

Tilburg University

An adaptive service oriented architecture

Hiel, M.

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Hiel, M. (2010). An adaptive service oriented architecture: Automatically solving interoperability problems.
CentER, Center for Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420808983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/4d36b7f7-d22c-446c-92c3-4a0de1ff02f0

An Adaptive Service Oriented
Architecture

Automatically solving Interoperability Problems

An Adaptive Service Oriented
Architecture

Automatically solving Interoperability Problems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit van Tilburg, op
gezag van de rector magnificus, prof. dr. Ph. Eijlander, in het openbaar te

verdedigen ten overstaan van een door het college voor promoties
aangewezen commissie in de aula van de Universiteit op dinsdag

7 september 2010 om 10:15 uur

door

Marcel Hiel

geboren op 5 februari 1978 te Rotterdam.

Promotor: prof. dr. W.J.A.M. van den Heuvel
Copromotor: dr. H. Weigand

The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Graduate School for Information and Knowledge Systems
(Series No. 2010-32), and CentER, the Graduate School of the Faculty of
Economics and Business Administration of Tilburg University.

Copyright c⃝ Marcel Hiel, 2010
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the author.

Voor degene
die er altijd
is geweest.

i

Acknowledgments

A word of thanks,
A word of gratitude,
A sign of affection,

To those who helped,
Those who assisted,
Those who were there,

Thank you, supervisor,
Thank you, promotor,
Thank you, colleagues,

Despite heavy weather,
Despite a stormy night,
Despite even myself,

There were those who believed,
Who had faith,
Who showed me the road,

Thank you, my friends,
Thank you, my family,
Thank you, my beloved,

It is done,
I did,
You read.

May you all go banana’s!

Marcel Hiel
September 2010

ii

Contents

Acknowledgements i

1 Introduction 1
1.1 Research Motivation . 4
1.2 Research Goal . 6
1.3 Scope of the Research . 7
1.4 Research Questions . 8
1.5 Research Methodology . 9
1.6 Contributions . 12
1.7 Outline of the Thesis . 13

2 Adaptive Service Oriented Architecture 15
2.1 Introduction . 15
2.2 Motivating Example . 16
2.3 Adaptation . 17

2.3.1 Defining Adaptation 18
2.3.2 Taxonomy of Adaptation 20

2.4 Service Oriented Architecture 25
2.4.1 Core Concepts . 26
2.4.2 Types of Changes . 28

2.5 Adaptiveness in SOA . 30
2.6 Adaptive Service Oriented Architecture 33

2.6.1 Adaptive Service Oriented Architecture: Basics . . . 34
2.6.2 Concepts in ASOA 35

2.7 A Framework using Model Management 37
2.7.1 Manageable Service 39
2.7.2 Manager . 45
2.7.3 Example: Adapting the Retailer 48

iv CONTENTS

2.8 Discussion . 50

3 Modeling an Adaptable Service Orchestration 51
3.1 Introduction . 51
3.2 Service Specification . 52

3.2.1 XML Schema . 54
3.2.2 Business Protocol . 55

3.3 Changes in a Service Specification 58
3.3.1 Mismatches . 61

3.4 Orchestrator . 62
3.4.1 Guards . 64
3.4.2 Mappings . 67
3.4.3 Adaptation Operators 68

3.5 Orchestration Properties . 69
3.5.1 Orchestration . 69
3.5.2 Components . 70

3.6 Discussion . 71

4 Automatic Composition of a Hybrid Orchestrator 73
4.1 Introduction . 73
4.2 Composition Process . 76

4.2.1 Target Business Protocol 76
4.2.2 Business Rules . 78
4.2.3 Policies . 81

4.3 Orchestrator Properties . 81
4.3.1 Type . 82
4.3.2 Mappings . 83
4.3.3 Business Rules . 84

4.4 Orchestration Existence . 85
4.5 Orchestrator Reduction . 90

4.5.1 Synchronizable . 90
4.5.2 Minimal . 92
4.5.3 Transition Selection 92

4.6 Policy-based Orchestrator Selection 96
4.6.1 Transition Policy . 97
4.6.2 Mapping Policies . 98
4.6.3 Policy-based Selection Algorithm 100

CONTENTS v

4.6.4 Example: Constructing a Retailer 101
4.7 Discussion . 101

5 Automatically Adapting an Orchestrator 105
5.1 Introduction . 105
5.2 Change Detection . 107
5.3 Applicability . 108
5.4 Adapting . 111

5.4.1 Change Categories and Incompatibilities 112
5.4.2 Remapping . 114
5.4.3 Reordering . 118
5.4.4 Recomposition . 125

5.5 Prototype . 127
5.6 Discussion . 130

6 Related Work 133
6.1 Introduction . 133
6.2 Service Management . 133
6.3 Model Management . 136
6.4 Service Interoperability . 137

6.4.1 Compatibility . 138
6.4.2 Conformance . 140
6.4.3 Replaceability . 141
6.4.4 Substitutability . 141

6.5 Service Composition . 143
6.6 Workflow Evolution . 146
6.7 Service Adaptation . 148

7 Conclusion 153
7.1 Introduction . 153
7.2 Research questions and answers 154
7.3 Future work . 158

Appendices

A Specification of Services 161
A.1 Shipper . 161
A.2 Inventory . 162

vi CONTENTS

A.3 Bank . 164

B Operation Semantics of Change Operators 167
B.1 Protocol . 167
B.2 Type . 168

C Specification of Business Requirements 169
C.1 Business Rules . 169
C.2 Target Protocol . 171

D Specification of the Retailer 175

Bibliography 180

SIKS Dissertation Series 207

Chapter 1

Introduction

The goal of information systems is to improve the effectiveness and efficiency
of an organization (Hevner et al., 2004). In order to achieve this goal, the
improvement must be viewed from the perspective of the organization. IT
efforts are, or at least should be, driven and measured by an organization’s
desires and objectives. Currently, two of these desires can be pointed out
that drive recent research.

Desire to collaborate: The rise of internet and e-business has put companies
into a global competition. In order to differentiate from existing com-
petitors, companies create more complete products and/or services.
To do this, companies are integrating their processes (Papazoglou &
Ribbers, 2006). Examples are retailers, such as Amazon1 and eBay2,
that package their service by working together with different shippers,
banks, and providers in order to offer a complete service to their cus-
tomer.

Desire for flexibility: It has often been stated that companies are facing
a turbulent, continually changing environment. Changes within the
company and in the company’s environment cause misfits between the
organization and that environment. Flexibility is an essential property
for the maintenance of that fit in changing environments (Knoll &
Jarvenpaa, 1994). This is reflected in the business process of that
organization and hence is called Business Process Flexibility (Regev
et al., 2007).

1http://www.amazon.com
2http://www.ebay.com

2 Chapter 1. Introduction

An approach aiming to satisfy these desires is Service-Oriented Com-
puting (SOC). SOC is the computing paradigm that utilizes services as
fundamental elements for developing applications/solutions (Papazoglou &
Georgakapoulos, 2003). It is aimed at designing, building and using dis-
tributed software applications in heterogeneous and cross-organizational en-
vironments. SOC is gaining a lot of attention, partially because the concept
of services is intuitive to business people, which thereby causes a potential
convergence of business and IT perspective. Services are the key concept in
SOC and are defined as self-describing, platform-agnostic computational el-
ements that support rapid, low-cost composition of distributed applications
(Papazoglou, 2003). In this thesis, we regard technological issues of services
and not the business aspects.

The architectural foundation for SOC is provided by the Service-Oriented
Architecture (SOA). SOA is an architectural style that focuses on the def-
inition and interaction of services. It states that applications expose their
functionality as services in a uniform and technology independent manner,
thereby creating a separation of concerns between implementation and inter-
face. Claimed benefits of SOA are twofold: 1) interoperability and integra-
tion of software applications are achieved more easily, and 2) it provides a
flexible facilitation of business processes in terms of a composition of loosely
coupled services.

However, SOA is not without problems. Across the internet proclama-
tions can be found such as “SOA is dead” (Manes, 2009), and “SOA is a
failure” (Kenney, 2008). One of the major reasons for these statements is
that SOA is focussed on developing design techniques aimed at guiding de-
velopers in how to build services, but does not entail the run-time aspects
of the service, i.e. how to manage and maintain services. Without proper
management the link with business objectives can not be made, as goals can
not be specified and it can not be determined whether targets are reached.
Some standards have emerged to cater for management requirements (OA-
SIS, 2004; Bullard & Vambenepe, 2006), however, the standard SOA is not
sufficiently equipped to define them in a concise and consistent manner.

In addition to this problem, even if companies were to use SOA as foun-
dation for the IT infrastructure and form inter-organizational business pro-
cesses, then this would lead to a rapidly growing number of connected sys-
tems and corresponding maintenance. As businesses change, so will the ser-
vices they own (Lehman, 1980). Therefore changes will be introduced in this

3

inter-organizational business process, producing additional software main-
tenance. Furthermore, changes can cause other changes in other services,
thereby causing a cascade of maintenance through an inter-organizational
process. For these reasons, the accompanying complexity as well as the re-
sources needed for maintaining the systems that support such processes will
grow rapidly.

One method for dealing with this increase of maintenance is to increase
the number of human system administrators. An estimation of the number of
maintenance personnel was given in (Jones, 2006). Jones estimates a growth
in the US alone, from two million people in the year 2000 to three and a half
million people in 2015. However, increasing the number of administrators is
not a lasting solution, not only because of the expenses, but also because the
number of administrators needed is greater than there are available (Horn,
2001).

An approach that aims to solve the problem of software maintenance and
addresses the aspects of run-time management of software, is the vision of
Autonomic Computing (AC) (IBM, 2003; Kephart & Chess, 2003; Ganek &
Corbi, 2003). Autonomic Computing draws its inspiration from biology, and
more specifically from the autonomous nervous system. The human nervous
system is the controller in the human body that keeps our vital functions
in equilibrium. An example of such a balance is that it keeps our blood-
sugar level on a certain point and modifies it when necessary. The idea
behind Autonomic Computing is that systems become more self-managing
and thereby reduce the amount of time and costs put into maintaining them.

As such, AC is defined as an implementation agnostic computing paradigm,
and potentially provides SOA with the concepts and management mecha-
nisms that help to overcome the shortcomings of the existing SOA paradigm.
However, AC does not define exactly how business applications in general,
and Web services and SOA more in particular, may adapt themselves. Re-
cent work done under the umbrella of AC, for instance (Anthony, 2009; Tosi
et al., 2009), maintain the vision of AC but do not realize it.

In this thesis, we address the lack of a conceptual foundation for man-
agement and adaptation in SOA by developing an extension of SOA, called
the Adaptive Service Oriented Architecture (ASOA). By extending SOA,
we reuse the inherent benefits of SOA which are aimed at developing inter-
organizational business processes. By incorporating ideas of adaptation and
management we aim to make the companies participating in such business

4 Chapter 1. Introduction

processes flexible. To demonstrate the validity and illustrate the workings
of ASOA, we develop and implement a framework for maintaining interop-
erability in a service orchestration.

This chapter is introductory in nature and provides an overview of the
research conducted. In Section 1.1, we present our motivations for this re-
search, followed by the research goal in Section 1.2. The scope of the research
is discussed in Section 1.3. The research questions are described in Section
1.4, followed by the adopted research methodology in Section 1.5. The contri-
butions of this thesis are described in Section 1.6. This chapter is concluded
in Section 1.7 with an outline of this dissertation.

1.1 Research Motivation

Interoperability is a critical aspect of distributed systems and of SOA in
particular (O’Brien et al., 2007). Interoperability is defined by the Interna-
tional Organization for Standardization and International Electrotechnical
Comission (2001) as the capability of software to interact with one or more
specified systems, meaning that the software is able to coexist and coop-
erate with other systems. Interoperability is often split into a syntactical,
behavioral, and semantical layer. The syntactical layer is concerned with the
definition of the data in the messages, for instance specified in XML Schema
(Fallside & Walmsley, 2004). The behavioral layer specifies the ordering of
messages, also called the business protocol (Benatallah et al., 2004b). The
semantical layer is concerned with the meaning of the data and is specified
in annotations such as SAWSDL (Farrell & Lausen, 2007).

Problems in interoperability are called incompatibilities. We define an
incompatibility as a discrepancy between what is expected to be received
and what is actually received. For example, if a service expects to receive a
number and instead receives text then this a syntactical incompatibility. For
each of the layers of interoperability incompatibilities can occur. To guide
these expectations and prevent faults and crashes, services specify what they
expect, and also what can be expected by other parties, in an interface. As
described in the introduction to this chapter, as businesses change so will
their services. These changes will be reflected in the interface of the services,
which may result in incompatibilities.

We distinguish between two methods that can be employed to prevent
incompatibilities: (1) standardization of communication, and (2) usage of

1.1 Research Motivation 5

Figure 1.1: Backward and Forward Compatibility

appropriate versioning.
The first method is to standardize communication. SOA as a design phi-

losophy is technology agnostic. Currently, Web services are the technology of
choice for realizing SOA. Web services were invented to solve, at least par-
tially, the problem of integrating distributed information systems (Alonso
et al., 2004). A key benefit of Web services is that they define a standard
for, among others, the data format (XML), the interface definition language
(WSDL), and the communication transport mechanism (SOAP). Standard-
ization reduces heterogeneity and makes it easier to develop solutions that
integrate systems, other Web services, from other parties. Although stan-
dards make interoperability easier, they are not a panacea. They do not
prevent all incompatibilities caused by changes to the interface.

The second method is to keep the services backward and/or forward
compatible with each release of a new version of the services. Backward
compatibility means that a newer version of the service provider can be de-
ployed without breaking interoperability with the client. In other words, a
service provider can send a newer version of a message to the client, which
understands the new version and is able to processes this message. Sim-
ilarly, forward compatibility means that a newer version of the client can
be deployed in a way without breaking the interoperability with existing
providers. Figure 1.1 illustrates backward and forward compatibility.

By guaranteeing backward/forward compatibility, the frequency of change
propagation decreases, as the connected services can still use a newer version
without problems. However, forward and backward compatibility are only

6 Chapter 1. Introduction

achievable through extensibility (Orchard, 2006). Furthermore, extensibility
can only be exploited a limited number times. Therefore, appropriate ver-
sioning can prevent incompatibilities for some time, but can not avoid them
all together.

Both methods, standardization and versioning, do not prevent all incom-
patibilities and if an incompatibility occurs they do no specify how to solve
it. In solving (potential) incompatibilities, we distinguish in two methods:
(1) placement of an adapter, and (2) making the service adaptive.

The first method to solve incompatibilities is to place an adapter between
the services. Adapters act as a mediator solving interoperability problems. A
research goal in this area is to be able to automatically generate adapters be-
tween any two services. However, adapters suffer from a drawback. Adapters
are typically placed between existing applications that are regarded as a black
box. As adapters can not manipulate the internals of the services they can
not exploit any internal flexibility to solve incompatibilities.

The second method is to make the service adaptive to changes concerning
interoperability. We define software to be adaptive if it can automatically
detect changes (within the software and its environment) in relation to a
certain criteria, decide whether and how to react on the change, and execute
this decision. In the context of interoperability, this means that a service
can automatically detect changes in the interfaces of the services it uses, and
that it can adapt itself. Creating an adaptive service has two advantages:
1) adaptive services can exploit any internal flexibility of the service, and 2)
if the adaptive service is created such that its own interface will not change
due to adaptation, then it prevents change propagation and thus lowers the
amount of maintenance for other connected services.

1.2 Research Goal

The problems described in the previous section leads us to the research goal,
which is formulated as:

Design, develop and validate an extension of SOA, which
will enable software services to (semi-)automatically adapt
to their (evolving) environments.

The goal of information systems in general is to improve the effectiveness
and efficiency of an organization (Hevner et al., 2004). In the context of

1.3 Scope of the Research 7

our goal description, this means that less resources are spent on software
maintenance. Autonomic Computing suggests that software should become
self-managing in order to realize this. Self-managing means that software
should deal with issues that normally fall under software maintenance, i.e.,
software is able to perform tasks that reduce the need for human intervention.
In order to realize self-managing software, it should be self-adaptive with
respect to a certain goal or criteria that is to be managed.

Figure 1.2: Manager and Manageable Service

In order to create adaptive software, there must be some adaptation logic
in the software. Following the vision of Autonomic Computing, we aim to re-
alize adaptive software by putting a manager on top of a manageable service,
illustrated in Figure 1.2. The manager controls the manageable service and
receives information (events) from the manageable service and the environ-
ment. With the introduction of the manager, we make a distinction between
managerial interaction and operational interaction. Managerial interaction
concerns all interaction about management and is indicated in Figure 1.2
as “control” and “events”, located between the manager and the manageable
service. Operational interaction concerns all other communication. The line
between the manageable service and the environment indicates the opera-
tional interaction between the service and other, possibly external, services.

1.3 Scope of the Research

We make a distinction between (1) how to deal with changes on a conceptual
level and (2) how to deal with changes concerning interoperability.

Conceptual: At the conceptual level, a generic framework is created by
studying concepts of change and adaptation and how adaptation can

8 Chapter 1. Introduction

be realized in SOA. This includes an analysis of what types of changes
can be handled in traditional SOA, state of the art of research work
done in SOA and in an adaptive SOA. We provide a framework capable
of handling any kind of change in a service’s environment.

Applied to Interoperability: The framework created at the conceptual level
is implemented for dealing with changes that affect interoperability. At
this level, we create a framework for dealing with this type of change
in a service orchestration. We create an adaptation strategy that in-
corporates all aspects of adaptation, i.e., detecting changes, deciding
on an adaptation plan, and executing this plan.

Concerning interoperability, our goal is to automatically adapt to changes
that cause incompatibilities. We focus on the syntactical and behavioral layer
of interoperability. The semantic layer is not considered because (1) syntactic
and behavioral already provide enough complexity and (2) the approach we
describe in this thesis can easily be extended to cover also semantics, as
described in Chapter 4.

In an inter-organizational business process, each of the involved busi-
ness parties is responsible for managing the evolution of their own services.
Although some changes will be handled collaboratively with other business
parties (cf. (Wassermann et al., 2009)), the majority of changes will be han-
dled locally. Therefore we take the local perspective of one business party
with regard to interoperability. This perspective is called a service orchestra-
tion. In a service orchestration a central mediator is assumed to be present,
called the service orchestrator. This means that all messages in a service
orchestration are either sent or received by the service orchestrator. In our
research we are interested in the effect of evolving service provider(s) on
the business process of a service orchestrator and how to adapt the service
orchestrator in order to maintain interoperability. In particular, we aim to
adapt the service orchestrator while keeping its interface to its clients the
same, thus preventing change propagation.

1.4 Research Questions

Similar to the scope of the research, the research questions are grouped in
two: conceptual and applied to interoperability.

1.5 Research Methodology 9

Conceptual

1. What types of changes occur in a Service-Oriented Architecture?

2. How can a (composite) service be made (self-)adaptive?

2.1 How can a service be made manageable?

2.2 How to design a manager?

3. How can a Service-Oriented Architecture be extended to handle (self-)
adaptive services?

Applied to Interoperability

In our research, we deal especially with changes to the interfaces of service
providers and set as a goal to be able to maintain interoperability. In relation
to this goal, we pose the following questions.

4. How can we model changes to a service interface?

5. What changes result in incompatibilities in a service orchestration?

6. How to automatically adapt the service orchestrator in order to main-
tain interoperability without changing its interface to its clients?

1.5 Research Methodology

The research design we apply is created to meet the following general three
conditions (Stewart, 1995). First, a scientific problem needs to be stated
clearly so that it’s proposed solutions can be examined properly. Second,
experiments should be repeatable. And third, a scientific theory is required
to be falsifiable.

The work in this thesis follows a design approach. It is aimed to give
software developers new insights into how software, and services in particular,
can be built and maintained. We advocate for one approach and explain our
motives behind that approach. However, because along the way many choices
must be made in realizing this approach, we will describe these choices as
well and provide the rationale behind our decisions.

Our research methodology is illustrated in Figure 1.3. The rounded rect-
angles in the figure depict the fields of knowledge we deem of interest for

10 Chapter 1. Introduction

Figure 1.3: Research Methodology

this project. They are the result of a literature review. The arrows in
the figure represent steps or derivations which lead from one phase to an-
other. Although Figure 1.3 does not contain iterations (arrows going from
the later stages back to the problem fields), we consider that research fields
are revisited for refining or creating additional problem scenarios or solution
techniques.

The research methodology consists of three main phases, namely problem
analysis, solution design and solution validation. In addition to these three
phases, we use the seven guidelines of Hevner et al. (2004) to further describe
the research process, namely design as an artifact, problem relevance, design
evaluation, research contributions, research rigor, design as a search process,
and communication of research.

We describe Figure 1.3 in more detail for all three phases. For each phase
we describe first the general idea after which we describe how we applied it
in our research.

1. Problem definition: The fields of knowledge of our problem domain
provide the essentials to which a solution must adhere to, i.e., they pro-
vide the minimum requirements for a solution. Based on a literature
study, these fields furthermore contribute to a problem definition. This
problem definition is a world problem (Wieringa & Heerkens, 2006). A
world problem represents a discrepancy between the way the world is
and the way we think the world should be. The world problem(s) se-
lected for research should be important, unsolved (business) problems,
i.e., they should be of scientific relevance.

In our research, we adopt Service Oriented Architecture, Web services

1.5 Research Methodology 11

and Software Evolution as our problem domains. The defined problem
is, that due to changes and the lack of adaptive behavior in current
software, manual adaptation is needed. The relevance of this problem
has been discussed in the introduction to this chapter.

2. Solution design: The goal of this phase is to create a solution to the
problem identified in the problem definition. Using knowledge from
a solution domain provides a direction where the solution is to be
found. Finding the right approach for solving a world problem is a
knowledge problem (Wieringa & Heerkens, 2006). Knowledge problems
represent a lack of knowledge about the world. The right approach for
solving a research problem should be rigorous. A trade-off between
rigor and applicability is usually necessary (Hevner et al., 2004). From
the problem definition, an IT artifact is designed which should solve
the problem (design as an artifact). This artifact is usually the goal
of the research and functions as the main contribution of the research.

In our research, we use knowledge from the fields of Autonomic Com-
puting (IBM, 2003; Kephart & Chess, 2003; Ganek & Corbi, 2003) and
Model Management (Bernstein et al., 2000; Bernstein, 2003). The so-
lution that we design is an extension of SOA, introduced in Section 2.6.
We rely on well known mathematical formalisms to ensure the quality
of the research, and in addition to this, we choose a formalization of
the industry standard for business processes (BPEL) for guaranteeing
applicability. The contributions of our research are discussed in Section
1.6.

3. Solution validation: The third and last phase focuses on the valida-
tion and/or evaluation of the research. Part of this validation is per-
formed during the project through communication, i.e., dissemination
of partial results in academic venues such as conferences and publi-
cations in journals. The creation of a solution follows an engineering
approach. As is typical for an engineering approach, this phase of the
project may require iteration, as the design is flawed or could other-
wise be improved. The cycle containing the design and validation of
a solution is called generate/test cycle (Simon, 1996) or design as a
search process.

The work in this thesis has been communicated to the scientific com-

12 Chapter 1. Introduction

munity and has resulted in publications (Hiel & Weigand, 2006; Rohr
et al., 2006; van den Heuvel et al., 2007; Hiel et al., 2008a,b; Hiel &
Weigand, 2009). We validate our research on two points:

– We validate the extension of SOA, the ASOA, in two ways. The
first way is to show that our conceptual framework does not suf-
fer from the shortcomings of traditional SOA. We realize this in
three steps. The first step is defining what constitutes to adap-
tive behavior based on existing literature. The second step is to
demonstrate that services built in SOA do not possess adaptive
behavior. And the third step is to show that, on the contrary,
services in ASOA do posses adaptive behavior. The second way
of validation is that we demonstrate that (self-)adaptation, as a
prototypical implementation of ASOA, serves as a solution for
interoperability problems in a service orchestration.

– We validate the framework for interoperability in two ways. The
first way is by formally verifying that our adaptation solution is
correct with respect to guaranteeing interoperability. The sec-
ond way is by constructing a prototype which implements this
solution.

1.6 Contributions

This dissertation addresses the lack of an architectural style for manage-
ment of, and design of, (self-)adaptive services, introducing ASOA (Adaptive
Service-Oriented Architecture), an extension of SOA, which demonstrates
how SOA can incorporate management and adaptive behavior of services.

A conceptual framework for designing services in ASOA is provided us-
ing Model Management. This framework specifies what constitutes to a
manageable service and provides a measure of, and the means to, achieve a
completely adaptable service. Furthermore, the framework specifies how a
manager can be created that, by itself, is again a manageable service, thereby
creating an manageable manager. We describe how goals are incorporated in
the model of a service, such that it can be verified whether a goal is reached
or not.

This conceptual framework is implemented with as a goal maintaining the
interoperability in a service orchestration. Research on interoperability has

1.7 Outline of the Thesis 13

largely focussed on identifying and solving incompatibilities, most of which
in the context of adapters. However, how the business process of a service
orchestrator can be adapted, not only to solve incompatibilities but also to
prevent change propagation, has not been studied before.

Our service orchestrator enacts a hybrid business process, meaning that
it consists of a process combined with business rules. We demonstrate that
using our model of a business process, we can automatically compose a ser-
vice from different service interfaces, where the business rules serve as the
“glue” that keeps the composition together. Although many approaches ex-
ist that study and demonstrate automatic service composition, unlike these
approaches we also incorporate business rules in the synthesis process and
use policies to choose between alternative business processes.

Based on this hybrid business process, we demonstrate how a manager
can automatically adapt the orchestrator based on three adaptation oper-
ators, namely remapping, reordering and recomposition. Each of these op-
erators has a different impact on the business process and has a different
range of problems that it can solve. Remapping adjusts the mapping of the
orchestrator but does not change the process. Reordering exploits any flexi-
bility in the ordering of messages and attempts to reorder messages to solve
incompatibilities. And recomposition tries to find an alternative composi-
tion that incorporates the changed service. Using these three operators, we
not only can decide whether an incompatibility can be solved, we also use
them to analyse whether a service can be substituted for another. Not all
incompatibilities can be solved, and therefore not all incompatibilities can
be solved automatically. For this reason, the manager is equipped with an
escalation mechanism, meaning that it will call for human intervention, or a
higher level manager, when it can not solve a problem.

1.7 Outline of the Thesis

In Chapter 2 we introduce the Adaptive Service Oriented Architecture. We
provide a definition of adaptation and show what concepts need to be added
to make SOA adaptive. Using Model Management, we create a parameteri-
zable framework that can tackle every identifiable change. Furthermore, our
framework is model- and domain independent, that is, we make no assump-
tion on the type of models and in which domain they should be used. Next
to this, we describe the architecture of a manager that enacts an adaptable

14 Chapter 1. Introduction

adaptation cycle.
Chapter 3 presents our model of an orchestration. We describe opera-

tors that capture changes in service specifications as well as operators that
can be used to adapt an orchestrator. By defining these operators we cre-
ate a business process that is completely adaptable. Also, we provide the
properties that must hold for an orchestrator to be compatible. With com-
patible we mean that all sent and received messages of the orchestrator are
understood by the receiving party.

Chapter 4 presents our approach to automatic service composition.
Whereas traditional automatic composition only consists of other business
processes, we use additional business requirements, such as business rules
and policies, to specify the desired orchestrator. We synthesize an orches-
trator based on the business protocols published in the interfaces of service
providers. Our synthesis satisfies additional constraints such that our or-
chestrator can be employed using both synchronous and asynchronous com-
munication semantics.

Chapter 5 describes our approach for realizing an adaptive orchestrator.
We show how changes can be captured, how to analyze whether changes
are applicable, and how an orchestrator can be adapted. For each of these
phases we define an operator. Together with the composition operator of
the previous chapter, these operators describe a complete adaptation circle
for handling changes in the interfaces of a service provider. In other words,
Chapter 4 and 5 together provide a complete description of a manager dealing
with changes that affect interoperability.

In Chapter 6 we evaluate our approach through the work of others. We
discuss other approaches focussing on interoperability such as adapters and
software versioning, as well as different management approaches for handling
service evolution.

The last chapter of this dissertation, Chapter 7, summarizes our work
and main results, points out some open problems and presents research chal-
lenges for future work.

Chapter 2

Adaptive Service Oriented
Architecture

2.1 Introduction

Currently, Service Oriented Architecture (SOA) is heralded as the de-facto
distributed computing technology for developing and managing a new breed
of highly-adaptive business applications. This far, much progress is booked in
development of methods and techniques but management of services has been
largely neglected. Some standards have emerged to cater for management
requirements, however SOA is not sufficiently equipped to define them in a
concise and consistent manner.

At the same time, Autonomic Computing (AC)(IBM, 2003; Kephart &
Chess, 2003; Ganek & Corbi, 2003) was presented in response to the rising
complexity of business applications as well as to the critical need for tools
and techniques to facilitate their evolution. AC is touted by industry leaders,
mainly IBM, as the comprehensive solution to leverage the maintenance of
business applications by making them self-managing. As such, AC is defined
as an implementation agnostic computing paradigm, and potentially provides
SOA with the concepts and management mechanisms that help to overcome
the shortcomings of the existing SOA paradigm. However, AC does not
define exactly how business applications in general, and Web services and
SOA in particular, may adapt themselves.

One of the motivating questions of this chapter is: can services be de-
signed in a generic way to adapt to changes in the service’s environment?

16 Chapter 2. Adaptive Service Oriented Architecture

In this chapter we introduce an architecture that guides the design of such
adaptive systems in a structured manner. The architecture we introduce -
Adaptive Service Oriented Architecture, ASOA for short - is built on top of
the SOA architecture and recent developments in service management and
Model Management (Bernstein et al., 2000; Bernstein, 2003).

This chapter is structured as follows: the next section introduces our
motivating and running example that is used throughout this thesis. It ex-
emplifies the concepts and the need for adaptivity in a realistic and concise
scenario. Section 2.3 defines adaptation and the concepts related to it. In
Section 2.4 we describe SOA, the concepts that constitute to a service, and
the types of changes that occur in SOA. Section 2.5 presents the adaptive-
ness of SOA and our motives for extending SOA. Section 2.6 introduces
the ASOA. Using ASOA as foundation, Section 2.7 discusses a conceptual
framework that is applied to our running example. Section 2.8 concludes
this chapter with a discussion.
This chapter is largely based on publications (Rohr et al., 2006; Hiel et al.,
2008a,b).

2.2 Motivating Example

Consider the order management process depicted in Figure 2.1 (Adapted
from (Papazoglou & van den Heuvel, 2007)). Our example involves five
parties: a customer, a retailer, a shipper, an inventory, and a bank. The
process is enacted by a composite web service and is structured as follows:
after receiving a purchase order from a customer, the retailer executes three
tasks. First, the retailer ascertains that sufficient parts are in stock. Second,
the retailer checks the creditworthiness of the customer. For this purpose, he
invokes an external Web service offered by a trusted third party, the bank.
Third, the retailer inquires a shipper whether it can deliver the parts to
the customer before the requested date. Once these tasks are completed,
the order management process is concluded by sending an invoice to the
customer, indicating the expected shipping date. This process was executed
many times, until a change is introduced. Assume that the bank unilaterally
upgrades the interface of its service, and sends a notification about this to its
clients. In particular, the functionality of the service is extended allowing its
clients not only to check the creditworthiness of a specific bank account, but

2.3 Adaptation 17

Figure 2.1: The Order Management Process

also that of credit cards that are issued by the bank. Hence, the operation
for checking the balance of a client allows options in its input message: either
a bank account or a credit card number may be queried.

The problem that would rise in current SOA is that either a human
administrator catches this notification and starts implementing the change
manually, or an error would occur at run-time when the upgrade at the bank
has been implemented. In today’s business environments, where SOA advo-
cates dynamic establishment of cross-organizational relationships, this type
of change happens frequently, see introduction to Chapter 1. It is therefore
our purpose to enable automatic adaptation to changes in the environment.

2.3 Adaptation

Adaptation is a term that has been used for a long time and in many scientific
disciplines. Adaptation has its roots in fundamental philosophical concepts
such as change and time, which have been on a human’s mind since Aristotle.
Discussing these philosophical notions of change and time are beyond the
scope of this thesis. This section provides an understanding of the concepts
related to adaptation in software by presenting a definition and taxonomy
for it.

18 Chapter 2. Adaptive Service Oriented Architecture

2.3.1 Defining Adaptation

A lot of works on adaptation use an intuitive notion of adaptation without
defining it, for example (Aksit & Choukair, 2003; McKinley et al., 2004b).
A typical description of adaptation is the following: “a system is adaptive if
it is sensitive to changes in its environment” (Zadeh, 1963). The goal of this
section is to provide a comprehensive and precise definition of adaptation
and anticipate its use in the scope of this dissertation.

Adaptation has four aspects:

Criteria: First aspect is that adaptation occurs in relation to a certain crite-
ria (Zadeh, 1963). If a system needs to adapt then it needs to be aware
of the change and also whether the response has any effect. To ensure
this awareness in artificial systems, adaptation is often connected to
the concept of performance (Ackfor & Emery, 1972; Sachs & Meditz,
1979; Kennedy, 2001). In relation to this performance often a notion
of a norm or utility function is used to define a good or desired per-
formance. Notably, in his seminal book (Ashby, 1960), Ashby defines
adaptation as follows: “a form of behavior is adaptive if it maintains
the essential variables within physiological limits”. Others (Ackfor &
Emery, 1972) go further and state that some of the lost performance,
caused by the change, must be regained in order to call it adaptive.

Environment: The second aspect of adaptation is the relation with the en-
vironment, also called context (Schilit et al., 1994; Lieberman & Selker,
2000). In our work we rely on system theory, similar to Sagasti (1970),
to distinguish between environment and system. The roots of the word
“adaptation” comes from Latin which means “to fit to”, implying there
is an entity that adapts and something the entity adapts to. Adap-
tation is therefore concerned with two concepts, namely an entity, i.e.
the system, and it’s environment. We formalize this intuition follow-
ing a system theoretic approach (von Betalanffy, 1956) and define the
following three concepts:

World: An entity which consists of two or more elements (E) and a
non-empty set of relations (R) between the elements.

Environment: (Ee) A subset of elements of (E) such that the rela-
tionships between them are of no direct concern to the researcher.

2.3 Adaptation 19

Origin
Environment (External) System (Internal)

Response

System
(Dar-
winian)

Environmental distur-
bance, system responds
by modifying itself.

Disturbance originated
within the object, sys-
tem responds by modi-
fying itself.

Environment
(Singerian)

Environmental distur-
bance, system responds
by modifying its envi-
ronment.

Disturbance originated
within the object, sys-
tem responds by modi-
fying its environment.

Table 2.1: Classification Scheme of Adaptation

System: (Eo) A subset of elements of (E) such that the relationships
between them are of direct concern to the researcher.

Based on the definitions of system and environment, a fourfold clas-
sification scheme of adaptation is created as displayed in Table 2.1
(adapted from (Sagasti, 1970)). It distinguishes between the origin
and the response of the adaptation. The origin can be either external
(environment) or internal (system) and the response singerian (envi-
ronment) or darwinian (system). The names, darwinian and singerian
come from the scientists who first discovered this type of adaptive be-
havior, respectively C. Darwin and E.A. Singer.

Perspective: The third aspect of adaptation is the perspective from which
the adaptive behavior is regarded. Broy et al. (2009) take the per-
spective of the user of the system and define adaptive behavior as:
“Intuitively, a user experiences an adaptive system behavior, if the sys-
tem’s reaction resulting from his inputs is additionally determined by
some information about the environment, i.e. implicit inputs.” They
distinguish between two different types of adaptive behavior, namely
transparent and non-transparent. Transparent adaptive behavior is
experienced when the user is aware that besides the user’s input, also
input from the environment is used for determining the output of the
system. In non-transparent adaptive behavior the user is not aware of
the input from the environment. Following our system theoretic ap-
proach the user in our context is the researcher who studies the system.

20 Chapter 2. Adaptive Service Oriented Architecture

Cyclic: The fourth aspect of adaptation is that it is generally considered
as an ongoing process, typically depicted as a cycle or a loop. In this
process, it contains three phases, namely detecting the change, deciding
on how to tackle the change and execution any chosen action.

Given these four aspects of adaptation, we define a system to be adaptive
as follows:

Definition 1. (Adaptive)
A system is called adaptive from the perspective of the researcher if it can
automatically detect changes (within the system and its environment) in rela-
tion to criteria, decide whether and how to react on the change, and execute
this decision.

In the following, we describe a taxonomy of adaptation from a computing
perspective, which is based on the phases of the adaptation cycle, and discuss
the different concepts behind them.

2.3.2 Taxonomy of Adaptation

We base our taxonomy of adaptation on other existing taxonomies for soft-
ware engineering, software maintenance, software evolution and fault recov-
ery found elsewhere in literature (Swanson, 1976; Rohr et al., 2006; Weigand
& van den Heuvel, 2005; McKinley et al., 2004a; Buckley et al., 2005; Avizie-
nis et al., 2004; Mariani, 2003; Bruning et al., 2007; Chan et al., 2007; Salehie
& Tahvildari, 2009; Hielscher et al., 2009). Based on the system theoretic
approach above, a taxonomy is presented in Figure 2.2. In this figure, both
the process of adaptation is illustrated as well as the dimensions of adap-
tation for each phase of the process. Adaptation is typically regarded as
an ongoing process and is therefore usually depicted as a cycle. This cyclic
process contains three phases: detecting, deciding and executing. During the
detection phase, a particular change is sensed. After a system is aware of the
change, several plans to appropriately deal with the changed situation may
be contemplated upon in the decision phase. In the last phase, the selected
plan is executed to realize adaptation to the new situation. For each of the
phases, a distinction can be made whether it concerns the environment or
the system. As illustrated in Table 2.1, the cause and action can be used to
classify the types of adaptation. Similarly, a distinction can be made based

2.3 Adaptation 21

Figure 2.2: Taxonomy of Adaptation

on the question: where is the decision made on how to adapt. This decision
can be taken either by the system itself or by an element in the environment.

In the following, we describe each of the dimensions of the taxonomy in
more detail.

Detect

To adapt to a certain change, the system needs to be aware of it. We
distinguish between three different means of how a system might become
aware of changes (internal or in the environment):

Faults: One way of becoming aware of a change is through faults (or excep-
tions). If a changed system, or component, is used then this will result
in a fault. For example, if a component expects an integer but receives
a string then it returns a fault message. Fault taxonomies such as
(Mariani, 2003; Bruning et al., 2007; Avizienis et al., 2004; Chan et al.,
2007) describe the types of faults that can occur.

Observation: In case of observation, the environment and/or internal as-
pects of the system are observed for changes. We distinguish between
two methods, namely monitoring and testing.

We define monitoring as the process of gathering information about
the system or environment in order to detect changes. This definition
is an adaptation of the definition provided by Hielscher et al. (2009).
The advantage of monitoring is that if changes in the environment or in
the system are localized, then faults may be prevented. Taxonomies of

22 Chapter 2. Adaptive Service Oriented Architecture

monitoring have been provided for single entity systems (Delgado et al.,
2004), and for distributed systems (Zanikolas & Sakellariou, 2005).

Testing differs from monitoring in that it actively inserts test data
in the system or environment to see how it will respond to it. This
method can be used to detect changes by comparing expected and
actual response. Testing has also been called active monitoring (cf.
(Cottrell, 2001)). A taxonomy of model-based testing was provided by
Utting et al. (2006).

Notification: If a system changes then it can also send out a notification to
every other system that makes use of it. Through a publish/subscribe
communication protocol connected systems can receive a notification
every time a related change is made, or is about to be made.

Decide

Commonly a causal approach is taken for defining adaptation. For instance,
Sagasti (1970) states that a change has occurred and the system responds
to this. In other settings, such as biology, the decision part of an adaptation
process is not always apparent, or present. However, in artifacts such as
software which action(s) to execute to adapt is a decision.

The question of when to adapt refers to timing. If a system responds
too late (or too early) to a change, then this may have drastic effects. For
example, if a system is designed to respond too late then that system might
already have crashed. before it can respond. An illustration of this timing
decision is given in Figure 2.3 (adapted from (Sachs, 1999)). This figure
illustrates different categories of adaptation when a change causes a drop
of performance. Each of the arrows indicates a category described in de-
tail below. We draw an analogy with the types of software maintenance
distinguished by Swanson (1976).

Reactive: If the performance of the system dropped under a certain level,
then the system is triggered to respond. Arrow labeled number 3 rep-
resents reactive behavior. For example, when the response time of a
server rises above a certain threshold, that server might start sharing
the load with another server thereby attempting to lower the response
time below the threshold. This type of adaptation is labeled “correc-
tive” maintenance.

2.3 Adaptation 23

Figure 2.3: When to adapt

Predictive: If a certain state of the system or performance sensor indicates
a future drop of performance, then the system might respond on that
moment rather than waiting for the actual drop. We define this to be a
predictive adaptation strategy. In Figure 2.3, predictive adaptation is
indicated by the arrow labeled with number 2. An example of predic-
tive adaptation is when a server can predict that the response time will
go over the limit given the increase of response time until now. The
server can predict that the limit will be reached in the future based on
the rising response time now. Whether a change can be dealt with in a
predictive or reactive manner is dependent on whether the change can
be anticipated (Buckley et al., 2005), i.e., if there are any patterns that
precede the change. This type of adaptation is also called “adaptive”
maintenance.

Proactive: If the system has a normal performance level but chooses to
change itself or the environment to gain a better performance then we
call this proactive or goal-directed adaptation. This type of adaptation
can occur at any point and therefore the arrow with number 1 in Fig-
ure 2.3, is just an example. An example of this type of adaptation is
when the response time of a server is normal, but the server sees an op-
portunity to decrease the response time even further. For instance, by
installing another encryption method it can save computation time and
thereby response time. This type of adaptation is labeled “perfective”
maintenance.

24 Chapter 2. Adaptive Service Oriented Architecture

Execute

With regard to the execution, the question is whether the system or environ-
ment provides the means to adapt it, i.e., whether it is adaptable. We adopt
here the definition of adaptability provided in (International Organization
for Standardization and International Electrotechnical Comission, 2001) :

Definition 2. (Adaptability)
The capability of the software to be modified for different specified environ-
ments without applying actions or means other than those provided for this
purpose by the software considered.

This definition is very broad and could be stated to be applicable for ev-
ery software. Furthermore, for manual adaptation this definition should be
extended to include factors such as time, costs and resources. The difference
with adaptiveness in Definition 1, is that adaptability only contains the exe-
cution phase of adaptation, whereas adaptiveness contains all three phases.
Therefore it does not specify how to detect a change or how to decide on
an adaptation strategy. However, if software can not be adapted then it can
not be made adaptive. Therefore, adaptability is a requirement of adaptive
behavior.

In this thesis, we are interested in automated adaptation. Of importance
is therefore the granularity and completeness of the means to alter the sys-
tem. With completeness we mean whether everything in a software program
can be altered or whether there are fixed elements that cannot be changed.
For the granularity of the actions provided by the system, we follow the
dichotomy of McKinley et al. (2004a,b):

Parameter adaptation: If existing variables can be modified such that it
influences the dynamic behavior of the system then this is called pa-
rameter adaptation. The architecture or structure of the application is
not affected by parameter adaptation, i.e. a strategy can be optimized
but no new strategies can be adopted after implementation.

Compositional adaptation: If architectural or structural parts of the system
can be altered then this is called compositional adaptation. This al-
lows integrating new components or algorithms dealing with concerns
unforeseen during the original design and construction.

2.4 Service Oriented Architecture 25

In this section, we defined adaptation and explained the concepts re-
lated to it. We study adaptation in the context of software, more specific
in Service-Oriented architecture. In the next section, we explain the core
concepts of SOA. Using these concepts, we then determine how adaptive the
traditional SOA is.

2.4 Service Oriented Architecture

Service Oriented Architecture has the goal to address the requirements of
loosely coupled, standards-based, and protocol-independent distributed com-
puting, linking the business processes and enterprise information systems iso-
morphically to each other (Papazoglou & van den Heuvel, 2007). Essential
characteristics of services in a SOA are (Holley et al., 2003):

• All functions are considered services. This holds for business functions
as well as system functions.

• Services are autonomous. The actual implementation of the function-
ality is encapsulated in a service, and is consequently invisible from
the outside. Instead, the services are advertised in the interface of the
service.

• Interfaces of the services are protocol-, network- and platform agnostic.

Service

Client

Service

Provider

Service

Broker

Find

Bind

Publish

Figure 2.4: Service Brokerage

SOA supports two key roles: a service requestor (client) and service
provider, which communicate via service requests. While SOA services are
visible to the service client, their underlying realizations remain hidden and
inaccessible. For the service provider however, the design of components,

26 Chapter 2. Adaptive Service Oriented Architecture

their service exposure and management reflect key architecture and design
decisions. Figure 2.4 depicts the standard SOA where a service broker
serves as an intermediary interposed between service requesters and ser-
vice providers. Under this configuration the broker typically offers a registry
where the service providers advertise the definitions of services and where
the service requestors may discover information about the services available.
Once a requester has found suitable services, they may directly define bind-
ings to the service realizations at the provider’s site, and subsequently invoke
them.

2.4.1 Core Concepts

While the standard SOA in this figure defines the main roles and the ways
in which they may interact, it does not represent the conceptual structure
of services, the first class citizens in SOA. To address this deficiency, we

Figure 2.5: Ontology of a Service

have derived an ontology of services from existing specifications, standards
and research papers, and in particular the WSA (Booth et al., 2004) and
OASIS’s reference model (OASIS, 2006). This ontology, depicted in Figure
2.5, is comprised of six essential concepts, which collectively define the core
fabric of services in SOA:

2.4 Service Oriented Architecture 27

• Organization: An organization (or person) denotes the concrete owner
of an (abstract) service. As such, it materializes the linkage between
the service, e.g., a Web service, and the organizational entity which
bears responsibility for it in the real world.

• Service: Services are self-describing components that are capable of
performing a task. A service can be nested, implying that a service
can be composed of other services. Services that are assembled from
other services are called composite (or aggregate) services, while atomic
services refer to services that can not be further decomposed in finer-
grained services. The relation in Figure 2.5 of the service to itself
represents the interaction with other services, that can happen in each
of the roles distinguished in Figure 2.4.

• Action: An action constitutes a discrete function that may be exe-
cuted by the service. Examples of an action are processing or generat-
ing a message.

• Task: Several cohesive actions may be bundled into a task. Several cri-
teria may be used to synthesize actions into a task, e.g., communicative-
and functional cohesion. A functionally cohesive task should perform
one and only one problem-related function and contain only actions
necessary for that purpose, e.g., the services involved in the order man-
agement service. A communicatively cohesive task is one whose actions
use the same set of input and output messages. The actions that col-
lectively make up a task may be advertised in a service interface.

• Message: Services collaborate with each other by exchanging mes-
sages, each of which conveys one or more typed information elements.
Messages may be correlated, e.g., in case of a two-way communication
protocol, a send- and receive-message are associated with each other.

• Interface: A service interface specifies a task that the service can
perform and defines the messages that a service can send and receive.
Interfaces are the key instrument in SOA to ensure platform- and
protocol independence, defining a service contract that forms a pair
with an associated service implementation, and captures all platform-
independent assertions. As such, the interface defines the identity of a

28 Chapter 2. Adaptive Service Oriented Architecture

service and its invocation logistics. Other terminology that has been
used for the same concept is service specification.

Note that this ontology does not contain the roles of the services in SOA, as
they are already contained in the service brokerage triangle (see Figure 2.4).

2.4.2 Types of Changes

We are interested in the development of adaptive software, more specifically,
in adaptive services. In order to make services adaptive, we must know what
we are making services adaptive to. By identifying a specific type of change
an adaptation strategy can be created and furthermore an service can be
analyzed whether it is adaptive with regard to that type of change. For this
purpose, in this section, we create a taxonomy of changes based on the core
concepts of SOA described above.

For the identification of changes in the environment, we make a distinc-
tion between what is regarded as system and what as environment. In SOA
the most prominent concept is the service, therefore we take this concept as
the system. The concepts of task, action, message and interface (see Figure
2.5) are part of the service and therefore are considered as the system as
well.

We focus on changes that originate in the environment of the service.
Since we are regarding a framework for developing new services, we assume
that the service will be implemented perfectly, e.g. no changes originate
from the service itself by means of bugs. The environment of a service is
comprised of two concepts, namely the organization that owns the service
and the other services that the service may interact with. However, as we
defined the concepts of task, action, message and interface to be part of a
service, they are thus also part of the other services in the environment and
thus are included in the taxonomy as well.

Based on the concepts of SOA described above, we define the following
change taxonomy:

• Task and Action: The tasks and/or actions of a service can be
changed. Although an interface might remain the same, the implemen-
tation behind it has been altered. An example of this type of change
is when a sorting algorithm is replaced by another sorting algorithm,
for instance bubblesort with quicksort. Semantic changes affecting a
serviceťs internals working fall under this category.

2.4 Service Oriented Architecture 29

• Message: Changes on messages can either be that the data format
has been changed or message(s) have been added or deleted. Typically
this type of change is categorized under interoperability changes and
affect the syntax, structure or semantics of the data in a message.

• Interface: Everything a service publishes about itself can be subject
to change. Depending on what is published in the interface, a change
can affect for instance tasks, actions, business protocols (that typi-
cally include a definition of the messages) or software properties such
as Quality-of-Service. The release of a new interface is typically con-
sidered in the area of service versioning. Among others, a cause of a
change of the interface can be the desire to remain compatible with
new versions of service standards (Cisco, 2007).

• Service: A service is typically part of a network of services. Each
of these services publishes an interface and changes affect these in-
terfaces as described above. However, changes can also affect whole
services. Services are typically part of a community of services (a set
of services part of a registry or repository, like UDDI (Bellwood et al.,
2004)). Given this community, new services will be added and older
(unsuccessful) services will be removed, i.e., service retirement (Cisco,
2007).

• Organization: The organization that owns services will change, either
due to changing business objectives or the service has been sold to
another organization (Arsanjani, 2005). These changes will affect the
implemented business policies and/or business rules that are part of
the service. This type of changes has also been labeled as policy-
induced changes (Papazoglou, 2008) or requirements change (Treiber
et al., 2008a).

Note that the types of changes are not restricted to these concepts. Changes
can be part of multiple concepts at the same time. For instance, a change
in the data format of a message, is a change of a message, however this
message is defined in the interface, and thus it is also a interface change.
Furthermore, different types of changes have different impact on a service
or service network. In Papazoglou (2008) a distinction is made whether a
change has impact on only the service itself (cf (Wang & Capretz, 2009))

30 Chapter 2. Adaptive Service Oriented Architecture

and maybe its clients or whether the change extends beyond the clients and
propagates through the entire value-chain.

2.5 Adaptiveness in SOA

SOA is advocated to introduce flexibility and adaptivity. However, so far
it was difficult to exactly pinpoint the reason why SOA is considered to be
adaptive or why it should not be considered adaptive. The question to ask is:
can SOA handle all the types of changes defined in the previous section? The
criteria we use to answer this question is whether new concepts or relations
need to be introduced or if changes can be dealt with within the scope of
the existing concepts and relations. To represent SOA, we use the brokerage
triangle and the core concepts defined in Section 2.4.1.

Traditional SOA

In SOA there is no concept of a manager or decision maker (Papazoglou,
2005). There is no concept other than the organization that is explicitly
capable of determining adaptation strategies. Although adaptivity could be
intended to be part of a concept itself, this is not apparent from the labels
and descriptions of the concepts. The drawback of implicit adaptation is that
intertwining adaptation logic with the business logic leads to poor scalability
and maintainability (Salehie & Tahvildari, 2009).

Although SOA is not capable of dealing with changes automatically, it
does facilitate for some adaptability. The separation between interface and
implementation, regarding services as autonomous, and nesting of services
to create service compositions are all designed to improve adaptability. Fur-
thermore, SOA provides the ability for dealing with changes in the service
community. The conceptual adaptability of SOA lies in its capability to
discover services dynamically and make bindings to their implementations
at runtime. However, service brokerage alone is not enough to create an
adaptive architecture. Although new services can be found and bound at
run-time, with or without plugins like aspects (Karastoyanova & Leymann,
2009), it will be hard to find a perfectly fitting service for a new or given
service composition.

2.5 Adaptiveness in SOA 31

Approach Adaptation Phases
Detect Decide Execute

SOA - - X
WSA - X X

OASIS-RM - - X
WSMO - X X
COSMO - X X
SoaML - - X

Table 2.2: Comparison of Conceptual Approaches

Advances in SOA

To see, whether advances in SOA address these issues, we look at work done
in the field of service modeling and service management. Service modeling
aims at conceptually tackling all aspects part of the service and thereby
providing an indication whether at design time adaptation is considered.
Service management deals with all run-time aspects of the services.

Approaches that enhance the conceptual foundation of SOA are WSA,
(Booth et al., 2004), OASIS-RM (OASIS, 2006), WSMO (Roman et al.,
2005), COSMO (Quartel et al., 2007) and OMGťs SoaML (OMG, 2009).
Each of these approaches introduce a number of concepts to model a service
and related aspects. We analyze these approaches based on the presence
of concepts that specify or imply adaptive behavior. For this analysis, we
use the phases of adaptation described in Section 2.3.1. The results of this
analysis are displayed in Table 2.2. In this table, the conceptual approaches
are represented including SOA, which is used as benchmark.

All approaches do not handle a full adaptation cycle, as none of them
include a concept for detecting changes. The approaches differ most in other
aspects such as expressivity. However, some approaches do contain some
concepts for adaptation. WSA and SoaML have the concept of an agent.
WSA states that Web services are implemented as agents and SoaML sees
participants in a SOA as agents. Agents are commonly associated with
adaptive behavior and it is therefore reasonable to assume that WSA and
SoaML would incorporate adaptation, however this is not evident from the
other given concepts and models. Similarly, WSA and COSMO both have the
concept of a goal. Goals can help determine whether adaptation is required,
based on whether the goal is reached or not. However both approaches do

32 Chapter 2. Adaptive Service Oriented Architecture

Approach Adaptation Phases Types of Changes
Detect Decide Execute T/A Msg Interface Service Org

SOA - - X - - - X -
WSDM X X X - - - - -
SEMF X - - X X X X X
WSML X X X - - - X -
AWSE X X X - - X(QoS) - -
PAWS X X X - - X(QoS) X -

Table 2.3: Comparison of Management Approaches

not specify how goals are used.
Next to these conceptual approaches, we compare approaches in service

management. Service management is concerned with managing all run-time
aspects of a service. Meaning that a management system controls and moni-
tors the service and performs activities ranging from configuring the service,
collecting metrics and tuning the service to ensure responsive execution (Pa-
pazoglou & van den Heuvel, 2005). This definition of service management is
very similar to the definition of adaptation given in Section 2.3.1. The main
difference is that service management is responsible for all aspects of the ser-
vice, whereas adaptation is focussed on one aspect (criterion). In AC, this
distinction is reflected in a range of self-* terms, for example self-optimizing
and self-configuring, that together form self-management.

Next to service management a vast amount of work exists on service
adaptation. However, each of these approaches tackles a specific type of
change, for instance Quality-of-Service, or tackles only a specific aspect of
the adaptation cycle, for instance monitoring (cf. (Baresi et al., 2009)). In
short, these approaches do no provide insights on how the service in general
should adapt to different types of changes. For this reason, we limit ourselves
to efforts that state they are a management approach.

Table 2.3 provides a comparison in adaptivity of existing management ap-
proaches. We distinguish between two types of works in service management,
namely standards and frameworks. Standards concerning the management
of services include WS-Management (DMTF, 2008) and Web Service Dis-
tributed Management (WSDM) (Bullard et al., 2006). These approaches
provide insights in what information is relevant for managing the service
(WS-Management) and a general architecture on how services can be man-

2.6 Adaptive Service Oriented Architecture 33

aged (MOWS (OASIS, 2004)) and how services can be used for management
(MUWS (Bullard & Vambenepe, 2006)). These standards provide the con-
cepts of an explicit service manager in which the phases of adaptation are
present, however they do not explain how this relates to the other concepts
in SOA and what types of changes it can handle. They only provide archi-
tectural guidelines.

Service management frameworks include SEMF (Treiber et al., 2008b),
WSML (Cibrán et al., 2007), AWSE (Tian et al., 2005) and PAWS (Ardagna
et al., 2007). Each of these management frameworks focuses on a specfic as-
pect of adaptation. For example, SEMF provides an information model for
managing and integrating all types of information related to services. This
information model can be used to distill possible changes, however, the au-
thors do not present a strategy on how to deal with changes. AWSE and
PAWS are based on AC and conceptually capture a whole adaptation cycle,
however both are focussed on Quality-of-Service and related adaptivity such
as dynamic selection of services based on Quality-of-Service. All manage-
ment frameworks describe how services can be managed and they handle
different types of changes. However, none of them show a complete imple-
mentation or results that validate the claim that their management approach
works.

Based on the adaptivity analysis above, we state that the SOA and ad-
vances in SOA do not support adaptive behavior (cf. (Di Nitto et al., 2008)).
As a result, in practice, its key components are static in nature. Current
service standards and platforms typically deliver static solutions, which are
brittle and resistant to change.

2.6 Adaptive Service Oriented Architecture

To remedy these shortcomings and enable the adaptivity required in future
business environments, we develop the Adaptive Service Oriented Architec-
ture (ASOA). The ASOA we introduce here is based on SOA, however there
are a number of alterations in the design (discussed further in this section).
The adaptivity we seek in ASOA is delivered by adaptiveness of the indi-
vidual services. We envision that, similarly to Autonomous Computing, the
services act as autonomous units which are able to adapt themselves to their
environment.

34 Chapter 2. Adaptive Service Oriented Architecture

2.6.1 Adaptive Service Oriented Architecture: Basics

Figure 2.6: The Basic Adaptive Service Oriented Architecture

Figure 2.6 illustrates the basics of the ASOA. Like in SOA, service bro-
kerage is used to find new services. The main difference is that a new role
is introduced, that of the manager. Following the idea of Autonomic Com-
puting at both the side of the provider and the requester a manager controls
the services.

With the introduction of management in services, we make a distinction
between the manageable (adaptable) service and the manager. The main
advantage of this architecture is a clean separation of concerns; the service
solely offers business functionality, while management and adaptation are
the responsibility of the manager. Managers can interact with each other,
for example to establish a contract or to notify changes (cf. Medjahed et al.
(2004)).

We consider reconfiguration of a service to be a managerial task and not
an operational, and therefore finding and integrating new services should be
done by the manager. Figure 2.6 illustrates this with the connection from
the service broker to the manager and not to the service.

We define the manager to be a service similar to the service that it man-
ages. By defining the manager as a service, it exposes interfaces similar to
the manageable service. The distinction between a standard service and a
manager is that a manager has goals and enacts an adaptation cycle.

For the basis of the manager we borrow proven concepts from Agent

2.6 Adaptive Service Oriented Architecture 35

Technology. Agents are pieces of software able to make decisions and moti-
vate these decisions. The characteristics of agents such as the pro-activeness
make agents a suitable candidate to deal with unforeseen changes.

2.6.2 Concepts in ASOA

The concepts we described in the section on SOA together with concepts
distilled from papers concerning management, like WSDM (OASIS, 2004;
Bullard & Vambenepe, 2006) and Agents have resulted in the ontology illus-
trated in Figure 2.7. In this section, we explain our choices concerning these
concepts and describe how they relate to each other.

Figure 2.7: Ontology of an Adaptive Service Oriented Architecture

We distinguish between two types of concepts, namely specifications and
artifacts. The specifications represent descriptions and components such as
contracts, capabilities, and interfaces, and goals. The artifacts constitute
the parts that are implemented such as the service and manager.

Figure 2.7 contains an adaptation cycle which is formed as follows:
The manager listens to the events that are generated by and about the man-
aged service. Based on these events, the manager detects changes, that for
instance, affect the performance of the service. Depending on it’s goal(s),

36 Chapter 2. Adaptive Service Oriented Architecture

the manager decides whether and how to react to the change. The capa-
bilities that the service provides are the means for the manager to execute
these adaptations. The concepts introduced or altered (in relation to their
definition in SOA) are explained in detail below:

• Goal: Software is build with a purpose (or goal). However in non-
adaptive software the goal is typically implicit (Dardenne et al., 1993;
Yu, 1997). An area where goals are explicitly used is software agents.
One of the characteristics of an agent is proactiveness, implying that
agents are goal-directed. Goals used for Agent programming have two
aspects (Winikoff et al., 2002). The first aspect is that can be defined
in a declarative manner. In this way, they describe the state of affairs
which is sought by the agent. Declarative goals are required if agents
need to reason about them. The second aspect is to define goals as pro-
cedural, meaning that a goal is defined as a set of procedures which is
executed to achieve the goal. Both aspects are required for adaptation,
as is explained in Section 2.7.

• Contract: The contract stipulates a mutual agreement between two
or more services and defines prerequisites and results of particular ser-
vice interaction. As part of the separation between managerial and
operational aspects in ASOA, we see negotiation and agreement over
a contract as a responsibility of the manager. The contract is im-
plicitly included in WSA through the concept of “service semantics”,
but in the ASOA we need an explicit notion for restraining the adap-
tiveness of the service. Although the services should be adaptive and
alter themselves to their environment, stability between parties is of
critical importance to reduce uncertainty and establish trust relations.
Among others, one aspect that is suggested to be captured in a contract
is Quality-of-Service (Curbera, 2007).

• Capability: A capability is a task that is published in the interface.
In ASOA, we make a distinction between two types of capabilities,
namely operational and managerial. The operational capabilities are
defined as in the standard SOA. The managerial capabilities, represent
the means for adapting the service and to make it comply to the man-
ager’s intentions (Kreger et al., 2005). We distinguish between atomic
and composite service. In the atomic service the manageability capa-
bilities are limited to parameter adaptation and optimization of the

2.7 A Framework using Model Management 37

process, whereas in the composite service the manageability capabili-
ties entail besides parameter adaptation, compositional adaptation and
thus redesigning the (business) process. As operational and managerial
capabilities have the same characteristics we do not make a separate
concept for each type.

• Event: Events are messages that contain information about the sys-
temťs functioning, and are used for the purpose of logging, alerting and
monitoring. Events combined with event-correlation models form the
basis on which the manager can detect changes, providing the founda-
tion for reactive change management. Events are a common architec-
tural style for distributed, loosely coupled and heterogeneous software
(Rosenblum & Wolf, 1997; Muhl et al., 2006). As can be seen in Figure
2.7, we do not have the concept of message in the ASOA. The reason
is that we assume that in asynchronous communication, messages can
be equated with events. For the remainder of this thesis, we will use
the term event and message interchangeably.

2.7 A Framework using Model Management

In the previous section, we described the concepts in ASOA. In this section,
we sketch how we use Model Management to create a conceptual frame-
work based on these concepts. Using this framework as foundation, we will
provide in the following chapters the details on how to implement it for
interoperability.

A number of enabling technologies are provisioned in literature for real-
izing adaptive services. Among others, enabling technologies are: Aspect-
oriented Programming (Kiczales et al., 1997; Walker et al., 1999), Computa-
tional Reflection (Maes, 1987), Model Management (Bernstein et al., 2000;
Bernstein, 2003), Machine Learning (Carbonell et al., 1983; Mitchell, 1997)
and Agents (Wooldridge & Jennings, 1995; Wooldridge, 2001). In this pa-
per, we primarily use Model Management but borrow proven concepts and
methods from the other technologies as well.

As the name suggests, in model management the core concept is the
model. With model, a complex structure is meant that represents a design
artifact. The usage of models implies manipulation and transformation of
one model to another model. Formal descriptions of such transformations

38 Chapter 2. Adaptive Service Oriented Architecture

Figure 2.8: Manager and Manageable Service

are called mappings. Mappings are again a model. The key idea behind
model management is to develop a set of algebraic operators that generalize
the transformation operations.

Our motive for choosing model management, also called generic model
management (Melnik et al., 2003b; Melnik, 2004), is its broad applicability.
Although model management started in databases, it was also applied in
other areas such as business processes (Madhusudan et al., 2004). Model
management is an effort that can be placed in the context of Model-Driven
engineering (MDE), where the philosophy is “everything is a model”(Bézivin,
2005). The other enabling technologies use models as well, for instance Neu-
ral Networks in Machine Learning, however, they do not advocate the de-
velopment of generic operators for manipulating, transforming and creating
mappings between models.

In our framework, we make the distinction between manageable (adapt-
able) service and manager (see Figure 2.8). The main advantage of this
architecture is a clean separation of concerns: the service itself solely offers
business functionality, while management and adaptation are the responsi-
bility of the manager. We describe below both manager and manageable
service using the concepts defined in Section 2.6. After this, we return to
our example scenario and use it to illustrate how an adaptation process will
execute in ASOA.

2.7 A Framework using Model Management 39

Concept Format Description
Action a(v1, .., vn) every action is considered a function a

where v1, .., vn are variables
Task (< a1, .., an >, ρ) a task is set of actions < a1, .., an >

with an ordering ρ over those actions.
Event < rec, sen, data > an event is a model composed of a

receiver rec, a sender sen and some
data contents .

Capability c = (< a1, .., an >, ρ) a capability c is published task.
Interface (Op.IF,Man.IF) an interface contains two parts:

an operational and a managerial inter-
face.

Op.IF (< co1, .., c
o
n >, uriMan) an operation interface contains a set of

capabilities < co1, .., c
o
n > and an URI to

the service manager uriMan.
Man.IF < cm1 , .., cmr > a managerial interface contains a set of

managerial capabilities < cm1 , .., cmr >.

Table 2.4: ASOA model of a service

2.7.1 Manageable Service

We explain the manageable service through the use of the model of a service
described in previous section. A formal representation and description for
the concepts in that model is given in Table 2.4. Tasks represent a (busi-
ness) process that is captured in for example, BPEL or a Petri-net. The data
in events is typically modeled using XML Schema and the interface using
WSDL. For the interface, we make a distinction between the operational in-
terface (Op.IF) and managerial interface (Man.IF). The manageable service
publishes an interface (Op.IF) containing the capabilities that it wants to
advertise and a business protocol specifying the order of the messages in-
volved. Next to these aspects, a URI to the manager of that service should
be included. By publishing this endpoint, communication between managers
is realized.

Following a model management approach we define a mapping between
the operational interface and the implementation (task) of the manageable
service. An advantage of this approach is that properties can be defined on
this mapping such that the validity of the mapping can be guaranteed, i.e.,

40 Chapter 2. Adaptive Service Oriented Architecture

the implementation conforms to the interface and vice versa. In our frame-
work, this is realized by defining the capabilities published in operational
and managerial interface to be equal to the set of tasks that the service
is able to perform. Thus, let Ta denote the set of tasks of a service then
Ta ≡< co1, .., c

o
n > ∪ < cm1 , .., c

m
r >. Note that although the service pub-

lishes tasks as capabilities, this does not necessarily mean that all actions
performed to realize a task are published as well.

The managerial interface contains all aspects related to the manageability
of the service. We make a distinction between two aspects of manageability
of a service, namely adaptability and monitorability . Both aspects are
required to be present in the manageability interface (Man.IF).

Monitorability refers to the method how the manager will become
aware that a change has occurred. This specifies whether the manager will
receive information (events) from the manageable service, other managers,
third party notification agents, or not at all.

The adaptability of the service refers to how the manager is able to
adapt the service, i.e. the manageability capabilities. An important aspect
of these capabilities are the operators that are defined on the model. In
our framework, these operators consist of adding and removing concepts
(and relations) in a model. An example of a set of operators for our ASOA
service model is: addTask(), removeTask(), addAction(), removeAction(),
addEvent(), removeEvent(). More formally defined: Let Σ be the finite
alphabet of operators. A word of length k ∈ N over Σ is a sequence of k
symbols in Σ. Let Σ∗ be the set of all words over Σ of length k for some
k ∈ N .

Operators are commonly stored in a script. A script α is a sequence of
operations that transforms one model into another, more formally defined
as M1

o1→M2 where M2 is the result of applying the basic operation o1 to
M1. For a sequence α = o1, .., om of operations, we say M1

α→ Mm+1 if
there existM2, ..,Mm such thatM1

o1→M2
o2→, ..

om→Mm+1.
Three properties of a set of basic operators are distinguished, namely

completeness, consistency and minimality (Casati et al., 1998).

Completeness refers to the ability to transform a model of a type of model
to another model of that same type. Based on this alphabet and model,
we define when a set of operators is complete:

2.7 A Framework using Model Management 41

Definition 3. (Completeness of operators)
A set of operators Σ for a type of model M is complete iff:

∀M,M′ ∈M ∃α ∈ Σ∗[M′ α→M]

Intuitively, Definition 3 means that if all concepts and relations of a
type of model can be expressed using operators, then all instances of
that type of model can be expressed using only these operators. Exam-
ples of types of models are Finite State Machines or Petri-nets. If the
manageability capabilities include a set of operators that is complete,
then we call the service completely adaptable. Having a completely
adaptable type of model provides two advantages. The first advantage
is it guarantees that if a change affects the model and if the solution
can be expressed in the concepts of that model that a solution can be
found. This is further explained for Section 2.7.2 on the manager. The
second advantage is that all models of that type can be expressed us-
ing only operators, i.e., it can be expressed declaratively. This means
that adaptation is equated with finding the right model. Advantage
of an declarative model is that line-based versioning systems, such as
Subversion 1 can be used to keep track of the change history. We de-
scribe an example of a completely adaptable service, i.e. the retailer
in Chapter 3.

Consistency of a set of operators implies that after applying a script to a
valid model again a valid model is returned. We define a model to be
valid if it adheres to a set of properties, also called meta-model. For
example a property for a finite state machine may be that every state
must have either an incoming or an outgoing edge, i.e. every state
in the finite state machine must be reachable. The set of properties
defined for a model must hold for every created or adjusted model.
The manageability interface should present the properties that must
hold for a model. Let ϕ be a property then the notationM |= ϕ means
that the modelM satisfies property ϕ.

Definition 4. (Well-formedness of models)
Let < ϕ1, ..ϕn > be a set of properties, a model M is well-formed iff:

∀i ∈ {1, .., n}∀ϕi ∈< ϕ1, ..ϕn > [M |= ϕi]

1http://subversion.tigris.org/

42 Chapter 2. Adaptive Service Oriented Architecture

In words, the above definition states that a model is well-formed if and
only if it satisfies all properties.

Similar to well-formedness of models, we define well-formedness also
for scripts.

Definition 5. (Well-formedness of a script)
Let Mwell denote a well-formed model as defined in Definition 4. A
script α is called well-formed if the following property holds:

Mwell
α→M′

well

A script is well-formed if both the original model and the new model
are well-formed.

Consistency can be guaranteed in two ways: either by specifying vali-
dation constraints as precondition for the operators (thereby ensuring
that after every operator a valid model is achieved), or by specifying
validation constraints that hold for the whole model and check these
after all the operators of a script have been applied. Both approaches
(if applied properly) yield the same result, namely a valid model.

Minimality of a set of operators refers to the ability of transforming models
with a minimal set of operators. Because parameters can be used in
the operators to create new instances of concepts, the minimal set of
operators for a model contains a single operator, which contains all
concepts as parameters. As there are different strategies for defining
operators, minimality over different languages of operators is hard to
impose. However, we do impose minimality of scripts of operators
within the same operator language.

In order to have scripts that change a model, they should not be iden-
tity scripts. We define an identity script as follows:

Definition 6. (Identity script)
A script α is called an identity script (or identity transformation) if:

M α→M.

A script of operators is an identity transformation if after applying
the sequence of operators on a model, the result is again that same

2.7 A Framework using Model Management 43

model. An example of an identity transformation is if a change script
contains the addition and removal of the same element. We do not
impose minimality on a set of operators, however, we have for each
concept exactly two operators, namely add and remove.

Definition 7. (Minimal script)
A script α ∈ Σ∗ is minimal (denoted as αmin) for transformation
M α→M′ iff:

¬∃δ ∈ Σ∗[|δ| < |α| ∧M δ→M′]

Intuitively, the definition for minimality states that if a script is min-
imal then there does not exist another script that results in the same
model and contains fewer operators.

Lemma 1. α is minimal ⇔ ¬∃δ ∈ Σ∗[δ ⊆ α ∧M δ→M]

Proof. We assume here that our language Σ contains only add and
remove operators. The statement ¬∃δ ∈ Σ∗[δ ⊆ α ∧M δ→M] states
that “α does not contain an identity transformation”.
⇒: Assume that α is minimal. As scripts contain only addition and
removal of concepts, a script is minimal if all operators apply to dif-
ferent elements in the model. Thus, for all elements in the script only
one operator per element is part of the script. If only one operator per
element exists, this means that it can not contain an identity script as
this would imply that the script contains two operators for one element.

⇐: Assume that α does not contain an identity transformation. This
means that there are no two operators for the same concept, as this
script may only contain addition and removal operators only elements
can be introduced or removed. If an element is thus not added and
also removed this implies that the script only contains operators for
different elements, hence is minimal.

Lemma 1 states that if a script is minimal it can not contain, subscripts
that are an identitity transformation and vice versa.

The managerial interface of a manageable service provides all functions
related to adapting the service. In Table 2.5, we summarize the Manageabil-
ity functions. An important function in the manageability interface is the

44 Chapter 2. Adaptive Service Oriented Architecture

Function Output Description
getOperators() Σ returns the alphabet of operators Σ for the type

of model used by the service.
getModel() M returns the model currently used by the service

(in the form of operators).
update(α) boolean updates the current model of the service by

applying the operators of script α to it, with
α ∈ Σ∗.

getMetaModel() < ϕ1, ..ϕn > returns a set of properties that must hold for a
model to be well-formed.

valid(M) boolean determines whether a model is well-formed.

Table 2.5: Manageability Functions

update function. The manager will use this function to adapt the manageable
service to changes. With updateM(α) we denote the function that updates
a model M by applying the operators in α to it. When it is clear from the
context to which model the operators are applied we omit the model, like
update(α).

We complete our description of a manageable service by providing an
example specification of the retailer in our running example, see Table 2.6.
In this specification we present the skeleton of the retailer, however this

Concept Example
Actions {receive(event), send(event),..}
Tasks ordermanagement = {receive(order),send(checkAvailability)..}
Events {order, checkAvailability,..,accept}

Capabilities {ordermanagement}
Op. Interface {ordermanagement},

http://example.org/mymanager (URI manager)
Operators {addTask(),removeTask(),..},

Meta-model {consistent,..}
Man. Interface see Table 2.5

Table 2.6: Specification for a Manageable Retailer

is not a complete description, for instance the ordering of the actions and
messages is not apparent. In the next chapter we will describe the model
we use for representing an adaptable orchestrator, and exemplify this in the

2.7 A Framework using Model Management 45

context of our running example, i.e. an adaptable retailer. Note that we
state adaptable and not manageable because the monitoring aspect of the
manageability interface is already set in this specification.

2.7.2 Manager

In ASOA, a manager is a service. Therefore we use the same concepts for
representing it. We explain below for each of the concepts of the manager,
how they are implemented.

Goal: The purpose of the manager is to adapt the manageable service in
the context of a certain goal. A goal has been described as a state of affairs
that is to be reached, i.e. it describes a desired situation (van Riemsdijk
et al., 2008). In the context of Model Management, we define a goal to be
a property over the model of the manageable service. The desired situation
is then reached if the model satisfies the property. Following our notation
for properties, we define a goal ð to be satisfied if M |= ð. As the manager
will adapt the manageable service, M stands here for the model of the
manageable service. The distinction between the goal and the properties
of the meta-model of the manageable service is that the meta-model of the
manageable service specifies fixed properties that must hold for every model.
The goal on the other hand is specified over the model and may vary. Thus,
the properties of the meta-model must always hold, and the goal property is
desired to hold.

To see whether a manager can adapt the model of the manageable service
to changes (for example, concerning interoperability), we define what can be
handled in the following change categories.

Definition 8. (Change categories)
Let M ∆→ M′ be change where change script ∆ is applied to M with as a
resultM′ and let ð be the goal property defined for modelM. We define the
following change categories:

Non-effective: M′ |= ð

Solvable: M′ ̸|= ð and ∃α[M′ α→M′′ ∧M′′ |= ð]

Problematic: M′ ̸|= ð and ¬∃α[M′ α→M′′ ∧M′′ |= ð]

46 Chapter 2. Adaptive Service Oriented Architecture

The three categories above define the three types of action that the
manager will perform when encountering changes. The first category, Non-
effective, states that nothing needs to be done. The changes in this category
do not affect the goal. The second category, Solvable, states that the changes
affect the manageable service but that a script can be found such that the
goal can be reached again. The third category, Problematic, states that a
change cannot be solved and is therefore a problem. In this situation the
manager escalates, i.e. sends a message to a (human) administrator stating
that the manageable service does not comply with goal property and that
(human) intervention is required.

Task: A goal specifies what should be achieved (declarative), the task
on the other hand specifies how this goal should be reached (procedural). A
goal should be woven with the process of the manager. For instance, to know
whether a change has an impact on the goal property and whether a certain
set of operators will solve any potential problems, i.e. the actions of the
manager must be related to that goal. For different goals, different actions
are needed. For instance, for interoperability different detection mechanisms
are needed than for Quality-of-Service.

The manager enacts an adaptation cycle for adapting the manageable
service. This process thus contains the three phases of adaptation, namely:
detecting a change, deciding on an adaptation plan and executing this plan.
In ASOA, this process is typically initiated by receiving an event. This event
announces a change, for instance the bank will publish a new interface. The
subsequent change is analyzed and diagnosed, for instance using a difference
function to detect changes between two interfaces indicated by the event.
This analysis should clarify whether something must be done to reach the
specified goal, or whether the goal still holds. We make a distinction between
changes that have no impact (nothing needs to be done), small impact (the
changes are solvable by manipulating the model of the manageable service),
and large impact (goal cannot be reached with any set of operators and the
changes are not solvable by the manager). At the end of the adaptation
cycle, the set of operators (found for any solvable change) is executed on the
model of the manageable service, i.e. an adaptation cycle finishes with an
update(α) action, where α is the set of operators to be executed.

Based on the process described for a manager above, we define a meta-
model for an adaptation cycle. Properties for a typical adaptation cycle
are: the process starts with the reception of an event indicating a change

2.7 A Framework using Model Management 47

and the process ends with either the execution of a set of operators on the
manageable service or sending an event to higher level manager stating that
the change can not be solved.

The manager need not be an atomic service. In this case, the manager is
a composite service and relies on other services to realize parts of the adap-
tation process, e.g. for monitoring or diagnosis. This allows reuse of existing
management functionality and a specialization of companies in function spe-
cific management services. For example business activity monitoring may be
done by a service of Tibco 2, the decisions are made in a service provide by
iLog 3and the execution happens in an adaptable model in ActiveBPEL 4.

Furthermore, because this process is also a model, operators for adapting
the adaptation cycle can be defined as well. This creates an adaptable adap-
tation cycle. Similar to operational services, changes will affect a manager.
Therefore we employ the same method the make managers manageable. The
manageability of managers follows from combining two ideas: 1) making ser-
vices manageable, and 2) making the manager a service.

We discuss in the following chapters an example implementation for
adapting an orchestrator to changes in the interfaces of its service providers.
This process (adaptation cycle) is static and we assume that for this type
of changes this process needs not be adapted. A different approach is to
automatically derive this process, through goal-means reasoning or planning
(van Riemsdijk & Wirsing, 2007). For the purpose of creating a generic
adaptation cycle, we abstract from the possible architectures as for instance
a deliberation cycle for Agents (Hindriks et al., 1999) or a control loop as
provided by Control Theory (Kokar et al., 1999).

Operational Interface: The interface of the manager contains the op-
erations that other managers will make use of. In ASOA, this includes an
interaction protocol specifying how changes are communicated. For instance,
managers are notified of a change through a publish/subscribe protocol.
When a change occurs, or is planned, the manager of the manageable ser-
vice will receive a notification of the manager of a service provider. In our
running example, this translates into the situation where the manager of the
retailer is subscribed to receive notifications of changes of the bank.

2http://www.tibco.com
3http://www.ilog.com
4http://www.activebpel.org

48 Chapter 2. Adaptive Service Oriented Architecture

Function Output Description
getGoal() ð returns the current goal-property
setGoal() - sets the goal-property

Table 2.7: Goal-related Functions

Managerial Interface: Because the manager is a service, a manager
is required to define a managerial interface. This interface contains the
operations as defined in the managerial interface of the manageable service,
with the addition of two operations for setting and retrieving a goal. In our
research, we restrict ourselves to study the situation where a manager has
a single goal. The situation where multiple goals are handled at the same
time is left for future work. Table 2.7 specifies the two operations related
to the goal. Using this managerial interface, the model of the manager
can be adapted in a way suitable for a higher level managers (or human
administrators), thereby creating a potential hierarchy of managers.

An example specification of a manager is presented in Table 2.8. This
manager is described in detail in Chapter 4 and 5.

Concept Example
Actions {receive(event), send(event),update(α),diff(),..}
Tasks handleInteroperabilityChange =

{receive(change),diff(),..}
Events {change,..}
Goals Compatible(Process, Partner1, .., Partnern))

Capabilities {handleInteroperabilityChange}
Op. Interface {handleInteroperabilityChange},

Operators {addTask(v1, v2),removeTask(v1),..},
Meta-model {consistent,..}

Man. Interface see Table 2.6

Table 2.8: Example manager for managing the retailer

2.7.3 Example: Adapting the Retailer

Consider the order management process of the retailer. The manager of
the retailer, see Table 2.8, is subscribed to all the service managers of all the
bank, shipper and inventory for notifications about change. After a period of

2.7 A Framework using Model Management 49

Figure 2.9: Change communication

time, the manager will receive a message (event) of the manager of the bank
service that the bank service interface will change and that the old interface
will be discarded. This notification will contain a date when the old interface
can not be used anymore. An example of how a change is communicated
in ASOA is depicted in Figure 2.9. To illustrate the adaptation process,
Algorithm 2.1 provides an algorithmic representation for finding a solution.

The manager of the retailer receives an event concerning this change. It
may receive this from the bank itself or through a third-party notification
agent. This event contains either the new interface itself or a link to the new
interface. The manager will then compare the old interface IFB with the
new interface IF ′

B using a difference function diff(IFB, IF
′
B)

5. The result

Algorithm 2.1 Manager process to tackle Interface Changes
receive(eventIF ′

B
)

∆← diff(IFB, IF
′
B)

∆a ← applicable(∆, BPR)

if ∆a ̸= ∅ then
α← adapt(∆a,ð, BPR)

update(α,BPR)

end if

5In Model Management this function is called matching, however as our function de-
termines the differences and not the similarities we prefer the term diff.

50 Chapter 2. Adaptive Service Oriented Architecture

of this function is a set of operators (∆), called a change script, containing the
changes between the versions. Not all changes will result in incompatibilities
and therefore the change script ∆ is filtered for applicability in the applicable
operator. The result of the applicable operator is a script ∆a containing only
operators that have an impact on the business process BPR. If the change
script containing all applicable operators ∆a is not empty, then the adapt

operator is executed to find a suitable adaptation script α. This script is
then given to the update operator to create a new retailer. The details of this
process and how these operators are implemented is discussed in Chapter 5.

2.8 Discussion

In this chapter, we explained our conceptual approach for realizing an Adap-
tive Service Oriented Architecture. By providing a taxonomy and defining
adaptation and adaptability, we showed that standard SOA and the state-
of-the art in SOA supports only limited adaptive behavior. Based on these
shortcomings we created a conceptual model of an extended SOA (ASOA)
which remedies this.

The two keys ideas behind ASOA are: 1) every service is managed by
a manager, and 2) the manager is a service. Using Model Management,
we provide a conceptual framework that guides the design of manageable
services and managers. With a (completely) adaptable adaptation cycle, we
provide the means to design a generic manager that can conceptually tackle
any change in the environment or the service itself.

So far we demonstrated how ASOA works on a conceptual level. In the
following chapters, we will go into detail how ASOA is realized and create a
full model of the manager for interface changes. We use our example scenario
throughout this dissertation to illustrate its workings.

Chapter 3

Modeling an Adaptable Service
Orchestration

3.1 Introduction

In the previous chapter we described a conceptual framework using Model
Management. As the name suggests, in model management the core concept
is the model. In model management, with model, a complex structure is
meant that represents a design artifact. The key idea behind model manage-
ment is to develop a set of operators that can be used to manipulate models.
In this chapter, we describe how we model an adaptable service orchestra-
tion and how we define operators on these models to capture changes and to
adapt a model.

A distinction is made between two perspectives on a network of services,
namely orchestration and choreography. In a service orchestration a central
mediator is assumed to be present in the topology of services. This means
that all messages are either sent or received by the orchestrator. The alter-
native perspective is that of a choreography. In a choreography there is no
central mediator meaning that there exists at least one message which does
not have the mediator as a sender and also not as a receiver. In our research,
we study the effect of the environment (other services) on a service during
run-time. In particular, we are interested in studying how an orchestrator
can adapt when a service provider changes its interface. For instance, in our
retailer example, the question is how a change in the interface of the bank
affects the retailer. Figure 3.1 shows a managed orchestration following the

52 Chapter 3. Modeling an Adaptable Service Orchestration

ideas of ASOA for our running example. More information on the difference
and the relation between orchestration and choreography can be found in
(Peltz, 2003; Daniel & Pernici, 2006).

Figure 3.1: A Managed Orchestrator in a Service Orchestration

In our research, we are interested in interoperability between services. In
particular, we are interested in how an orchestrator can remain compatible
with its service providers as these service providers evolve. The things we
need to model thus, are the service providers, in particular their service
specification, the changes that can occur in those service specification, the
orchestrator, and how the orchestrator can be adapted.

This chapter is organized as follows: In the next section (Section 3.2),
we describe the model for service specifications. This model contains the as-
sumptions of what services publish about themselves. Following our model
management approach, we define operators on that model to capture changes
in Section 3.3. In Section 3.4, we describe the underlying model of the or-
chestrator and how we model adaptation. After this, we describe in Section
3.5 a property that must hold for a network of service to be called an orches-
tration. We conclude this chapter in Section 3.6 with a discussion.

3.2 Service Specification

In Service Oriented Architecture (SOA), services can be created and main-
tained by different parties. If services are to cooperate successfully, such that

3.2 Service Specification 53

they can be combined to form an inter-organizational business process, then
they must agree on certain aspects for example data format and Quality-
of-Service. These aspects must be stipulated in an agreement. We assume
that this agreement is unilaterally made by the service provider. The ser-
vice provider (SP) presents the service and publishes information about it,
whereas the service client (SC), by using the service, agrees with that pub-
lished information. This means that the information published by SP should
be sufficient for the service client to use it.

The published information is usually represented in the Web service stack,
also called the interoperability stack, illustrated in Table 3.1. The low-
est layer of the stack defines the way data is formatted, called eXtensible
Markup Language (XML). XML is the global standard for encoding elec-
tronic documents. The layer on top of XML is XML Schema. XML Schema
defines the data types and structure of XML documents. The ordering in
which to send these documents (messages) is specified in a (Business) proto-
col, usually expressed in an abstract Business Process Execution Language
(BPEL) process or a Finite Automaton (FA). The top layer of the interoper-
ability stack is the interface. The interface contains all the lower layers and
is described in Web Services Description Language (WSDL). In addition to
these lower layers, the interface specifies the addresses to which to send the
messages and the addresses where messages are expected. To incorporate se-
mantics, extensions of WSDL and XML Schema have been proposed, such as
SAWDSL (Farrell & Lausen, 2007), however, as we do not include semantics
in this thesis, we do not discuss these further. In our research, we assume
that service providers adhere to the languages specified in the interoperabil-
ity stack. We study changes in the context of the type and protocol layer.
Because we do not regard changes to data values, we use the term data for
referring to types (XML Schema).

We describe below in more detail the two layers covered in this thesis,

Layer Published as
Interface WSDL
Protocol BPEL/FA

Type XML Schema
Data XML

Table 3.1: Interoperability Stack

54 Chapter 3. Modeling an Adaptable Service Orchestration

namely XML Schema and (Business) protocol.

3.2.1 XML Schema

Data types in messages are commonly specified using XML Schema and are
typically part of a WSDL document. XML Schema defines built-in simple
types (int, string etc) from which complex types can be built. For the reader
familiar with XML Schema, we only consider complex types with element-
only content, and do not consider facets, identity constraints, wildcards or
substitution groups. We model XML Schema using a subset of Model Schema
Language (MSL) (Brown et al., 2001), used before in (Fu et al., 2004d). MSL
is a compact formal model covering the core ideas of XML Schema. Benefits
of the formal notation is that it is concise and precise. This subset covers the
most used features of XML Schema, thereby providing a small yet realistic
formal representation of data, while avoiding the more complex and exotic
features.

Let g denote the grammar and g1, .., gk represent different (ordered) MSL
types. In this grammar, d stands for the atomic data type such as string or
integer. Furthermore, let τ [g] be a tag τ with as child g and let x and y inte-
gers where x ≤ y and y > 0. With g{x, y} a sequence of g is denoted which
has at least size x and at most y. Where the cardinality is not important,
we omit it. An ordered sequence from 1 to k is denoted by g1, .., gk; g1|..|gk
indicates the choice amongst types g1 to gk.

Definition 9. (MSL type)
Grammar g is defined as follows:

g → d, τ [g], g{m,n}, g1, ..., gk, g1|...|gk.

Often when we refer to a grammar, we use a type tree to represent it.
Given a MSL Type, it is straightforward to derive the corresponding type
tree. In a type tree, each node is labeled with a MSL Type. If a MSL Type
is present which contains multiple layers of MSL Types, then each node
is a MSL Type subexpression of that MSL Type. Constraints on a MSL
Type, such as the occurrence or choice, are indicated behind the label of the
node. In the context of our running example, an example of a XML Schema,
corresponding MSL, and type tree are given for a credibility request message

3.2 Service Specification 55

in Figure 3.2. This message is sent from the retailer to the bank to check
whether a customer is creditworthy.

<xs:element name="GetAccCredib"

 type="bank:BankAccount" />

<xs:complexType name="BankAccount">

 <xs:sequence>

 <xs:element name="accountID" type="xs:int"/>

 <xs:element name="accountType" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

GetAccCredib [

 BankAccount [

 accountID [int],

 accountType [string]

]

]

GetAccCredib

BankAccount

accountID accountType

integer string

(c)

Figure 3.2: Message content description (a) in XML Schema (b) MSL (c) corre-
sponding type tree

In a type tree, we often want to know whether a node is a leaf of that tree.
Therefore, we define the boolean function leaf(g), which given a grammar-
construct, returns “true” if it is a leaf (thus of the form g → d) and “false”
otherwise. We use e where we indicate a leaf-node. Furthermore, we define
a boolean function opt(g), which returns “true” if the grammar construct
(typically a leaf-node) is part of a choice, i.e., is optional.

As we are only interested in types and not in the actual values of the
data, in the following whenever we use the term “data” we refer to the type
level.

3.2.2 Business Protocol

The business protocol, also called protocol or conversation protocol (Be-
natallah et al., 2004b), specifies the order in which the messages may be
invoked.

In very simple services with only one operation, i.e., stateless informa-
tional services, there is no need for a protocol, however, as services become
more complex (due to composition or by adding more functionality), the

56 Chapter 3. Modeling an Adaptable Service Orchestration

ordering of the operations, and thereby messages, may be of importance or
even crucial for the successful execution of the operations. The commonly
used example to explain the necessity of ordering is the purchase order, where
a service requires that an order must be placed first before a payment can
be made.

Because of the possible dependencies between operations, the order should
be known to the client. Discovering this ordering of operations only from the
WSDL is not an option since all possible permutations have to be checked
to find the right combination. Since WSDL 2.0, protocols are incorporated
in WSDL and are called Message Exchange Patterns. For a more detailed
discussion on the need and advantages of business protocols the interested
reader is referred to (Singh et al., 2004; Benatallah et al., 2004b; Alonso
et al., 2004).

Finite Automata (FA) are commonly used as the formalism for modeling
the protocols (cf. (Brand & Zafiropulo, 1983; Benatallah et al., 2004b)).
Advantages of FA are the intuitive graphical notation and the large body of
work behind it. We define a business protocol as follows:

Definition 10. (Business protocol)
A protocol is a tuple P =< S, s0, F,M, T >, where

• S is the set of states of the protocol,

• s0 ∈ S is the initial state,

• M is the set of messages supported by the service. Messages are defined
as m =< rec, sen, g > where rec indicates the receiver of the message,
sen is the sender of the message and g is the MSL type of the message,
defined in Def 9,

• T ∈ S2 ×M is the set of transitions. Each transition t =< sf ,m, st >

has a source state sf , a target state st and either an input or output
message m that is consumed or produced during this transition, and

• F ⊆ S represents the finite set of final states.

In our definition of a business protocol we include both receiver and
sender of the message in the transition. For readability, we often omit the
receiver and sender information and provide only “?” if a message is received

3.3 Changes in a Service Specification 57

or “!” sent from the perspective of the owner of the protocol, for example
?m denotes a message that is to be received. With M in we denote the set of
received, and to be received messages, defined as {M in :?m ∈M}. Similarly,
we denote the set of outgoing messages as M out, thus: M = M in ∪M out.

The execution of a protocol follows the usual rules for deterministic finite
automata (Hopcroft et al., 2000). An execution path denotes the transitions
in such a path, like < t1, t2 > where first transition t1 was executed, fol-
lowed by t2. We denote an execution path (or transition path) with texn

P

of length n ∈ N on protocol P . Given a function σ(ti) which, given a tran-
sition, returns the associated message, we can likewise get a message path
< m1,m2 >. A message path mexn

P of length n ∈ N on protocol P is defined
as

mexn
P :=< m1, ..,mn > .

The set MEXn
P contains all message paths of length n, and MEXP contains

all accepted message paths.

Furthermore, let M be the alphabet of message. A word of length n ∈ N
over M is a sequence of n messages in M . Let M∗ be the set of all words
over M of length n over some n ∈ N. A language is a subset of M∗. Given
a protocol P , the language of P denoted as L(P) = MEXP . All words in
L(P) are message paths as defined above.

An example of a protocol represented as a FA is depicted in Figure 3.3.
In this example protocol, the bank supports two paths, in the left path a

Figure 3.3: Example Protocol of the Bank service

request for credibility of a bank account is asked and sent back. In the right
path, a credibility for credit cards is handled. The choice between the paths
indicates that either a bank account or a credit card is checked, but not both.

58 Chapter 3. Modeling an Adaptable Service Orchestration

Layer Concept Operator Description
Type Element addType(τ , d, p) add element with tag τ ,

datatype d following path p

removeType(τ, p) remove element with tag τ

following path p

Constraints updateCC(x′, y′, e, p) set cardinality to min x′ and
max to y′

updateSC(cs, p) set structural constraint cs

Protocol State addState(si) add a state
removeState(si) remove a state.

Transition addTrans(si,m, sj) add transition from state si
to state sj with message m

removeTrans(si,m, sj) remove transition si, sj ,m

Message addMsg(rec, sen, g) add message with receiver rec
and sender sen and type g

removeMsg(rec, sen, g) remove message rec, sen, g

Table 3.2: Basic Change Operators

3.3 Changes in a Service Specification

The changes applied to a service must be recognized by the manager in or-
der to incorporate these changes in the business process. Our approach is
to regard the service specifications as models and use model management
operators to realize and recognize changes. Model management primitives
or operators commonly consist of addition, removal and update. Other op-
erators, such as insert, move and copy, are less frequently used. Table 3.2
presents the basic change operators we define for the type- and protocol layer.
Strictly speaking, the update operators in Table 3.2 are not basic operators,
as they can be composed from an add and remove operator. However, as the
constraints may not be empty (a type must always have a cardinality and
be part of a structure) we categorized these here as basic.

For each of the operators the semantics can be defined formally. For
example a transition rule for the addition of a (normal) state to the protocol
is as follows.

addType(si)
< S, s0, F,M, T >→< S ∪ si, s0, F,M, T >

3.3 Changes in a Service Specification 59

Operator Description
updateType(d, p) update element with datatype d

following path p

moveType(e, pf , pt) move element e within message
from location following path pf to
the new location following path pt

moveMsg(m, ti, tj) move message m from transition ti
to tj

moveTypeMsg(e, pi,mi,mj , pj) move element e from message mi to
message mj

addTree(Tx, p) add subtree Tx following path p

removeTree(Tx, p) remove subtree Tx following path p

moveTreeMsg(Tx, pi,mi,mj , pj) move subtree Tx from message mi to
message mj

Table 3.3: Composite Operators

This rule states that if si is to be added (nominator) then the protocol is
adjusted such that the si is added to the set of states S (denominator). For
the other operators a similar line of reasoning can be deployed. The complete
operation semantics for the basic change operators can be found in Appendix
B.

Next to basic operators, composite operators can be defined as in Table
3.3. Next to these move operators, the same operators can be defined for
subtrees; we describe here only “add” and “remove”, but these also apply to
the move operators.

The operators are commonly stored in a script, called change-script. A
change-script ∆ (also called edit-script or delta-script) is a sequence of op-
erators that transform one model into another, more formally defined as
P1

o1→ P2 where P2 is the result of applying the operator o1 to P1. For a
sequence ∆ = o1, .., om of basic operations, we say P1

∆→ Pm+1 if there exist
P2, ..,Pm such that P1

o1→ P2
o2→, ..

om→ Pm+1.
Three properties of a set of operators are distinguished, namely com-

pleteness, minimality and consistency (Casati et al., 1998), see Section 2.7
of Chapter 2. Completeness refers to the ability to transform a model of a
class of models to another model of that same class.

60 Chapter 3. Modeling an Adaptable Service Orchestration

Theorem 1. The set of operators defined in Table 3.2 for protocols is com-
plete.

Proof. It needs to be shown that given a class of models P, any model P ∈ P
can be transformed into any other model P ′ ∈ P using only the operators of
Table 3.2(see Definition 3 in Chapter 2).

We show here the proof for protocols without the type layer. However,
for the type layer the same line of reasoning can be deployed. Let P =<

S, s0, F,M, T > and P ′ =< S ′, s′0, F
′,M ′, T ′ > be two randomly chosen

models from P. To prove that they can be transformed in each other, we
must show that P α→ P ′, the proof of the reverse, P γ→ P ′, is analogue 1.
In order to transform a model we must show that there is a script ∆ that
transform them. Given the specification of the models, the algorithm that
creates such as script ∆ is defined in Algorithm 2. Using this algorithm

Algorithm 3.1 diff(Business Protocol P , Business Protocol P ′)
∆← ∅
∀s ∈ S\S ′ : ∆← ∆ ∪ removeState(s)

∀s ∈ S ′\S : ∆← ∆ ∪ addState(s)

∀(si, sj,m) ∈ T\T ′ : ∆← ∆ ∪ removeTrans(si, sj,m)

∀(si, sj,m) ∈ T ′\T : ∆← ∆ ∪ addTrans(si, sj,m)

∀(rec, sen, g) ∈M\M ′ : ∆← ∆ ∪ removeMsg(rec, sen, g)

∀(rec, sen, g) ∈M ′\M : ∆← ∆ ∪ addMsg(rec, sen, g)

return ∆

(called diff), we get a script ∆ that removes everything from P that is
not in P ′ and adds everything that is in P ′ that is not in P . This proofs
P ∆→ P ′.

Minimality of a set of operators refers to the ability of transforming mod-
els with a minimal set of operators. The minimality of a set of operators is
guaranteed if for every construct/concept in the model exactly two operator
exists, namely the add and remove. Note, that through the use of parameters
operators minimality can not be stated in absolute terms.

The consistency of a set of operators implies that after applying a script
to a valid model again a valid model is returned. As stated in the previous

1It furthermore follows that γ is the inverse of α, thus γ = α−1.

3.3 Changes in a Service Specification 61

chapter, consistency can be guaranteed in two ways: either by specifying val-
idation constraints as precondition for the operators (thereby ensuring that
after every operator a valid model is achieved), or by specifying validation
constraints that hold for the whole model and check these after all the op-
erators of a script have been applied. Both approaches (if applied properly)
yield the same result, namely a valid model. In this thesis we will specify
properties over the whole model. The reason is that in this way it creates
less dependability on how the operators are specified. No matter how the
operators are specified, the properties must hold for the model.

3.3.1 Mismatches

The operators defined in the previous section are used in our research to rep-
resent changes in the service specification of services. These changes are mis-
matches between what was and what is. In literature, different mismatches
have been identified that can occur between services. To align our research
with these previous efforts, we map our operators to these mismatches. The
mismatches are defined as patterns of change operators. We use work done
by Benatallah et al. (2005) for the protocol layer, Ponnekanti & Fox (2004)
for the data layer and van den Heuvel (2007) for both layers. With notable
exception of mismatches identified on data values and semantics, we use all
mismatches from the above mentioned literature.

Although it is not our goal to provide an exhaustive overview of all
mismatches identified in research, the selection of mismatches of the men-
tioned work encompasses the majority of interoperability problems. The mis-
matches and corresponding change operators are shown in Table 3.4. Most
mismatches, such as Extra Field, Missing Field, Extra Message and Missing
Message consist of a single basic operator. Other mismatches, such as Mes-
sage Ordering, consist of a composite operator such as “move”. The more
complex patterns, such as Message Split and Message Merge, are described
in detail below.

• Message Merge: If the content of several messages (≥ 2) is moved to
one other message. This can be seen as x move operations between
different messages (thus, multiple move(Te,mi,mj, y)), where x is the
number of elements that is to be moved. This mismatch, identified
by Benatallah et al. (2005) on protocol level, has the special condition

62 Chapter 3. Modeling an Adaptable Service Orchestration

Layer Mismatch Operators
Type Extra Field addType(e, d, y)

Missing Field removeType(e)
Wrong Type updateType(d, p)
Cardinality Mismatch updateCC(min,max, p)

Protocol Extra Message addMsg(m, t)
Missing Message removeMsg(m)
Message Ordering moveMsg(m, ti, tj)
Message Split addMsg(mj),

moveTypeMsg(e, pi,mi,mj , pj)
x

Message Merge removeMsg(mi),
moveTypeMsg(e, pi,mi,mj , pj)

x

Table 3.4: Mismatches and corresponding operators

that all the content of a message has been moved and thus the message
is missing (removeMsg(mi)).

• Message Split: If the content of one message is spread over several
(≥ 2) messages. Similar to the Message Merge, this can be regarded
as a sequence of “move element” operators between messages. The
mismatch (Benatallah et al., 2005) is defined on protocol level and
states that a message must have been added. We regard these two
mismatches as special cases of the inter-message moves operator.

Note that we have neither included the Facet Mismatch (Ponnekanti &
Fox, 2004) nor the Parameter Constraints (Benatallah et al., 2005), for we
do not include values or constraints on values. Semantic issues or naming
problems, that are part of the Signature Mismatch, are neither considered.

3.4 Orchestrator

The current industry standard for representing service orchestrations is the
Business Process Execution Language for Web Services (BPEL4WS or BPEL
for short) (Andrews et al., 2003). In our model management approach, BPEL
is a model and model management operators can be defined over the concepts
in BPEL, as suggested in (Hiel et al., 2008a).

3.4 Orchestrator 63

However, BPEL suffers from two drawbacks. First, BPEL by itself does
not provide any operational semantics and therefore it is not possible to show
what a model exactly means. To remedy this, many researchers provided
formalizations of BPEL (among others, Process Algebra (Salaün et al., 2004;
Liu et al., 2007), Automata (Fu et al., 2004a; Pistore et al., 2005b) and
Petri Nets (Hinz et al., 2005; Lohmann et al., 2009)). For an overview of
formalisms proposed for modeling BPEL, we refer the interested reader to
(van Breugel & Koshkina, 2006).

Second, BPEL contains a lot of different concepts and relations which
potentially create complex models (Cardoso, 2006). To capture all these
concepts and relations in operators and maintain consistency is therefore
a difficult task. In this thesis, we therefore do not focus on the industry
standard itself, but on one of the formalizations, namely Guarded Automata
(Fu et al., 2004a). As can be deduced from the name, a guarded automaton
is a finite state automaton with guards. An advantage of using automata
is that they can be represented as graphical models. Graphical models are
intuitive and easy to grasp. This makes them well suited for illustrating how
changes affect a business process and how a business process can be adjusted
to adapt to these changes.

An orchestrator enacts a business process. We are interested in interop-
erability and study how changes in service providers impacts data and data
dependencies in the business process. These data dependencies we capture
in data mappings, mappings for short. We define an orchestrator as follows:

Definition 11. (Orchestrator)
An orchestrator is a tuple O =< BP ,MP > where BP is a business process
and MP is a set of mappings.

We model the business process of the orchestrator using a guarded au-
tomaton. We give here first a formal description of the guarded automaton,
after which we describe the guards and mappings in more detail in Section
3.4.1 and 3.4.2 respectively.

Definition 12. (Business process)
A business process is the tuple: < M,S, s0, F, T > where M,S, so, F are
defined as in Definition 10. Each transition t ∈ T of the guarded automaton
has a source state s1 ∈ S and a destination state s2 ∈ S and is in one of the
following three forms:

64 Chapter 3. Modeling an Adaptable Service Orchestration

1. local-transition, t =< s1; (ϵ, ϱ); s2 >, where ϱ is the transition guard.
The transition changes the state of the automaton from s1 to s2.

2. receive-transition, t =< s1; (?m, ϱ); s2 >, where m ∈ M . The transi-
tion changes the state of the automaton from s1 to s2.

3. send-transition, t =< s1; (!m; ϱ); s2 >, where m ∈ M and ϱ is the
transition guard. The transition changes the state of the automaton
from s1 to s2.

For readability purposes, we use the notation for transitions in Definition
12 also for guardless automata, the guard in these transitions should be read
as being true.

For intermediaries such as the orchestrator, the business process consists
of exchanged messages (business protocols) and business logic. The protocol
of the orchestrator represents the communication with the environment of
the service, similar to the published protocols of the service providers. The
protocol of the orchestrator is the composition of the protocols of the service
providers. How to compose an orchestrator, and corresponding protocol, is
discussed in Chapter 4. Figure 3.4 shows an example part of the orchestration
for our retailer example.

This example deals with an order management process that is structured
as follows. After having received a purchase order from a customer, the
retailer executes three tasks. Firstly, the retailer ascertains that sufficient
parts are in stock by contacting the inventory service. Secondly, the retailer
inquires a shipper, whether he can deliver the parts to the customer before
the requested date. Lastly, the retailer checks the creditworthiness of the
customer. For this purpose, he invokes an external web-service offered by a
trusted third party, here a bank. Once these tasks are completed, the order
management process is concluded by sending an acceptance or rejection to
the customer.

As can be seen in Figure 3.4, for the protocol it suffices to use a finite state
machine. However, for representing business logic this is not enough. For
business logic, we therefore make use of the guards of the guarded automata.

3.4.1 Guards

As stated in Definition 12, a guarded automata has guards on the transitions.
Guards express constraints on the data and provide the expressivity to rep-

3.4 Orchestrator 65

Figure 3.4: Partial Orchestration of the Order Management Process

resent business rules (as will be described in Chapter 4). A guard consist of
a condition and a set of assignments. A guard is written as ϱ ≡ (ϱ1 ⇒ ϱ2),
where ϱ1 is a condition expressed as a boolean XPath expression (W3C,
1999) on the message classes (as well as any local variables), and ϱ2 is an
assignment of the form p ← exp where p is a XPath location path and exp

is an XPath location path or an XPath expression.

XPath is commonly used to traverse and manipulate XML documents
(in our case type trees). We express these conditions and assignments in a
subset of XPath. This subset of XPath contains the core functionality of
XPath and allows us to demonstrate how business rules can be used in a
business process. This fragment of XPath (Fu et al., 2004d) consists of the
following operators: child axis (/), descendant axis (//), self-reference (.),
parent-reference (..), basic type test (b()), node name test (t), wildcard (*),
and predicate ([]).

66 Chapter 3. Modeling an Adaptable Service Orchestration

Definition 13. (XPath)
An XPath expression is defined with the following grammar

exp→ p | exp op exp

p→ r | /r | //r
r → s |r/s|r//s

s→ . | .. | n?([exp]) | position()|last()
n→ b() | t | ∗

where n? denotes n or “empty string” and ([exp]) denotes zero or more
repetitions of [exp]. In the syntax rules of Definition 13, an expression on
basic types (such as boolean, integer, and string) can be constructed by
combining XPath location paths (represented by p) and operators on basic
types (represented by op). There are two types of location paths: relative
location paths and absolute location paths. An absolute location path starts
with / or //. A relative location path (represented by r) consists of a list
of steps (represented by s) which are connected with / or //. The steps
in a relative location path are evaluated from left to right. A step can be
a self-reference (.), a parent-reference (..), or a more complex form which
consists of a node test (n) and a sequence of predicates of the form [exp].
A node test n has three possible forms: type test (b()), name test (t), and
wildcard match (.). Finally, a step can be a function call such as position()

or last() with the following restriction: Function calls can only appear as
the last step of a location path.

We assume that the operation op is either a relational operator (=, ̸=
, <,>,≤,≥), an arithmetic operator (+,-,*, /,%), or a boolean operator
(∨,∧,¬). Note that, when used as a condition, a boolean XPath expression
evaluates to “true” if its result set contains at least one true value.

Consider the type tree in Figure 3.2(c) and the following examples of
xpath expressions:

• //BankAccount/accountType,

• /AccCredib/BankAccount [accountID > 10].

The results are respectively, the string holding the accountType information
and true or false (depending on the value of the accountID). For more in-
formation and complete semantics of this fragment of XPath we refer the
interested reader to (Fu et al., 2004d).

3.4 Orchestrator 67

3.4.2 Mappings

Data received by the orchestrator can either be stored, used for inference,
or directly used for input of another service. In the last case, data from a
message is mapped/assigned to the structure of another message. We use
data mappings to relate data provided and required for messages. These
mappings, in model management called morphisms (Melnik et al., 2003b),
are assignments of the form p ← p′ where both sides are location path ex-
pressions. Included in a location path is the message m in which the path
must hold and the leaf-node e to which it will assign or retrieve a value. For
the readability of our analysis we will make them explicit in the context of
mappings. With valid(p,m, e), we denote that the path p in the type tree
of message m ending at element e is valid. Because the element e is included
in the path expression, we will, where needed, also use the short notation
valid(p,m).

Definition 14. (Mapping)
A mapping is defined as:

(m, p, e{x, y}) u← (m′, p′, e′{k, l}).

This mapping states that in message m following path p, the element
e gets the value of the element e′ of message m′ following path p′ with a
cardinality of u. We define the cardinality u as a range of values. If the
cardinality is 1, we omit the cardinality. In other mapping representations,
the cardinality and the element are often included in the query itself, how-
ever, for readability of our analysis we make them explicit. With MP the
set of mappings (assignments) of the orchestrator is denoted. This set is
obtained by collecting all the assignments from the guard of every transition
in a guarded automaton.

Definition 15. (Set of mappings)
The set of mappings MP is defined as:

{(m, p, e{x, y}) u← (m′, p′, e′{k, l}) : !m ∈M, e ∈ gm, valid(p,m, e),

?m′ ∈M, valid(p′,m′, e′), e′ ∈ gm′ ,

e ≃ e′,opt(e) = opt(e′), x ≤ k},

68 Chapter 3. Modeling an Adaptable Service Orchestration

with the match-operator ’≃’ denoting whether a leaf-node matches an-
other leaf-node, which means comparing names and data-type. For match-
ing, we assume usage of the same namespace to avoid naming conflicts. Note
that in this thesis we only work on type level, and therefore do not match
data values. With gm we denote the type tree of message m. With MP∗,
the set of all possible mappings is denoted.

(AccCredib,/bankaccount,accountID <- Order,/bankaccount,accountID)

(AccCredib,/bankaccount,accountType <- Order,/bankaccount,accountType)

Figure 3.5: Example mappings

In Figure 3.5 an example of a set of mappings for the AccCredib message
is shown. In this example set, the account information such as accountID
and accountType is mapped from the Order message to the GetCredibility
message which will be sent to the bank.

3.4.3 Adaptation Operators

Similar to the operators defined for protocols, we define operators for a busi-
ness process. We use these operators for realizing adaptation. If a manager
needs to adapt a service, it needs to have the tools to do so. Guarded
automata are an extension of normal automata and therefore many of the
operators specified for business protocols can be applied to business pro-
cesses. However, in addition, we need operators for adapting the guards and
mappings of the orchestrator. We define these operators as follows.

The change operators defined in Table 3.2, together with the operators
in Table 3.5 form the adaptation operators in this thesis. For the simplicity
of the discussion, we omit here the operators for capturing changes in and
manipulation of Xpath expressions. We focus on interoperability between
services and leave adaptivity to changing business requirements (expressed
in xpath) for future work.

Note that the update operators in Table 3.5 can be considered as redun-
dant composite operators since their behavior can be simulated by using only
add and remove. However, for readability purposes, we prefer to use them
explicitly. Following the same line of reasoning we will often use the move
operator as well.

3.5 Orchestration Properties 69

Concept Operator Description
Mapping addMap((m, p, e)← (m′, p′, e′)) add new mapping

removeMap(m, p, e) remove existing mapping
updateRHS(m, p, e) update right-hand side
updateLHS(m, p, e) update left-hand side.
updateCard(x, y) update cardinality

Condition addCond(exp, ϱ) add condition exp to guard ϱ

removeCond(exp, ϱ) remove condition from guard ϱ

Assignment addAssign(p← exp, ϱ) add assignment p← exp to
guard ϱ

removeAssign(p← exp, ϱ) remove assignment p← exp

from guard ϱ

Table 3.5: Operators for Mappings and Guards

Similar to the change-script for capturing changes, we define the adaptation-
script for adaptation. The definition is identical, except that we denote the
basic operator with a and the script with σ, thus: MP σ→MP ′.

3.5 Orchestration Properties

We defined models and the operators for manipulating these models in the
previous sections. However, we have not specified the properties that must
hold for these models. In this section we describe the meta-model (collection
of properties) that must hold for an orchestration as a whole and for the
components in this orchestration.

3.5.1 Orchestration

The models described above define how services and the orchestrator are
represented. However, these models do not specify what defines an orches-
tration. In a service orchestration a central mediator is assumed to be present
in the topology of services. This means that all messages are either send or
received by the orchestrator. To check whether a given service composition
is a service orchestration and not a choreography, we define an orchestration
schema as follows:

70 Chapter 3. Modeling an Adaptable Service Orchestration

Definition 16. (Orchestration schema)
An orchestration schema is a tuple: (P ,M) where P =< P1, .., Pn > is the
finite set of peers and M is the finite set of messages satisfying the following:

M =
∪

j∈{1..n}

Mj and,

∀ < rec1, sen1, g1 >,< rec2, sen2, g2 >∈M

[rec1 = rec2 ∨ sen1 = sen2 ∨ rec1 = sen2 ∨ rec2 = sen1]

In this definition, we state that the message set of an orchestration is the
union of the message sets of the services it communicates with. For each two
messages part of this set, they must have a sender or receiver in common (the
orchestrator). Our definition is a more restrictive version of the definition of
a choreography by Bultan et al. (2003).

An example of an orchestration schema is depicted in Figure 3.6, in this
figure the retailer is the orchestrator. All messages either go to, or originate
from the retailer.

In an orchestration, we are often interested in the behavior of an individ-
ual service within the context of the orchestrator. For example for determin-
ing if a change to a service has an impact on the orchestrator (see Section
5.3 in Chapter 5). We therefore define the projection operator π. For an
orchestration schema C = (P ,M), given a word w ∈ M∗, πi(w) denotes the
projection of w to the alphabet Mi of the peer Pi i.e. πi(w) is a subsequence
of w obtained from w by removing all the messages which are not in Mi.
When the projection operation is applied to a set of words the result is the
set of words generated by application of the operation to each word in the
set.

Next to the orchestration schema, we assume that in an orchestration
there is only one party that can initiate the process. For instance, in our
running example, the customer initiates the process by sending a request for
a catalog to the retailer.

3.5.2 Components

Next to the schema which defines what constitutes as an orchestration, we
have a number of properties that must hold for each component in this
orchestration.

3.6 Discussion 71

Figure 3.6: Example Orchestration Schema

We assume that each finite automaton (FA), for instance the business
protocols and business process, in the orchestration is deterministic. If a FA
is nondeterministic then it can be converted to an equivalent deterministic
FA (Hopcroft et al., 2000). Another assumption is that there is no nonpro-
ductive state in the FA’s used, i.e., there exists a path from every state to an
accepting state. Furthermore, we require that every finite state automaton
has no incoming transition to the initial state and no outgoing transition
from any final state.

3.6 Discussion

In this chapter, we described the models for representing service specifica-
tions as well as a model for representing an orchestrator. Based on these
models, we defined operators for capturing changes and effectuating adapta-
tion. Together these models and operators form the foundation of a manage-

72 Chapter 3. Modeling an Adaptable Service Orchestration

able service orchestration. To control this orchestration, and thereby making
it adaptive, we describe the internal workings of a manager in the chapters
4 and 5.

One of the limitations of our research captured by the definition of our
models is that we deal with syntactic and structural interoperability only.
We do not handle semantic interoperability.

In our service orchestration we assume that the participating parties have
a shared ontology. In short, we assume that names have the same meaning
throughout the orchestration. How to come to this ontology and how this
should be enforced is beyond the scope of thesis. Our approach can be
extended to deal with semantics by extending the matching operators to
include ontologies.

Chapter 4

Automatic Composition of a
Hybrid Orchestrator

4.1 Introduction

A service that uses functionality from other services is called composite.
The process of developing a composite service is called service composition
or synthesis. Since the emergence of Service Oriented Computing a lot of
attention is going to service composition and the many aspects related to
it. An important motive behind this research is that the ability of nesting
services fulfills one the promises of SOA, namely rapid development of new
services.

We distinguish between two elements of service composition, namely the
existing services and the specification of the business requirements of the
new, to be composed, service.

The existing services represent the functionality that can be re-used.
However, these services also provide constraints on what compositions are
possible. Services publish information about themselves how they are to be
used. This information, such as the contents of messages and the ordering
of these messages, restrict the set of possible orchestrators.

Next to the existing services, the business requirements of the, to be con-
structed, service must be specified. What is specified differs per approach.
We distinguish between two different automatic composition approaches,
namely action-based and AI-planning based. Action-based approaches (e.g.
(Berardi et al., 2003; Gerede et al., 2004)) specify an action-structure as a

74 Chapter 4. Automatic Composition of a Hybrid Orchestrator

automaton and focus on the delegation of actions to different services (sub-
contractors). All actions are specified and the goal is to find a suitable
delegation. AI-planning based approaches (e.g., (Ponnekanti & Fox, 2002;
Pistore et al., 2005a)) on the other hand specify only the desired result,
typically in terms of data, and use planning to reach this goal.

In this chapter we outline how, using our model for a business process,
business requirements are represented in a business process and how such
a business process can be automatically constructed using our compose op-
erator. Our approach for service composition distinguishes from current
state-of-the-art in three aspects:

1. Protocol-based: Most automatic composition approaches act from
a action-based or AI-planning based perspective where the focus is ei-
ther on actions or data. However, the building blocks for synthesis, the
interfaces of other services, are interaction-oriented. Interfaces spec-
ify not only the data of messages but also the ordering in which to
send these messages (see also Section 3.2 of Chapter 3). Therefore,
we advocate that a more intuitive and useful perspective is that of
the interaction. Our vantage point is to start with a set of business
protocols and the goal is to assemble these into an orchestrator. This
furthermore allows us to analyze how changes in the interaction affect
the business process (described in Chapter 5).

2. Business rules: A lack of current synthesis approaches is that they
only use services for the composition process. A problem due to this
is, that without business logic or business rules the composition must
be an exact match with what is offered, i.e., the internal structure of
the orchestrator must exist completely in the interfaces of the service
providers. We provide here a hybrid approach where we incorporate
business rules in the synthesis process. These business rules are the
“glue” between services and embody the added value of the orchestra-
tor.

An additional advantage of our approach is that business rules remain
clearly visible in the orchestration, therewith not losing their identity
and allowing for better adaptability and maintainability.

3. Policy-based selection: The goal of existing automatic composition
approaches is to demonstrate whether an orchestrator exists and if it

4.1 Introduction 75

exists, show how this orchestrator is structured. As there may exist
many different structures that satisfy the composition requirements,
these approaches often incorporate implicit assumptions about how
the orchestrator should be structured (for instance, by specifying a
goal structure).

In our approach, we aim to make these assumptions explicit by defin-
ing policies. Policies provide the means to select the most desired or-
chestrator among a set of valid alternatives. We identify key decision
points where an user can define a policy. These policies also contain
the possibility to choose for a semi-automatic synthesis process.

Our research covers two levels in interoperability, namely type and pro-
tocol level (see Section 3.2 of Chapter 3). For an orchestrator to be interop-
erable it needs to be compatible on both levels. In this chapter, we define
the goal property that guarantees that our composed business process of the
orchestrator is correct with respect to interoperability. This means that for
all messages sent in this orchestration the right data is available and that
thus no exceptions/incompatibilities will occur.

Next to being data-consistent, our constructed orchestrator supports
asynchronous communication. Systems that use synchronous communica-
tion are more expensive to implement and more tightly coupled. An ad-
vantage of these systems is, however, that formal analysis methods exist
that can be applied to achieve reliable software. In order to create more
loosely coupled services contemporary approaches are more and more us-
ing event-based (asynchronous) communication semantics. A problem with
asynchronous communication is that it makes formal analysis more difficult
(Betin-Can et al., 2005). In order to use formal analysis and support asyn-
chronous communication, we conform to properties which guarantee that
synchronous communication semantics equals asynchronous communication
semantics.

This chapter is organized as follows: In the next section (Section 4.2),
we describe the overall process of composing an orchestrator and the com-
ponents that we use in this process. After this, we present in Section 4.3 the
properties that must hold to guarantee interoperability for an orchestrator.
Whether or not an orchestrator can be constructed is determined in Sec-
tion 4.4. Because we want a minimal orchestrator and also want it to work
with asynchronous communication semantics, we reduce the set of possible

76 Chapter 4. Automatic Composition of a Hybrid Orchestrator

Figure 4.1: Inventory, Shipper and Bank service

orchestrators in Section 4.5. The desired orchestrator is selected using user
defined policies in Section 4.6. The last section (Section 4.7) concludes this
chapter with a discussion.

4.2 Composition Process

In our example scenario, an organization wishes to create a new intermedi-
ary service which handles order management. In this organization, the IT
department is slowly adopting a service-oriented approach to its information
systems. They already converted a legacy system used for inventory man-
agement into a service. The other services to be used in this new composite
service are already published by the bank and shipper. Figure 4.1 illustrates
the business protocols (defined in Section 3.2.2) of the involved services.

In Figure 4.2 the composition process is illustrated. It consists of two
phases, namely synthesis and selection. In the synthesis phase the services
together with the business rules and target business protocol are combined.
The result of the synthesis phase is a set of valid alternative orchestrators.
In the selection phase, from this set the most preferred orchestrator is chosen
based on policies. We describe below in detail the three models we use for
representing the requirements and wishes of an organization, namely target
business protocol, business rules and policies.

4.2.1 Target Business Protocol

The target business protocol, also called the goal business protocol, repre-
sents the communication between the customer and the, to be composed,

4.2 Composition Process 77

Figure 4.2: Hybrid Service Composition

orchestrator. Like the business protocols specified by the service providers
this is a bilateral communication protocol.

The difference between our target business protocol and the target busi-
ness process that is commonly used in automatic composition is that our
approach allows for more flexibility. In the target business process, see for
instance Berardi et al. (2003), Pathak et al. (2008) or Gerede et al. (2004),
all actions are specified and the goal is to delegate all actions of the tar-
get specification to services that are capable of executing these actions. In
our approach, by using a target business protocol instead of a target busi-
ness process we specify only the external behavior and thereby create more
flexibility in the structure of the internal business process.

In Figure 4.3 we specify the target protocol for the retailer. This protocol
is structured as follows: First, the retailer expects a catalog request from the
customer, after receiving this request, the retailer sends back the catalog and
waits for an order from that customer. Based on this order, the retailer either
accepts or rejects the order by sending an accept message or reject message
respectively.

78 Chapter 4. Automatic Composition of a Hybrid Orchestrator

Figure 4.3: Target protocol of the retailer

4.2.2 Business Rules

As described in the introduction to this chapter, if only services are used in
the synthesis process, then the internal structure of the orchestrator must
be a complete match with what is offered by these services. To provide an
organization with the means to assemble a service that is more than a collec-
tion of other services we incorporate business rules. The standard definition
of a business rule (c.f. (Charfi & Mezini, 2004; Rosenberg & Dustdar, 2005;
Cibrán et al., 2007; van Eijndhoven et al., 2008)) is defined by the Business
Rules Group as: “a statement that defines or constraints some aspect of the
business. It is intended to asset business structure or to control or influence
the behavior of business” (BRG, 2000).

Incorporating rules in a service composition process requires business
rules to be expressed in an executable format. We presume that an analysis
phase has been done and that a set of business rules in the form of if/then
statements is the result of that phase. We also assume that this analysis
encompasses aspects such as further decomposition into atomic parts and
whether rules cannot work together (conflicts). We focus on the implemen-
tation phase where emphasis is put on how to incorporate business rules in
the automatic composition process.

Several classification schemas exist for business rules. Although multi-
ple types of rules have been distinguished, such as constraint rules, action-
enabler rules, computation rules and inference rules (von Halle, 2001), in this
thesis we primarily study inference rules, also called decision rules. An in-
ference rule is defined as “a statement that tests conditions and upon finding
them true, establishes the truth of a new fact” (von Halle, 2001). Inference
rules represent the (automated) decisions made in a business process and

4.2 Composition Process 79

capture an important aspect of business logic. In this thesis, we focus on
maintaining consistency with respect to data (information) and the decisions
made based on that data. For this reason, we limit ourselves to inference
rules and leave the other types of rules for future work.

In our running example, we use two business rules. In the specification
of the target protocol of the retailer (Figure 4.3), the retailer sends either
an orderReject or an orderAccept message to the customer. The decision
whether an order should be accepted or rejected is a business rule. The
business rules for our running example, in text and XPath notation are:

1. If the product is available and the customer’s creditworthiness is okay
and the shipper sent a shipmentquote, then the customer’s order is
accepted.

if availability/Availability[available = true] and
shipmentQuote/ShipmentQuote[shipmentID > 0] and
(accCredib/AccCredib[balance > 0] then //acceptance := true

2. If either the product is not available, the customer’s balance is not
good or the shipper cannot ship, then the order is rejected.

if availability/Availability[available = false] or
accCredib/AccCredib[balance < 0] or
shipmentQuote/ShipmentQuote[shipmentID <= 0]

then //rejected := true

Although we focus on inference rules, our approach can easily be extended
to cover the other types. Limitations on what kind of rules can be expressed,
can be drawn from the representation of the rules, in our case the subset of
XPath described in Section 3.4.1.

Translating Business Rules in Guarded Automata

We assume that business rules are available in an executable format (Xpath),
however, they cannot directly be used for synthesis. In Chapter 3, we ex-
pressed business protocols and the business process using Finite Automata
(FA), therefore if business rules are to be incorporated in the composition
process, they must be expressed using FA as well. The advantage of trans-
lating business rules in automata is that it allows us to build further on

80 Chapter 4. Automatic Composition of a Hybrid Orchestrator

existing automatic synthesis approaches based on automata, especially (Be-
rardi et al., 2003; Gerede et al., 2004)).

We formally define a business rule as follows:

Definition 17. (Business rule)
A business rule is a guarded automaton < M,S, s0, F, T > where M = {m},
S = {s1, s2}, s0 = s1, F = {s2} and T = {t} and the transition is of the
form: t =< s1; (m; ϱ); s2 >, where ϱ is the transition guard. The transition
changes the state of the automaton from s1 to s2. The message is defined as
m =< rec, sen, g > where rec = sen is the orchestrator and g is the MSL
type of the message, defined in Definition 9.

Recall from Section 3.4.1 that we model a guard as ϱ ≡ (ϱ1 ⇒ ϱ2), where
ϱ1 is a boolean XPath expression (W3C, 1999) on the message classes, and ϱ2
is an assignment of the form p← exp where p is a XPath location path and
exp is an XPath location path or an XPath expression. Using this format,
we can directly translate a business rule to a guarded automaton containing
only one transition, which consists of the condition of the rule (mapped to
the guard ϱ1) and the action of the rule (mapped to the assignment ϱ2).

In Figure 4.4, in WSAT syntax (Fu et al., 2004e), we illustrate the busi-
ness rule for accepting an order. The full description of the guarded automata
representing both business rules can be found in Appendix C.

States{sbr21,sbr22},

InitialState {sbr21},

FinalStates{sbr22},

TransitionRelation{

t_br21{ sbr21-> sbr22: accept,

Guard{ $availability/Availability[available = true] and

$accCredib/AccCredib[balance > 0] and

$shipmentQuote/ShipmentQuote[shipmentID > 0]

=>

$accept[//acceptance:= true]}

}

}

Figure 4.4: Business rule for accepting an order

When business rules are used in a composition process, they are often

4.3 Orchestrator Properties 81

not recognizable in the resulting model. As we describe in the following, by
representing the business rules as one transition automata, we do not lose
the track of the rules during the composition process and are able to locate
where the rules are triggered.

4.2.3 Policies

In some situations, there are multiple variants of orchestrators that can be
composed from the set of services, business rules and target protocol. In
such a situation, a choice has to be made which alternative is preferred over
another. To make such a choice we use policies. Policies allow the developer
to select the best orchestrator for what he defines as best. Policies are used
where a choice is to be made between valid alternatives. Policies specify the
precondition and post-condition of a choice, i.e. providing a set of alterna-
tives and the selected candidate. A policy can be implemented in different
ways. We provide the developer with a few example strategies for making
the choice, but also allow the developer to define his own implementation
for making the choice. We define below three example strategies that can
always be applied .

First Occurrence: The first option is taken.

Random: The option is randomly chosen.

Interactive: The decision is presented to the developer, who then must
decide which option is chosen. If this strategy is chosen then the se-
lection phase will be semi-automatic. How to present this choice in a
user-friendly way is beyond the scope of this thesis.

4.3 Orchestrator Properties

Using the components discussed in the previous section, we synthesize an
orchestrator. However, not all possible orchestrators constructed with these
components will be guaranteed to work without incompatibilities. In order
to successfully compose an orchestrator that is guaranteed to be interop-
erable, we define in this section a number of properties. These properties
provide the means to be able to measure whether an orchestrator is compat-
ible. Furthermore, using these properties we can determine whether changes

82 Chapter 4. Automatic Composition of a Hybrid Orchestrator

affect the orchestrator and whether an adaptation script solves emerging in-
compatibilities. The following properties indicate whether an orchestrator is
internally consistent with respect to type, mappings and business rules.

4.3.1 Type

Before a type can be send, it needs to be received first. For this we define
whether a type is provided, see definition below.

Definition 18. (Provided)
A type g ∈ g!mj

is provided (denoted by provided(g)) iff:

∀< m0, .., !mj >∈MEXj ∃?mi ∈< m0, .., !mj > ∃g′ ∈ g?mi
[g ≃ g′]

For an ordered sequence,

provided(g1, .., gk) = provided(g1) ∧ .. ∧ provided(gk)

holds, and for a choice of sequences,

provided(g1|..|gk) = provided(g1) ∨ .. ∨ provided(gk)

holds. We define a message m to be provided, denoted provided(m), if its
type gm is provided.

Intuitively, Definition 18 means that the type (data) must be available
(provided) to the orchestrator before it can be used in a message. For in-
stance, the retailer can only send the bank-account information from a cus-
tomer to the bank after it has received this information from that customer.

Definition 19. (Data-consistency)
We define a service with business process BP to be data-consistent (denoted
by d-consistent(BP)) iff:

∀!m ∈M [provided(m)].

If for all outgoing messages of the orchestrator the data is available then
we call the orchestrator data-consistent.

4.3 Orchestrator Properties 83

4.3.2 Mappings

Data (types) received by the orchestrator can either be stored, used for in-
ference, or directly used for the input of another service. In the last case,
the data from a message is mapped/assigned to the structure of another
message. We use data mappings to connect types that are provided to types
that are required.

Definition 20. (Mapping-sufficient)
A set of mappings MP is sufficient for a type g{x, y} (denoted by
m-sufficient(MP , g{x, y})) iff:

∃(mj, p, g{x, y})← (mi, p
′, g′{k, l}) ∈MP ∧

¬∃(mj, p, g{x, y})← (mx, p
′′, g′′{k, l}) ∈MP [mi ̸= mx ∧ p ̸= p′′]

For an ordered sequence,

m-sufficient(g1, .., gk) = m-sufficient(g1) ∧ .. ∧m-sufficient(gk)

holds, and for a sequences of choices,

m-sufficient(g1|..|gk) = m-sufficient(g1)⊗ ..⊗m-sufficient(gk),

where ⊗ is the boolean xor-operator. We define a message m to be sufficiently
mapped (denoted m-sufficient(MP ,m)) if its type gm is sufficiently mapped.

Intuitively, a sequence is sufficiently mapped if all parts are sufficiently
mapped. For a choice construct, there must be exactly one part that must
be sufficiently mapped. The difference with the definition of provided (Def-
inition 18) is that provided means that data must be available before it
can be used (mapped), whereas mapped-sufficiently specifies exactly what
data must be put into the messages. Thus, for instance, an element can be
available many times, however, if that element is required only once then it
should be mapped only once. How to deal with the situation when a type is
provided multiple times is discussed in Section 4.6.

Definition 21. (Mapping-completeness)
We define a service to be mapping-complete (denoted by m-complete(BP ,MP))
iff the following property holds:

∀!m ∈M [provided(m) ∧m-sufficient(MP ,m)]

84 Chapter 4. Automatic Composition of a Hybrid Orchestrator

Intuitively, the definition of mapping-completeness means that we call
a service to be mapping-complete if for all outgoing messages the types
are available (provided) and adequately mapped. If a service is mapping-
complete, then this service is also data-consistent.

Lemma 2. m-complete(BP ,MP)⇒ d-consistent(BP).

The proof for this lemma follows directly from Definition 21 and 19.
Intuitively, this lemma states that if a service is mapping complete (has
correct mappings for all outgoing messages) then it must by data consistent
(has all data needed for those mappings).

Lemma 3. ¬provided(m)⇒ ¬m-sufficient(m).

The proof of this lemma follows directly from Lemma 2. Intuitively,
this lemma means that if data is not received then it can not be used in a
mapping.

Lemma 4. If d-consistent(BP ′) and not m-complete(BP ′,MP), then
∃σ[MP σ→MP ′∧ m-complete(BP ′,MP ′)].

Proof. From the definition of data consistency and mapping completeness it
follows that d-consistent(BP ′) but not m-complete(BP ′,MP) means: ∃m ∈
M [provided(m)∧¬m-sufficient(MP,m)]. Hence, an adaptation script σ can
be found (using operators as described in Table) such that after applying,
a valid mapping (Definition 14) exists such that:

(mj, p, e{x, y})
u← (mi, p

′, e′{k, l}).

This lemma states that if a business process is data consistent then a set
of operators can be found to make it’s mapping complete.

4.3.3 Business Rules

Similar as for mappings, for business rules we check whether data (type) is
available. For business rules this means checking if enough data is available
in order to be able to evaluate the condition(s). Because we work on type
level, and not on instance level, we cannot check whether a business rule

4.4 Orchestration Existence 85

returns a “true” or “false”, however based on the types available it is possible
to deduce whether a business rule might fire.

I.e., we check whether sufficient information is received to be able to
evaluate parts of the condition of the business rule. If enough information
has been received such that the business rule could in theory be triggered,
then it can be evaluated.

Definition 22. (Can evaluate)
The boolean function eval(exp) is defined on the boolean XPath expressions
used for the conditions:

eval(exp) :=

∀< m0, ..?mi, ..mj >∈MEXj

[valid(exp,mi)] if exp is a location path;
eval(exp1) ∧ eval(exp2) if exp = (exp1 ∧ exp2);

eval(exp1) ∨ eval(exp2) if exp = (exp1 ∨ exp2);

¬eval(exp1) if exp = ¬exp1.
false otherwise.

We define that a guard ϱ can be evaluated, denoted eval(ϱ), if its conditions
(boolean expression) are provided.

To check whether a rule can be evaluated, we only need the data (XPath
path expressions) in the conditions. Together with the logical connectors
(¬,∨,∧) it is possible to deduce whether a rule can be triggered. For exam-
ple, the business rule for rejecting an order (discussed in Section 4.2.2) con-
tains two or-connectors, this rule can therefore be evaluated after the orches-
trator receives either one of these three messages (aval, credib, shipQuote).

4.4 Orchestration Existence

An important question in automatic composition is whether a composite
service, in our case an orchestrator, exists. In this section, we use standard
automata techniques to answer this question. The idea is to construct an
automaton which contains all possible valid execution paths (called a product
machine), thus reducing the question of whether an orchestrator exists to
whether a product machine can be created. If an orchestrator exists then
the direct follow-up question is how to construct it. We answer this question
in Section 4.6.

86 Chapter 4. Automatic Composition of a Hybrid Orchestrator

Definition 23. (Composite service)
A composite service is a tuple < (P ,M),B, pd, p1, .., pn > where (P ,M) is an
orchestration schema, and B =< b1, .., br > is a set of business rules. Each
pi, i ∈ {1, .., n}, is the business protocol of the corresponding peer Pi ∈ P,
|P| = n+ 1, and pd is the implementation of the target protocol Pd ∈ P.

Because all components of the composite service are expressed as finite
state machines, we use the notation that A represents any FA in a composite
service. For our running example, the number of FA’s in a composite service
is |A| is 6, with 2 business rules, 3 services and 1 target protocol. As defined
in Definition 10 in Chapter 3, let the set of states, transitions and messages
of an FA Ai be labeled with subscript i with i ∈ {Pd, P1, .., Pn, B1, ..., Br}.
For instance, if T is the set of transitions of the target protocol Pd, then we
denote it as TPd

.

Definition 24. (Configuration)
Let S =< (P ,M),B, pd, p1, .., pn > be a composite service. Then a configu-
ration of S is a tuple < sPd

, sP1 , .., sPn , sB1 , .., sBr >, where sPd
is the state

of the target protocol Pd, sPi
, 1 ≤ i ≤ n, is the state of service Pi, and sBj

,
1 ≤ j ≤ r is the state of business rule Bj.

At every configuration a number of transitions can be executed. How-
ever, not all transitions can be chosen when regarding interoperability. For
example, a transition may send a message for which the data is not available
(provided). To ensure that this type of situation does not occur, we define
the enabled function.

Definition 25. (Enabled)
The boolean function enabled(t) is defined on a transition as follows:

enabled(t) :=

true if !mt : t ∈ TPi
with 1 ≤ i ≤ n, i ̸= d

or ?mt : t ∈ TPd
;

provided(!mt) if t ∈ TPd
;

provided(?mt) if t ∈ TPi
with 1 ≤ i ≤ n, i ̸= d;

eval(ϱt) if t ∈ TB;

false otherwise.

The enabled function decides whether a transition can be executed. For
sending a message this means that its type must be provided. Because we
are in the process of constructing the orchestrator, the ? and ! are from

4.4 Orchestration Existence 87

the perspective of the owning participant. For instance, in the fourth line
of Definition 25 ?mt means that the service will receive a message from
the orchestrator. For business rules we check whether there is sufficient
information available in order to evaluate it.

Definition 26. (Enabled derivation relation)
For two configurations γ =< sPd

, sP1 , .., sPn , sB1 , .., sBr > and
γ′ =< s′Pd

, s′P1
, .., s′Pn

, s′B1
, .., s′Br

>, we say that γ derives γ′ (denoted as
γ → γ′), if one of the following two conditions holds:

• Automaton Ai performs a send action, i.e. there exist i and a transi-
tion t = (si; (!m; ϱ); s′i) such that t ∈ Ti, enabled(t), and s′k = sk for
each k ̸= i.

• Automaton Ai performs a receive action, i.e. there exist i and a tran-
sition t = (si; (?m; ϱ); s′i) such that t ∈ Ti and enabled(t), and s′k = sk
for each k ̸= i.

In the derivation relation we state how configurations are related to each
other, with the enforcement that transitions are enabled.

Definition 27. Let S =< (P ,M),B, pd, p1, .., pn > be a composite service, a
configuration sequence γ = (γ0, γ1, .., γk) is a run of S if it satisfies the first
two of the following three conditions, and γ is a complete run if it satisfies
all three conditions.

1. γ0 =< s0Pd
, s01, .., s

0
n, s

0
B1
, .., s0Br

> where s0Pd
is the initial state of the

target protocol, s0i is the initial state of peer Pi for each i ∈ {1..n} and
s0B1

is the initial state of business rule B1 for each i ∈ {1, .., r},

2. for each j ∈ {0, .., k − 1}, γj → γj+1,

3. γk =< sFPd
, sF1 , .., s

F
n , s

F
B1
, .., sFBr

> where sFPd
∈ FPd

, and for each service
Pi, sFi ∈ FPi

, and each business rule Bj, sFBj
∈ FBj

.

Note that in the final configuration we distinguish between automata
(services and business rules) that participate in the composition based on
whether they are in the initial state or not. We assume that the initial state
does not have incoming arcs and thus once an automaton participates it
cannot withdraw.

88 Chapter 4. Automatic Composition of a Hybrid Orchestrator

Lemma 5. Let S =< (P,M),A1, ..,An > be a composite service. Given a
word w ∈ M∗, if for each i ∈ {1, .., n}, πi(w) is a complete run of Ai, then
w is a complete run in S.

Proof. Let w =< m1, ..,mk >. Since for each i ∈ {1, .., n}, the projection
πi(w) is a complete execution there exists a corresponding complete run
mexi for πi(w). We show that w is a complete run of S by constructing a
complete run which simulates each mexi. The construction has k phases.
In each phase j, let < m1, ...,mj−1 > be the message path until j − 1. We
simulate the transmission of message mj where only the sender and receiver
of mj are involved. We start with the sender mj, we execute the transition
and the next action should be either a receive message m′

j or a sending of a
message m′

j where j′ > j. Then we turn to the receiver mj and execute the
receiving action of that message. Then we turn to the automaton associated
with message mj+1.

To prove the correctness of the above process, we need to show that after
each phase the simulation can always continue, and that at the end of the
simulation, the configuration is consistent with the states of each peer at
the end of that peer’s run. They are guaranteed by the following induction
assumption: prior to phase j of the simulation, the following statement (de-
noted Q) is true: for each automaton Ai, its complete local run is simulated
up to a state si where si is either a final state or there is a next enabled
send or receive message action in the local run of Ai. When Q holds at
the beginning of the phase j where j ∈ {1..k}, the simulation at phase j

guarantees that Q holds at the end of phase j (i.e. the beginning of phase
j + 1).

A composite service S as described above can be expressed in a guarded
automaton using the enabled derivation relation.

Definition 28. (Enabled Guarded Automaton)
Given a composite service S =< (P ,M),A1, ..,An > an equivalent Enabled
Guarded Automaton (EGA) is a tuple < MS , SS , s

0
S , FS , δ > where

• SS is the set of configurations (Definition 24),

• s0S ∈ SS is the initial configuration (Definition 27 condition (1)),

• FS ⊆ SS represents the finite set of final configurations (Definition 27
condition (3))

4.4 Orchestration Existence 89

• MS = M is the set of messages,

• δ is the enabled derivation relation (Definition 26)

In the following, with MEXS we denote the set of message exchange
paths accepted by the enabled guarded automaton (MEX is defined in Sec-
tion 3.2.2).

Lemma 6. MEXS is data-consistent.

Proof. Let EGA be a guarded automaton with as language MEXS and let
!mx ∈M . It holds that every transition of EGA must be enabled (Definition
26). We distinguish between two cases !mx is send to service or to the
customer. In both cases, Definition 25 states that !mx is provided (line 3
and 4 respectively).

As every transition is enabled in this automaton, meaning that for every
transition the data is available, this automaton is guaranteed to be able to
interoperate with the services providers used in it. Although the automaton
only contains transitions for which there is enough data, this does not nec-
essarily mean that an orchestrator exists. The criteria by which we define
that an orchestrator exists are as follows.

Definition 29. (Orchestrator existence)
Let BP be a business process and MEXBP be its set of message exchange
paths, then an orchestrator O exists if the following properties hold:

(1) ∀ < rec, sen, g1 >∈M [rec = O ∨ sen = O]

(2) MEXPd
= πPd

(MEXBP)

In this definition the first property (1) states that every message must
either be sent or received by the orchestrator. The second property (2) states
that the target business protocol must be part of the behavior.

Theorem 2. Let S =< (P ,M),B, pd, p1, .., pn−1 > be a composite service
and MEXPd

= πPd
(MEXS) then there exists an orchestrator O.

Proof. The composite service S is a business process. We further need to
show that the properties of Definition 29 are satisfied. Property (1) is satis-
fied by the definition of a composite service (Definition 23) and property (2)
is given in the theorem itself.

90 Chapter 4. Automatic Composition of a Hybrid Orchestrator

4.5 Orchestrator Reduction

The composite service described in the previous section contains all possible
runs. However, the model has two shortcomings: (a) the composition model
only holds for synchronous communication, and (b) the model is not minimal.
We describe and handle these two shortcomings in this section.

4.5.1 Synchronizable

Results for automatic composition typically only hold for models (such as
finite state machines) that use synchronous communication. In response
to this, Fu et al. (2004a,b,c) introduced synchronizability properties that
guarantee, if they hold, that asynchronous communication semantics can
be equated with synchronous communication semantics. By adhering to
these properties we ensure that our orchestration is able to work with event-
based communication. For the interested reader, a full description of these
properties and corresponding proofs can be found in (Fu, 2004).

Definition 30. (Synchronizable)
Let S =< (P ,M),B, pd, p1, .., pn−1 > be a composite service. S is said to be
synchronizable if it produces the same set of message paths under both the
asynchronous and the synchronous communication semantics.

To ensure synchronizability two sufficient conditions were introduced,
called the synchronous compatible and the autonomous condition.

Definition 31. (Synchronous compatible)
A composite service S =< (P ,M),A1, ..,An > is synchronous compatible if
for each word w ∈ M∗ of length k, and each message m ∈ M out

a ∩M in
b for

a, b ∈ {1..n},:

(∀i ∈ 1..nπi(w) ∈ mexk
i)) ∧ πa(wm) ∈ mexk+1

a)⇒ πb(wm) ∈ mexk+1
b .

Synchronous compatible condition states that at every state if a peer can
send a message, then that receiver must have a receiving action.

Lemma 7. MEXS satisfies the synchronous compatible property.

Lemma 7 can be deduced from the fact that we are using synchronous
models for our composition.

4.5 Orchestrator Reduction 91

Definition 32. (Autonomous)
A composite service S =< (P ,M),A1, ..,An > is autonomous if for each peer
Ai, and for each word w ∈M∗

i , exactly one of the following three statements
holds:

(a) w is accepted by Ai,

(b) there exists β ∈M in
i such that wβ ∈ mexi,

(c) there exists α ∈M out
i such that wα ∈ mexi.

A web service composition is autonomous if each peer, at any moment,
can do only one of the following: 1) terminate (it has reached a final state),
2) send a message, or 3) receive a message. Note that this property should
not only hold for the composite service, but also for every peer in the com-
position, thus also the orchestrator.

Lemma 8. MEXS does not satisfy the autonomous property.

Proof. Counterexample: We show that the set of enabled transitions in some
configuration contains send and receive transitions from one party. In the
context of our running example, from the perspective of the retailer, the
retailer receives the order of the customer (as specified in the target protocol
(Figure 4.51)). See Appendix A for a full description of the service speci-
fications. This order message contains enough information such that both
checkAvailability and getShipQuote message are enabled in state S1. Af-
ter sending the checkAvailability message (thus in state S2), there are again
two transitions enabled, namely receiving the Availability message from the
inventory and sending the getShipQuote to the shipper. Thus here the au-
tonomous property does not hold.

State Enabled Transitions
S1 !checkAvailability, !getShipmentQuote
S2 ?availability, !getShipmentQuote

Figure 4.5: Part of the retailer (left) and corresponding enabled transitions (right)

1For simplification of this example, we have left the bank out

92 Chapter 4. Automatic Composition of a Hybrid Orchestrator

4.5.2 Minimal

The composite service defined in the previous section contains unnecessary
long message paths which are redundant. For instance, in our retailer exam-
ple a valid sequence is depicted in Figure 4.6.

Figure 4.6: Example of a partial not-minimal message path

In this sequence, after the business rule for rejecting the order has been
executed (reject) first another service is called (the bank for credibility in-
formation) after which the retailer sends the orderReject message to the
customer. After the triggering of the business rule there is no need to re-
quest other services because there is sufficient information for sending the
orderReject message.

Because we want to prevent invoking other services unless it is necessary,
we aim to keep the orchestrator minimal.

Definition 33. (Minimal)
A sequence of messages mex is minimal if a transition of the target is exe-
cuted at the (earliest) point it can be executed.

Lemma 9. MEXS is not minimal.

The example described above serves as a counterexample to the hypoth-
esis that MEXS is minimal.

4.5.3 Transition Selection

In order to deal with minimality and synchronizability, we define in this sec-
tion a selection function and a new derivation relation. Because both the
function and the derivation relation reason about the set of enabled transi-
tions, we first define the enabledSet(γ) function. This function returns the
set of all enabled transitions for a configuration γ.

4.5 Orchestrator Reduction 93

Definition 34. (EnabledSet)
Let γ =< sPd

, sP1 , .., sPn , sB1 , .., sBr > be a configuration. Given γ, we define
the function enabledSet : γ → E (where E is a set of transitions) as follows:

enabledSet(γ) =∪
i∈{Pd,P1,..,Pn,B1,...,Br}

{< si,m, s2 > :< si,m, s2 >∈ Ti, enabled(< si,m, s2 >)}

Note that if a transition is enabled it stays enabled until it is executed.
For instance, if enough data is present to send a credibility check to the bank
on time 0, then this data is also present at time 1. The relaxation of this
assumption on the monotonicity of the data is left for future work.

The following function selects the set of executable transition that will
be executed.

Definition 35. (Select)
Let E be the set of all enabled transitions for all automata of a configuration
γ. Given E, we define the function select : E → E ′ (where E ′ and E are set
of transitions with E ′ ⊆ E) as follows:

select(E) =

tb if ∃tb =< s1, s2, ?m >∈ E [tb ∈ TPi

∧ i ̸= d];

tx if tx ∈ TPd
∧ tx ∈ E ;

E otherwise.

The first line of the function checks whether there is a transition with an
incoming message. The second line checks whether there are any transitions
possible for the target protocol. If so then we choose only these as possible
transition to execute.

Based on the above described selection of enabled transition, we define a
derivation relation that is well-formed.

Definition 36. (Reduced derivation relation)
Let the set of states, etc of an automaton Ai be labeled with subscript i with
i ∈ {Pd, P1, .., Pn, B1, ..., Br}. For two configurations
γ =< sPd

, sP1 , .., sPn , sB1 , .., sBr > and γ′ =< s′Pd
, s′P1

, .., s′Pn
, s′B1

, .., s′Br
>,

γ derives γ′, if one of the following two conditions holds:

• Automaton Ai performs a send action, i.e. there exist i and a tran-
sition t = (si; (!m; ϱ); s′i) such that t ∈ Ti, s′k = sk for each k ̸= i and
t ∈ select(E)

94 Chapter 4. Automatic Composition of a Hybrid Orchestrator

• Automaton Ai performs a receive action, i.e. there exist i and a tran-
sition t = (si; (?m; ϱ); s′i) such that t ∈ Ti and s′k = sk for each k ̸= i,
and t ∈ select(E)

This derivation relation takes into account both synchronizability as well
as the minimality by using the select function.

Lemma 10. Let S be a composite service using the enabled derivation rela-
tion (Definition 26) and Sred a composite service using the Reduced deriva-
tion relation. Then MEXSred

⊆MEXS .

The language of the composite service created by the algorithm is a subset
of the language of the composite service described above. The proof of this
lemma can be easily shown by looking at the select(E) function, which is
defined to give a subset of the set that was given as input.

Theorem 3. MEXSred
satisfies the autonomous property.

Proof. Lemma 8 states that MEXS does not satisfy the autonomous prop-
erty. The difference between MEXSred

and MEXS is the derivation relation,
more specific the set of enabled transitions that is executed. Thus, to prove
that MEXSred

does satisfy the autonomous property, we need to show by
using the select function that a set that violates the autonomous property
is never returned. We prove this by induction on the possible set of enabled
transitions Ei. Let Ei denote the set of enabled transitions obtained from the
function enabled(γi) at time i. In this set there are four types of transitions,
namely tind , toutd denote incoming and outgoing message of the target protocol,
tinS , toutS denotes incoming and outgoing messages of a service. We make two
observations: First, based on our assumption that only one party has the
initiative, it follows that tind ⊗ toutd ⊗ tinS ⊗ toutS at time i = 0. Second, if a
transition is enabled at time x, then it will also be enabled at time x + 1,
unless executed.

Given theses types we distinguish between seven situations:

(1) tind ⊗ toutd ⊗ tinS ⊗ toutS : if only one type is element of E then the select
function simply returns that type.

(2) toutS ∧ toutd : select function states that toutd is returned.

(3) toutS ∧ tinS : select function states that tinS is returned.

4.5 Orchestrator Reduction 95

(4) toutS ∧ tind : select function states that tind is returned.

(5) tind ∧ toutd : This situation can never occur, because the autonomous
property must hold for each protocol (also for the target protocol).

(6) tinS ∧ tind : This situation can not occur. At time i = 0, this situation
cannot occur due to our assumption of one initial party. Thus there
must be a time i−1, where either toutS ∈ Ei−1 or toutd ∈ Ei−1. However, if
a transition is enabled at time i then it was also enabled at time i− 1,
thus we get the two following possible situations at time i−1: toutS ∧ tind
or tinS ∧ toutd . However, in toutS ∧ tind the transition tind would have been
chosen, see (3). Also the possible situation tinS ∧ toutd is not possible, see
(7).

(7) tinS ∧ toutd : This situation can not occur. Similar reasoning as for the
previous situation. Following our assumption that only one service will
take the initiative at first, it follows that another message was sent out
in the configuration before. We get two possible situation at time i−1:
toutS ∧ toutd or tinS ∧ tind . For toutS ∧ toutd , see (2). For the other situation
tinS ∧ tind , we get into a loop where every time i− 1 the other situation
((6) and (7) alternately) should hold. This loop continues until i = 0

where either (6) or (7) holds. However, at time i = 0 both situations
can not hold.

All other possible combinations (and those including business rules) contain
a situation as described above. From the above situations, it follows that
MEXSred

satisfies the autonomous property since every possible output of
the select function produces a set that adheres to this property.

Theorem 4. MEXSred
is minimal.

Proof. What we need to proof is that MEXSred
does not contain any se-

quences, where at any point another transition could have been chosen in-
stead of a transition by the target protocol. Assume that MEXSred

is not
minimal. Thus there must exists at least one < t1, ..tn >∈ MEXSred

, such
that at time 1 < x < n another transition t could be chosen such that
t /∈ Pd. However, since the well-formed derivation relation states that all
chosen transitions must come out of the set produced by select(E , tl), it

96 Chapter 4. Automatic Composition of a Hybrid Orchestrator

follows that if a transition t ∈ Pd exists, that this is executed (see Theorem
3). This is a contradiction and thus MEXSred

is minimal.

In the following we will describe how an orchestrator can be constructed
with additional constraints to create a single orchestrator, e.g. in the case
where multiple valid orchestrators exist how only one is selected.

In the initial configuration, all the services and business rules start in
their initial state, the state of the orchestrator is set to the initial state of
the target protocol.

4.6 Policy-based Orchestrator Selection

The product machine described above contains all possible alternatives for
a business process. We assume that a business process is enacted in one
particular way and not every time executed in a different variation. There-
fore, we select only one of the possible alternative orchestrators. Algorithm
4.1 illustrates the general approach to composition. It represents our com-
pose operator. In this algorithm, we first construct the product machine

Algorithm 4.1 Construction of an orchestrator: Compose()
Input: < P , B, Pd, θ >

Construct MEXSred

if MEXSred
is empty then

return error /* there is no orchestrator */
else

select orchestrator O based on policies θ

return O
end if

containing all alternatives, after which we select an alternative according to
policies.

We distinguish between policies concerning two concepts, namely tran-
sitions and mappings. For each policy, we provide examples on how these
policies can be implemented.

4.6 Policy-based Orchestrator Selection 97

4.6.1 Transition Policy

We handle only bilateral business protocols. This one-to-one specification
leads to greater flexibility (and possible alternatives) in our orchestrator.
This flexibility is an effect of the fact that the individual protocols do not
specify the interaction with other parties (as is assumed in a choreography
perspective). This flexibility results in a choice between possible transitions
(messages to be send).

An example of this flexibility in our running example is as follows: After
receiving an order, the retailer has enough information to send three mes-
sages: to the bank for a credit-check, to the inventory to check the availability
and to the shipper for a shipping-request. The order in which to send the
messages is not specified in the protocol of each individual service because
they are specified between two parties only. Therefore the retailer has the
luxury to choose the order in which to send these messages. This also holds
if multiple services offer the same functionality, for instance, if there were
two banks who both offer a credibility check.

Definition 37. (Transition policy)
We define a transition policy as transPol: Tpol → {t} where Tpol is set of
transitions defined as {t :!mt, t ∈ TPi

with 1 ≤ i ≤ n} and t ∈ Tpol is a
transition.

The transition policy selects the transition that is most desired at a spe-
cific point. Next to the general applicable strategies for policies (specified in
Section 4.2.3), we provide here three more examples:

• Preferred Service: An ordering is provided specifying which services
are preferred over others.

• Most data returned: the option is taken which provides the most
data in their return message(s).

• Shortest path: Albeit in principle all paths are minimal (see Section
4.5.2) this does not mean that every alternative orchestrator has paths
of the same length. Therefore, to get the minimal orchestrator it is
possible to calculate the paths to all final states.

Note, that this policy only selects between transitions containing messages
that are to be send to services, and that it therefore does not affect other
transitions like business rules or target protocol.

98 Chapter 4. Automatic Composition of a Hybrid Orchestrator

4.6.2 Mapping Policies

Concerning mappings, we make a distinction between two choices, namely
if a message allows multiple combinations of data and if data is provided
multiple times.

Type Options

Our model for expressing the type layer includes required and optional data
in messages. The choice structure g1|...|gk presented in Definition 9 of Chap-
ter 3 allows different type structures to satisfy the structural constraints of
a message. If a choice is present in a message and this message needs to be
send, then the orchestrator needs to make a choice in which format (type
structure) to send it.

For determining how data in a message should be mapped, we study the
possible combinations that data can be put in a message. This means that we
determine all possible combinations of leaf-nodes that satisfy the structural
requirements of a message. These combinations we call the type options of
a message.

If a leafnode is provided then it can be used for a mapping (see Lemma 4).
The orchestrator should be mapping complete, therefore every message must
be sufficiently mapped. We define a function createMapSet : L → MP

which takes as input a set of provided leafnodes L and returns a set of
mappings (MP). Based on this function, we define a type-option as follows:

Definition 38. (Type option)
Let Lm be the set of leafnodes in message m. A type option is then defined
as:

ld ⊆ Lm[m-sufficient(createMapSet(ld),m)]

Intuitively, a type option is a set of leaf-nodes that if put in the right
format satisfies the structural constraints of a MSL Type. For example, the
shipment request message illustrated in Figure 4.7 contains an or-connector.
This message is satisfied by two different sets of leaf-nodes: {productID,
quantity, streetname, zipcode, city, country} and {productID, quantity, ref-
erenceID}.

Based on the information that is available, we can determine whether
the message is provided (at least one type option is present/available) and
whether we have to choose between type-options, based on a mapping-policy.

4.6 Policy-based Orchestrator Selection 99

GetShipmentQuote[

productList[

productID[xsd:int],

quantity [xsd:int]

]{1,10},

address[

streetName [xsd:string],

zipcode [xsd:string],

city [xsd:string],

country [xsd:string]

] |

referenceID [xsd:int]

],

Figure 4.7: Shipment request message

Definition 39. (Type option policy)
We define a type option policy as TypeOptPol : L → l where L is a set of
type options and ld is a data option.

We define here two example implementations for dealing with this choice:

• Most Mapped: The option is taken with the most mappings, thus
the option is chosen in which the most data is send.

• Last Received: The option is taken which contains information from
the last received message.

Mapping

The type option policy chooses between different sets of leafnodes that satisfy
the structural constraints of a message. Next to this, there exists a possibility
that a leaf is provided multiple times. For example, a productID may be
received in a quote message and in an order message. When this situation
occurs a decision needs to be made which productID is to be used (mapped).

Definition 40. (Mapping policy)
We define a mapping policy as mapPol :MP → mp where MP is set of
mappings and mp ∈MP is the chosen mapping.

An example of how this policy can be implemented is to chose the map-
pings that belong to a message which is used for other mappings. The
number of mappings to a certain message can distinguish a message as being
a more important message.

100Chapter 4. Automatic Composition of a Hybrid Orchestrator

The choice which element is best for a mapping is closely related to the
matching of element. In this thesis, complex matching of elements is beyond
the scope, however, we would like to point out that for this decision other
approaches like for instance a semantic approach can be used to extend our
work.

4.6.3 Policy-based Selection Algorithm

Using the policies defined in the previous section, an algorithm to select an
orchestrator from the product machine is presented in Algorithm 4.2.

Algorithm 4.2 Selecting an orchestrator
Input: < γ, θ >

α← ∅
E ← enabled(γ)

Et ← selectTransitions(E , θ)
for each < s1,m, ϱ, s2 >∈ Et do
α← α ∪ addTrans(sO,m, ϱ, s2)

α← α ∪ addState(s1)
α← α ∪ addMsg(m)

if !m then
mp← selectMappings(O, θ)
for each (m, p, e)← (m′, p′, e′) ∈ mp do
α← α ∪ addMap((m, p, e)← (m′, p′, e′))

end for
end if
γ

<s1,m,ϱ,s2>→ γ′

O α→ O′

Selecting an orchestrator < O′, γ′, θ >

end for

This recursive algorithm works as follows: The algorithm takes as input:
an orchestrator (empty in the beginning), the configuration of MEXSred

and
the set of policies. From the set of enabled transitions at that configura-
tion, a subset is selected using the transPol policy. For each transition in
the set of selected transitions a script (containing operators defined in the
previous chapter) is created for adding the appropriate state,transition and

4.7 Discussion 101

policy selected mappings. This procedure is repeated until there are no more
transitions to choose, i.e., final states have been reached.

Lemma 11. The orchestrator O constructed by Algorithm 4.2 is mapping-
complete.

Proof. For every policy it holds that E ‘ ⊆ E therefore it follows that MEXO ⊆
MEXSred

⊆ MEXS . Since MEXS is data-consistent (Lemma 6) this im-
plies that MEXO is data-consistent. Lemma 4 shows that data-consistency
implies that a set of mappings can be found, the selectMappings function
called in Algorithm 2 returns the preferred data option based on the mapping
policy. Thus, the orchestrator O is mapping-complete.

Theorem 5. The orchestrator O found by Algorithm 4.2 is well-formed.

Proof follows directly from Lemma 11 and Theorem 2.

4.6.4 Example: Constructing a Retailer

Returning to our running example of the retailer. The full picture of the
orchestration, with business rules, is depicted in Figure 4.8. In this figure
three types of transitions are present, namely: transitions that indicate com-
munication with services, transitions of the target protocol, and transitions
specifying decisions made using business rules. For the business rules, the
reject business rule is triggered three times. Each time the business rule is
triggered, it is executed because more information is available for evaluating
the condition. For the reject business rule, this happens after receiving the
availability, after receiving the credibility and after receiving the shipment
quote. The other business rule, the acceptance of an order, in contrast, is
only triggered once.

All transitions of the target protocol are represented in the orchestrator
therefore we can state that the orchestrator exerts the desired behavior. The
specification of this orchestrator is given in Appendix D.

4.7 Discussion

In this chapter, we introduced our compose operator. Where traditional
automatic composition processes only consist of business processes, we use
additional business requirements such as business rules and policies. We

102Chapter 4. Automatic Composition of a Hybrid Orchestrator

Figure 4.8: The Orchestration for the retailer

synthesize an orchestrator based on the business protocols published in the
interfaces of the service providers. Our synthesis satisfies additional con-
straints, such that the orchestrator can be employed using both synchronous
and asynchronous communication semantics.

One of the distinctive features of our composition approach was the usage
of business rules. By translating business rules to guarded automata, we are
able to incorporate them in the synthesis process. We modeled each business
rule as a separate GA. However, for the expression of more complex business
constraints more complex GA’s can be used. If business rules are specified
separately then the situation may occur that multiple rules can fire at the
same time. If this situation is not desired then business rules should be glued
together to form a single automaton, which represents the whole business
logic.

A question or assumption that must be made for the orchestration is
whether the names of the states and transitions of the different business pro-
tocols (to be part of the composition) are unique for the whole orchestration.
For this dissertation, we assume that they are. In practical scenarios, it suf-

4.7 Discussion 103

fices that the name of the state as well as the name of the peer is remembered
along with the name of the state in the orchestrator. Uniqueness of names
makes a difference for adaptation, as it is easier to localize changes when
states or transitions are removed/added.

We advocate that the models of the components used for the construction
of the orchestrator are kept for later reference, for instance keeping business
rules in a rule management system. If business rules change in the organiza-
tion then these changes are easily adapted in the orchestration. Otherwise,
there is the risk of creating one monolithic process where the origin of the
business rules cannot be traced back.

Although we adhere to the synchronizability properties and thereby en-
sure that our orchestrator can work with both synchronous as with asyn-
chronous communication semantics; this in the end comes down to waiting
for the other party to send a message (if this is indicated so by that party’s
protocol). Extending this would imply further study in asynchronous com-
munication semantics.

104Chapter 4. Automatic Composition of a Hybrid Orchestrator

Chapter 5

Automatically Adapting an
Orchestrator

5.1 Introduction

In the previous chapter we described how to compose a service orchestrator.
This orchestration functions correctly given the properties for interoperabil-
ity as well as for the business requirements, i.e., business rules and target
business protocol. However, even if software could be free of defects in the
beginning, it is not possible to use it forever without modification (Parnas,
1994). The environment of the orchestrator, consisting of other services and
the organization, will change. In this chapter we present a method for deal-
ing with evolving service providers. More specific, we describe how to adapt
an orchestrator with as goal to maintain interoperability.

As services evolve, changes to the interface of that service are inevitable
(see Chapter 1). By publishing a new version of the interface changes are
presented, and thereby propagated, to its service clients. In our research, we
study how to adapt to these changes in such a way that changes do not prop-
agate further to connected services. This is called evolution transparency or
interoperability preservation (Andrikopoulos et al., 2009).

Whether a change to the interface of a service results in incompatibilities
and whether an incompatibility can be solved, depends on the flexibility of
the orchestration. The flexibility of the orchestrator depends on three as-
pects:

106 Chapter 5. Automatically Adapting an Orchestrator

Partial usage of functionality: Ponnekanti & Fox (2004) show that in prac-
tice changes to a service often do not directly result in incompatibilities
because the functionality was not used. A change to the functionality
of a service provider that is not used by the orchestrator has no impact
on the orchestrator.

Redundancy of information: A change may have the result that certain
information is no longer available to the orchestrator. As this infor-
mation may need to be send to another service, this would result in
an incompatibility. However, in an orchestration information can be
provided by multiple messages and by multiple parties. Therefore if
the required information is removed then there is a chance that this
information is still provided by another message.

Bilateral business protocols: Bilateral protocols specify the ordering of mes-
sages between one service provider and one service client. In our spec-
ification of an orchestration we only use bilateral protocols. There-
fore there are no (direct) dependencies between service providers of
the orchestrator. Because there are no dependencies between service
providers, the orchestrator is able to choose the order in which to in-
voke these service providers.

In this chapter, we exploit each of these aspects in order to solve incom-
patibilities. In Chapter 2 we discussed the structure of an abstract algorithm
for adapting the retailer, re-illustrated in Algorithm 5.1. We describe in this
chapter the details of this algorithm and discuss each of the functions.

We use the adaptation process (Algorithm 2.1) to structure this chapter.
We show how to detect changes and introduce the diff-operator in Section
5.2. Based on a change script we analyze whether changes are applicable
(have impact) in Section 5.3. The decision process on how to adapt to any
changes that have impact on the orchestrator is described in Section 5.4.
This section includes the definition of three change categories (non-effective,
solvable and problematic) and our notion of an incompatibility. After this,
we explain in Section 5.5 our prototype. We conclude this chapter in Section
5.6.

Parts of this chapter have been published in (Hiel & Weigand, 2009;
van den Heuvel et al., 2007).

5.2 Change Detection 107

Algorithm 5.1 Adaptation Process
receive(eventP ′

c
)

∆← diff(Pc, P
′
c)

∆a ← applicable(∆, πPc(BP))
if ∆a ̸= ∅ then
α← adapt(∆a,G,BP)
if α = ∅ then
send(eventP ′

c
, problematic) //escalate: unsolvable problem

else
update(α,BP) //adapt the orchestrator

end if
end if

5.2 Change Detection

An adaptation process is initiated by receiving an event indicating the pres-
ence of a change. The manager will then detect what has changed, i.e., it
will capture the changes in a change script. Change detection deals with
comparing models, and many approaches have been discussed for different
types of models, among others XML (Cobena et al., 2002; Wang et al., 2003),
DTD (Leonardi et al., 2007), Graphs (Wang et al., 1995; Bunke, 2000) and
(Business) Protocols (Yellin & Strom, 1997; Benatallah et al., 2006).

For determining the differences in our models we employ a set theoretic
approach, however, in principle any other formal technique could have been
used. The changed models are other services, thus we are comparing are
business protocols. Business protocols were defined (Section 3.2.2) using
automata, thus we compare the sets that hold the states, transitions and
messages. As stated in the description of the operators in Chapter 3, we
only detect additions and removals; composite operators can be constructed
from these basic operators. The implementation of the diff operator is shown
below (Algorithm 5.2).

Note that this algorithm is the same algorithm as used for the proof of
Theorem 1 in Chapter 3. The change script found by the algorithm has the
property: Pc

∆→ P ′
c. Hence, if the change script ∆ is applied to the business

protocol Pc then the result is P ′
c. The subscript c denotes the service provider

owning that business protocol. For instance, in our running example c can
either be the bank, the inventory or the shipper.

108 Chapter 5. Automatically Adapting an Orchestrator

Algorithm 5.2 diff(Business Protocol Pc, Business Protocol P ′
c)

∆← ∅
∀s ∈ S\S ′ : ∆← ∆ ∪ removeState(s)
∀s ∈ S ′\S : ∆← ∆ ∪ addState(s)
∀(si, sj,m) ∈ T\T ′ : ∆← ∆ ∪ removeTrans(si, sj,m)

∀(si, sj,m) ∈ T ′\T : ∆← ∆ ∪ addTrans(si, sj,m)

∀(rec, sen, g) ∈M\M ′ : ∆← ∆ ∪ removeMsg(rec, sen, g)
∀(rec, sen, g) ∈M ′\M : ∆← ∆ ∪ addMsg(rec, sen, g)
return ∆

Lemma 12. Change script ∆ is well-formed.

Proof. Following Definition 5 in Chapter 3, a script is well-formed if both the
models Pc and P ′

c are well-formed. Well-formedness of the models is satis-
fied by the assumption that a service provider provides well-formed models.
Hence, ∆ is well-formed.

Lemma 13. Change script ∆ is minimal.

Proof. Following Definition 7 in Chapter 3, a script is minimal if it does
not contain any identity transformations. Since for each element of each set
we can have at most one operator, it is not possible to create an identity
transformation sequence. Hence, ∆ is minimal.

5.3 Applicability

Not every change results in an incompatibility. The reason is that not all
changes affect the functionality used by the orchestrator. Ponnekanti & Fox
(2004) state that only a small fraction of all changes result in incompatibil-
ities since only a small part of the functionality offered by Web services is
used. If a change has impact on the orchestrator we call it applicable.

To see whether the changes captured in change script ∆ affect the or-
chestrator, we determine for each operator o in that script if it is applicable.
Because a change to a service provider cannot directly affect the interaction
of the orchestrator with other services, we isolate the interaction with that
service. To determine applicability we therefore check whether the operator
affects the projection of the changed service on the orchestrator πPc(BP).
In other words, if the operator affects the message sequence (path) used by

5.3 Applicability 109

Concept Operator o Applicable iff:
Transition addTrans(sf ,m, st) sf ∈ S ∨ st ∈ S ∨

∃addTrans(six,mx, sjx) ∈ ∆a

[sf = six ∨ sf = sjx ∨ st = six ∨ st = sjx]

removeTrans(sf ,m, st) < sf ,m, st >∈ T

State addState(si) ∃addTrans(sf ,m, st) ∈ ∆a[si = sf ∨ si = st]

removeState(s1) s1 ∈ S

Message addMsg(m1) ∃addTrans(sf ,m, st) ∈ ∆a[mi = m]

removeMsg(m1) m1 ∈M

Type addType(e, d, p) ∃m ∈M [valid(p,m, e)] ∨
∃addTrans(sf ,m, st) ∈ ∆a[valid(p,m, e)]

removeType(e, p) ∃m ∈M [valid(p,m, e)]

Cardinality updateCC(x′, y′, e, p) ∃m ∈M [valid(p,m, e)] ∨
Const. ∃addTrans(sf ,m, st) ∈ ∆a[valid(p,m, e)]

Structural updateSC(cs,p) ∃m ∈M [valid(p,m, e)] ∨
Const. ∃addTrans(sf ,m, st) ∈ ∆a[valid(p,m, e)]

Table 5.1: Applicability of operators

the orchestrator, then it is applicable. Note, that if it is assumed that the
orchestrator is fully compatible(Benatallah et al., 2006), meaning that all
executions of Pc can interoperate with BP , thus πPc(BP) = Pc, then every
operator, and therefore every change, is applicable.

In general, the addition of an element, such as a message, state or tran-
sition, is applicable if the element has a relation with an existing transition,
state, message, or if it refers to a transition that has been just added. Re-
moval of an element is applicable if that element exists in the orchestrator.
For example, the operator removeMsg(m) is applicable only if that message
m is received or sent by the orchestrator. Below we define the function
applicableOp which given an operator o, an applicable change script ∆a,
and the projection of the changed protocol on the business process πPc(BP),
determines whether the operator is applicable or not.

Definition 41. (ApplicableOp)
The boolean function applicableOp(o,∆a, πPc(BP)) is defined on an opera-
tor as follows:

applicableOp(o,∆a, πPc(BP)) :=
{

true if o in Table 5.1 holds;
false otherwise.

110 Chapter 5. Automatically Adapting an Orchestrator

The applicableOp operator refers to Table 5.1. In this table, for every
change operator we give the condition on which that operator is applicable
(see column on the far right). For instance, the addition of a transition
operator (addTrans) is applicable if one of the states sf or st is part of the
protocol (sf ∈ S ∨ st ∈ S), meaning that a new transition is added onto an
existing state, or if another transition was already added and this transition
continues that new transition path (∃addTrans(six,mx, sjx) ∈ ∆a[sf = six ∨
sf = sjx ∨ st = six ∨ st = sjx]).

The applicableOp operator determines the applicability of one operator.
As change scripts in general consist of multiple operators, we therefore define
in Algorithm 5.3 an operator for filtering all applicable operators of a script.
The output of this algorithm is a script containing only applicable operators.
If this script does not contain any operators (is empty), then the change is
not applicable to the orchestrator.

Algorithm 5.3 applicable(Change-script ∆, ModelM)
∆a = ∅
for each o ∈ ∆ do

if applicableOp(o,∆a,M) then
∆a := ∆a ∪ o

end if
end for
return ∆a

Lemma 14. Change script ∆a is well-formed.

Proof. To prove well-formedness (Definition 5), we show that both the orig-
inating and resulting model are well-formed, thus given P

∆a→ P ′, that P and
P ′ are well-formed.

Due to Lemma 5 in Chapter 4, it holds that πBP(P) is well-formed if BP
and P are well-formed. From Lemma 12 it follows that P is well-formed
and Lemma 11 in Chapter 4 implies that BP is well-formed. Thus it also
holds that πBP(P

′) is well-formed. As πBP(P)
∆a→ πBP(P

′), therefore ∆a is
well-formed.

5.4 Adapting 111

Lemma 15. Change script ∆a is minimal.

Proof. To prove minimality (Definition 7), we show that ∆a does not con-
tain any identity transformation sequence. ∆ is minimal (Lemma 13), and
since ∆a ⊆ ∆, therefore ∆a does not contain any identity transformation
sequences.

5.4 Adapting

Given an applicable change script ∆a, the manager needs to determine how
to respond to these changes. This decision process, depicted as the adapt
operator in Algorithm 5.4, serves two purposes. The first purpose is to
determine whether changes can be solved, and the second one is to construct
an adequate adaptation script in case changes can be solved.

Algorithm 5.4 adapt(Change-script ∆a, Orchestrator < BP ,MP >)

< BP ,MP >
∆a→< BP ′,MP >

I, α← remap(∆a, < BP ′,MP >)

if I = ∅ then
return α

else
α← reorder(BP , I)
if I = ∅ then

return α

else
α← recompose(BP)
return α

end if
end if

The first line in the algorithm applies the applicable script to the model
of the orchestrator. Since the change operators do not affect the mappings,
we can safely state that the mappings before applying the script are the same
as after applying the script, i.e. < BP ,MP >

∆a→< BP ′,MP >.
With this altered business process, we search for a set of operators α such

that after applying this set the business process is again mapping-complete
(see Definition 21 in Chapter 4). The steps of the algorithm, i.e., remap,

112 Chapter 5. Automatically Adapting an Orchestrator

reorder and recompose represent the different functions we employ for finding
an adaptation script. We discuss each function in detail in sections 5.4.2,
5.4.3 and 5.4.4 respectively. Before explaining the implementation of these
operators we define what can be solved in general and what we define as an
incompatibility.

5.4.1 Change Categories and Incompatibilities

In this section, we discuss a categorization of changes, making a distinction
between non-effective, solvable, and problematic changes. After this, we
define incompatibilities. The definitions given in this section use the defini-
tions of mapping-completeness, data-consistency and provided discussed in
Section 4.3 of Chapter 4.

Change Categories

To see whether a manager can adapt a business process to changes, we define
what can be handled. Given the orchestrator O =< BP ′,MP >, we define
the following categories of change:

1. Non-effective: If m-complete(BP ′,MP), then no adaptation neces-
sary.

Proof. Assume m-complete(BP ′,MP) and adaptation script σ to be
empty. Then, with MP σ→ MP ′, it holds that: MP ≡ MP ′, thus
m-complete(BP ′,MP ′).

2. Solvable: If d-consistent(BP ′) and not m-complete(BP ′,MP), then
∃σ[MP σ→MP ′∧ m-complete(BP ′,MP ′)].

Proof. From the definition of data consistency and mapping complete-
ness it follows that d-consistent(BP ′) but not m-complete(BP ′,MP)
means: ∃m ∈ M [provided(m) ∧ ¬m-sufficient(MP,m)]. Hence, after
applying σ, a valid mapping exists such that:

(mj, p, e{x, y})
u← (mi, p

′, e′{k, l}).

5.4 Adapting 113

3. Problematic: If not d-consistent(BP ′), then no possible mapping(s)
can be found.

Proof. Observe that ¬d-consistent(BP ′) can be rewritten as

∃!m ∈M ∃e{x, y} ∈ g(m)

∃< m0, .., ?mi, .., !mj >∈MEXj

∀e′{k, l} ∈ {g(?m0), ..., g(?mi) : i < j}
[x > k ∨ e ̸≃ e′].

Therefore, because of Definition 15, no mapping is possible.

The three categories above define the three types of action that the manager
will perform when encountering changes. The first category, Non-effective,
states that nothing needs to be done such that the orchestration remains
compatible. The changes in this category do not affect the interoperability.
The second category, Solvable, states that the changes affect the business
process of the orchestrator but that mappings can be found such that the
orchestrator is compatible again. The third category, Problematic, states
that a change cannot be solved and is therefore a problem. In this situation
the manager escalates, i.e. sends a message to a human administrator stating
that the orchestrator will not be compatible and that human intervention is
required.

Lemma 16.

∀o ∈ ∆[¬applicable(o)]⇒ non-effective(∆)

Proof. If all operators in the change-script are not applicable, then there
does not exist an operator that affects the orchestrator. Thus ∆a is empty.
Thus, after applying ∆a, the orchestrator is still m-complete(O), see proof
Non-effective.

Note that if all operators are not applicable, this implies non-effective.
The other way around does not hold. If a script falls under the category of
non-effective, this does not imply that all operators are not applicable. There
may exist operators in that script that affect the protocol but do not cause
any incompatibilities. For example, the addition of an element to the type
of an incoming message of the orchestrator can be applicable, however this
change falls under the non-effective category, as is shown in Section 5.4.2.

114 Chapter 5. Automatically Adapting an Orchestrator

Incompatibilities

Not all changes create problems. Problems concerning interoperability are
incompatibilities. We define an incompatibility as:

Definition 42. (Incompatibility)
An incompatibility exists iff

∃!m ∈M [¬m-sufficient(!m)]

Intuitively an incompatibility is everything that causes the service not to
be mapping complete. An incompatibility is caused if for a message a map-
ping is not valid or missing. Changes can cause multiple incompatibilities,
therefore, in the following we often use the set of incompatibilities (defined
below).

Definition 43. (Set of incompatibilities)
The set of incompatibilities I is defined as

{!m : ¬m-sufficient(!m)}

5.4.2 Remapping

If changes affect the orchestrator, i.e., they are applicable, then the manager
will search for an adaptation script. Remapping is a method for altering the
mappings without affecting the structure of the orchestrator. Remapping
performs two tasks, it looks whether there are any incompatibilities, and
in case there are, it determines whether they can be solved by looking for
alternative mappings.

Algorithm 5.5 presents the implementation of the remap operator. First
the projection of the change business protocol on the business process is
constructed. We use the projection because only messages in that construct
may have changed. In the for-loop we go through every transition of the
projection and determine whether the message of that transition has been
changed. When the data is still provided, we apply the solution as shown in
Table 5.2. If data is not provided, this means that there is an incompatibility
that can not be solved by remapping.

Theorem 6. The remap operator solves all incompatibilities iff the change
is solvable.

5.4 Adapting 115

Algorithm 5.5 remap(Change-script ∆a, Orchestrator < BP ′,MP >)
BPproj ← πPc(BP ′)

I ← ∅
for each < sf ,m, g, st >∈ texBPproj

do
if provided(m) then

for each o ∈ πm(∆) do
αrem+ = a as in Table 5.2

end for
else
I = I ∪m

end if
end for
return I, αrem

Proof. From the proof of the solvable category, we get that there exists an
adaptation script if data is provided. For every operator in the change-script,
an adaptation operator can be found as in Table 5.2. To proof the correct-
ness of a script, we need to proof the correctness of every operator. Here
we provide the proof of two operators, namely move and remove. For the
remaining operators the proof can be constructed following the same line of
reasoning. The changes in the proof occur in the context of a message m.
move(e, pf , pt):
input:
∃(m, pf , e)← (mj, pj, e) ∈MP [¬valid(m, pf , e)]⇒ ¬m-complete(BP ′,MP).
d-consistent(BP ′) (cat 2): a = updateLHS(m, pt, e).
output:
¬∃(ml, pl, el)← (mr, pr, er)[ml = m ∧ pl = pf ∧ el = e]

⇒m-complete(BP ′,MP) (cat 1), else d-consistent(BP ′)
(cat 2): a = updateRHS(m, pt, e).

remove(e, p):
input: ∃(m, p, e)← (mj, pj, e) ∈MP [e /∈ g(m)]⇒ ¬m-complete(BP ′,MP).
Still d-consistent(BP ′) (cat 2): a = removeMap((m, p, e)← (mj, pj, e))
output: If ¬∃(ml, pl, el)← (mr, pr, er) ∈MP [er = e]

⇒m-complete(BP ′,MP) (cat. 1), else if provided(e,m)⇒ d-consistent(BP ′)
(cat 2): a = updateRHS(mj, pj, e),
else (cat 3).

116 Chapter 5. Automatically Adapting an Orchestrator

Operator Solution
Input Output

addType(e, d, p) addMap((m, p, e)← (mj , pj , e)) -
removeType(e, p) removeMap(m, p, e) updateRHS(mj , pj , e)

moveType(e, pf , pt) updateLHS(m, pt, e) updateRHS(m, pt, e)

updateType(d, p) updateLHS(m, p, e) updateRHS(m, p, e)

updateCC(x′, y′, e, p) updateCard(k, y′) updateCard(x′, l)

updateSC(opt, p) removeMap(m, p, e) -
updateSC(seq, p) addMap((m, p, e)← (m, p, e)) -
addMsg(m) addMap((m, p, e)← (m, p, e)) -
removeMsg(m) removeMap(m, p, e) updateRHS(mj , pj , e)

a

moveMsg(m, ti, tj) updateLHS(m, p, e) updateRHS(m, p, e) a

aforeach e ∈ g(m)

Table 5.2: Solutions for Change Operators and mismatches

Theorem 6 states that the remap operator solves all incompatibilities un-
less the data (type) is not provided. Therefore it is interesting to look in
which situations data is provided and in which situations it is not. In Ta-
ble 5.3 a categorization is shown for all operators and mismatches. The
categories 1, 2 and 3, stand for non-effective, solvable and problematic,
respectively. This categorization shows which operators can be solved by
remapping and which can not. For the situations where the operator falls
under the solvable category (category 2), the solution for that operator in
Table 5.2 can be used.

5.4 Adapting 117

Concept Operator Category
Input Output

Type addType(e, d, p) 2/3 1
removeType(e, p) 2 1/2/3
moveType(e, pf , pt) 2 2
updateType(d, p) 2/3 1/2/3

Constraints updateCC(x′, y′, e, p) 1/2/3 1/2/3
updateSC(opt, p) 1/2 1
updateSC(seq, p) 2/3 1

Message addMsg(m) 2/3 1
removeMsg(m) 2 2/3
moveMsg(m) 2/3 1/2/3

Table 5.3: Categorization of Change Operators and mismatches

Lemma 17. Adaptation script αrem is well-formed.

Proof. Well-formedness of the models is guaranteed as the script creates a
mapping-complete orchestrator (Theorem 6).

Lemma 18. Adaptation script αrem is minimal.

Proof. αrem cannot contain an identity transformation since (1) ∆a does not
contain an identity transformation(Lemma 15) and (2) the remap operator
creates only one adaptation operator per change operator.

To illustrate the process of remapping, we work out two examples below.

Examples: Message Merge and Message Split

Consider the following example: The bank changes its protocol from a two
message interaction, Figure 5.1(a), to a four message interaction, Figure
5.1(b). The difference is that in the short version the name of the accoun-
tholder was asked together with the rest of the information, whereas in the
long version the bank requests this information separately. The change from
(a) to (b) is called Message Split and from (b) to (a) Message Merge (Be-
natallah et al., 2005). The manager receives the notification of this change
and detects the changes, with the change-script for Merge (Figure 5.2) and
Split (Figure 5.3) as a result.

118 Chapter 5. Automatically Adapting an Orchestrator

Figure 5.1: Change Example: (a) Bank short version (b) Bank long version

As can be seen in Figure 5.1, all operators in the change-script(s) are
applicable, thus ∆a = ∆. After filtering for applicability, the manager checks
whether the messages of the used transitions are still provided. In the cases
above no data was removed, only the name of the accountholder was moved,
and thus we can conclude that the data is still provided. The mismatches
are therefore solvable by using remapping. The adaptation-script for solving
the Message Merge is shown in Figure 5.4, for Message Split in Figure 5.5.

5.4.3 Reordering

For the operators in Table 5.3 where a category 3 (problematic) is indicated,
there exists a situation in which the data is needed but not provided:

∃m ∈ I[¬provided(m)].

However, not provided means that in the current structure of the orches-
trator that message is not provided. Because by remapping we do not alter
the structure of the orchestrator, this does not mean that interoperability
can not be maintained. By looking at alternative valid structures, it is still
possible to solve incompatibilities. We use two functions to search for alter-
natives, either by reordering, discussed in this section, or by recomposition,
described in the next section.

In orchestrations where protocols are specified bilateral, an innate flexi-
bility exists as there are no direct relations between messages of different ser-
vices. This flexibility allows for alternative orchestrators, similarly to what
was discussed in the previous chapter. Reordering exploits this flexibility by

5.4 Adapting 119

removeTrans(sb1,getName,sb5);

removeTrans(sb5,ack,sb6);

removeTrans(sb6,getAccCredib,sb2);

addTrans(sb1,getAccCredib,sb2);

removeState(sb5);

removeState(sb6);

removeMsg(Bank,Retailer,getName);

removeMsg(Retailer,Bank,ack);

removeType(getName,null);

removeType(ack,null);

addType(name,string,/GetAccCredib);

Figure 5.2: Change script Merge

removeTrans(sb1,getAccCredib,sb2);

addTrans(sb1,getName,sb5);

addTrans(sb5,ack,sb6);

addTrans(sb6,getAccCredib,sb2);

addState(sb5);

addState(sb6);

addMsg(Bank,Retailer,getName);

addMsg(Retailer,Bank,ack);

addType(getName,,/);

addType(name,string,/getName);

addType(ack,,/);

addType(void,string,/ack);

removeType(name,/GetAccCredib);

Figure 5.3: Change script Split

addMap(t_b1,/getAccCredib/name,/order/customer/name);

Figure 5.4: Adaptation script Merge

looking whether messages can be shuffled in such a way that incompatibilities
can be solved.

To determine whether messages can be reordered, we check whether mes-
sages are provided at different points in the business process (protocol).
Therefore we extend the definition of provided given in Section 4.3 of Chap-
ter 4.

Definition 44. (Providedi)
Let < m1, ..,mn > be a message sequence. With providedi(m), where i ∈
{1, .., n}, we denote that after the i’th message the data of the message m is
provided.

The difference with the definition of provided is that providedi looks at
message sequences without regarding the message’s position. In provided the
position of the message is fixed in the sequence, however, when looking if we
can change this order, we look whether the data of the message is provided
at different positions.

120 Chapter 5. Automatically Adapting an Orchestrator

addMap(t_b3,/getName/name,/order/customer/name);

removeMap(t_b1,/getAccCredib/name);

Figure 5.5: Adaptation script Split

Lemma 19. providedi(m)⇒ providedi+1(m).

The proof for this Lemma follows directly from our non-monotonicity
assumption on data. This assumption implies that data values will not
change, therefore if something is provided at one point, it will always be
provided.

Definition 45. (Can be reordered)
Let mreo

j ∈MPr be the message of service Pr that is considered for reordering,
then mreo

j can be reordered if the following properties hold:

(1) ∃x ∈ {1, .., z}∀ < m0, ..,mz >∈MEX[providedx(mreo)]

(2) ∀ml ∈ πPr(< mj+1, ..,mx >)[providedx+l(ml)]

(3) ∀ml ∈ πPi
(< mj+1, ..,mx >)[providedj(ml) ∧ i ̸= r]

Intuitively, the three properties in Definition 45 state that (1) there is a
point further on the path such that at that point the message is provided,
(2) all the messages in between of the same service can be placed behind that
point as well, and (3) for all other messages of other services the messages
should be provided earlier.

For creating a script for reordering, we look at the sequence that has to
be moved.

Definition 46. (Reorder script)
Let < t0, .., ti, .., tj, .., tx, .., tz > be a valid transition sequence of the orches-
trator and let ti =< s1,m

reo, s2 > and πPr(< ti, .., tj, .., tx >) =< ti, .., tj >

be the projection of the service on the sequence of messages. Then a script
can be created as follows:
αreo ← αreo ∪ removeTransition(s1,mj+1, s2)

αreo ← αreo ∪ addTrans(s1ti ,mj+1, s2)

αreo ← αreo ∪ removeTrans(s1,mi, s2)

αreo ← αreo ∪ addTrans(s2tx ,mi, s2)

5.4 Adapting 121

αreo ← αreo ∪ removeTrans(s1,mx+1, s2)

αreo ← αreo ∪ addTrans(s1ti ,mx+1, s2).

The first two lines link the messages after the sequence to be reordered to
the origin of that sequence. The second two lines put the reorder sequence
behind the providing transition tx and the last two lines link everything
behind that transition to the end of the reorder sequence. Note that after
transition tx all messages are still provided as reordering does not remove
any messages from the sequence.

Algorithm 5.6 reorder(Business Process BP , Incompatibilities I)
solved← ∅
for each m ∈ I do

if m can be reordered (Definition 45) then
αreo ← see Definition 46
solved← solved ∪m

end if
end for
if I = solved then

return αreo

end if

Lemma 20. Adaptation script αreo is well-formed.

Proof. To prove well-formedness (Definition 5), we prove both BP and BP ′

are well-formed. Well-formedness of the script follows from the well-formedness
of the models if the script is applied, thus BP αreo→ BP ′. BP is well-formed
(Lemma 14). For BP ′ we show that the new sequences created are also valid.
Let < t0, .., ti−1, ti, .., tj, tj+1, .., tx, tx+1, .., tz > be a valid sequence, then
< t0, .., ti−1, tj+1, .., tx, ti, .., tj, tx+1, .., tz > is the sequence after reordering.
First, observe that the sequence before ti, thus t0, .., ti−1, remains the same,
and is therefore provided. The same holds for the messages after tx, thus
tx+1.., tz. That ti, .., tj is provided after tx is guaranteed by Definition 45,
Property (1) and (2), and that tj+1, .., tx is provided after ti−1 is guaran-
teed by Definition 45 Property (3). Therefore, Lemma 5 from the previous
chapter holds for BP ′, thus BP ′ is well-formed.

122 Chapter 5. Automatically Adapting an Orchestrator

Lemma 21. Adaptation script αreo is minimal.

Proof. To prove minimality (Definition 7), we prove that αreo does not con-
tain an identity transformation sequence. An identity transformation can
occur in the script for moving a single message or in a script when multiple
messages are moved. From Definition 46 we can see that moving a single
sequence (message) does not contain any identity transformation sequence.
That a script containing the operators for moving multiple message does
not contain a identity transformation sequence, we prove by contradiction.
Assume that adaptation script α does contain a identity transformation se-
quence. This means that a message is moved further in a path and then
back to its original place. If this message is moved this means that it was
not provided at its original position, ¬providedi(m). However, it is then
moved back and this implies providedi(m). Hence, αreo cannot contain any
identity transformation sequence.

When trying to reorder, we are interested in what problems can be solved
by shuffling the order of the messages. To analyze this, we look at the set of
alternative orchestrators which use the same set of messages. An alternative
that uses the same set of messages, we call a message equivalent alternative.
We define the set of message equivalent alternatives as follows:

Definition 47. (Set of message equivalent alternatives)
Let S ′

red =< (P ,M),B, pd, pc, p1, .., pn−1 > be the new composite service in-
corporating the changed business protocol with as language MEXS′

red
. The

set of message equivalent alternatives MEX∗
BP is defined as:

MEX∗
BP = {MEX : ∀ < m1, ..,mz >∈MEX

∀m ∈< m1, ..,mz > [m ∈MBP] ,

MEX ⊆MEXS′
red
}.

Intuitively, the Definition 47 describes the set of alternative valid orches-
trators. Every orchestrator that uses the same set of messages as the current
(temporary) orchestrator is considered an alternative.

Theorem 7. Reordering solves all incompatibilities iff

∃MEX ∈MEX∗
BP [d-consistent(BP)].

5.4 Adapting 123

Proof. The statement “reordering solves all incompatibilities” implies that
there exists a non-empty set of incompatibilities I ≠ ∅. This implies not
m-complete(BP), and that the reorder operator creates an adaptation script
such that after applying it BP αreo→ BP ′, that BP ′ is mapping-complete.
Since Theorem 6 shows that remapping can be employed for any data con-
sistent business process, it suffices to show that after BP αreo→ BP ′, BP ′ is
data-consistent.
⇐: Assume ∃MEX ∈ MEX∗

BP ′ [d-consistent(BP ′)]. We show that reorder-
ing will find that MEX. We distinguish two cases: I = ∅ or I ̸= ∅. First,
I = ∅, then d-consistent(BP ′) and the reorder operator returns an empty
adaptation script. Second, I ̸= ∅, because there exists a MEX such that
d-consistent(BP), it holds ∀m ∈ I[providedi(m)] (property 1 of Definition
45). Since it holds that I ̸= ∅, this implies that ∃m ∈ I[¬provided(m)],
however, since d-consistent(BP) holds, there must exist a MEX such that
messages are reordered and implying ∀m ∈ I[providedi(m)]. From Lemma
19 it follows that other messages can be moved to the front (Definition 45
property (2)). Definition 45 property (3) is satisfied by Lemma 19, and hence
∀m ∈ I the messages can be reordered.
The reverse “⇒” follows directly from Lemma 20.

Example: Additional Inventory Constraints

Consider the orchestrator for the retailer constructed in Chapter 4 (displayed
in Figure 4.8). In this orchestrator, we first check the availability of the
products, then request a shipment quote, and last check the credibility of
the customer, see Figure 5.9(a). However, imagine that the people behind
the inventory service have often prepared products for shipment but in some
instances they were not picked up. For this reason, they updated the service
with an additional constraint on the checkAvailability message, as illustrated
in Figure 5.6. This constraint entails that a shipmentID must be sent along
with the request for availability, which is an effort to guarantee that the
products are picked up.

The change script for this change only contains one operator, namely
the addition of type shipmentID, see Figure 5.7. This change results in an
incompatibility which can not be resolved using remapping since the ship-
mentID is not provided at the time it is needed. Reordering looks whether
this shipmentID is provided at a later point. In this case, it is provided after

124 Chapter 5. Automatically Adapting an Orchestrator

Figure 5.6: CheckAvailability message (a) original and (b) with shipmentID

the orchestrator receives the ShipQuote message.

addType(shipmentID,integer,/CheckAvailability);

Figure 5.7: Change script Additional Constraints

The adaptation script for solving this incompatibility is shown in Figure
5.8. In this script, the first two lines connect the shipment messages to the
first point after the order is received. The second two lines, connect the
communication of the inventory to the last message of the shipper and the
third two lines (5 and 6) connect the messages after that to the inventory.
The last line adds the mapping to the shipmentID. The resulting orchestra-
tor, after applying this script, is shown in Figure 5.9(b). In this figure the
order of messages has been changed such that the availability request to the
inventory is placed after the communication with the shipper.

removeTrans(si5, getShipmentQuote, sh2);

addTrans(s4,getShipmentQuote ,sh2);

removeTrans(s4,checkAvailability,si4);

addTrans(sh3,checkAvailability,si4);

removeTrans(sh3,getAccCredib,sb2);

addTrans(si5,getAccCredib,sh2);

addMap(/CheckAvailability/shipmentID,/ShipmentQuote/shipmentID);

Figure 5.8: Adaptation script Additional Constraints

5.4 Adapting 125

Figure 5.9: Orchestrator (a) before and (b) after adapting

5.4.4 Recomposition

Reordering solves incompatibilities by using the flexibility of the business
process. However, if data is not provided at a later point, then reordering
can not solve this. The last step in trying to solve this kind of incompat-
ibility is through recomposition. Recomposition looks whether the missing
information is provided in paths that were not considered in the initial com-
position. Because changes are introduced, other message paths may become
feasible alternatives. Recomposition, as the name implies, is based on the
composition approach discussed in Chapter 4.

Algorithm 5.7 recompose(Orchestrator O, Services P)
O′ ← compose(P, B, Pd, θ)

if O′ = ∅ then
return error /* can not be solved */

end if
αcom ← diff (O′,O)
return αcom

Algorithm 5.7 shows the implementation of the recompose operator. The

126 Chapter 5. Automatically Adapting an Orchestrator

first line initiates the compose operator (discussed in Chapter 4). The main
difference between composition and recomposition is the diff function. The
compose operator generates a new orchestrator, however as the manageable
service (the orchestrator) should be updated by applying a script of operators
(see Chapter 2), we obtain this script by using the diff function.

Lemma 22. Adaptation script αcom obtained by recomposing is well-formed.

The proof of this Lemma follows directly from Theorem 5 of the previous
chapter and Lemma 12.

Lemma 23. Adaptation script αcom obtained by recomposing is minimal.

The proof of this Lemma follows directly from Theorem 5 of the previous
chapter and Lemma 13.

Theorem 8. Let S ′ =< (P ,M),B, pd, pc, p1, .., pn−1 > be the new composite
service with as language MEXS′

red
. Recomposition solves all incompatibilities

iff
∃MEX[MEX ⊆MEXS′

red
].

The proof of this theorem follows directly from Theorem 2 in Chapter 4.

Example: Bank removes functionality

The bank in our running example used to offer support for checking the
credibility of bankaccounts of its customers. However, imagine that due to
some reason, for instance a security leak, this functionality is (temporarily)
removed. The new and old business protocol of the bank can be seen in
Figure 5.10.

The manager of the retailer receives this notification, thereby initiating
the adaptation process. The manager determines that these changes are
applicable and furthermore that they cannot be solved by either remapping
or reordering. Recomposition solves these problems in two cases, namely
if there is another path that provides the data through another party or if
the path containing the incompatibility can be avoided. In this example, it
is possible to avoid using the message path for bankaccounts by using the
alternative path for creditcards.

To migrate from the old version to the new version the manager cre-
ates an adaptation script by executing the diff-function on the new and old

5.5 Prototype 127

Figure 5.10: Change Example: (a) Bank with and (b) without bankaccount sup-
port

orchestrator. The adaptation script for handling this situation is given in
Figure 5.11. This adaptation script contains all operators to remove the us-
age of the bankaccount and add the support of the creditcard at the same
point.

The reverse situation, where a path is added, has like the addition of an
incoming message no direct effect on the orchestrator (non-effective).

5.5 Prototype

The algorithms described in this and the previous chapter were implemented
in a prototype. The prototype was used to generate all change and adap-
tation scripts presented in this thesis. This prototype serves as a proof-of-
concept implementation of a manager for tackling interoperability problems.
Through this implementation we show that our framework can be used to
develop model-based adaptive behavior in services.

The prototype contains two functionalities, namely composition and adap-
tation. The architecture for service composition is illustrated in Figure 4.2
and described in Algorithm 3. The architecture for the second functionality,
adaptation of an orchestrator, is shown in Figure 5.12. In Figure adaptation
is illustrated with references to the related algorithms. Given a changed
service, the prototype creates the change script as described in Algorithm
6, performs an impact analysis (shown in Algorithm 7), and based on the
changes that have an impact, and attempts to construct an adaptation script
by remapping (Algorithm 9), reordering (Algorithm 10) and recomposition
(Algorithm 11).

128 Chapter 5. Automatically Adapting an Orchestrator

removeTrans(sh3,getAccCredib,sb4);

removeTrans(sb4,accCredib,sb3);

addTrans(sb1,getCCCredib,sb2);

addTrans(sb2,ccCredib,sb3);

removeState(sb2);

addState(sb4);

removeMsg(Retailer,Bank,getAccCredib);

removeMsg(Bank,Retailer,accCredib);

addMsg(Retailer,Bank,getCCCredib);

addMsg(Bank,Retailer,ccCredib);

removeType(GetAccCredib,);

removeType(AccCredib,);

addType(GetCCCredib,,);

addType(creditcard,,/GetCCCredib);

addType(number,int,/GetCCCredib/creditcard);

addType(expiryMonth,int,/GetCCCredib/creditcard);

addType(CCCredib,,);

addType(balance,int,/CCCredib);

removeMap(/GetAccCredib/bankaccount/accountID,/order/payment/

bankaccount/accountID);

removeMap(/GetAccCredib/bankaccount/accountType,/order/payment/

bankaccount/accountType);

addMap(/GetCCCredib/creditcard/number,/order/payment/creditcard/

number);

addMap(/GetCCCredib/creditcard/expiryMonth,/order/payment/creditcard/

expiryMonth);

Figure 5.11: Adaptation Script for replacing the bank’s path

5.5 Prototype 129

Figure 5.12: Architecture

The prototype is built on top of a extended version of the Web Service
Analysis Toolkit (WSAT) by Fu et al. (2004e). This toolkit provides the
means to analyze composite Web services by translating BPEL via Guarded
Automata into Promela, the language for the model checker SPIN (Holz-
mann, 2004). For our purposes we used and extended the functionality the
authors implemented for Guarded Finite State Automata, as well as the
properties they defined for supporting asynchronous communication seman-
tics.

A distinction is made between a bottom-up and a top-down specification.
Top down means that an orchestration is specified as one business process
where all services are integrated. On the other hand, the bottom up per-
spective specifies an orchestration as a collection of services. In our work
we study changes in services and how these affect an orchestrator, therefore
we prefer the bottom-up approach. The grammar in Figure 5.13 specifies
the bottom-up perspective, the top-down perspective is given in (Fu, 2004).
In Figure 5.13 the italic words are grammar constructs (terminals or non-
terminals), the non-italic words represent text used in the specification files.

The syntax defined by the grammar in Figure 5.13 was used to define
all input: services (Appendix A), business rules and target protocol (Ap-
pendix C) as well as for the output namely the newly composed or adapted
orchestrator (Appendix D).

130 Chapter 5. Automatically Adapting an Orchestrator

Spec → { Schema , Peerset }

Schema → Schema{ PeerList{ StringList }, TypeList{ MSLList },

MessageList{ MessageList }}

MessageList → Message | Message , MessageList

Message → name { source –> destination : type }

Peerset → Peer | Peer , Peerset

Peer → name { States{ StringList } , InitialState{ StringList },

FinalStates{ StringList } ,

TransitionRelation{ TransitionList }}

TransitionList→ Transition | Transition , TransitionList

Transition → name { source –> destination : message , Guard }

Guard → Guard{ XPathExp => Update }

Update → name { AssignList }

AssignList → Assign | Assign , AssignList

Assign → XPathExp := XPathExp

Figure 5.13: Syntax of Service Orchestrations

5.6 Discussion

In this chapter, we described our approach for dealing with changes in busi-
ness protocols of service providers. We showed how changes are captured
in a change script, how to determine whether changes are applicable, and
we introduced three operators, to (semi-)automatically solve any solvable
change.

The three operators utilize all the flexibility that an orchestration may
have. The remap operator identifies incompatibilities and solves those in-
compatibilities if data is provided in the same structure. The reordering
operator determines whether incompatibilities can be solved by looking at
alternative orchestrators that use the same set of messages (functionalities),
and provides an adaptation script for those that can be solved. The recom-

5.6 Discussion 131

position operator solves incompatibilities that require alternative paths and
alternative service providers in the orchestration.

Although in this chapter we only adapted the orchestrator to changes in
versions of the same service provider, our approach, without modification,
can also be applied when a service is replaced by another. Instead of compar-
ing versions, a new service is given as input and the result is an adaptation
script that indicates whether the orchestrator can be adapted such that it
uses this new service.

A limitation of our approach is that we tackle one change at a time.
In other words, if a queue of change notifications would exists then our ap-
proach would try to tackle them one at a time. However in some cases it may
require tackling multiple notifications at the same time to solve all incompat-
ibilities. For instance, if a new legislation rule (such as the Sarbanes-Oxley
Act (2002)) applies to multiple providers at once, then they may require ad-
ditional messages that other providers deliver. However, since our approach
tackles only one change a time, it will not find a solution in this situation.

Note that although we employed a formal approach, we did not provide
complexity results. It is our goal to show that our approach works and is
correct, and not to illustrate how much computation is needed to realize it.
Our work shows that adaptation works correctly, future work will have the
task of making it more efficient.

132 Chapter 5. Automatically Adapting an Orchestrator

Chapter 6

Related Work

6.1 Introduction

In this thesis, we study service adaptation. We split related work into three
categories, namely work on service adaptation in general, conceptual work
(ASOA), and applied work on interoperability. Table 6.1 maps the distin-
guished fields of knowledge described in this chapter to these three categories.
Furthermore, Table 6.1 describes which sections of this chapter are most rel-
evant to which other chapter(s) in this thesis.

6.2 Service Management

Web services used to realize a business process may be provided by several,
external parties. This implies that management of Web services goes beyond
traditional system management, in that it must be able to deal with changes

Category Related Work Section Relevant Chapter(s)
Conceptual Service Management 6.2 2

Model Management 6.3 2 & 3
Interoperability Service Interoperability 6.4 3,4 & 5

Service Composition 6.5 4 & 5
Adaptation Workflow Evolution 6.6 5

Service Adaptation 6.7 2 & 5

Table 6.1: Categorization of related work

134 Chapter 6. Related Work

originating outside their domain (hence, in external Web services). To ensure
that these Web services perform adequately, Web service management is
needed. A survey on Web service management is provided by Papazoglou &
van den Heuvel (2005).

To guarantee interoperability between management solutions, a dedi-
cated task force in OASIS defined the Web Services Distributed Management
(WSDM) specification. WSDM consists of two orthogonal parts, namely
management of Web services (MOWS) (OASIS, 2004) and management us-
ing Web services (MUWS) (Bullard & Vambenepe, 2006). MUWS addresses
management of IT resources by defining a set of manageability interfaces,
while MOWS may be perceived as an application of MUWS focusing on
the management of the Web services themselves. For a similar purpose the
WS-Management standard was created, however it lacks an explicit concept
of relationships needed for inter-organizational changes. In our work, we
use concepts and ideas from both WSDM and WS-Management in order to
realize the ASOA.

An approach that studies the relation between Autonomic Computing
(AC) and WSDM is presented in (Martin et al., 2007). In this paper the au-
thors re-implement a prototype system called Autonomic Web Services En-
vironment (AWSE)(Tian et al., 2005) following the WSDM standard. This
comparison provides useful insights in the practical and architectural prob-
lems that occur when implementing WSDM. However, in AWSE the authors
make a distinction between a performance interface and a goal interface.
The performance interface exposes methods for the meta-data and the goal
provides methods to query. However, what a goal constitutes is not defined.
In our work, we define the goal to be a property of a model, which may be
performance.

Another framework concerning Web services drawing inspiration from
Autonomic Computing is PAWS (Ardagna et al., 2007). This framework
for flexible an adaptive execution of managed Web service-based business
processes covers both design-time and run-time aspects of adaptive services.
The presented case study is based only on Quality-of-Service and no other
aspects of software are described.

Casati et al. (2003) view Web service management from a business per-
spective. In this paper, the authors advocate a holistic approach which in-
cludes business protocols as well as metrics such as Quality-of-Service. How-
ever, the approach described remains conceptual and no implementation or

6.2 Service Management 135

validation results are shown.
In (Cox & Kreger, 2005) the authors describe requirements of managing

services within the context of the whole life cycle of a service. The authors
make a distinction between development, testing and production require-
ments and in addition distinguish layers such as the business process layer,
the service layer and the IT infrastructure. As stated this work provides only
requirements.

A conceptual management framework that is aimed at service evolution
is the Service Evolution Management Framework (SEMF) by Treiber et al.
(2008b,a). The framework is build on top of a conceptual model distinguish-
ing between factors of influence (causes of changes), for instance the devel-
oper or the hosting environment and information sources such as Quality-
of-Service or documents. In the context of our definition of adaptation, the
framework aims to develop a framework for detecting/monitoring the evolu-
tion of changes and does not tackle automatically adapting to changes.

Another approach aimed at tackling the conceptual scope of service evo-
lution management is (Andrikopoulos et al., 2008). The authors specify char-
acteristics of service evolution management such as identification of changes,
propagation analysis, validation and compliance, version control and instance
migration. Furthermore, a Service Specification Reference Model and opera-
tors for capturing changes are introduced. However, the work remains on an
abstract level and it does not describe how adaptation of a service is enacted.

In (Ludwig et al., 2009; Wassermann et al., 2009), the authors discuss the
issues and challenges in cross-domain change management. Change manage-
ment deals with the process of implementation a change in a complex IT
environment where it is assumed that many dependencies between compo-
nents are unknown and that the process is done (largely) by hand. The
approach proposed complements our approach in that they tackle the ques-
tion of how changes are notified and how different parties can work together
in order to create a new version of the inter-organizational business process.
From an adaptation perspective, the authors provide a framework for mon-
itoring and change detection. However, the decision of how to adapt and
whether the software is adaptable is not discussed.

Another work on dealing with the management of service evolution is
by von Susani & Dugerdil (2009). The authors suggest that due to the
dependencies between services, the migration of a service to a new version
should be scheduled. The work provides insights in how changes will be

136 Chapter 6. Related Work

communicated concerning a termination time for the old version and with
possible overlap with the new version. Although the suggestions in the work
have merit, no results of following this approach are shown.

An approach that describes an implementation is (Cibrán et al., 2007).
In this work the authors introduce the Web Service Management Layer
(WSML). This is a layer placed between client and external Web services.
It supports some management functions, such as service selection, billing,
accounting and transactions. The authors rely on an Aspect-Oriented Pro-
gramming language to interweave management aspect with the client appli-
cation. Concerning adaptation the approach deals only with service selec-
tion. Drawbacks of using Aspect-Oriented Programming for realizing adap-
tive behavior are discussed in Section 6.7.

Another approach containing a prototypical implementation is (Liu, 2009).
Similar to our approach the author expresses that management should use
models and that managing is a process. The author proposes three strate-
gies of dealing with changes, namely: heuristic, policies and machine learn-
ing. Unlike our implementation aimed at interoperability, the authors target
Quality-of-Service.

Our contribution: Management approaches, with the notable exception
of (Cibrán et al., 2007) and (Liu, 2009), present only conceptual frameworks
(or requirements) and deliver no proof by means of an implementation. Man-
agement deals with all aspects of a service and is therefore cumbersome to
implement. This in contrast to adaptation which is typically regarded in the
context of a single criterium. In this thesis, we provide both a conceptual
framework for dealing with any type of change, and describe a proof-of-
concept prototype focussed on an important functional aspect of services,
namely interoperability.

6.3 Model Management

In this thesis we employ a model-driven approach to handle service evolution.
Model-driven engineering (MDE) is the unification of initiatives that aim
to improve software developments by employing high-level, domain-specific,
models in the implementation, integration, maintenance and testing of soft-
ware systems. It is stated that where before the main idea was that “every-
thing is an object”, in MDE the main idea is “everything is a model” (Bézivin,
2005).

6.4 Service Interoperability 137

Most prominent among MDE initiatives is the OMG’s Model-driven Ar-
chitecture (MDA) (OMG, 2003). MDA suggest the usage of multiple models
at different levels of abstraction and the transformation from one model to
another, mostly from a Platform Independent Model (PIM) to a Platform
Specific Model (PSM). A key idea behind MDA is that it makes use of
OMG’s standards like Meta-object Facility (MOF), Unified Modeling Lan-
guage (UML) and Object Constraint Language (OCL).

MDA is not the only initiative for a model-based approach, other ef-
forts include Microsoft’s Software Factories (Greenfield & Short, 2004) and
Generic Model Management (Bernstein et al., 2000; Bernstein, 2003).

Approaches based on model management are RONDO (Melnik et al.,
2003b,a), AMW (Fabro et al., 2005) and GeRoMeSuite (Kensche et al.,
2007). These approaches introduce new generic operators but work only
on database schemaťs.

Our contribution: Our motive for not using MDA is that model manage-
ment suggests the usage of operators for manipulating models and mappings.
This idea allows (automatically) adapting a model to a change as well as
setting the boundaries to which changes can be adapted. This approach is
therefore more intuitive in the context of service evolution. Unlike previous
Model Management approaches, we describe an approach for using Model
Management for Business Processes rather than for database schemaťs.

6.4 Service Interoperability

Interoperability is an important aspect of software especially in distributed
systems. Evolution of individual services is therefore an important prob-
lem. Interoperability is of recognized importance in academia and industry.
In industry an organization dealing with interoperability is the Web Ser-
vice Interoperability organization (WS-I). The WS-I is an open industry
organization with as goal to establish best practices for web services inter-
operability. Among others, the WS-I provides an extensive Supply Chain
Management Scenario with sample application implementations from many
different vendors (Web Services Interoperability Organization, 2007). In re-
search, projects like Interop (Berre et al., 2004) were launched in order to
leverage efforts dealing with interoperability.

Figure 6.1 illustrates the different concepts related to interoperability.
We discuss each of these four concepts with related work in detail below.

138 Chapter 6. Related Work

Figure 6.1: Concepts related to Interoperability

6.4.1 Compatibility

To determine whether two services can work together is called compatibility
analysis. As stated in Section 3.2 of Chapter 3, we cover only data (types)
and business protocols (also called behavior) in this thesis. In relating to
other work we therefore focus on work done that covers one or both of these
aspects. In compatibility analysis a distinction is made in the perspective
from which the compatibility is regarded. We distinguish between general,
backward and forward compatibility analysis.

General

In the general case, compatibility is regarded from a third-party perspective.
An example of research conducted in the general case is provide by Martens
(2003). In this paper, the author uses Petri nets to formally verify behavioral
compatibility of Web services.

Another approach using Petri nets for formally verifying compatibility
was provided by De Backer et al. (2009). In this paper a new paradigm for
modelling interacting business processes is introduced. The authors provide
interesting insights in the relation between interaction aspects and business
process aspects in collaborative e-business. A drawback of the approach
(which also holds for Martens (2003)) is that no data (types) are handled.

Andrikopoulos et al. (2009) tackle service evolution from a contractual
perspective between two participants (service provider and service consumer).
Their goal is to allow independent evolution of loosely coupled services in

6.4 Service Interoperability 139

a transparent manner. To reach this goal, the authors introduce an exposi-
tion/expectation view that in addition to the traditional required/provided
view describes in more complete terms how changes affect a contract.

Ponnekanti & Fox (2004) focus on mismatches on the data layer (WSDL
+ XML Schema). They systematically categorize possible mismatches and
use real world cases to see when problems occur. They state that most
services use only a fraction of the other service functionality, so although a
lot of incompatibilities can in their view not be solved in most cases it is not
a problem, because it was not used.

Business protocols are described in a business protocol definition and
from this definition multiple instances can be generated and run at the same
time. In (Ryu et al., 2007, 2008) the authors study how changes impact the
definition of protocols and provide change operators for manipulating pro-
tocols. They study how to update running instances given certain changes,
as is studied in Workflow Evolution (see Section 6.6). Similar to our man-
ager, the authors propose a protocol evolution manager for handling these
changes. However, unlike our approach, the authors do not handle data and
remain on the behavioral layer for interoperability.

Aït-Bachir et al. (2009) introduce a detection algorithm for comparing
two business protocols specified as Finite State Machines for incompatibilities
based on the addition, removal and modification of an operation. However,
similar to the work mentioned above the authors do not handle data.

Backward Compatibility

Backward compatibility means that a newer version of the service provider
can be deployed without breaking interoperability with the client. I.e. how
a service provider should change, such that a client can still use the newer
version of the service (Becker et al., 2008). Backward compatibility is a
property that is reachable through extensibility and is frequently discussed
in the context of Web service versioning. Recent work on backwards Com-
patibility is, among others, (Becker et al., 2008; Fang et al., 2007; Kaminski
et al., 2006a)

Becker et al. (2008) focus on backward compatibility and provide a frame-
work for automatically analyzing changes in between versions.

Fang et al. (2007) state which changes cause non-backward compat-
ibility in the categories: implementation, interface and binding changes.

140 Chapter 6. Related Work

They extend SOA for handling versioning, meaning that they extend WSDL
and UDDI. They also advocate that the UDDI be equipped with a pub-
lish/subscribe such that clients of a service are notified about changes.

Kaminski et al. (2006b,a) present a design technique called a “Chain of
Adapters”. They guarantee backward compatibility by chaining adapters
such that the original version is in tact. This approach is based on exten-
sibility and therefore can only be used for a limited number of times. In
addition to this, a service compatible with an earlier version has to talk to
a service later in the chain taking more time to communicate.

Forward Compatibility

Forward compatibility means that a newer version of the client can be de-
ployed in a way without breaking the interoperability with existing providers.
Not many approaches deal with forward compatibility, worth mentioning is
Orchard (2006). Orchard (2006) states that forward compatibility is par-
tially achieved by ignoring received data that is unknown to the recipient.
Furthermore Orchard states that both backward and forward compatibility
are achievable only through extensibility. As argued in Chapter 1 extensi-
bility can only be used a limited number of times, and therefore is only a
partial solution at best for guaranteeing interoperability.

6.4.2 Conformance

If the interaction between a service provider and a service client is to go
according to an agreed protocol then both services should conform to this
protocol. Testing whether a participant is conforming to a certain protocol or
contract is called a conformance test. Conformance is especially important in
a choreography perspective where properties of the whole choreography can
only be guaranteed if each participant conforms to the agreed protocol and/or
contract. Example of work done on conformance is by Baldoni et al. (2009).
Conformance is closely related to compliance where a business process must
adhere to regulations. An example of research conducted in that area was
done by Liu et al. (2007) where the authors create a framework that uses
model checking for checking compliance.

6.4 Service Interoperability 141

6.4.3 Replaceability

If two services have equivalent protocols, that is, if they can support the same
set of conversations then these services can replace each other. This means
that they can talk to the same clients. Replaceability analysis involves find-
ing the set of conversations that both protocols can express. Replaceability
is an important aspect of adapters. Recent work on adapters includes (Brogi
et al., 2004; Benatallah et al., 2005; Nezhad et al., 2007; Taher et al., 2009).

Zhou et al. (2008a,b) describe an approach for automatically creating an
adapter, they use dependency graphs to model data dependencies. They
compare execution traces (called scenarios) to see whether two public pro-
cesses are compatible. In their approach, they use the term similarity instead
of replaceability.

Nezhad et al. (2007) semi-automatically detect mismatches between ser-
vice interfaces, looking at both data and protocol. They further create an
adapter based on what they call a mismatch tree. This tree contains possi-
ble deadlocks that might occur and the authors use it in order to generate a
compatible adapter.

An important work on the management of business protocols is that of
Benatallah et al. (2004b,a, 2006). In this work they describe management
operators for analyzing compatibility and replaceability. They introduce
operators such as Difference, Intersection and Compatible composition for
managing protocols. The main difference between their work and ours is
that they focus on protocols, without data, between two parties, whereas we
look at orchestrations (multiple parties) including the data layer.

In (Ponge et al., 2007) the authors also study compatibility and replace-
ability of timed protocols. The authors provide operators such as difference,
intersection and projection and formally verify their properties.

6.4.4 Substitutability

Replaceability determines whether two services can replace each other from
the perspective of the service provider. Substitutability on the other hand
regards replacement of services from the perspective of the client. It deter-
mines whether a service used in a service composition can be substituted
by another service that provides the same functionality. Our approach for
adapting a service orchestrator described in Chapter 5 also covers substi-
tutability.

142 Chapter 6. Related Work

In (Antonellis et al., 2006) the authors state that approaches like BPEL
do not provide any real substitutability, as concrete services must be specified
in the process definition. Therefore a substitute would have to be a hundred
percent match with the substituted service, which is nearly impossible. In
their framework, they suggest to use an abstract service description such
that multiple concrete services match the description. Difference with our
framework is that the Web services involved do not have business protocols
but operate on a request-response basis. Furthermore, no formal validation
of their architecture is provided.

Ernst et al. (2006) study the detection of substitutability and compos-
ability of Web services. In this practical oriented work, the authors pub-
lished Web services and look whether the input and output can be chained
(composability) or whether they show similarities (substitutability). Same
as (Antonellis et al., 2006), the approach works with concrete Web services
(no formal foundation) and works only with Web services having a request-
response protocol.

A formal approach based on mu-calculus was provided by Pathak et al.
(2007). They specify a property over the composition and determine whether
substituting a service in that composition still satisfies that property. A
drawback of their approach is that the authors do no consider data param-
eters, i.e., messages being exchanged by the services.

Our contribution: As discussed in the first chapter of this dissertation
(Section 1.1), both backward and forward compatibility only prevent and
do not solve incompatibilities. Furthermore, adapters provide a solution to
incompatibilities, but suffer from the drawback that they regard services as
black box and therefore can solve only a limited range of problems. To over-
come these shortcomings, we describe an approach how an orchestrator can
be made adaptive to overcome incompatibilities. The approach determines
whether changes are applicable, i.e., checks whether a service provider’s in-
terface is backward compatible. To solve incompatibilities, we describe how
to adapt using three operators, which can also be used to determine substi-
tutability of services. Regarding adaptive behavior we guarantee replaceabil-
ity for solvable incompatibilities. Unlike most approaches on interoperability,
which typically focus on one layer, we handle both data (type) and business
protocol layer.

6.5 Service Composition 143

6.5 Service Composition

A service that is implemented by combining functionality from different ser-
vices is called composite. The process of developing a composite service is
called service composition (or synthesis). Since the emergence of Service
Oriented Computing a lot of attention has been going to service composi-
tion and the aspects related to it. A motive for this research is that this
nesting of services allows rapid development of new services. Some surveys
of the field are: (Agarwal et al., 2008; Dustdar & Schreiner, 2005; Hull &
Su, 2005; Milanovic & Malek, 2004; Rao & Su, 2004; ter Beek et al., 2007;
Baryannis et al., 2008) A categorization of service composition was provided
by Agarwal et al. (2008).

We make a distinction between techniques based on automata, rule-based
and those that combine automata and rules. Although other distinctions and
categorizations exists, for our work these are the most related.

Automata-based

Work using automata (also called labeled transition systems) has been done
by Berardi et al. (2003, 2005a,b); Calvanese et al. (2008) on the frameworks
called Roman and Colombo. In their work they assume that services export
their behavior in the form of finite automata and that the user specifies a
goal service (also an automaton). The result of the synthesis process is a
mediator which is also specified as an automaton. They encode the problem
using Propositional Dynamic Logic (PDL)(Harel et al., 2000) reducing the
synthesis process to a satisfiability problem. The verification of properties,
such as the existence of the composition can thereby be formally proven.
They have an action-based perspective on the composition.

Fu et al. (2004a,b,c,d) use guarded automata with queues for modeling
services with asynchronous communication. They provide properties for en-
suring that composition is still decidable after composing. Their framework
is aimed to provide model checking possibilities to service compositions. Al-
though not directly aimed at creating compositions, the results of their work
are important for web service composition.

Pathak et al. (2006a,b, 2008) introduce MoSCoE, a framework that builds
on insights from Colombo. They state that the framework handles incom-
pletely specified target services which contain functions. These functions are

144 Chapter 6. Related Work

in the composite service then translated into an exchange of messages. One
of the advantages of their approach is that the causes of failure to compose
can be communicated back to the user who can then reformulate the goal
specification in an iterative fashion.

Gerede et al. (2004) also extend the Roman model to study for what
they call lookaheads. The problem they solve is that when running a service
it should look ahead to see the future dependencies on the action that he
delegates to a certain service now. For instance, a service that executes an
action m, must execute afterwards an action n. Thus if the orchestrator
chooses to let that service execute action m then it is obligated to let it also
perform action n. If this is not desired then the orchestrator must look ahead
to see future dependencies.

Other formal models that have been used for service composition are,
among others: Petri-nets (Hamadi & Benatallah, 2003) and Process Algebra
(Yi & Kochut, 2004). Petri-nets are more expressive than automata, for
instance, petri-nets can represent parallelism whereas automata can not.
However, for the purpose of explaining our conceptual approach (applicable
to any model), automata, because they are less expressive, serve better to
illustrate models and model adaptation. Similarly to Petri-nets, Process
Algebra are also more expressive but lack a graphical representation.

Rule-based

Orriëns et al. (2003); Orriëns (2007) employ a model driven approach to
dynamic service composition by using business rules. By viewing the com-
position as a model they raise the level of abstraction thereby creating a
potentially more flexible and agile service compostion.

Where the rules used by Orriens guide the development process of a
service composition, rule-based approaches have also been suggested as an
orchestration model. In their book Alonso et al. (2004), describe in the
chapter on service composition also a rule-based orchestration. They dis-
cuss event-action (EA) and event-condition-action (ECA) rules as a mean
for orchestration. Since rule-based models are inherently less structured,
they advocate to model orchestrations only that have few constraints among
activities and thus were the number of rules are few.

Another usage of a rule-based approach has been in AI-planning (cf.
(Medjahed et al., 2003)). The key feature of their composition approach are

6.5 Service Composition 145

the composability rules. These rules compare the syntactic and semantic
features of Web services. Based on this comparison it is decided whether the
services are composable.
Ponnekanti & Fox (2002) developed a developer toolkit called SWORD,
which also uses rule-based planning. They model services by its precon-
ditions and postconditions. To create a composite service, the user only
specifies the initial and final state. Plan generation is done by a rule-based
expert system.

The rule-based planning approaches take into account the semantics of
the data. Although this is not handled directly in this thesis, other work
that is worth mentioning is METEOR-S (Aggarwal et al., 2004).

One of the major drawbacks of these systems is that from a set of rules
it is hard, for human users, to figure out what the resulting process flow is.
This is due to the fact that rule sets may involve loops, may have side effects
on the underlying data, and that rules might be nested and therefore tend
to be hard to understand.

Hybrid-based

A number of hybrid approaches have been suggested that combine business
process (mostly BPEL) and business rules. For instance, Charfi & Mezini
(2004) model business rules as aspects and use an aspect-oriented version
of BPEL to weave these aspects in the process. Other use ECA-rules (van
Eijndhoven et al., 2008; Baresi et al., 2007b) to create more flexibility. A
drawback of all these approaches is that they only provide methods on how to
model business rules together with business processes. They do not provide
any insights on how an automated synthesis process should go and what can
be used.

Colombo et al. (2006) also combine BPEL with rules. They use ECA
rules to guide the binding and reconfiguration when their properties do not
match the environment requirements or when context changes.

In their approach of suggesting to use Finite State machines for modeling
business protocols (instead of BPEL), Benatallah et al. (2004b) also propose
that conversation management can be enabled with a control table containing
a set of ECA-rules. However, they do not go into detail how this could be
realized.

An approach that suggests to use ECA-rules for capturing adaptation

146 Chapter 6. Related Work

logic is provided by Sheng et al. (2009). In this paper, the authors describe
a semi-automatic approach for web service composition where they use ECA-
rules to specify control-policies.

Our contribution: Approaches on hybrid business processes present mod-
els that can be used to represent business rules within processes. However,
how to synthesize these processes from different components was not done.
On the other hand, the approaches on automatic service composition, do not
incorporate business rules in the synthesis process. In this thesis, we com-
bined these approaches and present an approach for modeling and composing
a hybrid business process. In order to make the softare more manageable,
we also incorporate policies that allow users (developers) to chose between
alternative business processes.

6.6 Workflow Evolution

Workflow is well represented in the field of Service Oriented Computing, par-
ticularly in relation to service orchestration and service composition. Ser-
vices fit nicely in the vision of workflow because of their distributed, het-
erogeneous, component-based nature. One of the drawbacks of workflow
management systems was that their process definitions had different propri-
etary formats and were difficult to share (Georgakopoulos et al., 1995). The
advantage of services is that they have a standardized interface (WSDL) and
also the BPEL standard was aimed to bridge this gap (Khalaf et al., 2006).

For a survey of existing commercial workflow management systems, we
refer the reader to Ader (2004). A few overviews of scientific work on the
field are: (Georgakopoulos et al., 1995; Stohr & Zhao, 2001).

In Chapter 3 we discussed when a set of operators is complete for a given
type of model. However, if a construct is not part of the type of model
(language) then something cannot be expressed. For instance, if a model
has no concept for XOR, then XOR cannot be used. In workflow manage-
ment, what can be expressed in a workflow language has been extensively
investigated (van der Aalst et al., 2003; Russell et al., 2004, 2006). They use
these patterns to make a comparison between different management systems
in terms of expressivity in a process definition.

How changes affect a workflow management system is called workflow
evolution or adaptive workflow systems. In workflow management two types
of change are distinguished; a change can affect either a process definition

6.6 Workflow Evolution 147

or a process instance. An important part of the work done on workflow
evolution is when a process definition changes, how these changes propagate
to the running instances of that process definition (Bandinelli et al., 1994;
Ellis et al., 1995; Casati et al., 1996; Rinderle et al., 2004; Weske, 2004). Not
all instances of running processes can be migrated when a change occurs and
a question is therefore how to deal with them. This is also studied in the
context of BPEL specified processes (Reichert & Rinderle, 2006).

Other work aims at providing the user/administrator with more flexibility
during the execution of workflow instances. For instance, when exceptions
occur a user might need to deviate from the process described by the process
definition. Reichert & Dadam (1998) provide a solution based on operators
which are formally specified. Main difference with our approach is that after
applying an operator the model should be correct whereas we demand that
the model is correct after applying all operators in a script. Others who
also specify operators, are (Casati et al., 1996; Reichert & Dadam, 1998))
for control aspect and (Rinderle & Reichert, 2006) for data.

Based on the work of workflow patterns, change patterns have also been
identified for comparing adaptive workflow management systems (Weber
et al., 2008)

One approach for creating more flexibility in a process is by leaving parts
unspecified. This approach is taken by Sadiq et al. (2001), who introduce so
called pockets of flexibility. These pockets provide a template-based choice
on how to fill the gaps of this process at run-time, given a set of activities.
Later the authors extend this to incorporate constraints in (Sadiq et al.,
2005).

Another approach based on constraints is (Pesic et al., 2007). Based on
their declarative model for workflow (Pesic & van der Aalst, 2006), the con-
straints specify what is allowed in a model, similar to our model properties.
An advantage of the constraint-based approach is that it allows flexibility by
leaving parts unspecified, similar to Sadiq et al. (2005).

Other approaches to make workflow management systems more adap-
tive/adaptable include incorporating rules. Either by using rules for captur-
ing control structure (Muth et al., 1997; Hull et al., 1999; Joeris & Herzog,
1999; Bae et al., 2004) or for capturing adaptation (Müller et al., 2004).

Hamadi & Benatallah (2004, 2005); Hamadi et al. (2008) introduce a
self-adaptive recovery net (SARN), which is an extended Petri net model for
specifying exceptional behavior at design time. This model can then adapt

148 Chapter 6. Related Work

the structure of the Petri net model at run-time (instances).
A drawback of most approaches is that they act from a centralized engine

. Park & Kim (2009) suggest to use publish/subscribe protocol to exchange
events such that users have their own workflow definition and that every
workflow can therefore become self-managing. However, not many details
about how this vision would be realized was presented.

Another approach for making workflows adaptive was to incorporate
(conversational) case-based reasoning which look at previous encountered
similar problems and uses these to solve new problems (Weber et al., 2006).

Our contribution: Workflow evolution approaches focus mainly on pro-
cess related aspects while largely neglecting interoperability problems due to
changes. Unlike these approaches, we describe how interoperability affects a
business process and show how to adapt to maintain interoperability.

6.7 Service Adaptation

In categorizing work done on service adaptation, we make a distinction be-
tween approaches based on aspect-oriented programming, approaches based
on self-adaptation and extensions of the SOA aimed at (self-)adaptation.

Aspect-oriented

Aspect-Oriented Programming (AOP) is currently a popular approach in
research for achieving adaptability and adaptation. Among others, recent
work includes: (Kongdenfha et al., 2006; Cibrán et al., 2007; Moser et al.,
2008; Charfi et al., 2009; Karastoyanova & Leymann, 2009).

Many AOP approaches extend BPEL and use an additional language
or engine for realizing adaptation, for example (Charfi et al., 2009). Other
work, for example Karastoyanova & Leymann (2009) propose an approach
based on Aspect-Oriented Programming which uses only BPEL constructs
to realize adaptation.

In (Moser et al., 2008) an aspect-oriented approach is described for moni-
toring and selecting/substituting web services. The framework, called VieDAME,
is focussed on Quality-of-Service aspects. The authors extend the ActiveBPEL
engine to incorporate what they call the Interception and Adaptation Layer
(IAL). The framework allows dynamic substitution of services and they fore-

6.7 Service Adaptation 149

see that adapters, called transformers, are placed when services are not syn-
tactically compatible.

Aspects in AOP approaches for service adaptation are based on the idea
of a separation of concern between business- and adaptation logic. The adap-
tation that is captured in the logic is in most of these approaches based on the
service selection and service substitution, allowing hot-swapping of services.
A shortcoming of using an aspect oriented approach is that adaptability
of the software is limited to what is captured by the aspects. Our model-
management approach, where the models can be completely adaptable, does
not suffer from this shortcoming.

Extensions of SOA

Next to these approaches for handling specific problems, some architectures
and extensions to SOA have been introduced. Conceptual extensions of
SOA, like WSMF (Fensel & Bussler, 2002), WSMO (Roman et al., 2005),
Colombo (Curbera et al., 2005), and COSMO (Quartel et al., 2007) have
been discussed in Chapter 2, and will not be further discussed here.

An older work on creating a dynamic SOA (DySOA) was provided by
Siljee et al. (2005). DySOA is an architectural extension for service-based
application systems. It contains components for monitoring, analysis, eval-
uation and configuration of an application. The work is aimed at Quality-
of-Service and does not specify how functional aspects like interoperability
should be handled.

Tanksali (2006) coined the term of an Adaptive Service Oriented Archi-
tecture. In this work Tanksali advocates that services should become intel-
ligent, possibly incorporating techniques from Artificial Intelligence. How
this intelligent service should be realized, by which technique, for instance,
Agents, Aspect-oriented Programming or a manager is not specified. Fur-
thermore, the work presents only a vision and it not validated in theory or
practice.

Another extension of SOA is described in (Rolland et al., 2007). In this
paper it is argued that traditional SOA is function-driven and that many
aspects, such as the interfaces in WSDL, are hard to understand by busi-
ness people. The authors propose an intentional-driven SOA, called ISOA.
The brokerage triangle is adapted for intentions and the authors propose an
Intentional Service Model for describing each service. Agents are suggested

150 Chapter 6. Related Work

to be used for realizing an ISOA. Although they make a valid point that
adaptation should be guided by the business, they do not show these agents
are implemented and how different types of changes can be handled.

In the paper introducing Web based Internet-accessible Service (WebBIS)
(Medjahed et al., 2004) the authors propose a declarative language for com-
posing Web services. They define meta-services (similar to our managers),
that notify concerning changes about the availability of the service. Lack of
this framework is that it does not tackle data.

Self-adaptation

With the introduction of Autonomic Computing (AC) a lot of terms with
“self-” were launched, such as self-configuring, self-healing, self-optimizing
and self-protecting. Self-adaptation is required to realize each of these prop-
erties. Although the addition of “self-” to the word adaptation makes it
explicit that the software changes itself, this is often already implicit in the
notion of adaptation used. As we consider that a manager exists that adapts
the manageable service, we prefer to use the word adaptive over self-adaptive
in this thesis.

For a recent survey on self-adaptive software the interested reader is re-
ferred to (Salehie & Tahvildari, 2009). For the work done on self-adaptation,
we limit ourselves to work done in relation to (Web) services.

In (Dustdar et al., 2009) several research challenges for self-adaptive
service-oriented systems are presented, such as compliance and run-time
management of requirements. For each of the challenges a solution direc-
tion is given. Similar to our approach the authors suggest a model-driven
approach in tackling these challenges. Although the paper provides interest-
ing insights in self-adaptive software engineering, it does not provide concrete
results.

Denaro et al. (2006); Tosi et al. (2009) describe in their work an approach
for the design of self-adaptive service-oriented applications. They identify
different (semantic) mismatches and propose that software architects design,
test and create adaptation strategies to tackle them. The testing is done via
assertions which are weaved in the application. If an assertion is true, this
means that a predefined adaptation strategy is executed. This approach is
very similar to the aspect-oriented approach of Baresi et al. (2007a). The
authors are practical oriented but provide only preliminary results.

6.7 Service Adaptation 151

Another work on self-adaptation was provided by Dorn et al. (2009).
The authors focus on the problem of selecting the best service to forward a
request to. Other aspects, such as service evolution are not handled.

In (Gjørven et al., 2008) self-adaptation is introduced in SOA through
adaptation middleware. This middleware is designed for integrating and
exploiting technology-specific adaptation mechanisms. The work is based on
component models and the authors aim to tackle adaptation on the service
interface layer as well as on the application layer. Although the work provides
interesting insights in adaptive middleware, it does not provide results in how
changes are tackled.

Baresi et al. (2007a,b, 2009) use a rule-engine for creating a self-healing
composition, similar to the hybrid composition approaches discussed in Sec-
tion 6.5. The authors achieve self-healing by defining two languages; WsCol
for specifying constraints on the execution of BPEL processes and WsReL
to state recovery strategies. A drawback of their approach is that these two
new languages must be used in order to achieve self-healing.

Our contribution: Adaptation approaches, such as described above, fo-
cus on a specific change. For this change an implementation is given which
usually can not be used for other changes. Only the conceptual adaptation
cycle is generic to these approaches. We describe a conceptual framework
for developing services for any change and furthermore demonstrate this ap-
proach by implementing a prototype for a specific problem, namely changes
affecting interoperability.

152 Chapter 6. Related Work

Chapter 7

Conclusion

7.1 Introduction

Organizations wish to be able to easily cooperate with other companies and
still be flexible. The IT infrastructure used by these companies should fa-
cilitate these wishes. Service-Oriented Architecture (SOA) and Autonomic
Computing (AC) were introduced in order to realize such an infrastructure,
however both have their shortcomings and do not fulfil these wishes. AC
is visionary and also SOA does not provide concrete solutions for designing
adaptive software.

This dissertation addresses that problem and presents an approach for in-
corporating (self-)adaptive behavior in software. A conceptual foundation of
adaptation is provided and SOA is extended to incorporate adaptive behav-
ior, called Adaptive Service Oriented Architecture (ASOA). To demonstrate
the feasibility of this conceptual framework, we implement it to address a
crucial aspect of distributed systems, namely interoperability. We study the
situation of a service orchestration where a service orchestrator wishes to
adapt itself when its service providers evolve.

In this chapter the research results of the previous chapters are summa-
rized and insights regarding the contributions of the research are provided.
Furthermore, directions of future research are presented for realizing (self-)
adaptive software.

154 Chapter 7. Conclusion

7.2 Research questions and answers

In Chapter 1, the research questions were split in a group concerned with
the conceptual aspects of software adaptation and in a group related to
interoperability. We follow the same distinction here.

Conceptual

In Chapter 2 we answered the following research questions.

1. What types of changes occur in a Service-Oriented Architecture?
We defined what constitutes the core concept of SOA, namely a service.
Taking a system theoretic approach, we treated the service as system
and all other related concepts as environment. All concepts of the
environment are subject to change and can influence the service. For
instance, the organization which owns the service may impose different
requirements, or the other services may publish new, and altered, in-
terfaces. The concepts we distinguished, and thus the type of changes,
were described in Section 2.4.2, and they were: actions (and tasks),
messages, interface, service, and organization.

2. How can a (composite) service be made (self-)adaptive?
To make a service adaptive it needs adaptation logic, also called adap-
tation strategy. Adaptation logic describes how the service adapts,
in terms of our taxonomy of adaptation, how to make the decision.
We incorporated the adaptation logic in a separate entity, named the
manager, thereby creating a separation of concerns between adaptation
logic and business logic. Motive for this separation is that intertwin-
ing adaptation logic and business logic leads to an increase of software
maintenance (Salehie & Tahvildari, 2009). To further develop a con-
ceptual framework for adaptive services, we used Model Management.

Our motive for choosing model management, also called generic model
management (Melnik et al., 2003b; Melnik, 2004), is its broad applica-
bility. Model management proposes the development of generic oper-
ators for manipulating, transforming and creating mappings between
models. By using model management, we developed a framework for
tackling any type of change.

7.2 Research questions and answers 155

2.1 How can a service be made manageable?
In Section 2.7.1, we defined manageable as the ability of software
to be monitored as well as being adapted. In terms of our tax-
onomy of adaptation, this means that mechanisms for detecting
changes as well as for executing adaptation plans should be facil-
itated.
In our Model Management approach, we defined the process of
a service to be a model. On this model change operators can be
defined such that the model can be adapted. Furthermore, every
model consists of concepts and relations; if all concepts and all
relations are captured using operators, then a model can be com-
pletely adaptable. If a concept of monitoring exists in the model,
then a model is completely manageable.
In order to enable the interaction between a manager and a man-
ageable service, the manageable service publishes a managerial
interface. This interface provides all functions for managing the
service, thus retrieving the current model and change operators,
setting a goal, and updating the current model with a script con-
taining change operators.

2.2 How to design a manager?
In our framework, a manager is a service. Therefore everything
we defined for a manageable service applies for a manager as well.
Additional constraints for the manager are that the process of a
manager entails an adaptation cycle. The question of when to
adapt and how to know whether adaptation is successful, is an-
swered by the incorporation of a goal. We defined a goal to be
a property of a model. Because we define a goal as a property,
we can verify whether a goal is reached by determining whether
the property holds for the model. To demonstrate the validity
and illustrate the working of the manager, we presented an im-
plementation of a manager designed to deal with changes that
affect interoperability (Chapters 3,4 and 5).

3. How can a Service-Oriented Architecture be extended to handle (self-
)adaptive services?
We introduced a number of new concepts and altered another concept
of the core conceptual model of SOA. We created a conceptual model

156 Chapter 7. Conclusion

and illustrated how concepts are related. The new concepts were Man-
ager, Goal, Capability and Contract. The altered concept was Message,
which we converted into Event. With the addition of these new and
altered concepts, the conceptual model contained an adaptation cy-
cle and provided the conceptual foundation for adaptation and service
management. This extension we called the Adaptive Service-Oriented
Architecture (ASOA).

We validated ASOA in two ways. The first way was to show that our
conceptual framework does not suffer from the shortcomings of traditional
SOA. We realized this in three steps. The first step was by defining what
constitutes adaptive behavior based on existing literature. The second step
was to demonstrate that services built in SOA do not possess adaptive be-
havior. And the third step was to show that services in ASOA do posses
adaptive behavior. The second way of validation was that we demonstrated
that (self-)adaptation, as a prototypical implementation of ASOA, serves as
a solution for interoperability problems in a service orchestration.

Applied to Interoperability

Concerning interoperability, we dealt with changes to the interfaces of service
providers and set as a goal to be able to maintain interoperability in a service
orchestration. In relation to this goal, we posed the following questions.

4. How can we model changes to a service interface?
Similar to the manageable service, we defined the interface of a service
to be a model (Chapter 3). We distilled the concepts and relations,
and defined change operators for adding and removing these concepts
and relations. By using these operators we were able to capture every
change in the interface, under the assumption that the model which
is used as the interface was known. To relate our approach to oth-
ers, we demonstrated how known mismatches in business protocols are
represented using our operators.

5. What changes result in incompatibilities in a service orchestration?
Not all changes result in incompatibilities. Whether a change can be
solved or not was described in Section 5.4.1 of Chapter 5. An incom-
patibility can be solved if there exists an adaptation script for it, or if
the changes are not applicable. To determine whether a change affects

7.2 Research questions and answers 157

the business process of an orchestrator, we introduced the applicabil-
ity operator in Section 5.3 of Chapter 5. This operator determined
whether a set of changes has an impact on business processes. For
finding the right adaptation script, we introduced the adapt operator.

6. How to automatically adapt the service orchestrator in order to main-
tain interoperability, without changing its interface to its clients?
This question can be rephrased to: How to design a manager using our
conceptual framework for automatically maintaining interoperability in
a service orchestration, without changing the interface of the orches-
trator while service providers evolve. An abstract process description
and design of the manager was described in Section 2.7.2 of Chapter
2. This process was explained in detail in Chapter 5. The main com-
ponent of this process was the adapt operator. The adapt operator
combines three operators, namely: remapping, reordering and recom-
position. Each of these operators has a different impact on the business
process and a different range of problems that it can solve. Remap-
ping adjusts the mapping of the orchestrator, but does not change the
process. Reordering exploits any flexibility in the ordering of mes-
sages and attempts to reorder messages to solve incompatibilities. The
recomposition operator searches for an alternative composition that
incorporates the changed service. As the name of the “recomposition
operator” indicates, it is based on the composition approach described
in Chapter 4. Using these three operators, we not only can decide
whether and how an incompatibility can be solved, but they can also
be used to analyze whether a service can be substituted for another.

We validated the framework for interoperability in two ways. The first
way was by formally verifying that our adaptation solution was correct with
respect to guaranteeing interoperability. The second way was by constructing
a prototype that implemented this solution.

To summarize, this dissertation introduced Adaptive Service Oriented
Architecture (ASOA). We provided a definition and taxonomy of adapta-
tion, and used it to analyze and extend SOA. With ASOA as foundation,
we developed a conceptual framework, using Model Management for devel-
oping services capable of dealing with changes in their environment. We
expressed how a service can be made manageable and also how a manager
can be designed. This conceptual framework was implemented in a prototype

158 Chapter 7. Conclusion

for handling an important class of problems in distributed systems, namely
interoperability.

7.3 Future work

We answered the main research questions posed in this thesis. However,
while answering these questions many other questions arose. In this section
we describe the directions of future research important for realizing (self-)
adaptive software.

Maintaining identity: The implementation of our conceptual framework
focused on interoperability and how the environment (other services)
influence an orchestrator. An aspect that we have not dealt with is the
consideration how far the influence of the environment can go. The
question is how to maintain the identity of the service despite adapta-
tion (Regev et al., 2007). An example of a scenario where this question
is relevant is when a change in the interface of the bank would require
the retailer to change a business rule in order to comply. As more
business rules are changed due to the desire to maintain interoperabil-
ity, the question rises whether the retailer is still a retailer. In this
thesis, we adapted only the interaction of the orchestrator and did not
change the business rules. Therefore we can state that although ser-
vices provider may be changed or replaced, the orchestrator remains a
retailer until a problematic change occurs. In general, for each model
used for the manageable service, it must be specified what can be
adapted, by whom, and to what extend.

Multiple criteria: Interoperability is but one of the many aspects of
software. Other aspects include Quality-of-Service, Reliability etc. If
self-managing software is to be successful, then all aspects should be
regarded to create an adaptation strategy. An example of an approach
indicating some problems with handling multiple criteria is Cheng et al.
(2006). An important aspect regarding multiple criteria is how criteria
are related. It is crucial to find out how different information sources
and stakeholders are related to each other.

7.3 Future work 159

Management of self-adaptive software: An important aspect of soft-
ware is that, although in service orchestrations not always evident, in
the end software interacts with humans. Adaptation has an aura of
mystique around it and developers are hesitant to deploy it in real
products. Software should remain understandable for the developers
as well as for the users.

Self-adaptive software should reflect the wishes of developer (and users)
in such a way, that incorrect or undesirable adaptation will not occur.
We call this process of managing self-adaptive software Managed Self-
Adaptation. In this thesis, a few mechanisms were introduced, such as
policies and an escalation procedure that exemplifies this management.
The policies reflect preferences used for choices and the escalation pro-
cedure contacts a human administrator when the manager fails to find
an adaptation strategy.

However, to ensure the success of (self-) adaptive software in the field of
software engineering, more management capabilities for self-adaptive
software should be incorporated. An example of a management capa-
bility are interruption mechanisms. For instance, a developer should
be able to turn adaptation off if he wishes to study a problem.

Model evolution: We used a model-driven approach and used model man-
agement for manipulating these models. However, these models may
be subject to change themselves, for instance to improve the expres-
sivity of the modeling language (van Deursen et al., 2007). Therefore,
as new versions of the models are used to deploy new systems, older
versions may have to be migrated to the newer version of the model.

Solution propagation: In the introduction to this thesis, we described
that changes can propagate through a network of services. Making
services adaptive helps to decrease the frequency of these propagations.
However, similar to problems caused by changes, solutions for adapting
to these changes can also be propagated. Mechanisms that can be used
for this purpose are case-based reasoning or imitation (Hiel & Weigand,
2006).

160 Chapter 7. Conclusion

These directions of future research indicate that there remains a lot of
work to be done for realizing self-adaptive services. As self-adaptive services
will become more important in the future (Papazoglou et al., 2007; Di Nitto
et al., 2008; Dustdar et al., 2009), it is expected that more researchers will get
involved. It will be interesting to follow the development of (self-)adaptive
software in the future in both academia and industry.

Appendix A

Specification of Services

This appendix contains all the specifications of the example services through-
out the thesis. They are in the format described in Section 5.5.

A.1 Shipper

Bottomup {

Schema{

PeerList{Shipper,Retailer},

TypeList{

GetShipmentQuote[

productList[

productID[xsd:int],

quantity [xsd:int]

]{1,10},

address[

streetName [xsd:string],

zipcode [xsd:string],

city [xsd:string],

country [xsd:string]

]

],

ShipmentQuote[

shipmentID [xsd:int],

shipmentDate [xsd:string]

162 Appendix A. Specification of Services

],

},

MessageList{

getShipmentQuote { Retailer -> Shipper : GetShipmentQuote},

shipmentQuote { Shipper -> Retailer : ShipmentQuote}

}

},

Peerset{

Shipper{

States{sh1,sh2,sh3},

InitialState {sh1},

FinalStates{sh3},

TransitionRelation{

t_sh1{ sh1 -> sh2 : getShipmentQuote,

Guard{ true }

},

t_sh2{ sh2 -> sh3 : shipmentQuote,

Guard{ true }

}

}

}

} }

A.2 Inventory

Bottomup {

Schema{

PeerList{Inventory, Retailer},

TypeList{

CatalogRequest[

getCatalogRequest[xsd:bool]

],

CatalogResponse[

A.2 Inventory 163

productList[

product [xsd:string],

productID[xsd:int],

price [xsd:int]

]{1,10}

],

CheckAvailability[

productList[

product [xsd:string],

productID[xsd:int],

quantity [xsd:int]

]{1,10}

],

Availability[

productID [xsd:int],

available [xsd:bool]

]

},

MessageList{

catalogRequest { Retailer -> Inventory : CatalogRequest},

catalogResponse { Inventory -> Retailer : CatalogResponse},

checkAvailability { Retailer -> Inventory : CheckAvailability},

availability { Inventory -> Retailer : Availability }

}

},

%- set of guarded automata

Peerset{

Inventory{

States{si1,si2,si3,si4,si5},

InitialState {si1},

FinalStates{si5},

TransitionRelation{

ti1{ si1 -> si2 : catalogRequest,

164 Appendix A. Specification of Services

Guard{ true }

},

ti2{ si2 -> si3 : catalogResponse,

Guard{ true }

},

ti3{ si3 -> si4 : checkAvailability,

Guard{ true }

},

ti4{ si4 -> si5 : availability,

Guard{ true }

}

}

}

}

}

A.3 Bank

Bottomup {

Schema{

PeerList{Bank,Retailer},

TypeList{

GetAccCredib[

bankaccount[

accountID [xsd:int],

accountType[xsd:int]

]

],

AccCredib[

balance[xsd:int]

],

GetCCCredib[

creditcard[

A.3 Bank 165

number [xsd:int],

expiryMonth [xsd:int],

expiryMonth [xsd:int]

]

],

CCCredib[

balance[xsd:int]

]

},

MessageList{

getAccCredib { Retailer -> Bank: GetAccCredib},

accCredib { Bank -> Retailer: AccCredib},

getCCCard { Retailer -> Bank: GetCCCredib},

ccCredib { Bank -> Retailer: CCCredib}

}

},

Peerset{

Bank{

States{sb1,sb2,sb3,sb4},

InitialState {sb1},

FinalStates{sb3},

TransitionRelation{

t_b1{ sb1 -> sb2 : getAccCredib,

Guard{ true }

},

t_b2{ sb2 -> sb3 : accCredib,

Guard{ true }

},

t_b3{ sb1 -> sb4 : getCCCredib,

Guard{ true }

},

t_b4{ sb4 -> sb3 : ccCredib,

Guard{ true }

166 Appendix A. Specification of Services

}

}

}

}

}

Appendix B

Operation Semantics of Change
Operators

This appendix contains all the operation semantics for all basic change op-
erators specified in Table 3.2 in Chapter 3.

B.1 Protocol

Addition of a state:
addState(si)

< S, s0, F,M, T >→< S ∪ si, s0, F,M, T >

Removal of a state:
removeState(si)

< S, s0, F,M, T >→< S − si, s0, F,M, T >

Addition of a transition:
addTrans(si,m, sj)

< S, s0, F,M, T >→< S, s0, F,M, T ∪ (si, sj,m) >

Removal of a transition:
removeTrans(si,m, sj)

< S, s0, F,M, T >→< S, s0, F,M, T − (si, sj,m) >

Addition of a message:

addMsg(rec, sen, g)
< S, s0, F,M, T >→< S, s0, F,M ∪ (rec, sen, g), T >

168 Appendix B. Operation Semantics of Change Operators

Removal of a message:

removeMsg(rec, sen, g)
< S, s0, F,M, T >→< S, s0, F,M − (rec, sen, g), T >

Note that there are three types of states in a graph, namely initial, final and
normal. The final states and initial state are respectively a subset and an
element of the set of states, for this reason they are not specified explicitly
here.

B.2 Type

In the above we have given the operation semantics from a set-theoretic per-
spective. For type we do the same. However, because we defined it before as
a grammar, we can not use the above directly. We therefore express a gram-
mar as a single set containing only types (E). An type is then specified as:
e = (t, d, p, x, y, c) where t is the tag (name) of the element, d the datatype, p
denotes the location between other elements (as defined by Xpath in Section
3.4.1), the minimum and maximum cardinality (x and y respectively) and
c ∈ {seq, choice} a structural constraint which can be either a sequence or a
choice. Using this set, we define the operators as follows:
Addition of a type:

addType(τ, d, p)
E → E ∪ (τ, d, p, 1, 1, seq)

When adding a type, the constraints gets the standard values for the con-
straints, which is 1 for the cardinality and seq for the structural constraint.
Removal of a type:

removeType(τ, p)
E ∪ (τ, d, p, x, y, c)→ E\(τ, d, p, x, y, c)

Update cardinality:

updateCC(x, y, p)

{E ∪ (τ, d, p, x′, y′, c)} → {E ∪ (τ, d, p, x, y, c)}\(τ, d, p, x′, y′, c)

Update structural constraint:

updateSC(cs, p)

{E ∪ (τ, d, p, x, y, c)} → {E ∪ (τ, d, p, x, y, cs)}\(τ, d, p, x, y, c)

Appendix C

Specification of Business
Requirements

This appendix contains the specification of the example business rules and
target protocol used throughout the thesis. They are in the format described
in Section 5.5.

C.1 Business Rules

Bottomup {

Schema{

PeerList{BR2,BR3},

TypeList{

Acceptance[

acceptance[xsd:bool]

],

Rejected[

rejected[xsd:bool]

]

},

MessageList{

accept { BR2-> BR2: Acceptance},

reject { BR3-> BR3: Rejected}

}

170 Appendix C. Specification of Business Requirements

},

Peerset{

BR2{

States{sbr21,sbr22},

InitialState {sbr21},

FinalStates{sbr22},

TransitionRelation{

t_br21{ sbr21-> sbr22: accept,

Guard{ $availability/Availability[available = true] and

$getAccCredib/GetAccCredib[balance > 0] and

$shipmentQuote/ShipmentQuote[shipmentID > 0] =>

$accept[

//acceptance:= true

]}

}

}

},

BR3{

States{sbr31,sbr32},

InitialState {sbr31},

FinalStates{sbr32},

TransitionRelation{

t_br31{ sbr31-> sbr32: reject,

Guard{ $availability/Availability[available = false] or

$getAccCredib/GetAccCredib[balance < 0] or

$shipmentQuote/ShipmentQuote[shipmentID <= 0] =>

$reject[

//rejected:= true

]}

}

}

}

}

C.2 Target Protocol 171

C.2 Target Protocol

Bottomup {

Schema{

PeerList{Customer,Retailer},

TypeList{

GetCatalog[

getCatalogRequest[xsd:bool]

],

Catalog[

productList[

product [xsd:string],

productID[xsd:int],

price [xsd:int]

]{1,10}

],

Order[

customer[

name [xsd:string],

address[

streetName [xsd:string],

zipcode [xsd:string],

city [xsd:string],

country [xsd:string]

],

bankaccount[

accountID [xsd:int],

accountType[xsd:int]

]

],

productList[

product [xsd:string],

productID[xsd:int],

price [xsd:int],

quantity [xsd:int]

]{1,10}

172 Appendix C. Specification of Business Requirements

],

OrderAccept[

acceptance [xsd:bool]

],

OrderReject[

rejected [xsd:bool]

]

},

MessageList{

getCatalog { Customer -> Retailer : GetCatalog },

catalog { Retailer -> Customer : Catalog },

order { Customer -> Retailer : Order },

orderAccept { Retailer -> Customer : OrderAccept },

orderReject { Retailer -> Customer : OrderReject }

}

},

Peerset{

Customer{

States{sc1,sc2,sc3,sc4,sc5,sc6},

InitialState {sc1},

FinalStates{sc5,sc6},

TransitionRelation{

t_c1{ sc1 -> sc2 : getCatalog,

Guard{ true }

},

t_c2{ sc2 -> sc3 : catalog,

Guard{ true }

},

t_c3{ sc3 -> sc4 : order,

Guard{ true }

},

t_c4{ sc4 -> sc5 : orderReject,

C.2 Target Protocol 173

Guard{ $reject/Rejected[rejected = true]}

},

t_c5{ sc4 -> sc6 : orderAccept,

Guard{ $accept/Acceptance[acceptance = true]}

}

}

}

} }

174 Appendix C. Specification of Business Requirements

Appendix D

Specification of the Retailer

This appendix contains of the our example orchestrator, the retailer, as cre-
ated by the composition operator discussed in Chapter 4. It is in the format
described in Section 5.5. Note that we omit here the specifications of ser-
vices and the typelist as they are identical to the ones that were given in
Appendix A and Appendix C.

Bottomup{

Schema{

PeerList { Retailer, Customer, Shipper, Bank, Inventory}

TypeList {}

MessageList {

accept { Retailer -> Retailer: Acceptance},

shipmentQuote { Shipper-> Retailer: ShipmentQuote},

getShipmentQuote {Retailer-> Shipper: GetShipmentQuote},

getAccCredib { Bank-> Retailer: GetAccCredib},

accCredib { Retailer-> Bank: AccCredib},

reject { Retailer-> Retailer: Rejected},

availability { Inventory-> Retailer: Availability},

checkAvailability { Retailer-> Inventory: CheckAvailability},

catalogResponse { Inventory-> Retailer: CatalogResponse},

catalogRequest {Retailer-> Inventory: CatalogRequest},

getCatalog {Customer-> Retailer: GetCatalog},

catalog { Retailer-> Customer: Catalog},

order { Customer-> Retailer: Order},

orderAccept {Retailer-> Customer: OrderAccept},

176 Appendix D. Specification of the Retailer

orderReject { Retailer-> Customer: OrderReject}

}

},

Peerset{

Retailer{

States{sc1, sc2, si2, si3, sc3, sc4, si4, si5, sbr32,

sc5, sb2, sb3, sh2, sh3, sbr22,sc6}

InitialState{sc1}

FinalStates{sc5, sc6}

TransitionRelation{

t_c1{ sc1 -> sc2: catalogRequest

Guard { true }

},

ti1{ sc2 -> si2: getCatalog

Guard { true=>

getCatalog [

/GetCatalogRequest/getCatalogRequest :=

/GetCatalog/getCatalogRequest

]

}

},

ti2{ si2 -> si3: catalogResponse

Guard { true }

},

t_c2{ si3 -> sc3: catalog

Guard { true=>

catalog [

/Catalog/productList/product :=

/CatalogResponse/productList/product

/Catalog/productList/productID :=

/CatalogResponse/productList/productID

/Catalog/productList/price :=

/CatalogResponse/productList/price

]

}

177

},

t_c3{ sc3 -> sc4: order

Guard { true }

},

ti3{ sc4 -> si4: checkAvailability

Guard { true=>

checkAvailability [

/CheckAvailability/productList/product :=

/CatalogResponse/productList/product

/CheckAvailability/productList/productID :=

/CatalogResponse/productList/productID

/CheckAvailability/productList/quantity :=

/Order/productList/quantity

]

}

},

ti4{ si4 -> si5: availability

Guard { true }

},

ot_7{ si5 -> sbr32: reject

Guard { (($availability/Availability

[(available == false)] ||

$accCredib/AccCredib

[(balance < 0)]) ||

$shipmentQuote/ShipmentQuote

[(shipmentID <= 0)]) =>

reject [

//rejected := true

]

}

},

t_c4{ sbr32 -> sc5: orderReject

Guard { $reject/Rejected [(rejected == true)]=>

orderReject [

178 Appendix D. Specification of the Retailer

/OrderReject/rejected := /Rejected/rejected

]

}

},

t_b1{ si5 -> sb2: getAccCredib

Guard { true=>

getAccCredib [

/GetAccCredib/bankaccount/accountID :=

/Order/payment/bankaccount/accountID

/GetAccCredib/bankaccount/accountType :=

/Order/payment/bankaccount/accountType

/GetAccCredib/name := /Order/customer/name

]

}

},

t_b2{ sb2 -> sb3: accCredib

Guard { true }

},

ot_11{ sb3 -> sbr32: reject

Guard { (($availability/Availability

[(available == false)] ||

$accCredib/AccCredib

[(balance < 0)]) ||

$shipmentQuote/ShipmentQuote

[(shipmentID <= 0)]) =>

reject [

//rejected := true

]

}

},

t_sh1{ sb3 -> sh2: getShipmentQuote

Guard { true=>

getShipmentQuote [

/GetShipmentQuote/productList/productID :=

/CatalogResponse/productList/productID

179

/GetShipmentQuote/productList/quantity :=

/Order/productList/quantity

/GetShipmentQuote/address/streetName :=

/Order/customer/address/streetName

/GetShipmentQuote/address/zipcode :=

/Order/customer/address/zipcode

/GetShipmentQuote/address/city :=

/Order/customer/address/city

/GetShipmentQuote/address/country :=

/Order/customer/address/country

]

}

},

t_sh2{ sh2 -> sh3: shipmentQuote

Guard { true }

},

ot_14{ sh3 -> sbr22: accept

Guard {(($availability/Availability

[(availibility == true)] &&

$accCredib/AccCredib

[(balance < 0)]) &&

$shipmentQuote/ShipmentQuote

[(shipmentID < 0)])=>

accept [

//acceptance := true

]

}

},

t_c5{ sbr22 -> sc6: orderAccept

Guard { $accept/Acceptance

[(acceptance == true)]=>

orderAccept [

/OrderAccept/acceptance :=

/Acceptance/acceptance

]

}

180 Appendix D. Specification of the Retailer

},

ot_16{ sh3 -> sbr32: reject

Guard { (($availability/Availability

[(available == false)] ||

$accCredib/AccCredib

[(balance < 0)]) ||

$shipmentQuote/ShipmentQuote

[(shipmentID <= 0)]) =>

reject [

//rejected := true

]

}

}

}

}

}}

Bibliography

Ackfor, R. & Emery, F. (1972). On Purposeful Systems. Adline Atherton.

Ader, M. (2004). Workflow Comparative Study. Waria.

Agarwal, V., Chafle, G., Mittal, S., & Srivastava, B. (2008). Understanding
Approaches for Web Service Composition and Execution. In Compute ’08:
Proceedings of the 1st Bangalore annual Compute conference (pp. 1–8).

Aggarwal, R., Verma, K., Miller, J., & Milnor, W. (2004). Constraint Driven
Web Service Composition in METEOR-S. In SCC ’04: Proceedings of
IEEE International Conference on Services Computing (pp. 23–30).

Aït-Bachir, A., Dumas, M., & Fauvet, M.-C. (2009). Detecting Behavioural
Incompatibilities between Pairs of Services. In WESOA ’08: Fourth In-
ternational Workshop on Engineering Service-Oriented Applications (pp.
79–90).

Aksit, M. & Choukair, Z. (2003). Dynamic, Adaptive and Reconfigurable
Systems Overview and Prospective Vision. In ICDCSW ’03: Proceedings
of the 23rd International Conference on Distributed Computing Systems
(pp. 84–90).

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services:
Concepts, Architectures and Applications. Springer-Verlag.

Andrews, T., Dholakia, H., Goland, Y., Klein, J., Liu, K., Roller, D., Smith,
D., Thatte, S., Trickovic, I., & Weerawarana, S. (2003). Business Process
Execution Language for Web Services, Version 1.1.

Andrikopoulos, V., Benbernou, S., & Papazoglou, M. P. (2008). Managing
the Evolution of Service Specifications. In CAISE ’08:Proceedings of the

182 BIBLIOGRAPHY

20th international conference on Advanced Information Systems Engineer-
ing (pp. 359–374).

Andrikopoulos, V., Benbernou, S., & Papazoglou, M. P. (2009). Evolving
Services from a Contractual Perspective. In CAISE ’09: Proceedings of
the 21st International Conference on Advanced Information Systems En-
gineering (pp. 290–304).

Anthony, R. J. (2009). Policy-based Autonomic Computing with Integral
Support for Self-Stabilisation. International Journal of Autonomic Com-
puting, 1(1), 1–33.

Antonellis, V. D., Melchiori, M., Santis, L. D., Mecella, M., Mussi, E., Per-
nici, B., & Plebani, P. (2006). A Layered Architecture For Flexible Web
Service Invocation. Software: Practice and Experience, 36(2), 191–223.

Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., & Plebani, P. (2007).
PAWS: A Framework for Executing Adaptive Web-Service Processes.
IEEE Software, 24(6), 39–46.

Arsanjani, A. (2005). Toward a Pattern Language for Service-Oriented Ar-
chitecture and Integration, Part 2: Service Composition. http://www.
ibm.com/developerworks/webservices/library/ws-soa-soi2/.

Ashby, W. R. (1960). Design for a Brain, 2nd Edition. Chapman & Hall.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing, 1(1), 11–33.

Bae, J., Bae, H., Kang, S.-H., & Kim, Y. (2004). Automatic Control of
Workflow Processes Using ECA Rules. IEEE Transactions on Knowledge
and Data Engineering, 16(8), 1010–1023.

Baldoni, M., Baroglio, C., Chopra, A. K., Desai, N., Patti, V., & Singh,
M. P. (2009). Choice, Interoperability, and Conformance in Interaction
Protocols and Service Choreographies. In AAMAS ’09: Proceedings of the
8th International Joint Conference on Autonomous Agents and Multiagent
Systems (pp. 843–850).

BIBLIOGRAPHY 183

Bandinelli, S., Nitto, E. D., & Fuggetta, A. (1994). Policies and Mechanisms
to Support Process Evolution in PSEEs. In ICSP3 : Proceedings of the
3rd IEEE International Conference on the Software Process (pp. 9–20).

Baresi, L., Guinea, S., & Pasquale, L. (2007a). Self-healing BPEL Processes
with Dynamo and the JBoss Rule Engine. In ESSPE ’07: International
Workshop on Engineering of Software Services for Pervasive Environments
(pp. 11–20).

Baresi, L., Guinea, S., Pistore, M., & Trainotti, M. (2009). Dynamo + Astro:
An Integrated Approach for BPEL Monitoring. In ICWS ’09:Proceedings
of the 2009 IEEE International Conference on Web Services (pp. 230–237).

Baresi, L., Nitto, E. D., Ghezzi, C., & Guinea, S. (2007b). A Framework for
the Deployment of Adaptable Web Service Compositions. Service Oriented
Computing and Applications, 1(1), 75–91.

Baryannis, G., Carro, M., Danylevych, O., Dustdar, S., Karastoyanova, D.,
Kritikos, K., Leinter, P., Rosenberg, F., & Wetzstein, B. (2008). Overview
of the State of the Art in Composition and Coordination of Services. De-
liverable PO-JRA-2.2.1, S-Cube Consortium.

Becker, K., Lopes, A., Milojicic, D. S., Pruyne, J., & Singhal, S. (2008). Au-
tomatically Determining Compatibility of Evolving Services. In ICWS ’08:
Proceedings of the 2008 IEEE International Conference on Web Services
(pp. 161–168).

Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey, M. J.,
Feygin, D., Hately, A., Kochman, R., Macias, P., Novotny, M.,
Paolucci, M., von Riegen, C., Rogers, T., Sycara, K., Wenzel, P., &
Wu, Z. (2004). Universal Description Discovery Integration (Version
3). http://www.oasis-open.org/committees/uddi-spec/doc/spec/
v3/uddi-v3.0.2-20041019.htm.

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., & Toumani, F.
(2005). Developing Adapters for Web Services Integration. In CAISE ’05:
Proceedings of the 17th International Conference on Advanced Information
Systems Engineering (pp. 415–429).

184 BIBLIOGRAPHY

Benatallah, B., Casati, F., & Toumani, F. (2004a). Analysis and Man-
agement of Web Service Protocols. In ER ’04: Proceedings of the 23rd
International Conference on Conceptual Modeling (pp. 524–541).

Benatallah, B., Casati, F., & Toumani, F. (2004b). Web Service Conversa-
tion Modeling: A Cornerstone for E-Business Automation. IEEE Com-
puter, 8(1), 46–54.

Benatallah, B., Casati, F., & Toumani, F. (2006). Representing, Analysing
and Managing Web service Protocols. Data and Knowledge Engineering,
58, 347–357.

Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Mecella, M.
(2003). Automatic Composition of e-Services that Export their Behavior.
In ICSOC ’03: Proceedings of the 1st International Conference on Service
Oriented Computing (pp. 43–58).

Berardi, D., Calvanese, D., Giacomo, G. D., Hull, R., & Mecella, M. (2005a).
Automatic Composition of Transition-based Semantic Web Services with
Messaging. In VLDB ’05: Proceedings of the 31st International Conference
on Very Large Databases (pp. 613–624).

Berardi, D., Calvanese, D., Giacomo, G. D., Hull, R., & Mecella, M. (2005b).
Automatic Composition of Web Services in Colombo. In SEBD ’05: Pro-
ceedings of the Thirteenth Italian Symposium on Advanced Database Sys-
tems (pp. 8–15).

Bernstein, P. A. (2003). Applying Model Management to Classical Meta
Data Problems. In CIDR ’03: Proceedings of the First Biennial Conference
on Innovative Data Systems Research.

Bernstein, P. A., Halevy, A. Y., & Pottinger, R. A. (2000). A Vision for
Management of Complex Models. ACM SIGMOD Record, 29(4), 55–63.

Berre, A.-J., Hahn, A., Akehurst, D., Bezivin, J., Tsalgatidou, A., Vermaut,
F., Kutvonen, L., & Linington, P. F. (2004). State-of-the-art for Interop-
erability Architecture Approaches. EU INTEROP Network of Excellence
Deliverable D9.1.

BIBLIOGRAPHY 185

Betin-Can, A., Bultan, T., & Fu, X. (2005). Design for Verification for
Asynchronously Communicating Web Services. In WWW ’05: Proceedings
of the 14th international conference on World Wide Web (pp. 750–759).

Bézivin, J. (2005). On the Unification Power of Models. Software and System
Modeling, 4(2), 171–188.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,
& Orchard, D. (2004). Web Services Architecture. Working notes, W3C.

Brand, D. & Zafiropulo, P. (1983). On Communicating Finite-State Ma-
chines. Journal of the ACM, 30(2), 323–342.

BRG (2000). Defining Business Rules, What are They Really? http:
//www.businessrulesgroup.org/first_paper/br01c0.htm.

Brogi, A., Canal, C., Pimentel, E., & Vallecillo, A. (2004). Formalizing
Web Service Choreographies. Electronic Notes in Theoretical Computer
Science, 105(10), 73–94.

Brown, A., Fuchs, M., Robie, J., & Wadler, P. (2001). MSL. A Model for
W3C XML Schema. In WWW ’01: Proceedings of the 10th International
Conference on World Wide Web (pp. 191–200).

Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., & Winter, S. (2009). For-
malizing the Notion of Adaptive System Behavior. In SAC ’09: Proceed-
ings of the 2009 ACM Symposium on Applied Computing (pp. 1029–1033).

Bruning, S., Weissleder, S., & Malek, M. (2007). A Fault Taxonomy for
Service-Oriented Architecture. In HASE ’07: Proceedings of the 10th IEEE
High Assurance Systems Engineering Symposium (pp. 367–368).

Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel, G. (2005). Towards
a Taxonomy of Software Change. Journal of Software Maintenance And
Evolution: Research and Practice, 17, 309–332.

Bullard, V., Murray, B., & Wilson, K. (2006). An Introduction to WSDM.
Committee Draft. wsdm-1.0-intro-primer-cd-01, OASIS.

Bullard, V. & Vambenepe, W. (2006). Web Services Distributed Manage-
ment: Management Using Web Services (MUWS1.1) Part 1. Oasis com-
mittee draft, OASIS.

186 BIBLIOGRAPHY

Bultan, T., Fu, X., Hull, R., & Su, J. (2003). Conversation Specification:
a New Approach to Design and Analysis of e-Service Composition. In
WWW ’03: Proceedings of the 12th International Conference on World
Wide Web (pp. 403–410).

Bunke, H. (2000). Graph Matching: Theoretical Foundations, Algorithms,
and Applications. In VI ’2000: Proceedings of the International Confer-
ence on Vision Interface (pp. 82–88).

Calvanese, D., Giacomo, G. D., Lenzerini, M., Mecella, M., & Patrizi, F.
(2008). Automatic Service Composition and Synthesis: the Roman Model.
IEEE Data Engineering Bulletin, 31(3), 18–22.

Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). Machine Learn-
ing: A Historical and Methodological Analysis. AI Magazine, 4(3), 69–79.

Cardoso, J. (2006). Complexity Analysis of BPEL Web Processes. Software
Process: Improvement and Practice, 12(1), 35–49.

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1996). Workflow Evolution. In
ER ’96: Proceedings of the 15th International Conference on Conceptual
Modeling (pp. 438–455).

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998). Workflow Evolution.
Data & Knowledge Engineering, 24(3), 211–238.

Casati, F., Shan, E., Dayal, U., & Shan, M.-C. (2003). Business-Oriented
Management of Web Services. Communications of the ACM, 46(10), 55–
60.

Chan, K. S., Bishop, J., Steyn, J., Baresi, L., & Guinea, S. (2007). A Fault
Taxonomy for Web Service Composition. In WESOA ’07: Third Interna-
tional Workshop on Engineering Service-Oriented Applications: Analysis,
Design, and Composition (pp. 363–375).

Charfi, A., Dinkelaker, T., & Mezini, M. (2009). A Plug-in Architecture for
Self-Adaptive Web Service Compositions. In ICWS ’09: Proceedings of
7th International Conference on Web Services (pp. 35–42).

Charfi, A. & Mezini, M. (2004). Hybrid Web Service Composition: Business
Processes meet Business Rules. In ICSOC ’04: Proceedings of the 2nd
international conference on Service oriented computing (pp. 30–38).

BIBLIOGRAPHY 187

Cheng, S.-W., Garlan, D., & Schmerl, B. (2006). Architecture-Based Self-
Adaptation in the Presence of Multiple Objectives. In SEAMS ’06: Pro-
ceedings of the 2006 International Workshop on Self-adaptation and Self-
Managing Systems (pp. 2–8).

Cibrán, M. A., Verheecke, B., Vanderperren, W., Suvée, D., & Jonckers, V.
(2007). Aspect-oriented Programming for Dynamic Web Service Selection,
Integration and Management. World Wide Web, 10(3), 211–242.

Cisco (2007). Service Virtualization: Managing Change in a Service-Oriented
Architecture. White paper, CISCO.

Cobena, G., Abiteboul, S., & Marian, A. (2002). Detecting Changes in XML
Documents. In Proceedings of the 18th International Conference on Data
Engineering (ICDE 2002) (pp. 41–52).

Colombo, M., Nitto, E. D., & Mauri, M. (2006). SCENE: A Service Compo-
sition Execution Environment Supporting Dynamic Changes Disciplined
Through Rules. In ICSOC ’06: Proceedings of the 4th International Con-
ference on Service-Oriented Computing (pp. 191–202).

Cottrell, L. (2001). Passive vs Active Monitoring. http://www.slac.
stanford.edu/comp/net/wan-mon/passive-vs-active.html.

Cox, D. E. & Kreger, H. (2005). Management of the Service-Oriented Ar-
chitecture Life Cycle. IBM Systems Journal, 44(4), 709–726.

Curbera, F. (2007). Component Contracts in Service-Oriented Architectures.
Computer, 40(11), 74–80.

Curbera, F., Duftler, M. J., Khalaf, R., Nagy, W. A., Mukhi, N., &
Weerawarana, S. (2005). Colombo: Lightweight Middleware for Service-
Oriented Computing. IBM Systems Journal, 44(4), 799–820.

Daniel, F. & Pernici, B. (2006). Insights into Web Service Orchestration and
Choreography. International Journal of E-Business Research, 2(1), 58–77.

Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-Directed
Requirements Acquisition. Science of Computer Programming, 20(1-2),
3–50.

188 BIBLIOGRAPHY

De Backer, M., Snoeck, M., Monsieur, G., Lemahieu, W., & Dedene, G.
(2009). A Scenario-based Verification Technique to Assess the Compatibil-
ity of Collaborative Business Processes. Data and Knowledge Engineering,
68(6), 531–551.

Delgado, N., Gates, A. Q., & Roach, S. (2004). A Taxonomy and Cata-
log of Runtime Software-Fault Monitoring Tools. IEEE Transactions on
Software Engineering, 30(12), 859–872.

Denaro, G., Pezze, M., Tosi, D., & Schilling, D. (2006). Towards Self-
Adaptive Service-Oriented Architectures. In TAV-WEB ’06: Proceedings
of the 2006 workshop on Testing, Analysis, and Verification of Web Ser-
vices and Applications (pp. 10–16).

Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., & Pohl, K. (2008).
A Journey to Highly Dynamic, Self-Adaptive Service-Based Applications.
Automated Software Engineering, 15(3-4), 313–341.

DMTF (2008). Web Services for Management (WS-Management) Specifica-
tion. Final Standard DSP0226, Distributed Management Task Force.

Dorn, C., Schall, D., & Dustdar, S. (2009). A Model and Algorithm for
Self-Adaptation in Service-oriented Systems. In ECOWS ’09: Proceedings
of the European Conference on Web Services.

Dustdar, S., Goeschka, K. M., Truong, H.-L., & Zdun, U. (2009). Self-
Adaptation Techniques for Complex Service-oriented Systems. In Pro-
ceedings of the 5th IEEE International Conference on Next Generation
Web Services Practices.

Dustdar, S. & Schreiner, W. (2005). A Survey on Web Services Composition.
International Journal on Web and Grid Services, 1(1), 1–30.

Ellis, C., Keddara, K., & Rozenberg, G. (1995). Dynamic Change within
Workflow Systems. In COCS ’95: Proceedings of Conference on Organi-
zational Computing Systems (pp. 10–21).

Ernst, M. D., Lencevicius, R., & Perkins, J. H. (2006). Detection of Web
Service Substitutability and Composability. In WS-MaTe ’06: Proceeding
of the International Workshop on Web Services — Modeling and Testing
(pp. 123–135).

BIBLIOGRAPHY 189

Fabro, M. D. D., Bézivin, J., Jouault, F., & Valduriez, P. (2005). Applying
Generic Model Management to Data Mapping. In BDA ’05:Proceedings
of the Journées Bases de Données Avancées.

Fallside, D. & Walmsley, P. (2004). XML Schema Part 0: Primer Second
Edition. W3C.

Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Chen, Y., & Du, N.
(2007). A Version-aware Approach for Web Service Directory. In ICWS
’07: Proceedings of the IEEE International Conference on Web Services
(pp. 406–413).

Farrell, J. & Lausen, H. (2007). Semantic Annotations for WSDL and XML
Schema. W3C Recommendation, W3C.

Fensel, D. & Bussler, C. (2002). The Web Service Modeling Framework
WSMF. Electronic Commerce Research and Applications, 1(2), 113–137.

Fu, X. (2004). Formal Specification and Verification of Asynchronously Com-
municating Web Services. PhD thesis, University of California.

Fu, X., Bultan, T., & Su, J. (2004a). Analysis of Interacting BPEL Web
Services. In WWW ’04: Proceedings of the 13th International Conference
on World Wide Web (pp. 621–630).

Fu, X., Bultan, T., & Su, J. (2004b). Conversation Protocols: a Formalism
for Specification and Verification of Reactive Electronic Services. Theoret-
ical Computer Science, 328(1-2), 19–37.

Fu, X., Bultan, T., & Su, J. (2004c). Model Checking Interactions of Com-
posite Web Services. Technical report, University of California at Santa
Barbara.

Fu, X., Bultan, T., & Su, J. (2004d). Model Checking XML Manipulating
Software. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (pp. 252–262).

Fu, X., Bultan, T., & Su, J. (2004e). WSAT: A Tool for Formal Analy-
sis of Web Services. In CAV ’04: Proceedings of the 16th International
Conference on Computer Aided Verification (pp. 510–514).

190 BIBLIOGRAPHY

Ganek, A. G. & Corbi, T. A. (2003). The Dawning of the Autonomic Com-
puting Era. IBM Systems Journal, 42(1), 5–18.

Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An Overview of
Workflow Management: from Process Modeling to Workflow Automation
Infrastructure. Distributed and Parallel Databases, 3(2), 119–153.

Gerede, Ç. E., Hull, R., Ibarra, O. H., & Su, J. (2004). Automated Compo-
sition of e-Services: Lookaheads. In ICSOC ’04: Proceedings of the 2nd
International Conference on Service Oriented Computing (pp. 252–262).

Gjørven, E., Rouvoy, R., & Eliassen, F. (2008). Cross-Layer Self-Adaptation
of Service-Oriented Architectures. In MW4SOC ’08: Proceedings of the
3rd Workshop on Middleware for Service Oriented Computing (pp. 37–42).

Greenfield, J. & Short, K. (2004). Software Factories: Assembling Applica-
tions with Patterns, Frameworks, Models & Tools. John Wiley & Sons.

Hamadi, R. & Benatallah, B. (2003). A Petri Net-based Model for Web
Service Composition. In ADC ’03: Proceedings of the 14th Australasian
Database Conference (pp. 191–200).

Hamadi, R. & Benatallah, B. (2004). Recovery Nets: Towards Self-Adaptive
Workfow Systems. In WISE ’04: Proceedings of the 5th International
Conference on Web Information Systems Engineering (pp. 439–453).

Hamadi, R. & Benatallah, B. (2005). Dynamic Restructuring of Recovery
Nets. In ADC ’05: Proceedings of the 16th Australasian Database Confer-
ence (pp. 37–46).

Hamadi, R., Benatallah, B., & Medjahed, B. (2008). Self-adapting Recovery
Nets for Policy-driven Exception Handling in Business Processes. Dis-
tributed and Parallel Databases, 23(1), 1–44.

Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic Logic. MIT Press.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in
Information Systems Research. Management Information Systems Quar-
terly, 28, 75–105.

BIBLIOGRAPHY 191

Hiel, M. & Weigand, H. (2006). Requirements On the Use Of Goal-directed
Imitation for Self-adaptation. In SAACS ’06: Proceedings of the 4th Inter-
national Workshop on Self-Adaptive and Autonomic Computing Systems
(pp. 98–103).

Hiel, M. & Weigand, H. (2009). Interoperability Changes in an Adaptive
Service Orchestration. In ICWS ’09: Proceedings of 7th International
Conference on Web Services (pp. 351–358).

Hiel, M., Weigand, H., & van den Heuvel, W.-J. (2008a). An Adaptive
Service Oriented Architecture. In IESA ’08: Proceedings of the 4th Inter-
national Conference Interoperability for Enterprise Software and Applica-
tions (pp. 197–208). (Best Young Researcher Paper Award).

Hiel, M., Weigand, H., & van den Heuvel, W.-J. (2008b). An Adaptive
Service Oriented Architecture. International Journal of Interoperability in
Business Information Systems, 2(3), 37–51.

Hielscher, J., Metzger, A., & Kazhamiakin, R. (2009). Taxonomy of Adapta-
tion Principles and Mechanisms. Contractual Deliverable CD-JRA-1.2.2,
S-Cube Consortium.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., & Meyer, J.-J. C. (1999).
Agent Programming in 3APL. Autonomous Agents and Multi-Agent Sys-
tems Journal, 2, 357–401.

Hinz, S., Schmidt, K., & Stahl, C. (2005). Transforming BPEL to Petri
Nets. In BPM’ 05: Proceedings of the Third International Conference on
Business Process Management (pp. 220–235).

Holley, K., Channabasavaiah, K., & Tuggle, J. (2003). Migrating to a Service-
Oriented Architecture, IBM DeveloperWorks.

Holzmann, G. J. (2004). The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2000). Introduction to Au-
tomata Theory, Languages, and Computation (2nd Edition). Addison Wes-
ley.

192 BIBLIOGRAPHY

Horn, P. (2001). Autonomic Computing: IBM’s Perspective on the State of
Information Technology. Manifesto, IBM Research.

Hull, R., Llirbat, F., Siman, E., Su, J., Dong, G., Kumar, B., & Zhou,
G. (1999). Declarative Workflows that Support Easy Modification and
Dynamic Browsing. In WACC ’99: Proceedings of the International Joint
Conference on Work Activities Coordination and Collaboration (pp. 69–
78).

Hull, R. & Su, J. (2005). Tools for Composite Web Services: A Short
Overview. SIGMOD Record, 34(2), 86–95.

IBM (2003). An Architectural Blueprint for Autonomic Computing.

International Organization for Standardization and International Elec-
trotechnical Comission (2001). Software engineering – Product quality
– Part 1: Quality Model. ISO/IEC 9126-1:2001.

Joeris, G. & Herzog, O. (1999). Towards Flexible and High-Level Modeling
and Enacting of Processes. In CAiSE ’99: Proceedings of the 11th Inter-
national Conference on Advanced Information Systems Engineering (pp.
88–102).

Jones, C. (2006). The Economics of Software Maintenance In The Twenty
First Century. Unpublished Manuscript.

Kaminski, P., Litoiu, M., & Müller, H. (2006a). A Design Technique for
Evolving Web Services. In CASCON ’06: Proceedings of the 2006 Confer-
ence of the Center for Advanced Studies on Collaborative Research (pp.2̃3).

Kaminski, P., Müller, H., & Litoiu, M. (2006b). A Design for Adaptive Web
Service Evolution. In SEAMS ’06: Proceedings of the 2006 international
Workshop on Self-Adaptation and Self-Managing Systems (pp. 86–92).

Karastoyanova, D. & Leymann, F. (2009). BPELŠnŠAspects: Adapting Ser-
vice Orchestration Logic. In ICWS ’09: Proceedings of 7th International
Conference on Web Services

Kennedy, J, R. E. (2001). Swarm Intelligence. Morgan Kaufmann.

Kenney, F. (2008). Ahh Shucks, SOA is a Failure. http://blogs.gartner.
com/frank_kenney/2008/11/12/ahh-shucks-soa-is-a-failure/.

BIBLIOGRAPHY 193

Kensche, D., Quix, C., Li, X., & Li, Y. (2007). GeRoMeSuite: a System
for Holistic Generic Model Management. In VLDB ’07: Proceedings of the
33rd International Conference on Very Large Data Bases (pp. 1322–1325).

Kephart, J. & Chess, D. (2003). The Vision of Autonomic Computing.
Computer, 36(1), 41 – 50.

Khalaf, R., Keller, A., & Leymann, F. (2006). Business Processes for Web
Services: Principles and Applications. IBM Systems Journal, 45(2), 425–
446.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., & Irwin, J. (1997). Aspect-Oriented Programming. In ECOOP ’97:
Proceedings of the European Conference on Object-Oriented Programming
(pp. 220–242).

Knoll, K. & Jarvenpaa, S. L. (1994). Information Technology Alignment
or “fit” in Highly Turbulent Environments: the Concept of Flexibility. In
SIGCPR ’94: Proceedings of the 1994 Computer Personnel Research Con-
ference on Reinventing IS: Managing Information Technology in Changing
Organizations (pp. 1–14).

Kokar, M. M., Baclawski, K., & Eracar, Y. A. (1999). Control Theory-Based
Foundations of Self-Controlling Software. IEEE Intelligent Systems, 14(3),
37–45.

Kongdenfha, W., Saint-Paul, R., Benatallah, B., & Casati, F. (2006). An
Aspect-Oriented Framework for Service Adaptation. In ICSOC ’06: Pro-
ceeding of the 4th International Conference of Service Oriented Computing
(pp. 15–26).

Kreger, Sedukhin, V., Graham, & Murray (2005). Management Using Web
Services a Proposed Architecture and Roadmap. ftp://www6.software.
ibm.com/software/developer/library/ws-mroadmap.pdf.

Lehman, M. M. (1980). On Understanding Laws, Evolution and Conserva-
tion in the Large-Program Life Cycle. Journal of Systems and Software,
1, 213–221.

194 BIBLIOGRAPHY

Leonardi, E., Hoai, T. T., Bhowmick, S. S., & Madria, S. (2007). DTD-Diff:
A Change Detection Algorithm for DTDs. Data & Knowledge Engineering,
61(2), 384–402.

Lieberman, H. & Selker, T. (2000). Out of Context: Computer Systems
that Adapt to, and Learn from, Context. IBM Systems Journal, 39(3-4),
617–632.

Liu, Y. (2009). A Process Modeling-based Approach for Web Service Man-
agement. In ICWS ’09: Proceedings of 7th International Conference on
Web Services (pp. 928–935).

Liu, Y., Müller, S., & Xu, K. (2007). A Static Compliance-Checking Frame-
work for Business Process Models. IBM Systems Journal, 46(2), 335–361.

Lohmann, N., Verbeek, E., Ouyang, C., Stahl, C., & van der Aalst, W.
M. P. (2009). Comparing and Evaluating Petri Net Semantics for BPEL.
International Journal of Business Process Integration and Management,
4, 60–73.

Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., & Wassermann, B.
(2009). REST-Based Management of Loosely Coupled Services. In WWW
’09: Proceedings of the 18th International Conference on World Wide Web
(pp. 931–940).

Madhusudan, T., Zhao, J. L., & Marshall, B. (2004). A Case-Based Rea-
soning Framework for Workflow Model Management. Data & Knowledge
Engineering, 50(1), 87–115.

Maes, P. (1987). Concepts and Experiments in Computational Reflection.
In OOPSLA ’87: Proceedings of the ACM Conference on Object-Oriented
Languages (pp. 147 – 155).

Manes, A. T. (2009). SOA is Dead; Long Live Services. http://apsblog.
burtongroup.com/2009/01/soa-is-dead-long-live-services.html.

Mariani, L. (2003). A Fault Taxonomy for Component-Based Software. In
TACoS’03: Proceedings of the International Workshop on Test and Anal-
ysis of Component-Based Systems (Satellite Event of ETAPS 2003) (pp.
55–65).

BIBLIOGRAPHY 195

Martens, A. (2003). On Compatibility of Web Services. Petri Net Newsletter,
Special Interest Groups on Petri Nets and Related Systems Models, Oct.
2003, Gesellschaft für Informatik e.V., 65, 12–20.

Martin, P., Powley, W., Wilson, K., Tian, W., Xu, T., & Zebedee, J. (2007).
The WSDM of Autonomic Computing: Experiences in Implementing Au-
tonomic Web Services. In SEAMS ’07: Proceedings of the 2007 Interna-
tional Workshop on Software Engineering for Adaptive and Self-Managing
Systems (pp.9̃).

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., & Cheng, B. H. C. (2004a).
A Taxonomy of Compositional Adaptation. Technical Report MSU-CSE-
04-17, Department of Computer Science, Michigan State University, East
Lansing, Michigan.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., & Cheng, B. H. C. (2004b).
Composing Adaptive Software. IEEE Computer, 737(7), 56–64.

Medjahed, B., Benatallah, B., Bouguettaya, A., & Elmagarmid, A. K.
(2004). Webbis: An Infrastructure For Agile Integration Of Web Ser-
vices. International Journal of Cooperative Information Systems, 13(2),
121–158.

Medjahed, B., Bouguettaya, A., & Elmagarmid, A. K. (2003). Composing
Web Services on the Semantic Web. The International Journal on Very
Large Data Bases, 12(4), 333–351.

Melnik, S. (2004). Generic Model Management: Concepts and Algorithms.
PhD thesis, University of Leipzig.

Melnik, S., Rahm, E., & Bernstein, P. A. (2003a). Developing Metadata-
Intensive Applications with Rondo. Journal of Web Semantics, 1(1), 47–
74.

Melnik, S., Rahm, E., & Bernstein, P. A. (2003b). Rondo: a Programming
Platform for Generic Model Management. In SIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD International Conference on Management of
Data (pp. 193–204).

Milanovic, N. & Malek, M. (2004). Current Solutions for Web Service Com-
position. IEEE Internet Computing, 8(6), 51–59.

196 BIBLIOGRAPHY

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Moser, O., Rosenberg, F., & Dustdar, S. (2008). Non-Intrusive Monitoring
and Service Adaptation for WS-BPEL. In WWW ’08: Proceeding of the
17th international conference on World Wide Web (pp. 815–824).

Muhl, G., Fiege, L., & Pietzuch, P. R. (2006). Distributed Event-Based
Systems. Springer.

Müller, R., Greiner, U., & Rahm, E. (2004). AGENT WORK: a Workflow
System Supporting Rule-Based Workflow Adaptation. Data & Knowledge
Engineering, 51(2), 223–256.

Muth, P., Wodtke, D., Weissenfels, J., Weikum, G., & Kotz-Dittrich, A.
(1997). Enterprise-Wide Workflow Management Based on State and Activ-
ity Charts. In NATO Advanced Study Institute on Workflow Management
Systems and Interoperability.

Nezhad, H. R. M., Benatallah, B., Martens, A., Curbera, F., & Casati, F.
(2007). Semi-Automated Adaptation of Service Interactions. In WWW
’07: Proceedings of the 16th International Conference on World Wide Web
(pp. 993–1002).

OASIS (2004). Web Services Distributed Management: Management of Web
Services (WSDM-MOWS) 1.0. Oasis committee draft, Organization for
the Advancement of Structured Information Standards.

OASIS (2006). Reference Model for Service Oriented Architecture. Official
oasis standard, Organization for the Advancement of Structured Informa-
tion Standards.

O’Brien, L., Merson, P., & Bass, L. (2007). Quality Attributes for Service-
Oriented Architectures. In SDSOA ’07: Proceedings of the International
Workshop on Systems Development in SOA Environments (pp.3̃).

OMG (2003). MDA Guide Version 1.0.1. Technical report, Object Manage-
ment Group.

OMG (2009). Service oriented architecture Modeling Language (SoaML) Ver-
sion 1.0 - Beta 1. FTF Beta 1 ptc/2009-04-01, Object Management Group.

BIBLIOGRAPHY 197

Orchard, D. (2006). A Theory of Compatible Versions. http://www.xml.
com/pub/a/2006/12/20/a-theory-of-compatible-versions.html.

Orriëns, B. (2007). On The Development and Management of Adaptive Busi-
ness Collaborations. PhD thesis, Tilburg University.

Orriëns, B., Yang, J., & Papazoglou, M. P. (2003). Model Driven Service
Composition. In ICSOC’ 03: Proceedings of the 1st International Confer-
ence on Service Oriented Computing (pp. 75–90).

Papazoglou, M. (2008). The Challenges of Service Evolution. In CAiSE ’08:
Proceedings of The 20th International Conference on Advanced Informa-
tion Systems Engineering (pp. 1–15).

Papazoglou, M. P. (2003). Service-Oriented Computing: Concepts, Char-
acteristics and Directions. In WISE ’03: Proceedings of the Fourth In-
ternational Conference on Web Information Systems Engineering (pp. 3–
12).

Papazoglou, M. P. (2005). Extending the Service Oriented Architecture.
Business Integration Journal, (pp. 18–21).

Papazoglou, M. P. & Georgakapoulos, G. (2003). Introduction to the Special
Issue about Service-Oriented Computing. Communications of the ACM,
46(10), 24–28.

Papazoglou, M. P. & Ribbers, P. M. (2006). e-Business: Organizational and
Technical Foundations. Wiley.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-
Oriented Computing: State of the Art and Research Challenges. IEEE
Computer, 7, 64 – 71.

Papazoglou, M. P. & van den Heuvel, W. (2007). Service Oriented Architec-
tures: Approaches, Technologies and Research Issues. The International
Journal on Very Large Data Bases, 16(3), 389–415.

Papazoglou, M. P. & van den Heuvel, W.-J. (2005). Web Services Manage-
ment: A Survey. IEEE Internet Computing, (pp. 58–64).

Park, J. & Kim, K. (2009). Hyperlinking the Work for Self-Management of
Flexible Workflows. Communications of the ACM, 52(6), 113–117.

198 BIBLIOGRAPHY

Parnas, D. L. (1994). Software Aging. In ICSE ’94: Proceedings of the 16th
International Conference on Software Engineering (pp. 279–287).

Pathak, J., Basu, S., & Honavar, V. (2007). On Context-Specific Substi-
tutability of Web Services. In ICWS’07: Proceedings of the IEEE Inter-
national Conference on Web Services (pp. 192–199).

Pathak, J., Basu, S., Lutz, R., & Honavar, V. (2006a). Parallel Web Service
Composition in MoSCoE: A Choreography-based Approach. In ECOWS
’06: Proceedings of the 4th IEEE European Conference on Web Services
(pp. 3–12).

Pathak, J., Basu, S., Lutz, R., & Honavar, V. (2006b). Selecting and Com-
posing Web Services through Iterative Reformulation of Functional Spec-
ifications. In Proceedings of the 18th IEEE International Conference on
Tools with Artificial Intelligence (pp. 445–454).

Pathak, J., Basu, S., Lutz, R. R., & Honavar, V. (2008). MOSCOE: an
Approach for Composing Web Services through Iterative Reformulation of
Functional Specifications. International Journal on Artificial Intelligence
Tools, 17, 109–138.

Peltz, C. (2003). Web Services Orchestration and Choreography. IEEE
Computer, 36(10), 46–52.

Pesic, M., Schonenberg, M. H., Sidorova, N., & van der Aalst, W. M. P.
(2007). Constraint-Based Workflow Models: Change Made Easy. In
Proceedings of the OTM Confederated International Conferences CoopIS,
DOA, ODBASE, GADA, and IS 2007 (pp. 77–94).

Pesic, M. & van der Aalst, W. M. P. (2006). A Declarative Approach for
Flexible Business Processes Management. In BPM ’06: Proceedings of the
Business Process Management Workshops (pp. 169–180).

Pistore, M., Marconi, A., Bertoli, P., & Traverso, P. (2005a). Automated
Composition of Web Services by Planning at the Knowledge Level. In
IJCAI’05: Proceedings of the 19th International Joint Conference on Ar-
tificial intelligence (pp. 1252–1259).

BIBLIOGRAPHY 199

Pistore, M., Traverso, P., Bertoli, P., & Marconi, A. (2005b). Automated
Synthesis of Composite BPEL4WS Web Services. In ICWS ’05: Proceed-
ings of the IEEE International Conference on Web Services (pp. 293–301).

Ponge, J., Toumani, F., Benatallah, B., & Casati, F. (2007). Fine-grained
Compatibility and Replaceability Analysis of Timed Web Service Proto-
cols. In Proceedings of the 26th International Conference on Conceptual
Modeling (ER’07).

Ponnekanti, S. R. & Fox, A. (2002). SWORD: A Developer Toolkit for Web
Service Composition. In WWW ’02: Proceedings of the 11th International
World Wide Web Conference.

Ponnekanti, S. R. & Fox, A. (2004). Interoperability Among Indepen-
dently Evolving Web Services. In Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware (pp. 331–
351).

Quartel, D. A., Steen, M. W., Pokraev, S., & Sinderen, M. J. (2007).
COSMO: A Conceptual Framework for Service Modelling and Refinement.
Information Systems Frontiers, 9(2-3), 225–244.

Rao, J. & Su, X. (2004). A Survey of Automated Web Service Composition
Methods. In Proceedings of the 1st International Workshop on Semantic
Web Services and Web Process Composition (pp. 43–54).

Regev, G., Bider, I., & Wegmann, A. (2007). Defining Business Process
Flexibility with the Help of Invariants. Software Process: Improvement
and Practice, 12(1), 65–79.

Reichert, M. & Dadam, P. (1998). Adept{flex}-Supporting Dynamic
Changes of Workflows Without Losing Control. Journal of Intelligent
Information Systems, 10(2), 93–129.

Reichert, M. & Rinderle, S. (2006). On Design Principles for Realizing
Adaptive Service Flows with BPEL. In EMISA ’06: Proceedings of the
Workshop “Methoden, Konzepte und Technologien für die Entwicklung von
dienstbasierten Informationssystemen" (pp. 133–146).

200 BIBLIOGRAPHY

Rinderle, S. & Reichert, M. (2006). Data-Driven Process Control and Ex-
ception Handling in Process Management Systems. In CAiSE ’06: Pro-
ceedings of the 18th International Conference on Advanced Information
Systems Engineering (pp. 273–287).

Rinderle, S., Reichert, M., & Dadam, P. (2004). Correctness Criteria for
Dynamic Changes in Workflow Systems: a Survey. Data & Knowledge
Engineering, 50, 9–34.

Rohr, M., Giesecke, S., Hasselbring, W., Hiel, M., van den Heuvel, W.-
J., & Weigand, H. (2006). A Classification Scheme for Self-adaptation
Research. In SOAS ’06: Proceedings of the International Conference on
Self-Organization and Autonomous Systems in Computing and Communi-
cations.

Rolland, C., Kaabi, R. S., & Kraïem, N. (2007). On ISOA: Intentional
Services Oriented Architecture. In CAiSE’07: Proceedings of the 19th
International Conference on Advanced Information Systems Engineering
(pp. 158–172).

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M.,
Polleres, A., Feier, C., Bussler, C., & Fensel, D. (2005). Web Service
Modeling Ontology. Applied Ontology, 1, 77 – 106.

Rosenberg, F. & Dustdar, S. (2005). Business Rules Integration in BPEL
- A Service-Oriented Approach. In CEC ’05: Proceedings of the Seventh
IEEE International Conference on E-Commerce Technology (pp. 476–479).
Washington, DC, USA: IEEE Computer Society.

Rosenblum, D. S. & Wolf, A. L. (1997). A Design Framework for Internet-
Scale Event Observation and Notification. ACM SIGSOFT Software En-
gineering Notes, 22(6), 344–360.

Russell, N., ter Hofstede, A., Edmond, D., & van der Aalst, W. (2004). Work-
flow Data Patterns. QUT Technical report FIT-TR-2004-01, Queensland
University of Technology.

Russell, N., ter Hofstede, A., van der Aalst, W., & Mulyar, N. (2006). Work-
flow Control-Flow Patterns : A Revised View. BPM Center Report BPM-
06-22, BPMcenter.org.

BIBLIOGRAPHY 201

Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., & Saint-Paul, R. (2008).
Supporting The Dynamic Evolution of Web Service Protocols in Service
Oriented Architectures. ACM Transaction on the Web, 2(2), 1–46.

Ryu, S. H., Saint-Paul, R., Benatallah, B., & Casati, F. (2007). A Frame-
work for Managing the Evolution of Business Protocols in Web Services.
In APCCM ’07: Proceedings of the 4th Asia-Pacific Conference on Com-
ceptual Modelling (pp. 49–59).

Sachs, W. M. (1999). Adaptation Revisited: Concepts for Proactive Manage-
ment of Change. Working papers, Reims Management School.

Sachs, W. M. & Meditz, M. L. (1979). A Concept of Active Adaptation.
Human Relations, 32(12), 1081–1093.

Sadiq, S. W., Orlowska, M. E., & Sadiq, W. (2005). Specification and Valida-
tion of Process Constraints for Flexible Workflows. Information Systems,
30(5), 349–378.

Sadiq, S. W., Sadiq, W., & Orlowska, M. E. (2001). Pockets of Flexibility in
Workflow Specification. In ER ’01: Proceedings of the 20th International
Conference on Conceptual Modeling (pp. 513–526).

Sagasti, F. (1970). A Conceptual and Taxonomic Framework for the Analysis
of Adaptive Behavior. General Systems, XV, 151–160.

Salaün, G., Bordeaux, L., & Schaerf, M. (2004). Describing and Reasoning
on Web Services using Process Algebra. In ICWS ’04: Proceedings of the
IEEE International Conference on Web Services (pp. 43–55).

Salehie, M. & Tahvildari, L. (2009). Self-Adaptive Software: Landscape and
Research Challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4(2), 1–42.

Sarbanes-Oxley Act (2002). Public Law 107-204 (116 Statute 745),United
States Senate and House of Reprensentatives in Congress.

Schilit, B. N., Adams, N., & Want, R. (1994). Context-Aware Computing
Applications. In WMCSA ’94: Proceedings of the IEEE Workshop on
Mobile Computing Systems and Applications (pp. 89–101).

202 BIBLIOGRAPHY

Sheng, Q. Z., Benatallah, B., Maamar, Z., & Ngu, A. H. H. (2009). Con-
figurable Composition and Adaptive Provisioning of Web Services. IEEE
Trans. Serv. Comput., 2(1), 34–49.

Siljee, J., Bosloper, I., Nijhuis, J., & Hammer, D. (2005). DySOA: Making
Service Systems Self-Adaptive. In B. Benatallah, F. Casati, & P. Traverso
(Eds.), ICSOC’05: Proceedings of the 3th International Conference on
Service-Oriented Computing, volume 3826 of Lecture Notes in Computer
Science (LNCS) (pp. 255–268).: Springer.

Simon, H. (1996). The Sciences of the Artificial. MIT Press.

Singh, M. P., Chopra, A. K., Desai, N., & Mallya, A. U. (2004). Protocols for
Processes: Programming in the Large for Open Systems. ACM SIGPLAN
Notices, 39(12), 73–83.

Stohr, E. A. & Zhao, J. L. (2001). Workflow Automation: Overview and
Research Issues. Information Systems Frontiers, 3(3), 281–296.

Swanson, E. B. (1976). The Dimensions of Maintenance. In ICSE ’76:
Proceedings of the 2nd International Conference on Software Engineering
(pp. 492–497).

Taher, Y., Ait-Bachir, A., Fauvet, M.-C., & Benslimane, D. (2009). Diag-
nosing Incompatibilities in Web Service Interactions for Automatic Gen-
eration of Adapters. In AINA ’09: Proceedings of the 2009 International
Conference on Advanced Information Networking and Applications (pp.
652–659).

Tanksali, S. (2006). Adaptive Service Oriented Architecture. Technical re-
port, Integration Consortium.

ter Beek, M., Bucchiarone, A., & Gnesi, S. (2007). Web Service Composition
Approaches: From Industrial Standards to Formal Methods. In Proceed-
ings of the 2nd International Conference on Internet and Web Applications
and Services (pp.1̃5).

Tian, W., Zulkernine, F. H., Zebedee, J., Powley, W., & Martin, P. (2005).
Architecture for an Autonomic Web Services Environment. In WSMDEIS
’05: Proceedings of the Joint Workshop on Web Services and Model-Driven
Enterprise Information Services (pp. 32–44).

BIBLIOGRAPHY 203

Tosi, D., Denaro, G., & Pezze, M. (2009). Towards Autonomic Service-
Oriented Applications. International Journal of Autonomic Computing,
1(1), 58–80.

Treiber, M., Truong, H. L., & Dustdar, S. (2008a). On Analyzing Evo-
lutionary Changes of Web Services. In Proceedings of the ICSOC 2008
Workshops (pp. 284–297).

Treiber, M., Truong, H. L., & Dustdar, S. (2008b). SEMF - Service Evolution
Management Framework. In SEAA ’08: Proceeding of the 34th Euromicro
Conference on Software Engineering and Advanced Applications (pp. 329–
336).

Utting, M., Pretschner, A., & Legeard, B. (2006). A Taxonomy of Model-
based Testing. Working Paper uow-cs-wp-2006-04, The University of
Waikato, New Zealand.

van Breugel, F. & Koshkina, M. (2006). Models and Verification of BPEL.
Technical report, York University.

van den Heuvel, W.-J. (2007). Aligning Modern Business Processes and
Legacy Systems: A Component-Based Perspective. MIT Press.

van den Heuvel, W.-J., Weigand, H., & Hiel, M. (2007). Configurable
Adapters: the Substrate of Self-Adaptive Web Services. In ICEC ’07:
Proceedings of the 9th International Conference on Electronic Commerce
(pp. 127–134).

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., & Barros, A. (2003).
Workflow Patterns. Distributed and Parallel Databases, 14(3), 5–51.

van Deursen, A., Visser, E., & Warmer, J. (2007). Model-Driven Software
Evolution: A Research Agenda. In D. Tamzalit (Ed.), MoDSE ’07: Pro-
ceeding of the CSMR Workshop on Model-Driven Software Evolution (pp.
41–49). Amsterdam, The Netherlands.

van Eijndhoven, T., Iacob, M.-E., & Ponisio, M. L. (2008). Achieving Busi-
ness Process Flexibility with Business Rules. In EDOC ’08: Proceedings
of the 2008 12th International IEEE Enterprise Distributed Object Com-
puting Conference (pp. 95–104).

204 BIBLIOGRAPHY

van Riemsdijk, M. B., Dastani, M., & Winikoff, M. (2008). Goals in Agent
Systems: a Unifying Framework. In AAMAS ’08: Proceedings of the
7th International Joint Conference on Autonomous Agents and Multia-
gent Systems (pp. 713–720).

van Riemsdijk, M. B. & Wirsing, M. (2007). Goal-Oriented and Procedural
Service Orchestration: A Formal Comparison. In MALLOW ’07: Proceed-
ings of the Multi-Agent Logics, Languages, and Organisations Federated
Workshops (pp. 3–18).

von Betalanffy, L. (1956). General Systems Theory. General Systems, 1.

von Halle, B. (2001). Business Rules Applied: Building Better Systems using
the Business Rules Approach. Wiley.

von Susani, O. & Dugerdil, P. (2009). Cross-Organizational Service Evolution
Management. In ITNG ’09: Proceedings of the 2009 6th International
Conference on Information Technology: New Generations (pp. 332–337).

W3C (1999). XML Path Language (XPath) Version 1.0. http://www.w3.
org/TR/xpath.

Walker, R. J., Baniassad, E. L. A., & Murphy, G. C. (1999). An Initial
Assessment of Aspect-Oriented Programming. In ICSE ’99: Proceedings
of the 21st International Conference on Software Engineering (pp. 120–
130).

Wang, J. T. L., Zhang, K., & Chirn, G.-W. (1995). Algorithms for Approxi-
mate Graph Matching. Information SciencesŮInformatics and Computer
Science: An International Journal, 82(1-2), 45–74.

Wang, S. & Capretz, M. A. M. (2009). A Dependency Impact Analysis Model
for Web Services Evolution. In ICWS ’09: Proceedings of 7th International
Conference on Web Services (pp. 359–365).

Wang, Y., DeWitt, D. J., & yi Cai, J. (2003). X-Diff: An Effective Change
Detection Algorithm for XML Documents. In ICDE ’03: Proceedings of
the 19th International Conference on Data Engineering (pp. 519–530).

Wassermann, B., Ludwig, H., Laredo, J., Bhattacharya, K., & Pasquale, L.
(2009). Distributed Cross-Domain Change Management. In ICWS ’09:

BIBLIOGRAPHY 205

Proceedings of the 2009 IEEE International Conference on Web Services
(pp. 59–66).

Web Services Interoperability Organization (2007). Sample applica-
tions. http://www.ws-i.org/deliverables/workinggroup.aspx?wg=
sampleapps.

Weber, B., Reichert, M., & Rinderle, S. (2008). Change Patterns and Change
Support Features - Enhancing Flexibility in Process-Aware Information
Systems. Data & knowledge engineering, 66(3), 438–466.

Weber, B., Reichert, M., & Wild, W. (2006). Case-Base Maintenance for
CCBR-Based Process Evolution. In Proceedings of the 8th European Con-
ference on Advances in Case-Based Reasoning (pp. 106–120).

Weigand, H. & van den Heuvel, W.-J. (2005). Leveraging Autonomic Col-
laborative Processes with Imitation. In ASMEA ’05: Proceedings of the
CAiSE ’05 Workshops (pp. 155–169).

Weske, M. (2004). Formal Foundation and Conceptual Design of Dynamic
Adaptations in a Workflow Management System. In HICCS ’04: Proceed-
ings of the 34th Hawaii International Conference on System Sciences.

Wieringa, R. J. & Heerkens, J. M. G. (2006). The Methodological Soundness
of Requirements Engineering Papers: A Conceptual Framework and Two
Case Studies. Requirements Engineering, 11(4), 295–307.

Winikoff, M., Padgham, L., Harland, J., & Thangarajah, J. (2002). Declar-
ative & Procedural Goals in Intelligent Agent Systems. In KR ’02: Pro-
ceedings of the 8th International Conference on Principles and Knowledge
Representation and Reasoning (pp. 470–481).

Wooldridge, M. J. (2001). Introduction to Multiagent Systems. John Wiley
& Sons, Inc.

Wooldridge, M. J. & Jennings, N. R. (1995). Intelligent Agents: Theory and
Practice. The Knowledge Engineering Review, 10(2), 115–152.

Yellin, D. M. & Strom, R. E. (1997). Protocol Specifications and Component
Adaptors. ACM Transactions on Programming Languages and Systems,
19(2), 292–333.

206 BIBLIOGRAPHY

Yi, X. & Kochut, K. J. (2004). A CP-nets-based Design and Verification
Framework for Web Services Composition. In ICWS ’04: Proceedings of
the IEEE International Conference on Web Services (pp. 756 – 760).

Yu, E. S. (1997). Towards Modeling and Reasoning Support for Early-Phase
Requirements Engineering. In RE ’97: Proceedings of the 3rd IEEE In-
ternational Symposium on Requirements Engineering (pp. 226–235).

Zadeh, L. (1963). On the Definition of Adaptivity. Proceedings IEEE (Cor-
respondence), 51, 469.

Zanikolas, S. & Sakellariou, R. (2005). A Taxonomy of Grid Monitoring
Systems. Future Generation Computer Systems, 21(1), 163–188.

Zhou, Z., Bhiri, S., Gaaloul, W., Shu, L., Vasiliu, L., & Hauswirth, M.
(2008a). Developing Process Mediator for Web Service Interactions. In
ICWS ’08: Proceedings of the IEEE International Conference on Web
Services (pp. 828–829).

Zhou, Z., Ning, K., Bhiri, S., Vasiliu, L., Shu, L., & Hauswirth, M. (2008b).
Behavioral Analysis of Web Services for Supporting Mediated Service In-
teroperations. In ICEC ’08: Proceedings of the 10th International Confer-
ence on Electronic Commerce (pp. 1–10).

SIKS Dissertation Series

1998

1998-1 ∥ Johan van den Akker (CWI),
DEGAS - An Active, Temporal Database of
Autonomous Objects.

1998-2 ∥ Floris Wiesman (UM), Infor-
mation Retrieval by Graphically Browsing
Meta-Information.

1998-3 ∥Ans Steuten (TUD), A Contribu-
tion to the Linguistic Analysis of Business
Conversations within the Language/Action
Perspective.

1998-4 ∥ Dennis Breuker (UM), Memory
versus Search in Games.

1998-5 ∥ E.W. Oskamp (RUL), Compu-
terondersteuning bij Straftoemeting.

1999

1999-1 ∥ Mark Sloof (VU), Physiology
of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural
Products.

1999-2 ∥ Rob Potharst (EUR), Classifica-
tion using decision trees and neural nets.

1999-3 ∥ Don Beal (UM), The Nature of
Minimax Search.

1999-4 ∥ Jacques Penders (UM), The
practical Art of Moving Physical Objects.

1999-5 ∥Aldo de Moor (KUB), Empower-
ing Communities: A Method for the Legiti-

mate User-Driven Specification of Network
Information Systems.

1999-6 ∥Niek J.E. Wijngaards (VU), Re-
design of compositional systems.

1999-7 ∥ David Spelt (UT), Verification
support for object database design.

1999-8 ∥ Jacques H.J. Lenting (UM), In-
formed Gambling: Conception and Analy-
sis of a Multi-Agent Mechanism for Discrete
Reallocation.

2000

2000-1 ∥ Frank Niessink (VU), Perspec-
tives on Improving Software Maintenance.

2000-2 ∥Koen Holtman (TUE), Prototyp-
ing of CMS Storage Management.

2000-3 ∥ Carolien M.T. Metselaar
(UVA), Sociaal-organisatorische gevolgen
van kennistechnologie; een procesbenadering
en actorperspectief.

2000-4 ∥ Geert de Haan (VU), ETAG, A
Formal Model of Competence Knowledge for
User Interface Design.

2000-5 ∥ Ruud van der Pol (UM),
Knowledge-based Query Formulation in In-
formation Retrieval.

2000-6 ∥ Rogier van Eijk (UU), Pro-
gramming Languages for Agent Communi-
cation.

208 BIBLIOGRAPHY

2000-7 ∥ Niels Peek (UU), Decision-
theoretic Planning of Clinical Patient Man-
agement.

2000-8 ∥ Veerle Coup (EUR), Sensitivity
Analyis of Decision-Theoretic Networks.

2000-9 ∥ Florian Waas (CWI), Principles
of Probabilistic Query Optimization.

2000-10 ∥ Niels Nes (CWI), Image
Database Management System Design Con-
siderations, Algorithms and Architecture.

2000-11 ∥ Jonas Karlsson (CWI), Scalable
Distributed Data Structures for Database
Management.

2001

2001-1 ∥ Silja Renooij (UU), Qualita-
tive Approaches to Quantifying Probabilistic
Networks.

2001-2 ∥Koen Hindriks (UU), Agent Pro-
gramming Languages: Programming with
Mental Models.

2001-3 ∥ Maarten van Someren (UvA),
Learning as problem solving.

2001-4 ∥ Evgueni Smirnov (UM), Con-
junctive and Disjunctive Version Spaces
with Instance-Based Boundary Sets.

2001-5 ∥ Jacco van Ossenbruggen (VU),
Processing Structured Hypermedia: A Mat-
ter of Style.

2001-6 ∥ Martijn van Welie (VU), Task-
based User Interface Design.

2001-7 ∥ Bastiaan Schonhage (VU),
Diva: Architectural Perspectives on Infor-
mation Visualization.

2001-8 ∥ Pascal van Eck (VU), A Compo-
sitional Semantic Structure for Multi-Agent
Systems Dynamics.

2001-9 ∥ Pieter Jan ’t Hoen (RUL),
Towards Distributed Development of Large

Object-Oriented Models, Views of Packages
as Classes.

2001-10 ∥ Maarten Sierhuis (UvA),
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and sim-
ulation language for work practice analysis
and design.

2001-11 ∥ Tom M. van Engers (VUA),
Knowledge Management: The Role of Men-
tal Models in Business Systems Design.

2002

2002-01 ∥ Nico Lassing (VU),
Architecture-Level Modifiability Analysis.

2002-02 ∥ Roelof van Zwol (UT), Mod-
elling and searching web-based document
collections.

2002-03 ∥ Henk Ernst Blok (UT),
Database Optimization Aspects for Infor-
mation Retrieval.

2002-04 ∥ Juan Roberto Castelo Val-
dueza (UU), The Discrete Acyclic Digraph
Markov Model in Data Mining.

2002-05 ∥ Radu Serban (VU), The Pri-
vate Cyberspace Modeling Electronic En-
vironments inhabited by Privacy-concerned
Agents.

2002-06 ∥ Laurens Mommers (UL),
Applied legal epistemology; Building a
knowledge-based ontology of the legal do-
main.

2002-07 ∥ Peter Boncz (CWI), Monet: A
Next-Generation DBMS Kernel For Query-
Intensive Applications.

2002-08 ∥ Jaap Gordijn (VU), Value
Based Requirements Engineering: Explor-
ing Innovative E-Commerce Ideas.

2002-09 ∥ Willem-Jan van den Heuvel
(KUB), Integrating Modern Business Appli-
cations with Objectified Legacy Systems.

BIBLIOGRAPHY 209

2002-10 ∥Brian Sheppard (UM), Towards
Perfect Play of Scrabble.

2002-11 ∥ Wouter C.A. Wijngaards
(VU), Agent Based Modelling of Dynam-
ics: Biological and Organisational Applica-
tions.

2002-12 ∥ Albrecht Schmidt (UVA), Pro-
cessing XML in Database Systems.

2002-13 ∥ Hongjing Wu (TUE), A Refer-
ence Architecture for Adaptive Hypermedia
Applications.

2002-14 ∥ Wieke de Vries (UU), Agent
Interaction: Abstract Approaches to Mod-
elling, Programming and Verifying Multi-
Agent Systems.

2002-15 ∥Rik Eshuis (UT), Semantics and
Verification of UML Activity Diagrams for
Workflow Modelling.

2002-16 ∥ Pieter van Langen (VU), The
Anatomy of Design: Foundations, Models
and Applications.

2002-17 ∥ Stefan Manegold (UVA),
Understanding, Modeling, and Improving
Main-Memory Database Performance.

2003

2003-01 ∥ Heiner Stuckenschmidt (VU),
Onotology-Based Information Sharing In
Weakly Structured Environments.

2003-02 ∥ Jan Broersen (VU), Modal Ac-
tion Logics for Reasoning About Reactive
Systems.

2003-03 ∥ Martijn Schuemie (TUD),
Human-Computer Interaction and Presence
in Virtual Reality Exposure Therapy.

2003-04 ∥Milan Petkovic (UT), Content-
Based Video Retrieval Supported by
Database Technology.

2003-05 ∥ Jos Lehmann (UVA), Causation

in Artificial Intelligence and Law - A model-
ling approach.

2003-06 ∥ Boris van Schooten (UT), De-
velopment and specification of virtual envi-
ronments.

2003-07 ∥ Machiel Jansen (UvA), For-
mal Explorations of Knowledge Intensive
Tasks.

2003-08 ∥ Yongping Ran (UM), Repair
Based Scheduling.

2003-09 ∥Rens Kortmann (UM), The res-
olution of visually guided behaviour.

2003-10 ∥ Andreas Lincke (UvT), Elec-
tronic Business Negotiation: Some exper-
imental studies on the interaction between
medium, innovation context and culture.

2003-11 ∥ Simon Keizer (UT), Reasoning
under Uncertainty in Natural Language Di-
alogue using Bayesian Networks.

2003-12 ∥ Roeland Ordelman (UT),
Dutch speech recognition in multimedia in-
formation retrieval.

2003-13 ∥ Jeroen Donkers (UM), Nosce
Hostem - Searching with Opponent Models.

2003-14 ∥ Stijn Hoppenbrouwers
(KUN), Freezing Language: Conceptuali-
sation Processes across ICT-Supported Or-
ganisations.

2003-15 ∥ Mathijs de Weerdt (TUD),
Plan Merging in Multi-Agent Systems.

2003-16 ∥ Menzo Windhouwer (CWI),
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses.

2003-17 ∥ David Jansen (UT), Extensions
of Statecharts with Probability, Time, and
Stochastic Timing.

2003-18 ∥ Levente Kocsis (UM), Learning
Search Decisions.

210 BIBLIOGRAPHY

2004

2004-01 ∥ Virginia Dignum (UU), A
Model for Organizational Interaction:
Based on Agents, Founded in Logic.

2004-02 ∥ Lai Xu (UvT), Monitoring
Multi-party Contracts for E-business.

2004-03 ∥ Perry Groot (VU), A Theoret-
ical and Empirical Analysis of Approxima-
tion in Symbolic Problem Solving.

2004-04 ∥ Chris van Aart (UVA), Orga-
nizational Principles for Multi-Agent Archi-
tectures.

2004-05 ∥ Viara Popova (EUR), Knowl-
edge discovery and monotonicity.

2004-06 ∥ Bart-Jan Hommes (TUD), The
Evaluation of Business Process Modeling
Techniques.

2004-07 ∥ Elise Boltjes (UM), Voorbeeldig
onderwijs; voorbeeldgestuurd onderwijs, een
opstap naar abstract denken, vooral voor
meisjes.

2004-08 ∥ Joop Verbeek (UM), Politie
en de Nieuwe Internationale Informatie-
markt, Grensregionale politiële gegevensuit-
wisseling en digitale expertise.

2004-09 ∥ Martin Caminada (VU), For
the Sake of the Argument; explorations into
argument-based reasoning.

2004-10 ∥ Suzanne Kabel (UVA),
Knowledge-rich indexing of learning-
objects.

2004-11 ∥ Michel Klein (VU), Change
Management for Distributed Ontologies.

2004-12 ∥ The Duy Bui (UT), Creating
emotions and facial expressions for embod-
ied agents.

2004-13 ∥ Wojciech Jamroga (UT), Us-
ing Multiple Models of Reality: On Agents
who Know how to Play.

2004-14 ∥ Paul Harrenstein (UU), Logic
in Conflict. Logical Explorations in Strate-
gic Equilibrium.

2004-15 ∥ Arno Knobbe (UU), Multi-
Relational Data Mining.

2004-16 ∥ Federico Divina (VU), Hy-
brid Genetic Relational Search for Inductive
Learning.

2004-17 ∥Mark Winands (UM), Informed
Search in Complex Games.

2004-18 ∥ Vania Bessa Machado (UvA),
Supporting the Construction of Qualitative
Knowledge Models.

2004-19 ∥ Thijs Westerveld (UT), Using
generative probabilistic models for multime-
dia retrieval.

2004-20 ∥ Madelon Evers (Nyenrode),
Learning from Design: facilitating multidis-
ciplinary design teams.

2005

2005-01 ∥ Floor Verdenius (UVA),
Methodological Aspects of Designing
Induction-Based Applications.

2005-02 ∥ Erik van der Werf (UM), AI
techniques for the game of Go.

2005-03 ∥ Franc Grootjen (RUN), A
Pragmatic Approach to the Conceptualisa-
tion of Language.

2005-04 ∥ Nirvana Meratnia (UT), To-
wards Database Support for Moving Object
data.

2005-05 ∥ Gabriel Infante-Lopez (UVA),
Two-Level Probabilistic Grammars for Nat-
ural Language Parsing.

2005-06 ∥ Pieter Spronck (UM), Adaptive
Game AI.

2005-07 ∥ Flavius Frasincar (TUE), Hy-
permedia Presentation Generation for Se-
mantic Web Information Systems.

BIBLIOGRAPHY 211

2005-08 ∥ Richard Vdovjak (TUE), A
Model-driven Approach for Building Dis-
tributed Ontology-based Web Applications.

2005-09 ∥ Jeen Broekstra (VU), Storage,
Querying and Inferencing for Semantic Web
Languages.

2005-10 ∥ Anders Bouwer (UVA), Ex-
plaining Behaviour: Using Qualitative Sim-
ulation in Interactive Learning Environ-
ments.

2005-11 ∥ Elth Ogston (VU), Agent Based
Matchmaking and Clustering - A Decentral-
ized Approach to Search.

2005-12 ∥ Csaba Boer (EUR), Distributed
Simulation in Industry.

2005-13 ∥ Fred Hamburg (UL), Een Com-
putermodel voor het Ondersteunen van Eu-
thanasiebeslissingen.

2005-14 ∥ Borys Omelayenko (VU), Web-
Service configuration on the Semantic Web;
Exploring how semantics meets pragmat-
ics.

2005-15 ∥ Tibor Bosse (VU), Analysis of
the Dynamics of Cognitive Processes.

2005-16 ∥ Joris Graaumans (UU), Usabil-
ity of XML Query Languages.

2005-17 ∥ Boris Shishkov (TUD), Soft-
ware Specification Based on Re-usable Busi-
ness Components.

2005-18 ∥ Danielle Sent (UU), Test-
selection strategies for probabilistic net-
works.

2005-19 ∥Michel van Dartel (UM), Situ-
ated Representation.

2005-20 ∥ Cristina Coteanu (UL), Cyber
Consumer Law, State of the Art and Per-
spectives.

2005-21 ∥ Wijnand Derks (UT), Improv-
ing Concurrency and Recovery in Database
Systems by Exploiting Application Seman-
tics.

2006

2006-01 ∥ Samuil Angelov (TUE), Foun-
dations of B2B Electronic Contracting.

2006-02 ∥ Cristina Chisalita (VU), Con-
textual issues in the design and use of in-
formation technology in organizations.

2006-03 ∥ Noor Christoph (UVA), The
role of metacognitive skills in learning to
solve problems.

2006-04 ∥ Marta Sabou (VU), Building
Web Service Ontologies.

2006-05 ∥ Cees Pierik (UU), Validation
Techniques for Object-Oriented Proof Out-
lines.

2006-06 ∥ Ziv Baida (VU), Software-aided
Service Bundling – Intelligent Methods &
Tools for Graphical Service Modeling.

2006-07 ∥ Marko Smiljanic (UT), XML
schema matching – balancing efficiency and
effectiveness by means of clustering.

2006-08 ∥ Eelco Herder (UT), Forward,
Back and Home Again – Analyzing User Be-
havior on the Web.

2006-09 ∥Mohamed Wahdan (UM), Au-
tomatic Formulation of the Auditor’s Opin-
ion.

2006-10 ∥ Ronny Siebes (VU), Semantic
Routing in Peer-to-Peer Systems.

2006-11 ∥ Joeri van Ruth (UT), Flatten-
ing Queries over Nested Data Types.

2006-12 ∥ Bert Bongers (VU), Interacti-
vation – Towards an e-cology of people, our
technological environment, and the arts.

2006-13 ∥ Henk-Jan Lebbink (UU), Dia-
logue and Decision Games for Information
Exchanging Agents.

2006-14 ∥ Johan Hoorn (VU), Software
Requirements: Update, Upgrade, Redesign -
towards a Theory of Requirements Change.

212 BIBLIOGRAPHY

2006-15 ∥ Rainer Malik (UU), CONAN:
Text Mining in the Biomedical Domain.

2006-16 ∥ Carsten Riggelsen (UU), Ap-
proximation Methods for Efficient Learning
of Bayesian Networks.

2006-17 ∥ Stacey Nagata (UU), User As-
sistance for Multitasking with Interruptions
on a Mobile Device.

2006-18 ∥ Valentin Zhizhkun (UVA),
Graph transformation for Natural Language
Processing.

2006-19 ∥ Birna van Riemsdijk (UU),
Cognitive Agent Programming: A Semantic
Approach.

2006-20 ∥Marina Velikova (UvT), Mono-
tone models for prediction in data mining.

2006-21 ∥ Bas van Gils (RUN), Aptness
on the Web.

2006-22 ∥ Paul de Vrieze (RUN), Funda-
ments of Adaptive Personalisation.

2006-23 ∥ Ion Juvina (UU), Development
of Cognitive Model for Navigating on the
Web.

2006-24 ∥ Laura Hollink (VU), Seman-
tic Annotation for Retrieval of Visual Re-
sources.

2006-25 ∥ Madalina Drugan (UU), Con-
ditional log-likelihood MDL and Evolution-
ary MCMC.

2006-26 ∥ Vojkan Mihajlovic (UT), Score
Region Algebra: A Flexible Framework for
Structured Information Retrieval.

2006-27 ∥ Stefano Bocconi (CWI), Vox
Populi: generating video documentaries
from semantically annotated media reposi-
tories.

2006-28 ∥ Borkur Sigurbjornsson
(UVA), Focused Information Access using
XML Element Retrieval.

2007

2007-01 ∥Kees Leune (UvT), Access Con-
trol and Service-Oriented Architectures.

2007-02 ∥ Wouter Teepe (RUG), Recon-
ciling Information Exchange and Confiden-
tiality: A Formal Approach.

2007-03 ∥ Peter Mika (VU), Social Net-
works and the Semantic Web.

2007-04 ∥ Jurriaan van Diggelen (UU),
Achieving Semantic Interoperability in
Multi-agent Systems: A Dialogue-based Ap-
proach.

2007-05 ∥ Bart Schermer (UL), Software
Agents, Surveillance, and the Right to Pri-
vacy: a Legislative Framework for Agent-
enabled Surveillance.

2007-06 ∥ Gilad Mishne (UVA), Applied
Text Analytics for Blogs.

2007-07 ∥ Natasa Jovanovic (UT), To
Who It May Concern - Addressee Identifi-
cation in Face-to-Face Meetings.

2007-08 ∥ Mark Hoogendoorn (VU),
Modeling of Change in Multi-Agent Orga-
nizations.

2007-09 ∥ David Mobach (VU), Agent-
Based Mediated Service Negotiation.

2007-10 ∥Huib Aldewereld (UU), Auton-
omy vs. Conformity: an Institutional Per-
spective on Norms and Protocols.

2007-11 ∥ Natalia Stash (TUE), Incor-
porating Cognitive/Learning Styles in a
General-Purpose Adaptive Hypermedia Sys-
tem.

2007-12 ∥ Marcel van Gerven (RUN),
Bayesian Networks for Clinical Decision
Support: A Rational Approach to Dynamic
Decision-Making under Uncertainty.

2007-13 ∥ Rutger Rienks (UT), Meet-
ings in Smart Environments; Implications
of Progressing Technology.

BIBLIOGRAPHY 213

2007-14 ∥ Niek Bergboer (UM), Context-
Based Image Analysis.

2007-15 ∥ Joyca Lacroix (UM), NIM: a
Situated Computational Memory Model.

2007-16 ∥ Davide Grossi (UU), Designing
Invisible Handcuffs. Formal investigations
in Institutions and Organizations for Multi-
agent Systems.

2007-17 ∥ Theodore Charitos (UU), Rea-
soning with Dynamic Networks in Practice.

2007-18 ∥ Bart Orriens (UvT), On the de-
velopment an management of adaptive busi-
ness collaborations.

2007-19 ∥ David Levy (UM), Intimate re-
lationships with artificial partners.

2007-20 ∥ Slinger Jansen (UU), Customer
Configuration Updating in a Software Sup-
ply Network.

2007-21 ∥ Karianne Vermaas (UU), Fast
diffusion and broadening use: A research on
residential adoption and usage of broadband
internet in the Netherlands between 2001
and 2005.

2007-22 ∥ Zlatko Zlatev (UT), Goal-
oriented design of value and process models
from patterns.

2007-23 ∥ Peter Barna (TUE), Specifica-
tion of Application Logic in Web Informa-
tion Systems.

2007-24 ∥ Georgina Ramírez Camps
(CWI), Structural Features in XML Re-
trieval.

2007-25 ∥ Joost Schalken (VU), Empirical
Investigations in Software Process Improve-
ment.

2008

2008-01 ∥ Katalin Boer-Sorbán (EUR),
Agent-Based Simulation of Financial Mar-
kets: A modular,continuous-time ap-

proach.

2008-02 ∥ Alexei Sharpanskykh (VU),
On Computer-Aided Methods for Modeling
and Analysis of Organizations.

2008-03 ∥ Vera Hollink (UVA), Optimiz-
ing hierarchical menus: a usage-based ap-
proach.

2008-04 ∥ Ander de Keijzer (UT), Man-
agement of Uncertain Data - towards unat-
tended integration.

2008-05 ∥ Bela Mutschler (UT), Model-
ing and simulating causal dependencies on
process-aware information systems from a
cost perspective.

2008-06 ∥Arjen Hommersom (RUN), On
the Application of Formal Methods to Clin-
ical Guidelines, an Artificial Intelligence
Perspective.

2008-07 ∥ Peter van Rosmalen (OU),
Supporting the tutor in the design and sup-
port of adaptive e-learning.

2008-08 ∥ Janneke Bolt (UU), Bayesian
Networks: Aspects of Approximate Infer-
ence.

2008-09 ∥ Christof van Nimwegen (UU),
The paradox of the guided user: assistance
can be counter-effective.

2008-10 ∥Wauter Bosma (UT), Discourse
oriented summarization.

2008-11 ∥ Vera Kartseva (VU), Design-
ing Controls for Network Organizations: A
Value-Based Approach.

2008-12 ∥ Jozsef Farkas (RUN), A Semi-
otically Oriented Cognitive Model of Knowl-
edge Representation.

2008-13 ∥ Caterina Carraciolo (UVA),
Topic Driven Access to Scientific Hand-
books.

2008-14 ∥ Arthur van Bunningen (UT),
Context-Aware Querying; Better Answers

214 BIBLIOGRAPHY

with Less Effort.

2008-15 ∥ Martijn van Otterlo (UT),
The Logic of Adaptive Behavior: Knowl-
edge Representation and Algorithms for
the Markov Decision Process Framework in
First-Order Domains.

2008-16 ∥Henriette van Vugt (VU), Em-
bodied agents from a user’s perspective.

2008-17 ∥ Martin Op ’t Land (TUD),
Applying Architecture and Ontology to the
Splitting and Allying of Enterprises.

2008-18 ∥ Guido de Croon (UM), Adap-
tive Active Vision.

2008-19 ∥ Henning Rode (UT), From
Document to Entity Retrieval: Improving
Precision and Performance of Focused Text
Search.

2008-20 ∥ Rex Arendsen (UVA), Geen
bericht, goed bericht. Een onderzoek naar
de effecten van de introductie van elektron-
isch berichtenverkeer met de overheid op de
administratieve lasten van bedrijven.

2008-21 ∥ Krisztian Balog (UVA), People
Search in the Enterprise.

2008-22 ∥ Henk Koning (UU), Communi-
cation of IT-Architecture.

2008-23 ∥ Stefan Visscher (UU), Bayesian
network models for the management of
ventilator-associated pneumonia.

2008-24 ∥ Zharko Aleksovski (VU), Using
background knowledge in ontology match-
ing.

2008-25 ∥ Geert Jonker (UU), Efficient
and Equitable Exchange in Air Traffic Man-
agement Plan Repair using Spender-signed
Currency.

2008-26 ∥ Marijn Huijbregts (UT), Seg-
mentation, Diarization and Speech Tran-
scription: Surprise Data Unraveled.

2008-27 ∥ Hubert Vogten (OU), De-
sign and Implementation Strategies for IMS
Learning Design.

2008-28 ∥ Ildiko Flesch (RUN), On the
Use of Independence Relations in Bayesian
Networks.

2008-29 ∥ Dennis Reidsma (UT), Anno-
tations and Subjective Machines - Of Anno-
tators, Embodied Agents, Users, and Other
Humans.

2008-30 ∥ Wouter van Atteveldt (VU),
Semantic Network Analysis: Techniques for
Extracting, Representing and Querying Me-
dia Content.

2008-31 ∥ Loes Braun (UM), Pro-Active
Medical Information Retrieval.

2008-32 ∥ Trung H. Bui (UT), To-
ward Affective Dialogue Management using
Partially Observable Markov Decision Pro-
cesses.

2008-33 ∥ Frank Terpstra (UVA), Scien-
tific Workflow Design; theoretical and prac-
tical issues.

2008-34 ∥ Jeroen de Knijf (UU), Studies
in Frequent Tree Mining.

2008-35 ∥ Ben Torben Nielsen (UvT),
Dendritic morphologies: function shapes
structure.

2009

2009-01 ∥ Rasa Jurgelenaite (RUN),
Symmetric Causal Independence Models.

2009-02 ∥ Willem Robert van Hage
(VU), Evaluating Ontology-Alignment
Techniques.

2009-03 ∥ Hans Stol (UvT), A Frame-
work for Evidence-based Policy Making Us-
ing IT.

2009-04 ∥ Josephine Nabukenya (RUN),
Improving the Quality of Organisational

BIBLIOGRAPHY 215

Policy Making using Collaboration Engi-
neering.

2009-05 ∥ Sietse Overbeek (RUN), Bridg-
ing Supply and Demand for Knowledge In-
tensive Tasks - Based on Knowledge, Cog-
nition, and Quality.

2009-06 ∥ Muhammad Subianto (UU),
Understanding Classification.

2009-07 ∥ Ronald Poppe (UT), Discrimi-
native Vision-Based Recovery and Recogni-
tion of Human Motion.

2009-08 ∥ Volker Nannen (VU), Evolu-
tionary Agent-Based Policy Analysis in Dy-
namic Environments.

2009-09 ∥ Benjamin Kanagwa (RUN),
Design, Discovery and Construction of
Service-oriented Systems.

2009-10 ∥ Jan Wielemaker (UVA), Logic
programming for knowledge-intensive inter-
active applications.

2009-11 ∥ Alexander Boer (UVA), Le-
gal Theory, Sources of Law & the Semantic
Web.

2009-12 ∥ Peter Massuthe (TUE,
Humboldt-Universitaet zu Berlin), Perat-
ing Guidelines for Services.

2009-13 ∥ Steven de Jong (UM), Fairness
in Multi-Agent Systems.

2009-14 ∥Maksym Korotkiy (VU), From
ontology-enabled services to service-enabled
ontologies. making ontologies work in e-
science with ONTO-SOA

2009-15 ∥ Rinke Hoekstra (UVA), Ontol-
ogy Representation - Design Patterns and
Ontologies that Make Sense.

2009-16 ∥ Fritz Reul (UvT), New Archi-
tectures in Computer Chess.

2009-17 ∥ Laurens van der Maaten
(UvT), Feature Extraction from Visual
Data.

2009-18 ∥ Fabian Groffen (CWI), Ar-
mada, An Evolving Database System.

2009-19 ∥ Valentin Robu (CWI), Mod-
eling Preferences, Strategic Reasoning and
Collaboration in Agent-Mediated Electronic
Markets.

2009-20 ∥ Bob van der Vecht (UU), Ad-
justable Autonomy: Controling Influences
on Decision Making.

2009-21 ∥ Stijn Vanderlooy (UM), Rank-
ing and Reliable Classification.

2009-22 ∥ Pavel Serdyukov (UT), Search
For Expertise: Going beyond direct evi-
dence.

2009-23 ∥ Peter Hofgesang (VU), Mod-
elling Web Usage in a Changing Environ-
ment.

2009-24 ∥ Annerieke Heuvelink (VUA),
Cognitive Models for Training Simulations.

2009-25 ∥ Alex van Ballegooij (CWI),
“RAM: Array Database Management
through Relational Mapping”.

2009-26 ∥ Fernando Koch (UU), An
Agent-Based Model for the Development of
Intelligent Mobile Services.

2009-27 ∥ Christian Glahn (OU), Contex-
tual Support of Social Engagement and Re-
flection on the Web.

2009-28 ∥ Sander Evers (UT), Sensor
Data Management with Probabilistic Mod-
els.

2009-29 ∥ Stanislav Pokraev (UT),
Model-Driven Semantic Integration of
Service-Oriented Applications.

2009-30 ∥ Marcin Zukowski (CWI),
Balancing vectorized query execution with
bandwidth-optimized storage.

2009-31 ∥ Sofiya Katrenko (UVA), A
Closer Look at Learning Relations from
Text.

216 BIBLIOGRAPHY

2009-32 ∥ Rik Farenhorst and Remco
de Boer (VU), Architectural Knowledge
Management: Supporting Architects and
Auditors.

2009-33 ∥ Khiet Truong (UT), How Does
Real Affect Affect Affect Recognition In
Speech?.

2009-34 ∥ Inge van de Weerd (UU), Ad-
vancing in Software Product Management:
An Incremental Method Engineering Ap-
proach.

2009-35 ∥ Wouter Koelewijn (UL),
Privacy en Politiegegevens; Over geau-
tomatiseerde normatieve informatie-
uitwisseling.

2009-36 ∥ Marco Kalz (OUN), Place-
ment Support for Learners in Learning Net-
works.

2009-37 ∥ Hendrik Drachsler (OUN),
Navigation Support for Learners in Infor-
mal Learning Networks.

2009-38 ∥ Riina Vuorikari (OU), Tags
and self-organisation: a metadata ecology
for learning resources in a multilingual con-
text.

2009-39 ∥ Christian Stahl (TUE,
Humboldt-Universitaet zu Berlin), Ser-
vice Substitution – A Behavioral Approach
Based on Petri Nets.

2009-40 ∥ Stephan Raaijmakers (UvT),
Multinomial Language Learning: Investiga-
tions into the Geometry of Language.

2009-41 ∥ Igor Berezhnyy (UvT), Digital
Analysis of Paintings.

2009-42 ∥ Toine Bogers (UvT), Recom-
mender Systems for Social Bookmarking.

2009-43 ∥ Virginia Nunes Leal Fran-
queira (UT), Finding Multi-step Attacks in
Computer Networks using Heuristic Search
and Mobile Ambients.

2009-44 ∥ Roberto Santana Tapia (UT),
Assessing Business-IT Alignment in Net-
worked Organizations.

2009-45 ∥ Jilles Vreeken (UU), Making
Pattern Mining Useful.

2009-46 ∥ Loredana Afanasiev (UvA),
Querying XML: Benchmarks and Recur-
sion.

2010

2010-01 ∥ Matthijs van Leeuwen (UU),
Patterns that Matter.

2010-02 ∥ Ingo Wassink (UT), Work flows
in Life Science.

2010-03 ∥ Joost Geurts (CWI), A Doc-
ument Engineering Model and Processing
Framework for Multimedia documents.

2010-04 ∥Olga Kulyk (UT), Do You Know
What I Know? Situational Awareness of
Co-located Teams in Multidisplay Environ-
ments.

2010-05 ∥ Claudia Hauff (UT), Predicting
the Effectiveness of Queries and Retrieval
Systems.

2010-06 ∥ Sander Bakkes (UvT), Rapid
Adaptation of Video Game AI.

2010-07 ∥ Wim Fikkert (UT), A Gesture
interaction at a Distance.

2010-08 ∥ Krzysztof Siewicz (UL), To-
wards an Improved Regulatory Framework
of Free Software. Protecting user freedoms
in a world of software communities and
eGovernments.

2010-09 ∥ Hugo Kielman (UL), Politiële
gegevensverwerking en Privacy, Naar een
effectieve waarborging.

2010-10 ∥ Rebecca Ong (UL), Mobile
Communication and Protection of Chil-
dren.

BIBLIOGRAPHY 217

2010-11 ∥ Adriaan Ter Mors (TUD),
The world according to MARP: Multi-Agent
Route Planning.

2010-12 ∥ Susan van den Braak (UU),
Sensemaking software for crime analysis.

2010-13 ∥ Gianluigi Folino (RUN),
High Performance Data Mining using Bio-
inspired techniques.

2010-14 ∥ Sander van Splunter (VU), Au-
tomated Web Service Reconfiguration.

2010-15 ∥ Lianne Bodenstaff (UT),
Managing Dependency Relations in Inter-
Organizational Models.

2010-16 ∥ Sicco Verwer (TUD), Efficient
Identification of Timed Automata, theory
and practice.

2010-17 ∥ Spyros Kotoulas (VU), Scal-
able Discovery of Networked Resources: Al-
gorithms, Infrastructure, Applications.

2010-18 ∥ Charlotte Gerritsen (VU),
Caught in the Act: Investigating Crime by
Agent-Based Simulation.

2010-19 ∥ Henriette Cramer (UvA), Peo-
ple’s Responses to Autonomous and Adap-
tive Systems.

2010-20 ∥ Ivo Swartjes (UT), Whose Story
Is It Anyway? How Improv Informs Agency
and Authorship of Emergent Narrative.

2010-21 ∥ Harold van Heerde (UT),
Privacy-aware data management by means
of data degradation.

2010-22 ∥ Michiel Hildebrand (CWI),
End-user Support for Access to Heteroge-
neous Linked Data.

2010-23 ∥ Bas Steunebrink (UU), The
Logical Structure of Emotions.

2010-24 ∥Dmytro Tykhonov (TUD), De-
signing Generic and Efficient Negotiation
Strategies.

2010-25 ∥ Zulfiqar Ali Memon (VU),

Modelling Human-Awareness for Ambient
Agents: A Human Mindreading Perspec-
tive.

2010-26 ∥ Ying Zhang (CWI), XRPC: Ef-
ficient Distributed Query Processing on Het-
erogeneous XQuery Engines.

2010-27 ∥Marten Voulon (UL), Automa-
tisch contracteren.

2010-28 ∥ Arne Koopman (UU), Charac-
teristic Relational Patterns.

2010-29 ∥ Stratos Idreos (CWI), Database
Cracking: Towards Auto-tuning Database
Kernels.

2010-30 ∥ Marieke van Erp (UvT), Ac-
cessing Natural History - Discoveries in
data cleaning, structuring, and retrieval.

2010-31 ∥ Viktor de Boer (UvA),
Ontology Enrichment from Heterogeneous
Sources on the Web.

2010-32 ∥Marcel Hiel (UvT), An Adaptive
Service Oriented Architecture - Automati-
cally solving Interoperability Problems.

