7,045 research outputs found

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    An adaptive service oriented architecture:Automatically solving interoperability problems

    Get PDF
    Organizations desire to be able to easily cooperate with other companies and still be flexible. The IT infrastructure used by these companies should facilitate these wishes. Service-Oriented Architecture (SOA) and Autonomic Computing (AC) were introduced in order to realize such an infrastructure, however both have their shortcomings and do not fulfil these wishes. This dissertation addresses these shortcomings and presents an approach for incorporating (self-) adaptive behavior in (Web) services. A conceptual foundation of adaptation is provided and SOA is extended to incorporate adaptive behavior, called Adaptive Service Oriented Architecture (ASOA). To demonstrate our conceptual framework, we implement it to address a crucial aspect of distributed systems, namely interoperability. In particular, we study the situation of a service orchestrator adapting itself to evolving service providers.

    Toward the adaptation of component-based architectures by model transformation: behind smart user interfaces

    Get PDF
    Graphical user interfaces are not always developed for remaining static. There are GUIs with the need of implementing some variability mechanisms. Component-based GUIs are an ideal target for incorporating this kind of operations, because they can adapt their functionality at run-time when their structure is updated by adding or removing components or by modifying the relationships between them. Mashup user interfaces are a good example of this type of GUI, and they allow to combine services through the assembly of graphical components. We intend to adapt component based user interfaces for obtaining smart user interfaces. With this goal, our proposal attempts to adapt abstract component-based architectures by using model transformation. Our aim is to generate at run-time a dynamic model transformation, because the rules describing their behavior are not pre set but are selected from a repository depending on the context. The proposal describes an adaptation schema based on model transformation providing a solution to this dynamic transformation. Context information is processed to select at run-time a rule subset from a repository. Selected rules are used to generate, through a higher-order transformation, the dynamic model transformation. This approach has been tested through a case study which applies different repositories to the same architecture and context. Moreover, a web tool has been developed for validation and demonstration of its applicability. The novelty of our proposal arises from the adaptation schema that creates a non pre-set transformation, which enables the dynamic adaptation of component-based architectures

    An adaptive service oriented architecture: Automatically solving interoperability problems.

    Get PDF
    Organizations desire to be able to easily cooperate with other companies and still be flexible. The IT infrastructure used by these companies should facilitate these wishes. Service-Oriented Architecture (SOA) and Autonomic Computing (AC) were introduced in order to realize such an infrastructure, however both have their shortcomings and do not fulfil these wishes. This dissertation addresses these shortcomings and presents an approach for incorporating (self-) adaptive behavior in (Web) services. A conceptual foundation of adaptation is provided and SOA is extended to incorporate adaptive behavior, called Adaptive Service Oriented Architecture (ASOA). To demonstrate our conceptual framework, we implement it to address a crucial aspect of distributed systems, namely interoperability. In particular, we study the situation of a service orchestrator adapting itself to evolving service providers.

    A Student-Teacher Architecture for Dialog Domain Adaptation under the Meta-Learning Setting

    Full text link
    Numerous new dialog domains are being created every day while collecting data for these domains is extremely costly since it involves human interactions. Therefore, it is essential to develop algorithms that can adapt to different domains efficiently when building data-driven dialog models. The most recent researches on domain adaption focus on giving the model a better initialization, rather than optimizing the adaptation process. We propose an efficient domain adaptive task-oriented dialog system model, which incorporates a meta-teacher model to emphasize the different impacts between generated tokens with respect to the context. We first train our base dialog model and meta-teacher model adversarially in a meta-learning setting on rich-resource domains. The meta-teacher learns to quantify the importance of tokens under different contexts across different domains. During adaptation, the meta-teacher guides the dialog model to focus on important tokens in order to achieve better adaptation efficiency. We evaluate our model on two multi-domain datasets, MultiWOZ and Google Schema-Guided Dialogue, and achieve state-of-the-art performance.Comment: Accepted by AAAI 202
    corecore