hall and Fenton (1997), we follow an iterative

development approach with significant developer involvement. This iterative approach

lends itself to the pragmatist stance, since every iteration incorporates developer feedback

to maximize the tool’s usefulness according to their context and needs. The steps of our

development process are enumerated in Table 6.

4.2 Tool design

In particular when leveraging the pragmatist stance, it is essential that a tool is appropriate

for the technical environment in which it will be used. Our tool will initially be used in the

ASML team using QVTo (the developers in this team are described in more detail during

tool validation in Sect. 4.4). The ASML team tests their transformations using JUnit unit

tests in Eclipse. There, test cases are created which specify one or more input models,

execute the specified transformation, and compare the transformation output model(s) to an

expected output model. A depiction of this process of executing a single test case is given

Table 6 Iterative development process used to develop the QVTo quality tool

1. Develop a proof of concept exemplifying the possibilities for the quality attribute(s)

2. Present the proof of concept to the QVTo practitioners and get initial feedback

3. Formalize the tool requirements and review them with practitioners

4. Develop the prototype and provide it to the QVTo practitioners for normal use

5. After a period of use, get feedback from developers and improve the tool and provide an updated
version to developers

6. After an additional period of use, perform a final evaluation of the tool with developers and identify
areas for future work

Software Qual J (2016) 24:797–834 819

123

in Fig. 5. According to survey of model transformation verification by Rahim and Whittle

(2015) and the description by Lin et al. (2005) of a testing framework for model trans-

formation, this is a common setup for testing MMTs. The maintainers of the Eclipse QVTo

implementation also use the same testing approach. Therefore, a tool developed for this

setup is likely to also be applicable to other development teams using QVTo.

4.2.1 Tool requirements

First, according to our development process (presented in Table 6), a proof of concept in

the form of a small Eclipse plug-in was developed to exemplify possible tool features. Our

proof of concept demonstrated two features: the ability to add highlighting to code in a file

in Eclipse and the ability to count the number of mappings touched during a single

transformation execution. These features were chosen since they represent core features of

code coverage tools for GPLs (e.g., EclEmma for Java, onl 2014c). Per step two in our

process, this proof of concept was demonstrated to five ASML QVTo developers in a 1-h

session to get feedback. From this feedback, the following list of initial requirements was

formulated, step three of our development process. Many of the requirements match fea-

tures of GPL code coverage tools which developers have come to expect in a code cov-

erage tool.

• REQ1. Coverage should be able to be collected on multiple test cases at once, i.e.,

when a test set or test suite is run.

• REQ2. Coverage should be calculated for imported libraries as well as transformations.

Fig. 5 Model transformation unit test case execution (Lin et al. 2005)

820 Software Qual J (2016) 24:797–834

123

• REQ3. Code should be highlighted in the editor, green for visited and red for unvisited,

ideally with fine granularity (e.g., line-based).

• REQ4. Percentages representing the calculated coverage based on the desired coverage

criteria should be displayed in a new view inside Eclipse. (The specific coverage

criteria are discussed in Sect. 4.2.2.)

• REQ5. Aggregated coverage statistics should be displayed for a project and then able to

be drilled down to individual modules.

• REQ6. The tool should make use of existing JUnit launch configurations in order to

avoid duplicating the settings needed to launch the test.

From these requirements, a prototype was developed per the fourth step of our devel-

opment process. This prototype satisfied all initial requirements except REQ3. REQ3 was

not entirely fulfilled in the prototype because the Eclipse QVTo implementation does not

expose a straightforward method to easily obtain the total number of unvisited expressions

or statements in a transformation. It does, however, expose ways to obtain the unvisited

functions. Therefore, red highlighting was added to unvisited mappings, helpers, and

queries, but not other unvisited code residing within a visited function.

The prototype was used by developers for 3 weeks. Developer feedback was then

gathered through an informal group interview per step five of our process. Developers were

overall very satisfied with the tool, stating that even with current features, they were

‘‘impressed’’ and that the plug-in ‘‘solved their needs’’ for code coverage. The developers

also suggested some additional features to be added to the tool, which have been for-

malized in the additional requirement below:

• REQ7. Draw attention to transformations with very high or low coverage by coloring

them inside the view that displays percentages. Percentages below a certain threshold

should be colored red and those above a certain threshold should be green. Ideally these

thresholds are settable by the tool users.

4.2.2 Coverage criteria

Because test coverage criteria have not yet been defined specifically for QVTo, we define

coverage criteria for QVTo here. A number of coverage criteria have been proposed for

MMTs in general. These criteria fall into three categories: input metamodel coverage,

transformation coverage, and generated code coverage (McQuillan and Power 2009).

Metamodel coverage, a form of black-box testing since it does not require access to

transformation source code, measures how many elements from the metamodel are used by

a transformation. A challenge with metamodel coverage is that metamodels are generally

large, therefore requiring an enormous number of tests to cover the entire metamodel. Even

with facilities to generate these tests, test suites may still require a large amount of time to

run. Moreover, many transformations are only intended to address a small part of a

metamodel, in which case very low measurements of metamodel coverage are expected

and acceptable. Transformation coverage, on the other hand, measures how much of the

transformation source code is covered. Transformation coverage variations include rule

coverage, instruction coverage, and (for MMT languages supporting conditions) decision

coverage. Generated code coverage, only applicable to transformations which generate

code, measures traditional code coverage criteria on the generated code. Traditional

coverage criteria include statement coverage, function coverage, and class coverage

(McQuillan and Power 2009). Due to the pragmatist stance, in our tool, we focus on

Software Qual J (2016) 24:797–834 821

123

transformation coverage. This is because the test infrastructure used by the ASML team

(and likely by other teams) are written to test certain parts of a transformation, just like

testing normal code, making transformation coverage the metric most directly useful in

assessing their test coverage.

Because QVTo offers language constructs that are not available in other languages, we

define transformation coverage criteria that are specific for QVTo. The following coverage

criteria were identified initially: mapping coverage, helper coverage, query coverage,

constructor coverage, and statement coverage. In the prototype, all criteria were calculated

except query coverage and statement coverage due to limitations in the Eclipse imple-

mentation of QVTo. Specifically, statement coverage was not calculated because the

concrete syntax of the language does not define a construct for what QVTo developers

consider a ‘‘statement,’’ namely any expression ending with a semicolon. Since expressions

are explicitly defined in the concrete syntax, statement coverage was replaced with ex-

pression coverage as a coverage criterion. Query coverage was not calculated because

queries are not distinguished from helpers in the concrete syntax and the interpreter treats

both constructs as helpers. In the prototype feedback, developers also identified that total

function coverage, in which mapping, helper, and constructor coverage are aggregated,

would be useful to get a quick overview of the coverage of a module. Therefore, five final

transformation coverage criteria are identified as useful for QVTo model transformations,

presented in Table 7.

For expression coverage, it is essential to understand that expressions are nested.

Therefore, the percentage representing the total number of visited expressions divided by

the total number of unvisited expressions may not seem accurate at first glance. To il-

lustrate the nested nature of expressions, a very simplistic sample expression is given in

Fig. 6. In the figure, a total of five expressions are shown. If the word ‘‘World!’’ were not

evaluated during test execution, this code would yield an expression coverage of 4/5. Since

it is hard for everyday users to see how that specific number was calculated without

knowing the exact expression structure, the coverage value could be perceived as unin-

tuitive. Therefore, two options were investigated for calculating and showing expression

Table 7 Test coverage criteria
identified for QVTo model
transformations

QVTo coverage criteria

– Mapping coverage

– Helper coverage

– Constructor coverage

– Total function coverage

– Expression coverage

Fig. 6 Nested structure of QVTo expressions shown to three levels deep

822 Software Qual J (2016) 24:797–834

123

coverage: one option using all expressions and one using coverage calculated using only

with leaf expressions, i.e., expressions with no subexpressions. To assess each option, the

expression coverage percentages on a number of test sets were compared. Because of the

large number of expressions in a transformation, however, the percentages reported by

each method are comparable. For example, the leaf expression coverage for the code

samples included in Fig. 7 (including two small functions not shown) was calculated as 6

out of 10 expressions = 60 % and the total expression coverage was 16 out of 29 ex-

pressions = 57 %. However, the two methods produce drastically different expression

coverage visuals (required by REQ3). The difference is visible in Fig. 7.

Both options were demonstrated to the ASML developers on real test sets to determine

which was most useful. There, developers voiced a clear preference for the total expression

coverage, citing that although one can deduce whether unhighlighted code is touched or

not from the leaf expression coverage, it requires a great deal of effort from the developer,

making it even ‘‘barely usable.’’ Good visualizations are also essential to address the

quality attribute for ‘‘Little dead code,’’ since they can make dead code make it much

easier to identify untouched spots in the code. Furthermore, the developers felt that the

percentages reported were equivalent for their purposes. Therefore, total expression cov-

erage was used for the expression coverage criterion as well as in the expression coverage

visual.

Fig. 7 Expression coverage visualization options. (a) Leaf expression coverage, (b) Total expression
coverage

Software Qual J (2016) 24:797–834 823

123

4.3 Tool implementation

The QVTo code coverage tool is implemented as a fully integrated plug-in for Eclipse. A

high-level depiction of the architecture is provided in Fig. 8. To satisfy REQ6, specifying

that the tool should make use of existing JUnit launch configurations, the coverage tool

contributes an extended Eclipse launch configuration called the QVTo coverage launch

configuration which can be run on existing JUnit test configurations. This implementation

also satisfies REQ1, since directly reusing the existing launch configurations automatically

provides support for running any test combinations. The tool collects coverage data by

instrumenting the language interpreter’s Visitor class. Overall, there are 18 Java classes

included in our implementation organized in six packages, totaling approximately 1700

lines of code. In accordance with Eclipse best practices, the QVTo coverage functionality

is divided into a number of distinct plug-ins which can then be easily distributed via an

Eclipse update site. Logging functionality was also added to the tool to record usage data to

later be used during tool evaluation.

In implementing the tool, a number of code patches were submitted to the Eclipse

QVTo core engine (viewable at onl 2014i, j, k). These patches together make it possible for

not only our coverage tool, but also future tools such as an integrated profiler, to easily

instrument the QVTo interpreter. Without these patches, instrumentation of the Eclipse

QVTo implementation by third-party plug-ins was not possible. These patches have al-

ready been incorporated into the Eclipse Luna version, released in June 2014. An

elaboration on the technical implementation of the tool and the QVTo core patches is

provided in Gerpheide (2014).

The tool user is exposed to the frontend architecture of the tool, namely the views inside

Eclipse, shown in Fig. 9. On the bottom the QVTo Coverage View. The left column of the

coverage view shows a hierarchical view of transformations that were invoked during the

test run. The coverage view cells are colored according to the percentage calculated for that

criterion, by default set at 30 and 90 % but customizable in the Eclipse preference pane.

Fig. 8 High-level architecture of QVTo Coverage Plug-in

824 Software Qual J (2016) 24:797–834

123

When the user double-clicks on the module name, the file is opened in the regular Eclipse

editor view with the coverage overlay showing the visited expressions in green and the

unvisited expressions in red. Small green and red markers also show up right-hand side of

the editor, which provide users with an overview of the highlighting throughout the file, a

particularly useful feature for large transformations.

To maximize the usefulness and impact of the tool, it has been made open source under

the Eclipse Public License (onl 2014h) and placed online so that anyone can use and

modify the tool for free (onl 2014e). Consistent with discussions with the Eclipse QVTo

maintainers, it is hoped that our tool becomes incorporated into the Eclipse project by the

Mars version release in 2015.

4.4 Tool evaluation

Because our development approach utilized an iterative approach, some initial validity is

already provided for the tool in its ability to help developers create higher-quality trans-

formations. However, additional evaluation is desirable. Kitchenham (1996) presents a

methodology for evaluating software engineering tools. There, they identified two main

categories of evaluation methods: quantitative methods which establish measurable effects

of using a tool, and qualitative methods which establish the appropriateness of a tool in a

giving setting. We evaluate the tool here using both quantitative and qualitative methods.

First, because we have direct access to practitioners over a period of time, we leverage a

qualitative case study as an evaluation method. Specifically, the ASML team used the tool

for a period of time on their current QVTo projects after which practitioner feedback is

gathered. Practitioner feedback is essential for the pragmatist stance because practitioners

must be the ultimate judge of how useful the tool is in practice. This feedback is gathered

through semi-structured group interviews because group interviews allow the researcher to

easily follow up on suggestions by the developers and also allows the developers to discuss

Fig. 9 Coverage and editor views after a test run

Software Qual J (2016) 24:797–834 825

123

ideas with each other to reach consensus on the spot. The usage data collected during the

tool usage period also contributes to the qualitative analysis, since it can be used to

improve the quality of developer’s feedback. Performing the qualitative analysis with

additional teams outside ASML is identified as an area for future work.

We then perform a quantitative case study in the form of a timing analysis to assess the

tool’s performance. Performance is a critical factor in the tool’s usability, directly affecting

its usefulness to developers in a practical setting. Since this analysis provides additional

data to cross-reference developer feedback, and allows other practitioners not participating

in our case studies to assess how useful the tool may be in their own context, the timing

analysis complements the qualitative evaluation.

4.4.1 Qualitative evaluation results

The usage period lasted a total of 7 weeks. During that period, the coverage tool was used

on every QVTo test run by the ASML team. Specifically, usage data reported a total of 98

test runs (either a test set or test suite) performed with the coverage during which 16,714

unit tests were executed.

Five ASML developers participated in the evaluation interview. The interview lasted

approximately 45 min and followed the interview guide presented in Table 8. The most

common use case was to check which code in certain transformations was not touched,

primarily using the highlighting overlay feature. Developers viewed the highlighting

overlay according to the usage statistics 35 times. Notably, the tool was also used by a

developer in the preparation of a user story (Beck et al. 2001) to describe how to complete

a specific feature or task of an agile sprint. In preparing the user story, the developer ran the

entire test suite and recorded which additional tests would need to be written before

making the code changes for the feature. The developers also voiced that with the high-

lighting they could easily see which code may be dead code, providing support that the tool

indeed addresses the second quality attribute, ‘‘Little dead code,’’ as well. However, the

developers also noted that it is difficult to tell whether code is dead because of the

transformation structure or whether it is dead because of the metamodel structure (i.e.,

Table 8 Interview guide used for tool evaluation interview

QVTo code coverage tool interview guide

– What are you general thoughts about the tool?

– What do you consider the most useful features?

– Of the coverage criteria displayed, which was most important or useful to you?

– What use cases did you use the tool for?

– How appropriate were the default coverage thresholds (30 and 90 %)?

– Was there a performance impact?

– Will you continue using the tool and would you recommend it to others?

– Can you think of any cases where you would disable coverage while running unit tests?

– Do you feel like it improved quality? If yes, how? If not, what could be improved?

– Did you encounter any bugs?

– What additional features would you like to see in the tool?

826 Software Qual J (2016) 24:797–834

123

parts of the metamodel which are no longer used). Therefore, we identify adding meta-

model coverage functionality to our tool as an area for future work, for instance leveraging

the TraceVis approach (van Amstel et al. 2012).

The developers agreed that the highlighting overlay was the most important feature of

the tool, since there one can actually see which parts of code are not tested. The specific

numbers displayed in the coverage view were not used often during the usage period,

though the developers still asserted that quickly identifying which test cases have the

lowest coverage is a useful and valid use case in the future. The developers identified

another use case as using the coverage tool to report their confidence in the robustness of

certain projects together with project documentation. The developers already stated,

however, that they consider the tool ‘‘very useful,’’ and that they will ‘‘absolutely continue

using it.’’ Installing the coverage tool has also been added to their team’s ‘‘Way of

working’’ document, already making it an official part of their development process.

The most useful coverage criteria according to the developers was the expression

coverage followed by the total function coverage. Although the remaining coverage criteria

were considered less useful, the developers still asserted that it was nice to have the extra

information there and at least no hindrance to tool usage. One of the developers did note

that additional types of coverage used by GPL coverage tools, such as proper statement

coverage and branch coverage, would be nice to add. The developers also expressed that it

would be useful if the coverage thresholds on which the cell coloring is based could be

specified on a per module basis as well, since some transformations, and in particular

libraries used by many transformations, are considered to be more critical than others and

should therefore be held to higher coverage standards.

When asked whether they felt the tool increased transformation quality, they replied,

‘‘of course. Now that we can actually measure the quality of the test suite, we know where

we need to work to improve it.’’ Based on the feedback above, we consider the tool to

successfully increase quality in the context of the ASML team.

4.4.2 Quantitative evaluation results

Since the tool uses both interpreter instrumentation and disk access, there is inevitably

some negative impact on performance. If this impact is large, it could cause developers to

opt not to use the tool. Therefore, we perform a small quantitative evaluation of the tool

with respect to execution performance. Specifically, we compared the test execution times

for two real, production test sets maintained by the ASML team when using the QVTo

coverage launcher versus the standard JUnit launcher. The first test set was comprised of

28 individual tests, touching seven QVTo modules containing (according to the QVTo

coverage tool) a total of 3959 expressions of which 2767 were touched. The second test set

contained 45 tests with four QVTo modules and 3023 total expressions of which 1464 were

touched. The timing results are extracted from the JUnit view inside Eclipse, which dis-

plays the time required in seconds per test up to three decimal places. All test runs were

performed in the same computing environment.

From the timing results, we found that the test set run takes from 16 to 20 % more time

when using the coverage tool, varying depending on the test case. By comparison, the

EclEmma tool (onl 2014c) commonly used for measuring Java code comparisons is ex-

pected to induce approximately 10 % overhead (onl 2014b), though this number, like ours,

is highly test case dependent, ranging from 5 to 30 % in normal projects (onl 2014f).

Therefore, our average overhead is within the same range. Furthermore, since the overhead

incurred with using coverage amounts to only a couple seconds for an entire test set, we do

Software Qual J (2016) 24:797–834 827

123

not consider this to have an impact on tool usability. Even when considering the entire test

suite, which requires approximately one and a half minutes to complete, the overhead is not

enough to affect end user behavior. Developers confirmed that the tool exhibited no

noticeable difference in time performance. More details of the timing analysis results can

be found in Gerpheide (2014).

4.4.3 Threats to tool validity

One threat to tool validity is the potential inapplicability to other development teams.

Although our research suggests that the tool environment used at ASML is a common one,

it is likely that there are teams developing in QVTo that require the tool to be adapted to

their development setup before it can be used. Secondly, the tool qualitative evaluation

should be made more thorough by extending the tool usage period, incorporating more

iterations of development, and performing the evaluation with additional teams. A final

threat to validity is, like in the survey used to evaluate the quality model in Sect. 3.4, that

developers may speak more positively about the tool during qualitative evaluation as to not

offend the interviewer. To combat this, it is recommended in future work that evaluation

interviews be conducted by an independent party.

5 Related work

This paper directly extends the research on the QVTo quality model presented by Ger-

pheide et al. (2014a, (2014b). It does this primarily by leveraging the QVTo quality model

to identify and develop tooling that directly helps practitioners develop high-quality QVTo

transformations. In addition to presenting tooling, an elaboration on the approach to

building the quality model, additional insights in evaluating the model, and a more in-depth

look at the properties of the quality model itself were also provided in this paper in

comparison to Gerpheide et al. (2014a, (2014b).

This work is also related to much work on software quality. However, since the amount

of work published on software quality is vast, we only mention the work most closely

related to this research. The work discussed here was also incorporated in the exploratory

study used to construct our quality model. Ferenc et al. (2014) provide an introduction to

software quality models with respect to maintainability. Syriani and Gray (2012) enu-

merate the challenges in model transformation quality and propose two directions for

research: 1) cataloging transformation design patterns and 2) identifying quality criteria for

transformations, including quantitative metrics. Therefore, Syriani and Gray (2012) serve

as motivation for our research, and we directly build on the second research area they

identified.

Like our research, other research has also addressed model transformation quality.

However, we classify these as top–down approaches because the authors construct their

notions of quality exclusively from theory and related work. In addition to the work

described in Sect. 2 and MMT quality models discussed in Sect. 3.3.2, Vignaga (2009)

proposed a set of ATL metrics and Kapová et al. (2010) defined metrics for the declarative

transformation language QVTr, though in neither case was an empirical validation per-

formed. These approaches heavily influenced our research, first by showing that new

metrics can be defined for model transformations, and second, these works motivated us to

pursue a bottom–up approach to build a quality model useful for practitioners. Using a

828 Software Qual J (2016) 24:797–834

123

bottom–up approach is further motivated by Hall and Fenton (1997) recommendations for

creating successful metrics programs: among their eleven recommendations were trans-

parency, usefulness, developer participation, feedback, and a goal-oriented approach; all of

which were heavily incorporated in designing our approach.

Moody (2005) provides a rich overview of techniques to evaluate quality models,

pointing out that a surprisingly low proportion of quality models proposed in literature are

validated. Each technique is related explicitly to philosophical stances. A demonstration of

one of these evaluation techniques is provided by Moody in his assessment of data model

quality (Moody 2003). There, a set of data model metrics was proposed. To evaluate the

metrics, action research was performed where the metric set was applied in multiple

development projects over the course of 2 years, refining the metrics iteratively. Of the

original 29, only five remained at the final iteration. Metrics were removed primarily

because it was unclear to practitioners how they were useful for quality assessment. The

result was therefore a concise set of metrics which were validated to be useful for assessing

data model quality in practice. Although action research has not been used to validate our

quality model, we consider it a promising direction for future research.

Rahim and Whittle surveyed current work in model transformation verification (Rahim

and Whittle 2015), where they use the term verification to mean from formal analysis to

quality assurance. The majority of work is focused on generating test data (e.g., input and

expected models) and on model comparison (i.e., comparing output models to the expected

model). The authors also provide eight important areas for future research, three of which

we mention here. The first is a distinct lack of end-to-end verification tooling, which we

address by providing a coverage tool fully integrated into the testing environment already

used by the developers. The second area for research is grounding future work in industrial

practice, since the vast majority of MMT verification research is very academic and not

immediately applicable in industry. Here, the development of the tool was grounded

heavily in industrial practice as a result of the pragmatist stance. A final area recommended

for future research is attaining transformation language-independent forms of verification

since industry makes use of many different transformation languages. We do not follow

this recommendation, however, since according to the pragmatist stance, we should op-

timize the tool for its context, namely leveraging QVTo-specific attributes when useful to

do so. Moreover, this recommendation is at odds with the recommendation for end-to-end

tooling, since the environment in which the tool must be integrated is often language

dependent.

6 Conclusion

In this paper, a quality model was presented in detail for QVTo transformations. Our

bottom–up approach combined a systematic literature review, expert interviews, and in-

trospection, improving upon previous work in software quality models by identifying the

aspects most relevant for quality assessment in practice. Therefore, the QVTo quality

model presented here captures the aspects most useful for QVTo practitioners today. The

quality model was then validated by conducting a survey of developer perceptions on how

each property relates to QVTo transformation quality. This validation approach also im-

proves upon previous work by leveraging expert opinions to provide fine-grained valida-

tion data for every quality property. Of the 37 quality properties included in our model, 26

were considered validated as being important for quality of QVTo transformations. Of the

Software Qual J (2016) 24:797–834 829

123

validated properties, nine are specific to MMT or QVTo, showing that quality models

created for other languages will not cover some of the most important properties to assess

QVTo quality. Moreover, although the quality model presented here can only provide

guidance for quality models targeting other languages, our approach for constructing the

model and validation can be applied to any software quality model.

To improve the practical use of the model, we then employed our model to investigate

ways to proactively improve the quality of model transformations. Here, a focus on de-

veloper tooling was taken, and many potential directions for tooling based on the validated

quality model were identified. One of the tools identified as most useful, a code coverage

tool for QVTo, was then developed using an iterative development process with practi-

tioner involvement. During tool design, code coverage criteria were defined specifically for

the QVTo language. The tool was evaluated by having a team use it in practice and then

conducting a qualitative evaluation of the tool combined with a timing analysis. In addition

to now being used by the team cooperating with this research, this tool has also been open

sourced and is freely available to the QVTo community. Areas for future research with

respect to the coverage tool were also identified. Both the tool development process and

evaluation methods can also be applied to future work in software quality tooling.

The coverage tool together with the quality model developed here provide a sound basis

for future research in QVTo quality assessment and improvement. Future work includes

performing additional validation of the quality model, for example that used by van Amstel

(2012), conducting additional interviews, and assessing the appropriateness of the quality

evaluation procedures. Furthermore, while the quality properties we have identified have

been formulated to express directionality, e.g., ‘‘High test coverage’’ or ‘‘Small function

size,’’ we consider as another direction of future work determining thresholds for those

metrics (Oliveira et al. 2014) and developing appropriate aggregation techniques, allowing

one to lift the quality assessment to larger units (Mordal et al. 2013; Vasilescu et al. 2011).

Future work for QVTo quality tooling includes addressing the tool threats to validity and

developing the additional tools identified in this research based on the QVTo quality

model. Finally, to strengthen the relationship between practice and theory, further inves-

tigation should be performed on the relationships between the quality properties and best

practices presented here.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

(2013a). Google scholar. http://scholar.google.com/intl/en/scholar/about.html
(2013b). Transformation tool contest. http://www.transformation-tool-contest.eu
(2014a). ASML N.V. http://www.asml.com
(2014b). EclEmma: Control flow analysis for java methods. http://www.eclemma.org/jacoco/trunk/doc/flow.

html
(2014c). EclEmma: Java code coverage for Eclipse. http://www.eclemma.org/
(2014d). Eclipse community forum QVT-OML. http://www.eclipse.org/forums/index.php/f/244
(2014e). Eclipse plugin for measuring QVTo test coverage. https://github.com/phoxicle/qvto-coverage
(2014f). Java code coverage: Reasons for huge performance impact. http://comments.gmane.org/gmane.

comp.java.jacoco.user/66
(2014g). Karlsruhe institute of technology—QVT. https://sdqweb.ipd.kit.edu/wiki/QVT

830 Software Qual J (2016) 24:797–834

123

http://scholar.google.com/intl/en/scholar/about.html
http://www.transformation-tool-contest.eu
http://www.asml.com
http://www.eclemma.org/jacoco/trunk/doc/flow.html
http://www.eclemma.org/jacoco/trunk/doc/flow.html
http://www.eclemma.org/
http://www.eclipse.org/forums/index.php/f/244
https://github.com/phoxicle/qvto-coverage
http://comments.gmane.org/gmane.comp.java.jacoco.user/66
http://comments.gmane.org/gmane.comp.java.jacoco.user/66
https://sdqweb.ipd.kit.edu/wiki/QVT

(2014h). Licenses. http://choosealicense.com/licenses/
(2014i). Patch for QVTo engine: Adding a visitor decorator class. https://github.com/eclipse/qvto/commit/

51028ae23d78e9d2b7832321254487458d8e3da7
(2014j). Patch for QVTo engine: Adding hooks for third-party decorators. https://github.com/eclipse/qvto/

commit/8160dd9f29509d7051e4961b36eeaea61fe7a377
(2014k). Patch for QVTo engine: Fixing visitation of imported transformations. https://github.com/eclipse/

qvto/commit/d1aa7b9f5ca4c35d36f70031c889b7feec997ed7
Amrani, M., Dingel, J., Lambers, L., Lúcio, L., Salay, R., Selim, G., Syriani, E., & Wimmer, M. (2012).

Towards a model transformation intent catalog. In Proceedings of the first workshop on the analysis of
model transformations, ACM (pp. 3–8).

Barendrecht, P. J. (2010). Modeling transformations using QVT operational mappings. Master’s thesis,
Technische Universiteit Eindhoven. http://redpanda.nl/BEP_P.J.Barendrecht.pdf. Accessed April 1,
2014.

Barnette, J. J. (2000). Effects of stem and Likert response option reversals on survey internal consistency: If
you feel the need, there is a better alternative to using those negatively worded stems. Educational and
Psychological Measurement, 60(3), 361–370.

Beck, K., Beedle,M., van Bennekum,A., Cockburn, A., Cunningham,W., Fowler,M., et al. (2001).Manifesto
for agile software development. http://www.agilealliance.org/the-alliance/the-agile-manifesto/.

Ciancone, A., Filieri, A., & Mirandola, R. (2010). Mantra: Towards model transformation testing. In 2010
seventh international conference on the quality of information and communications technology
(QUATIC), IEEE (pp. 97–105).

Del Fabro, M. D., & Valduriez, P. (2009). Towards the efficient development of model transformations
using model weaving and matching transformations. Software & Systems Modeling, 8(3), 305–324.

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods for software
engineering research. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to advanced empirical
software engineering (pp. 285–311). London: Springer.

Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., & Varró-Gyapay, S. (2005). Termination criteria
for model transformation. In M. Cerioli (Ed.), Fundamental approaches to software engineering (Vol.
3442, pp. 49–63), Lecture notes in computer science. Berlin: Springer.

Ergin, H., & Syriani, E. (2013). Identification and application of a model transformation design pattern. In
ACM Southeast regional conference. ACM.

Ferenc, R., Hegedüs, P., & Gyimóthy, T. (2014). Software product quality models. In T. Mens, A. Sere-
brenik, & A. Cleve (Eds.), Evolving software systems (pp. 65–100). Berlin: Springer.

Field, A. P. (2005). Kendall’s coefficient of concordance. In B. Everitt, & D. Howe (Eds.), Encyclopedia of
statistics in behavioral science. Hoboken: Wiley.

Fowler, M. (1999). Refactoring: improving the design of existing code. Reading: Addison-Wesley
Professional.

France Telecom. (2014). SmartQVT. https://yoxos.eclipsesource.com/yoxos/node/fr.tm.elibel.smartqvt.
feature.group

Gerpheide, C. M. (2014). Assessing and improving quality in QVTo model transformations. Master’s thesis,
Technische Universiteit Eindhoven. http://alexandria.tue.nl/extra1/afstversl/wsk-i/gerpheide2014.pdf

Gerpheide, C. M., Schiffelers, R. R., & Serebrenik, A. (2014a). A bottom–up quality model for QVTo. In
2014 ninth international conference on the quality of information and communications technology
(QUATIC). IEEE.

Gerpheide, C. M., Schiffelers, R. R., & Serebrenik, A. (2014b). QVTo model transformations: Assessing and
improving their quality. ERCIM Special Theme: Software Quality, 99, 32–33.

Gniesser, P. (2012). Refactoring support for ATL-based model transformations. Master’s thesis, Faculty of
Informatics-Vienna University of Technology.

Guana, V., & Stroulia, E. (2014). Chaintracker, a model-transformation trace analysis tool for code-gen-
eration environments. In D. Di Ruscio & D. Varŕo (Eds.), Theory and practice of model transfor-
mations (pp. 146–153). Switzerland: Springer International Publishing.

Guduric, P., Puder, A., & Todtenhofer, R. (2009). A comparison between relational and operational QVT
mappings. In Sixth international conference on information technology: New generations, 2009.
ITNG’09 (pp. 266–271). IEEE.

Hall, T., & Fenton, N. (1997). Implementing effective software metrics programs. IEEE Software, 14(2),
55–65.

Hove, S. E., & Anda, B. (2005). Experiences from conducting semi-structured interviews in empirical
software engineering research. In METRICS, IEEE (pp. 10–23).

ISO/IEC 25000. (2014). Systems and software engineering—Systems and software quality requirements and
evaluation (SQuaRE)—Guide to SQuaRE. ISO, Geneva, Switzerland.

Software Qual J (2016) 24:797–834 831

123

http://choosealicense.com/licenses/
https://github.com/eclipse/qvto/commit/51028ae23d78e9d2b7832321254487458d8e3da7
https://github.com/eclipse/qvto/commit/51028ae23d78e9d2b7832321254487458d8e3da7
https://github.com/eclipse/qvto/commit/8160dd9f29509d7051e4961b36eeaea61fe7a377
https://github.com/eclipse/qvto/commit/8160dd9f29509d7051e4961b36eeaea61fe7a377
https://github.com/eclipse/qvto/commit/d1aa7b9f5ca4c35d36f70031c889b7feec997ed7
https://github.com/eclipse/qvto/commit/d1aa7b9f5ca4c35d36f70031c889b7feec997ed7
http://redpanda.nl/BEP_P.J.Barendrecht.pdf
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
https://yoxos.eclipsesource.com/yoxos/node/fr.tm.elibel.smartqvt.feature.group
https://yoxos.eclipsesource.com/yoxos/node/fr.tm.elibel.smartqvt.feature.group
http://alexandria.tue.nl/extra1/afstversl/wsk-i/gerpheide2014.pdf

ISO/IEC 25010. (2011). Systems and software quality requirements and evaluation (SQuaRE)—System and
software quality models. ISO, Geneva, Switzerland.

Johns, R. (2010). Likert items and scales. Survey Question Bank: Methods Fact Sheet. http://surveynet.ac.
uk/sqb/datacollection/likertfactsheet.pdf

Kapová, L., Goldschmidt, T., Becker, S., & Henss, J. (2010). Evaluating maintainability with code metrics
for model-to-model transformations. In Quality of software architectures (QoSA), LNCS (Vol. 6093,
pp. 151–166). Springer.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Technical Report TR/SE0401, Keele
University.

Kitchenham, B. (1996). Evaluating software engineering methods and tool part 1: The evaluation context
and evaluation methods. ACM SIGSOFT Software Engineering Notes, 21(1), 11–14.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic
literature reviews in software engineering—A systematic literature review. Information and Software
Technology, 51(1), 7–15.

Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: The elusive target. IEEE Software, 13(1),
12–21.

Kolahdouz-Rahimi, S., Lano, K., Pillay, S., Troya, J., & Van Gorp, P. (2014). Evaluation of model trans-
formation approaches for model refactoring. Science of Computer Programming, 85, 5–40.

Kusel, A., Schönböck, J., Wimmer, M., Retschitzegger, W., Schwinger, W., & Kappel, G. (2013). Reality
check for model transformation reuse: The ATL transformation zoo case study. In 2nd workshop on the
analysis of model transformations (AMT) @ MODELS’13 1077.

Lehrig, S. (2012). Assessing the quality of model-to-model transformations based on scenarios. Master’s
thesis, University of Paderborn, Zukunftsmeile 1.

Lin, Y., Zhang, J., & Gray, J. (2005). A testing framework for model transformations. In S. Beydeda, M.
Book, & V. Gruhn (Eds.), Model-driven software development (pp. 219–236). Berlin, Heidelberg:
Springer.

McQuillan, J. A., & Power, J. F. (2009). White-box coverage criteria for model transformations. In First
international workshop on model transformation with ATL.

Mens, T., & Van Gorp, P. (2006). A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science, 152, 125–142.

Mohagheghi, P., & Dehlen, V. (2007). An overview of quality frameworks in model-driven engineering and
observations on transformation quality. In Workshop on quality in modeling (p. 3).

Moody, D. L. (2003). Measuring the quality of data models: An empirical evaluation of the use of quality
metrics in practice. In European conference on information systems (ECIS) (pp. 1337–1352).

Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of conceptual models:
Current state and future directions. Data & Knowledge Engineering, 55(3), 243–276.

Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., & Ducasse, S. (2013). Software quality
metrics aggregation in industry. Journal of Software: Evolution and Process, 25(10), 1117–1135.

Nguyen, P. H. (2010). Quality analysis of model transformations. Master’s thesis, Technische Universiteit
Eindhoven.

Nolte, S. (2010). QVT-operational mappings. QVT-operational mappings: Modellierung mit der query
views transformation, Xpert press. ISBN 978-3-540-92292-6. Berlin: Springer, 2010 1.

Oliveira, P., Valente, M. T., & Lima, F. P. (2014). Extracting relative thresholds for source code metrics. In
S. Demeyer, D. Binkley, F. Ricca (Eds.), European conference on software maintenance and
reengineering—Working conference on reverse engineering (CSMR-WCRE), IEEE (pp. 254–263).

OMG. (2011). MOF 2.0 Query/View/Transformation Spec. V1.1.
OMG. (2012). Object constraint language.
Orejas, F., Guerra, E., De Lara, J., & Ehrig, H. (2009). Correctness, completeness and termination of

pattern-based model-to-model transformation. In A. Kurz, M. Lenisa, & A. Tarlecki (Eds.), Algebra
and coalgebra in computer science (pp. 383–397). Berlin, Heidelberg: Springer.

Paige, R. F., & Varró, D. (2012). Lessons learned from building model-driven development tools. Software
& Systems Modeling, 11(4), 527–539.

Planas, E., Cabot, J., & Gómez, C. (2011). Two basic correctness properties for ATL transformations:
Executability and coverage. In 3rd international workshop on model transformation with ATL, Zurich,
Switzerland.

Rahim, L. A., & Whittle, J. (2015). A survey of approaches for verifying model transformations. Software &
Systems Modeling, 14, 1003–1028.

Ramamoorthy, C., & Ho, S. F. (1975). Testing large software with automated software evaluation systems.
In ACM SIGPLAN notices, ACM (Vol. 10, pp. 382–394).

832 Software Qual J (2016) 24:797–834

123

http://surveynet.ac.uk/sqb/datacollection/likertfactsheet.pdf
http://surveynet.ac.uk/sqb/datacollection/likertfactsheet.pdf

Rentschler, A., Noorshams, Q., Happe, L., & Reussner, R. (2013a). Interactive visual analytics for efficient
maintenance of model transformations. In K. Duddy & G. Kappel (Eds.), Theory and practice of model
transformations (pp. 141–157). Berlin, Heidelberg: Springer.

Rentschler, A., Noorshams, Q., Happe, L., & Reussner, R. (2013b). Interactive visual analytics for efficient
maintenance of model transformations. In International conference on model transformation (ICMT).
LNCS (Vol. 7909, pp. 141–157). Springer.

Rose, L. M., Herrmannsdoerfer, M., Mazanek, S., Van Gorp, P., Buchwald, S., Horn, T., et al. (2014). Graph
and model transformation tools for model migration. Software & Systems Modeling, 13, 323–359.

Santiago, I., Vara, J. M., de Castro, V., & Marcos, E. (2013). Measuring the effect of enabling traces
generation in atl model transformations. In Evaluation of novel approaches to software engineering
(pp. 229–240). Springer.

Schiffelers, R. R., Alberts, W., & Voeten, J. P. (2012). Model-based specification, analysis and synthesis of
servo controllers for lithoscanners. In International workshop on multi-paradigm modeling, ACM (pp.
55–60).

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Transactions
on Software Engineering, 25(4), 557–572.

Selim, G. M., Cordy, J. R., & Dingel, J. (2012a). Analysis of model transformations. PhD thesis, Technical
Report, Queen’s University School of Computing.

Selim, G. M., Cordy, J. R., & Dingel, J. (2012b). Model transformation testing: The state of the art. In
Proceedings of the first workshop on the analysis of model transformations, ACM (pp. 21–26).

Stahl, T., & Voelter, M. (2006). Model-driven software development. Chichester, England: Wiley.
Syriani, E., & Gray, J. (2012). Challenges for addressing quality factors in model transformation. In

International conference on software testing (ICST), IEEE (pp. 929–937).
van Amstel, M. F. (2012). Assessing and improving the quality of model transformations. PhD thesis,

Technische Universiteit Eindhoven.
van Amstel, M. F., & van den Brand, M. G. (2011). Model transformation analysis: Staying ahead of the

maintenance nightmare. In J. Cabot & E. Visser (Eds.), Theory and practice of model transformations
(pp. 108–122). Berlin, Heidelberg: Springer-Verlag.

van Amstel, M. F., Bosems, S., Kurtev, I., & Pires, L. F. (2011). Performance in model transformations:
Experiments with ATL and QVT. In J. Cabot & E. Visser (Eds.), Theory and practice of model
transformations (pp. 198–212). Berlin, Heidelberg: Springer-Verlag.

van Amstel, M. F., van den Brand, M. G. J., & Nguyen, P. H. (2010). Metrics for model transformations. In
Proceedings of the ninth Belgian-Netherlands software evolution workshop (BENEVOL 2010), Lille,
France.

van Amstel, M. F., van den Brand, M. G. J., & Serebrenik, A. (2012). Traceability visualization in model
transformations with TraceVis. In Z. Hu & J. de Lara (Eds.), Theory and practice of model trans-
formations (pp. 152–159). Berlin, Heidelberg: Springer-Verlag.

van Dongen, M. (2012). Visualization of model transformations in QVTo. Master’s thesis, Technische
Universiteit Eindhoven.

Vasilescu, B., Serebrenik, A., & van den Brand, M. G. J. (2011). By no means: A study on aggregating
software metrics. In 2nd international workshop on emerging trends in software metrics, ACM,
WETSoM (pp. 23–26).

Vidmar, G., & Rode, N. (2007). Visualising concordance. Computational Statistics, 22(4), 499–509.
Vignaga, A. (2009). Metrics for measuring ATL model transformations. Technical Report, Department of

Computer Science, Universidad de Chile.
Voelter, M., Kolb, B. (2006). Best practices for model-to-text transformations. In In Eclipse Summit Europe,

modeling symposium (Vol. 2006, p. 27).
Voelter, M. (2009). Best practices for DSLs and model-driven development. Journal of Object Technology,

8(6), 79–102.

Software Qual J (2016) 24:797–834 833

123

Christine M. Gerpheide is a software development engineer at
Amazon Web Services. She completed her Master of Science in
Computer Science and Engineering cum laude and with Honors from
Eindhoven University of Technology. In her career Christine has
worked on a wide range of software, including service-oriented ar-
chitectures, model-driven engineering, and mobile development

Dr.ir. Ramon R. H. Schiffelers is a software architect at ASML N.V.
and an assistant professor at Eindhoven University of Technology
within the research group for model-driven software engineering.

Dr. Alexander Serebrenik is an associate professor of Model-Driven
Software Engineering at Eindhoven University of Technology. He has
obtained his Ph.D. in Computer Science from Katholieke Universiteit
Leuven, Belgium (2003) and M.Sc. in Computer Science from the
Hebrew University, Jerusalem, Israel. Dr. Serebrenik’s areas of ex-
pertise include software evolution, maintainability and reverse engi-
neering, program analysis and transformation, process modeling and
verification.

834 Software Qual J (2016) 24:797–834

123

	Assessing and improving quality of QVTo model transformations
	Abstract
	Introduction
	Preliminaries
	QVT operational mappings
	Software quality

	Formalizing QVTo quality
	Exploratory study
	Expert interviews
	Existing material review
	Introspection

	Constructing the quality model
	Resulting quality model
	Model scope
	Similarities to other models
	Conformance to ISO/IEC 25010
	Best practices
	Difficulties

	Validating the quality model
	Threats to model validity

	Leveraging the model in developer tooling
	Tool development approach
	Tool design
	Tool requirements
	Coverage criteria

	Tool implementation
	Tool evaluation
	Qualitative evaluation results
	Quantitative evaluation results
	Threats to tool validity

	Related work
	Conclusion
	Open Access
	References

