19,028 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Mental state estimation for brain-computer interfaces

    Get PDF
    Mental state estimation is potentially useful for the development of asynchronous brain-computer interfaces. In this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state differences. As such, the technique offers a systematic way of analyzing the spatiotemporal aspects of brain information processing and may be applicable to a wide range of spatiotemporal neurophysiological signals

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988

    Systems identification and application systems development for monitoring the physiological and health status of crewmen in space

    Get PDF
    The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems

    Biomarker-Drug and Liquid Biopsy Co-development for Disease Staging and Targeted Therapy: Cornerstones for Alzheimer's Precision Medicine and Pharmacology.

    Get PDF
    Systems biology studies have demonstrated that different (epi)genetic and pathophysiological alterations may be mapped onto a single tumor's clinical phenotype thereby revealing commonalities shared by cancers with divergent phenotypes. The success of this approach in cancer based on analyses of traditional and emerging body fluid-based biomarkers has given rise to the concept of liquid biopsy enabling a non-invasive and widely accessible precision medicine approach and a significant paradigm shift in the management of cancer. Serial liquid biopsies offer clues about the evolution of cancer in individual patients across disease stages enabling the application of individualized genetically and biologically guided therapies. Moreover, liquid biopsy is contributing to the transformation of drug research and development strategies as well as supporting clinical practice allowing identification of subsets of patients who may enter pathway-based targeted therapies not dictated by clinical phenotypes alone. A similar liquid biopsy concept is emerging for Alzheimer's disease, in which blood-based biomarkers adaptable to each patient and stage of disease, may be used for positive and negative patient selection to facilitate establishment of high-value drug targets and counter-measures for drug resistance. Going beyond the "one marker, one drug" model, integrated applications of genomics, transcriptomics, proteomics, receptor expression and receptor cell biology and conformational status assessments during biomarker-drug co-development may lead to a new successful era for Alzheimer's disease therapeutics. We argue that the time is now for implementing a liquid biopsy-guided strategy for the development of drugs that precisely target Alzheimer's disease pathophysiology in individual patients
    • …
    corecore