
A Unified View of Data-Intensive Flows in
Business Intelligence Systems: A Survey

Petar Jovanovic, Oscar Romero, and Alberto Abelló

Universitat Politècnica de Catalunya, BarcelonaTech
Barcelona, Spain ({petar|oromero|aabello}@essi.upc.edu)

Abstract. Data-intensive flows are central processes in today’s busi-
ness intelligence (BI) systems, deploying different technologies to deliver
data, from a multitude of data sources, in user-preferred and analysis-
ready formats. To meet complex requirements of next generation BI sys-
tems, we often need an effective combination of the traditionally batched
extract-transform-load (ETL) processes that populate a data warehouse
(DW) from integrated data sources, and more real-time and operational
data flows that integrate source data at runtime. Both academia and in-
dustry thus must have a clear understanding of the foundations of data-
intensive flows and the challenges of moving towards next generation
BI environments. In this paper we present a survey of today’s research
on data-intensive flows and the related fundamental fields of database
theory. The study is based on a proposed set of dimensions describing
the important challenges of data-intensive flows in the next generation
BI setting. As a result of this survey, we envision an architecture of a
system for managing the lifecycle of data-intensive flows. The results
further provide a comprehensive understanding of data-intensive flows,
recognizing challenges that still are to be addressed, and how the current
solutions can be applied for addressing these challenges.

Keywords: Business Intelligence � data-intensive flows � workflow man-
agement � data warehousing

1 Introduction

Data-intensive flows are critical processes in today’s business intelligence (BI)
applications with the common goal of delivering the data in user-preferred and
analysis-ready formats, from a multitude of data sources. In general, a data-
intensive flow starts by extracting data from individual data sources, cleans
and conforms extracted data to satisfy certain quality standards and business
requirements, and finally brings the data to end users.

In practice, the most prominent solution for the integration and storage of
heterogeneous data, thoroughly studied in the past twenty years, is data ware-
housing (DW). A DW system assumes a unified database, modeled to support
analytical needs of business users. Traditionally, the back stage of a DW system
comprises a data-intensive flow known as the extract-transform-load (ETL) pro-
cess responsible of orchestrating the flow of data from data sources towards a

2 P. Jovanovic, O. Romero and A. Abelló

DW. ETL is typically a batch process, scheduled to periodically (e.g., monthly,
daily, or hourly) load the target data stores with fresh source data. In such a
scenario, limited number of business users (i.e., executives and managers) are
expected to query and analyze the data loaded in the latest run of an ETL
process, for making strategic and often long-term decisions.

However, highly dynamic enterprise environments have introduced some im-
portant challenges into the traditional DW scenario.

– Up-to-date information is needed in near real-time (i.e., right-time [39]) to
make prompt and accurate decisions.

– Systems must provide the platform for efficiently combining in-house data
with various external data sources to enable context-aware analysis.

– Systems must be able to efficiently support new, unanticipated needs of
broader set of business users at runtime (i.e., on-the-fly).

These challenges have induced an important shift from traditional business
intelligence (BI) systems and opened a new direction of research and practices.
The next generation BI setting goes by various names: operational BI (e.g.,
[15,22]), live BI (e.g., [17]), collaborative BI (e.g., [6]), self-service BI (e.g., [1]),
situational BI (e.g., [63]). While these works look at the problem from differ-
ent perspectives, in general, they all aim at enabling the broader spectrum of
business users to access a plethora of heterogeneous sources (not all being under
the control of the user’s organization and known in advance), and to extract,
transform and combine these data, in order to make right-time decisions. Con-
sequently, here, we generalize these settings and use the common term next gen-
eration BI, while for the old (DW-based) BI setting we use the term traditional
BI. An interesting characterization of the next generation BI setting is given
by Eckerson [22]: ”...operational BI requires a just-in-time information delivery
system that provides the right information to the right people at the right time
so they can make a positive impact on business outcomes.”

Obviously, in such a scenario periodically scheduled batch loadings from pre-
selected data stores have become unrealistic, since fresh data are required in
near real-time for different business users, whose information needs may not be
known in advance. In fact, effectively integrating the traditional, batched deci-
sion making processes, with on-the-fly data-intensive flows in next generation BI
systems is discussed to be important to satisfy analytic needs of today’s busi-
ness users (e.g., [2,17,40]). For example, a part of in-house company’s sales data,
periodically loaded to a DW by an ETL, can be at runtime crossed with the
Web data to make context-aware analysis of business decisions. To build such
demanding systems, one must first have a clear understanding of the foundation
of different data-intensive flow scenarios and the challenges they bring.

From a theoretical perspective, handling data heterogeneity has been sep-
arately studied in two different settings, namely data-integration and data ex-
change. Data integration has studied the problem of providing a user with a
unified virtual view over data in terms of a global schema [59]. User queries over
the global schema, are then answered by reformulating them on-the-fly in terms

A Unified View of Data-Intensive Flows in BI Systems: A Survey 3

of data sources. On the other side, data exchange has studied the problem of
materializing an instance of data at the target that reflects the source data as
accurately as possible and can be queried by the user, without going back to the
original data sources [27].

A recent survey of ETL technologies [96] has pointed out that the data ex-
change problem is conceptually close to what we traditionally assume by an ETL
process. Intuitively, in an ETL process, we also create an instance at the tar-
get, by means of more complex data transformations (e.g., aggregation, filtering,
format conversions, deduplication). However, the trends of moving towards the
next generation BI settings have brought back some challenges initially stud-
ied in the field of data integration, i.e., requiring that the user queries should
be answered by extracting and integrating source data at runtime. Moreover,
the next generation BI settings brought additional challenges into the field of
data-intensive flows (e.g., low data latency, context-awareness).

Right-time decision making processes demand close to zero latency for data-
intensive flows. Hence the automated optimization of these complex flows is a
must [17,44], not only for performance, but also for other quality metrics, like
fault-tolerance, recoverability, etc. [84]. Considering the increasing complexity of
data transformations (e.g., machine learning, natural language processing) and
the variety of possible execution engines, the optimization of data-intensive flows
is one of the major challenges for next generation BI systems.

Even though the above fields have been studied individually in the past,
the literature still lacks a unified view of data-intensive flows. In this paper,
we aim at studying the characteristics of data-intensive flows in next genera-
tion BI systems. We focus on analyzing the main challenges in the three main
stages when executing data-intensive flows, i.e., (1) data extraction, (2) data
transformation, and (3) data delivery. Having low data latency as an important
requirement of data-intensive flows in the next generation BI setting, we addi-
tionally analyze the main aspects of data flow optimization. We analyzed these
four areas inside the two main scenarios for data-intensive flows: (a) periodi-
cally executed, batched processes that materialize and load data at the target
data store for future analysis (extract-transform-load - ETL), and (b) on-the-fly,
instantaneous data flows executed on demand upon end-users’ query (extract-
transform-operate - ETO).

In addition, we identify that a well-known BigData challenge, namely, one
of the so called 3 V’s [45] (i.e., massive volumes of data), is an important one
also for the design and even more deployment of data-intensive flows in next-
generation BI systems. However, the approaches that deal with such challenge
represent a separate and rather extensive field of research, which is out of scope
of this study. We thus refer an interested reader to [13] for more detailed overview
of the approaches dealing with the BigData challenges.

As the first result, we identify the main characteristics of data-intensive flows,
focusing on those that best describe the challenges of moving towards the next
generation BI setting. Then, in terms of these characteristics we classify the ap-
proaches, both from the foundational works and more recent literature, tackling

4 P. Jovanovic, O. Romero and A. Abelló

these characteristics at different levels. On the one hand, the results provide us
with a clear understanding of the foundations of data-intensive flows, while on
the other hand, identified characteristics help us defining the main challenges of
moving towards the next generation BI setting.

Finally, as the main outcome of this study, we outlined the envisioned ar-
chitecture of next generation BI systems, focusing on managing the complete
lifecycle of data-intensive flows.

Contributions. In particular, our main contributions are as follows.

– We analyzed current approaches, scrutinizing the main aspects of data-
intensive flows in today’s BI environments.

– We define the main characteristics of data-intensive flows, focusing on those
that best describe the challenges of a shift towards the next generation BI.

– In terms of the dimensions defined from these characteristics, we analyze
both the foundational work of database theory, and recent approaches for
data-intensive flows, at different levels of these dimensions.

– Resulting from this study, we envision an architecture for managing the
complexity of data-intensive flows in the next generation BI setting.

– Finally, we indicate the remaining challenges for data-intensive flows, which
require further attention from both academia and industry.

Outline. In Section 2, we first introduce an example scenario used to sup-
port our discussions throughout this paper. We then in Section 3, describe the
methodology used in our study, and outline the main study setting. Next, in Sec-
tion 4 we discuss the process of defining the dimensions that are further used for
studying data-intensive flows. In Sections 5 - 8, we analyze different approaches
from data-intensive flows inside the previously defined dimensions. In Section
9 we provide the overall discussion and introduce an envisioned architecture of
a system for managing data-intensive flows in the next generation BI setting,
while in Section 10, we conclude the paper.

2 Example Scenario

We first introduce an example scenario to support discussions throughout this
paper and to motivate our study. Our example scenario is motivated by the data
model introduced for the big data benchmark (a.k.a. BigBench) in [33], which
extends the TPC-DS benchmark1 for the context of big data analytics. Notice
that we adapted their scenario to make the examples more intuitive and suit-
able to our discussions. In particular, besides the typical operations found in
relational database systems, i.e., Join, Selection (Filter), Aggregation (Aggr.),
Sort, and Distinct (Remove Duplicates), in the following example scenarios, we
also introduce more complex operations typically found in today’s data-intensive
flows; that is, (1) User Defined Functions (UDF) that may implement either sim-
ple arithmetic expressions or complex, typically black-box operations, (2) Match

1 http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf (last accessed 4/4/2014)

A Unified View of Data-Intensive Flows in BI Systems: A Survey 5

Fig. 1. Example 1.1: ETL to analyze revenue share from a promotion

that implements more relaxed join or lookup semantics (e.g., using approximate
string matching), and (3) Sentiment Analysis that typically applies natural lan-
guage processing techniques for extracting subjective (opinion) information from
the Web sources (e.g., forums, social networks).

In general, we consider a simple case of a retail company that has different
databases that support its daily operational processes. These databases cover the
information about different items (i.e., products) offered for the sale, company’s
customers, their orders, shipping information, etc. Periodically, the company
launches campaigns and puts some product on a promotion.

Scenario 1. Originally, the company has used a traditional BI system with
a centralized DW that is loaded by means of different ETL flows (one of which
is conceptually depicted in Figure 1). Users in this scenario are typically up-
per management executives that analyze the enterprise-wide data (e.g., items
and their sales) to make decisions for making strategic actions (e.g., launching
promotional campaigns).

Example 1.1. In the specific example in Figure 1, the ETL flow is periodically
executed to load the DW with information about the percentage of the revenue
share made from the items that were on the promotion. Quarterly, the manage-
ment analyzes how the previous business decisions on promotional campaigns
affected the revenue.

Scenario 2. While the above setting has served the company well in having a
periodical feedback about the previous strategic decisions, today’s dynamic mar-
kets require more prompt reaction to the potentially occurring problems (e.g.,
hourly or daily). The company thus noticed that instead of waiting for the sales
data to analyze the success of the promotional campaign, they can potentially
benefit from the opinions that customer may leave about the campaign and prod-
uct items, in the form of reviews over the Web (e.g., social networks) and react
faster to improve the potential revenue. Moreover, the company also noticed that
such an analysis should be decentralized to the regional and local representatives
and available to a broader set of users involved in the business process. As fast
decisions are needed, the users must be able to make them at right time (i.e.,
”...before a problem escalates into a crisis or a fleeting opportunity disappears...”

6 P. Jovanovic, O. Romero and A. Abelló

Fig. 2. Example 2.1: ETO to predict the success of a promotion

Fig. 3. Example 2.2: ETO to analyze the trends for launching a new promotion

[22]). We consider the two following business requirements posed on-the-fly, and
the two data-intensive flows that answer them, conceptually depicted in Figure
2 and Figure 3.

Example 2.1. In the former example (Figure 2), a regional manager decides to
analyze the potential success of the promotional campaign launched on Friday,
after the first weekend, by inspecting the sentiment (i.e., opinions) of the real and
potential customers about the product items that are included in the promotion.

Example 2.2. The latter example (Figure 3), on the other hand, analyzes the
currently trending product items and user opinions about them for deciding
which items to include in the next promotional campaign.

In both cases, business users interactively make on-the-fly and context-aware
analysis, in order to quickly react and improve their business decisions.

3 Methodology

We further introduce the methodology used for studying data-intensive flows and
outline the resulting study setting. We start by introducing the process of select-
ing the literature to be included in this study. The study further includes three
consecutive phases, which we explain in more detail in the following subsections.

3.1 Selection process

The literature exploration started with the keyword search of the relevant works
inside the popular research databases (i.e., Scopus2 and Google Scholar3). In

2 https://www.scopus.com/
3 https://scholar.google.com

A Unified View of Data-Intensive Flows in BI Systems: A Survey 7

Phase I, we focused on the keywords for finding seminal works in the DW and
ETL field (i.e., “data warehousing”, “ETL”, “business intelligence”), as well
as the most relevant works on the next generation BI (i.e., “next generation
business intelligence”, “BI 2.0”, “data-intensive flows”, “operational business
intelligence”). While in the case of traditional DW and ETL approaches we
encountered and targeted the most influential books from the field (e.g., [53,46])
and some extensive surveys (e.g., [96]), in the case of the next generation BI
approaches, we mostly selected surveys or visionary papers on the topic (e.g.,
[1,2,17,15,40]). Furthermore, the following phases included keyword search based
on the terminology found in the created study outline (see Figure 4), as well as
the identified dimensions (see Figure 5).

Rather than being extensive in covering all approaches, we used the following
criteria for prioritizing and selecting a representative initial set of approaches
that we studied.

– The relevance of the works to the field of data-intensive flows and the related
topics, i.e., based on the abstract/preface content we discarded the works
that did not cover the topics of interest.

– The importance of the works, i.e., number of citations, importance of the
venue (e.g., ranking of the conference4 or impact factor of the journal5).

– The maturity of the works, i.e., extensiveness and completeness of a theoret-
ical study or a survey, experimental results, applicability in the real world.

Furthermore, we also followed the snowballing technique and included, previ-
ously not found, but relevant approaches referenced from the initial ones.

3.2 Phase I (Outlining the study setting).

First phase included the review of the seminal works on traditional data-intensive
flows, ETL, and data warehousing in general; as well as the relevant works dis-
cussing the next generation BI systems and their main challenges on moving
toward (near) real-time data analysis.

As a result, we outline the setting for studying data-intensive flows. Specif-
ically, in our study we aim at analyzing two main scenarios of data-intensive
flows present in today’s BI settings, namely:

– extract-transform-load (ETL). In the traditional BI setting, data are ex-
tracted from the sources, transformed and loaded to a target data store (i.e.,
a DW). For posing analytical queries (e.g., OLAP), the business users in
such a scenario solely rely on the data transferred in periodically scheduled
time intervals, when the source systems are idle (e.g., at night time).

– extract-transform-operate (ETO). Next generation BI has emerged as a ne-
cessity of companies for combining more instantaneous decision making with
traditional, batched processes. In such a scenario, a user query, at runtime,

4 CORE conference ranking: http://portal.core.edu.au/conf-ranks/
5 Thomas Reuters Impact Factor: http://wokinfo.com/essays/impact-factor/

8 P. Jovanovic, O. Romero and A. Abelló

gives rise to a data flow that accesses the data sources and alternatively
crosses them with already loaded data to deliver an answer.

Kimball and Caserta [53] introduced the following definition of an ETL pro-
cess ”A properly designed ETL system extracts data from the source systems,
enforces data quality and consistency standards, conforms data so that separate
sources can be used together, and finally delivers data in a presentation-ready
format so that application developers can build applications and end users can
make decisions.”

Being general enough to cover the setting of data-intensive flows studied in
this paper (i.e., both previous scenarios), we follow this definition and first divide
our study setting into three main stages, namely:

i Data extraction. A data-intensive flow starts by individually accessing various
(often heterogeneous) data sources, collecting and preparing data (by means
of structuring) for further processing.

ii Data transformation. Next, the main stage of a data-intensive flow trans-
forms the extracted data by means of cleaning it for achieving different con-
sistency and quality standards, conforming and combining data that come
from different sources.

iii Data delivery. This stage is responsible for ensuring that the data, extracted
from the sources, transformed and integrated are being delivered to the end
user in a format that meets her analytical needs.

Related fields. To complete the data-intensive flows lifecycle, in addition to
the main three stages, we revisit two fields closely related to data-intensive flows,
i.e., data flow optimization and querying.

iv Data flow optimization considers data-intensive flow holistically and studies
the problem of modifying the given data flow, with the goal of satisfying
certain non-functional requirements (e.g., performance, recoverability, reli-
ability). Obviously, the optimization problem is critical for data flows in
today’s BI systems, where the data delivery is often required in the near
real-time manner.

In addition, for the completeness of the overall picture, we briefly analyze
what challenges the two main scenarios in data-intensive flows (i.e., ETL and
ETO) bring to querying.

v The requirements elicitation and analysis (i.e., querying) stage mainly serves
for posing analytical needs of end users over the available data. This stage
is not actually part of a data-intensive flow execution, but depending on the
scenario (i.e., either ETO or ETL), can respectively come as a preceding or
subsequent stage for a data-intensive flow execution. At the lower level of
abstraction, end users’ analytical needs are typically expressed in terms of
queries (e.g., SQL), programs (e.g., ETL/MapReduce jobs), or scripts (e.g.,
Pig Scripts), which are then automatically translated to data-intensive flows

A Unified View of Data-Intensive Flows in BI Systems: A Survey 9

that retrieve the needed data. The typical challenges of querying the data in
the next generation BI setting concern the ability of the system to adapt and
complement users’ analytical needs by means of discovering related, external
data, and the usability of a BI system for posing analytical needs by end-
users. The former challenge may span from the traditional DW systems that
typically answer user’s OLAP queries solely by exploiting the data previously
loaded into a DW (by means of an ETL process), to situation-(context-)aware
approaches that considering end user queries, explore, discover, acquire, and
integrate external data [1,2]. Regarding the latter challenge, we can also ob-
serve two extreme cases: traditional querying by means of standard, typically
declarative query languages (e.g., SQL, MDX), and approaches that enable
users to express their (often incomplete) analytical needs in a more natural
and human-preferred manner (e.g., keyword search, natural language). Re-
cently, some researchers have proposed more flexible (semi-structured) query
language (SQL++) for querying a variety of both relational and new NoSQL
databases that may store data in a variety of formats, like JSON or XML [69].

Other approaches also tackled the problem of providing a higher level of
abstraction for posing information requirements, more suitable for business
users. As analyzing information requirements and systematically incorporat-
ing them into a design of data-intensive flows has been typically overlooked in
practice, initial efforts were mostly toward systematic requirements analysis
in BI and DW projects (e.g., [36,102]). However, such approaches still require
long processes of collecting the requirements at different levels of abstraction
and their analysis, before manually incorporating them into a data-intensive
flow design. Thus, they obviously cannot be applied in ETO scenarios, where
the generation of data-intensive flows to fulfill end user analytical needs is ex-
pected in near real-time. Other works identified such problem and proposed
certain automation to such time-lasting process (e.g., [79]). However, the au-
tomation required lowering the level of abstraction for defining information
requirements, tightening them to the multidimensional model notation (i.e.,
facts and dimensions of analysis). As an extension to this approach the au-
thors further tried to raise the level and provide an abstraction of the data
sources’ semantics in terms of a domain ontology, with its graph representa-
tion. This has partially hidden the model specific details from business users,
and allowed them to pose information requirements using a domain vocab-
ulary. Recent work in [31] conducted an extensive study of decision support
system approaches, identifying how they fit the traditional requirements en-
gineering framework (i.e., [72]). As a result, the authors identified a need for
systematic and structured requirements analysis process for further raising
the level of automation for the design of decision support systems (including
the design of data-intensive flows), while at the same time keeping the re-
quirements analysis aware of all stakeholder needs. We have discussed here
the main challenges that requirements elicitation and analysis introduces to
the field of data-intensive flows in the next generation BI setting, but we
omit further analysis as it falls out of the scope of this work.

10 P. Jovanovic, O. Romero and A. Abelló

As a result, we define a blueprint for studying data-intensive flows, depicted
in Figure 4. Going from top down, we depict separately the two main scenarios
of data-intensive flows studied in this paper (i.e., ETL and ETO). Going from
left to right, the first part of Figure 4 (i.e., A, E) depicts the characteristics of
the data extraction stage in terms of the complexity that different input data
types bring to a data-intensive flow; then the following part (i.e., B, F) covers the
characteristics of the data transformation stage; the penultimate part (i.e., C, G)
covers the data delivery stage, while the last (most right) part (i.e., D, H) covers
querying. Being rather a holistic field (i.e., taking into account the complete
data-intensive flow), the optimization spans all stages of data-intensive flows
and it is depicted at the bottom of Figure 4.

Fig. 4. Study setting for data-intensive flows

3.3 Phase II (Analyzing the characteristics of data-intensive flows).

This phase included the review of the works that scrutinize the characteristics
of data-intensive flows in both previously defined scenarios, i.e., ETL and ETO.
This phase aimed at characterizing data-intensive flows in terms of the features
that best indicate the movement toward the next generation BI setting.

To this end, we performed an incremental analysis of the included works to
discover the features of data-intensive flows they have tackled. We started from
the papers that individually covered the traditional and the next generation
BI settings. The identified features are then translated into the dimensions for
studying data-intensive flows (see Figure 5). As new dimensions are discovered,
the related papers are reconsidered to analyze their assumptions regarding the
new dimensions. Each discovered dimension determines the levels, supported or
envisioned by analyzed approaches, in which these approaches attain the cor-
responding feature of data-intensive flows. Eventually, we converged to a stable

A Unified View of Data-Intensive Flows in BI Systems: A Survey 11

set of dimensions, which can be further used for studying and classifying the
approaches of data-intensive flows.

In Section 4, we discuss in more detail the process of discovering dimensions
for studying data-intensive flows, and further provide their definitions.

3.4 Phase III (Classification of the reviewed literature).

In this phase, we further extend the study to the works that more specifically
cover the previously discussed areas of data-intensive flows (i.e., data extraction,
data transformation, data delivery, and data flow optimization). We classify the
reviewed approaches using the previously defined dimensions, which build our
study setting (see Figure 5), and present the results of this phase in Sections
5 - 8. We summarize the classified approaches of the three main stages (i.e.,
data extraction, data transformation, and data delivery) respectively in Tables
1 (page 18) - 3 (page 28), and the optimization approaches in Table 4 (page
31). We mark the level of the particular dimension (i.e., challenge) that each
approach achieves or envisions (i.e., Low, Medium, or High)6.

In addition, we also classify the approaches in Tables 1 - 4 based on the fact if
they are potentially applicable in ETL, ETO, or both ETL and ETO scenarios.

Finally, for each reviewed approach we define the technology readiness level,
focusing on the first four levels of the European Commission scale [23].

– TRL1 (“basic principles observed”), refers to work that either based on prac-
tical use cases or reviewed literature observes the basic principles that should
be followed in practice (e.g., guidelines, white or visionary papers)

– TRL2 (“technology concept formulated”), refers to work that provide the-
oretical underpinnings of the studied area, which are not always directly
applicable in practice, but represent an important foundation for principles
that should be followed in practice (e.g., the database theory works on data
exchange and data integration).

– TRL3/TRL4 (“experimental proof of concept”/“technology validated in lab”),
refers to the system-oriented work that provide the proof of concept solution
for an observed principle from the previous two levels, validated either over
synthetic (TRL3) or real-world use cases (TRL4).

4 Defining dimensions for studying data-intensive flows

For each area in the outlined study setting for data-intensive flows (Figure 4),
we discuss in more detail, and further provide the definitions of the dimensions
through which the reviewed works on data-intensive flows are analyzed (see
Figure 4). Then, in the following sections 5 - 8, we discuss in more detail the
works specifically covering each of the studied areas.

6 The exception to this are the approaches from the data flow optimization area, for
which we introduced levels that more precisely describe the consequences of their
placement inside the corresponding dimensions. Moreover, in the cases when the
approach is completely independent of the level for a particular dimension, we mark
it as non-applicable (N/A).

12 P. Jovanovic, O. Romero and A. Abelló

Fig. 5. Dimensions for studying data-intensive flows

4.1 Data Extraction

The most commonly discussed challenge when extracting data (e.g., [1,53]) is
related to the format in which the data are provided, i.e., structuredness.

Structuredness determines the level, in which data in data sources under anal-
ysis follow a certain model, constraints or format. It spans from highly structured
data that follow strictly defined models and ensures certain constraints over data
(High), like relational (see top left of Figure 4); then semi-structured data that
are represented in a repetitive [47], standard and easily parsable format, but that
do not enforce strong constraints over data (Medium), like XML, CSV, RDF (see
middle left in Figure 4); and unstructured data in a free-form (textual or non-
textual) that require smarter techniques for extracting real value from it (Low),
like free text, photos, x-rays, etc. (see bottom left of Figure 4). l

Other characteristics of this stage are related to the degree in which BI
applications need to be coupled with source systems when extracting the data,
i.e., coupledness, and the reliability of accessing these systems, i.e., accessibility.

Coupledness determines the level, in which data-intensive flows depend on a
specific knowledge or components obtained from data sources under analysis. It
spans from typical ETL processes that consolidate organization’s (“in-house”)
operational sources with predictable access policies (e.g., DBMS, ERP systems;
see top left of Figure 4), using extraction algorithms (e.g., incremental DB snap-
shots) that strongly depend on information from source systems (High), e.g., ma-
terialized views DW solutions, triggers, source components modifications; then
the systems that use logs, timestamps or other metadata attached to data sources
(Medium); and the scenarios where we cannot expect any in-advance knowledge
about the data sources, but the system needs to discover and integrate them
on-the-fly [2] (Low), e.g., Web data, Link Open Data. l

Accessability determines the level, in which one can guarantee a ”non-stop”
access to certain data sources. It spans from ”in-house”, highly available data
(High), like ERP, ODS systems; then the external data usually provided by data

A Unified View of Data-Intensive Flows in BI Systems: A Survey 13

providers that under SLAs can guarantee certain accessibility to data (Medium);
and external data sources that are completely out of the organization’s control
(Low), like open, situational, or Web data. l

4.2 Data Transformation

In this stage, the most common issue is related to the complexity of data trans-
formations inside a flow (e.g., [96]), and more specifically to the degree in which
we can automate the design of a data-intensive flow, i.e., automation. While the
design of an ETL process is known to be a demanding task (e.g., [89]; see the
example ETL process in the top middle of Figure 4) and its automation (even
partial) is desirable and has been studied in the past (e.g., [68,79]), ETO de-
pends on fully automated solutions for answering user queries at runtime (e.g.,
by means of reasoning; see Figure 4).

Automation determines the level, in which one can automate the design of
data-intensive flows. It spans from the works that propose modeling approaches
to standardize the design of data flows, especially in the context of ETL processes
(Low), e.g., [99,92,3]; then approaches that provide guidelines and/or frequently
used patterns to facilitate the design of a data-intensive flow (Medium), e.g.,
[53,98]; and approaches that attempt to fully automate the generation of data-
intensive flows as well as their optimization (High), e.g., [79,24,19]. l

Other important characteristics that distinguish ETO from a traditional
ETL process are the degree of data constraintness that a flow must ensure,
and the flexibility (i.e., malleability) of a data-intensive flow in dealing with the
changes in the business context.

Constraintness determines the level, in which data-intensive flows must guar-
antee certain restrictions, constraints, or certain level of data quality over the
output data. It spans from fully constrained data, usually enforcing the MD
model (MD integrity constraints [64]), and high level of data cleanness and com-
pleteness required to perform further data analysis, like OLAP (High); then,
data-intensive flows that may provide ad-hoc structures for answering user queries
(e.g., reports), without a need to enforce the full completeness and cleanness of
data (Medium); and as an extreme case we consider the concept of data lakes
where no specific schema is specified at load time, but rather flexible to support
different analysis over stored and shared data at read-time (Low). l

Malleability determines the level in which a system is flexible in dealing
with the changes in the business context (e.g., new/changed data sources under
analysis, new/changed/removed information requirements). It spans from the
traditional DW settings where data sources as well as information requirements
are static, typically gathered in advance. and are added manually to the analysis
only at design time, while any change would require the redesign of a complete
data-intensive flow (Low) [53]; then systems that tackle the incremental evolution
of data-intensive flows in front of new requirements and data sources (Medium)
[49]; and dynamic approaches that consider discovering new, usually external
data at runtime (High) [2]. l

14 P. Jovanovic, O. Romero and A. Abelló

4.3 Data Delivery

For delivering the transformed data at the target, we have identified two main
characteristics that distinguish ETL from ETO, namely the interactivity of data
delivery as perceived by the end-user; and the openness of the delivered data,
which refers to the degree in which the approaches assume the delivered infor-
mation to be complete (i.e., closed vs. open world assumption).

Interactivity determines the level in which a system interacts with the end-
user when executing a data-intensive flow and delivering the data at the output.
It spans from traditional ETL processes that typically deliver the data (i.e.,
materialize the complete data to load a DW) in a batched, asynchronous process,
without having an interaction with an end-user (Low), then approaches that
based on the overall cost, select data to be partially materialized (e.g., loaded in
a batch to materialized views), and those that are queried on-the-fly (Medium);
and finally completely interactive approaches that assume on-the-fly data flows
which deliver the data to answer user queries for immediate use only, e.g., for
visualization (High). l

Openness determines the level, in which the delivered data are considered
open to different interpretations. It spans from closed-world assumption ap-
proaches typical for traditional databases, where the data are considered com-
plete and any answer to a user query is determined (Low), to open-world assump-
tion approaches, where due to the assumption that data may be incomplete, an
answer to a user query can be either determined if there exist data that can prove
such an answer, or “unknown” in the case where there is no data to determine
its truthfulness (High). l

4.4 Optimization of data-intensive flows

Finally, we also discuss the low data latency as an important requirement for
today’s data-intensive flows.

Optimizing data flows has been one of the main topics in database research
[48]. In this context, we discuss the following two aspects.

Optimization input. This dimension refers to the level at which the optimiza-
tion is provided. It spans from optimizing the way that input data is stored
and processed (e.g., data fragmentation) in order to achieve optimal execution
(e.g., parallelizing data flow execution); then optimizing the execution of single
data flows by means of modifying the execution of the data flow (e.g., opera-
tion reordering, different implementations) to achieve the optimal execution of a
data flow; and finally the overall optimization of a multi-flow, where the goal
is to achieve the optimal execution for a set of data flows, rather than optimizing
the execution of a single flow. l

Dynamicity. Another dimension for studying the optimization of data-inte-
nsive flows relates to the overhead introduced by the optimization and thus
determines the level of dynamicity of the data flow optimization process. In
the traditional DW systems, the design and optimization of ETL processes is
done at the design time, once while the process is then executed periodically,

A Unified View of Data-Intensive Flows in BI Systems: A Survey 15

many times. This obviously allows for a higher overhead of the optimization
process and taking into account different metadata (e.g., statistics from the
previous executions of the same flow). On the other hand, an ETO flow must
be optimized at runtime, when the analytical query is issued, which introduces
additional challenges into the optimization techniques, especially regarding the
way the flow and data statistics are gathered and exploited for optimization. l

5 Data Extraction

In the initial stage of data-intensive flows, the source systems are identified
and accessed for extracting the relevant data. In the data extraction stage, we
focused on analyzing the three following challenges that characterize the shift
towards the next generation BI settings, namely coupledness, accessibility, and
structuredness, which are subsequently discussed in the following subsections.

5.1 Structuredness

The seminal work on DW systems (e.g., [46]), although mentioned external un-
structured data as an important opportunity for building DW system, have not
in particular tackled the challenges that they bring to the design of the ETL
pipelines. Furthermore, some of the first (purely relational) approaches for the
DW system design in the literature (i.e., using materialized views in [90]), as well
as the later extraction techniques (e.g., [57,62]) assumed purely relational data
sources, thus only supported High structuredness of input data. [53] considers
Medium stucturedness of input data, by providing the practical guidelines for
accessing external data in Web logs or flat files, and semi-structured data (i.e.,
XML; see Figure 4(A)).

Example. In our running example, the ETL flow depicted in Figure 4 reads
data from the transactional systems supporting daily sales operations. Notice
that besides the challenges that heterogeneity in data sources (both structural
and semantic [87]) brings to the design of an ETL pipeline, well-structured data
sources do not require any special technique for obtaining the data before the
transformation and cleaning starts. However, today, using a diversity of external
and often unstructured data sources is becoming inevitable and thus the tech-
niques for extracting such data have attracted the attention of both academy
and industry. In our example scenario, we can see that introducing unstructured
data (e.g., free text reviews from the Web) into the analytical processes of the
company (see Figures 2 and 3) required additional data processing for extract-
ing relevant information from these sources. Specifically, Sentiment Analysis

based on natural language processing (NLP) is performed over textual data from
the Web to extract customer opinions about the items and the campaign. l

In research, different techniques (e.g., text mining [28], NLP [58,29], senti-
ment analysis) are proposed to discover data patterns and extraction rules for
extracting relevant data from natural language documents and transform un-
structured data into more explicitly structured formats [10] (e.g., graphs, trees,

16 P. Jovanovic, O. Romero and A. Abelló

relational model). There, approaches are hence able to deal with the Low struc-
turedness of input data. However, at the same time, they may assume a con-
siderable latency overhead to the execution of the complete data pipeline and
thus introduce an additional challenge to data-intensive flows. Interestingly, the
linked data movement [7], on the other side, proposes that large amounts of
external data are already provided in more structured (semi-structured) for-
mats and semantically interlinked (e.g., using RDF), in order to facilitate the
situation-aware analysis [63] and data exploratory actions [2]. These approaches
assume Medium structuredness of input data, ready for the analytical processes
carried out by data-intensive flows.

5.2 Coupledness

First relational approaches for designing a DW by means of a set of material-
ized views (e.g., [90]) in general allowed very efficient refreshments processes,
by applying the well-known view maintenance techniques, to either compute in-
cremental changes in the sources or a complete ”rematerialization” of a view.
Both approaches issue queries (maintenance queries) over the data sources, ex-
tract the answer, and load the corresponding views. Such approaches, however,
required a High coupledness to source systems and soon became unrealistic to
support the demands of enterprises to include a variety of external data sources
into their analytical processes.

Example. As we can see from our example scenario, the retail company ini-
tially relied mainly on the internal data sources (e.g., the information about the
sold items), which are periodically transferred to a central DW (see Example
1.1). To lower the data transferred in every execution of the ETL flow, the de-
signers have built the flow to only extract the sales and item data that are
inserted to the sources after the last ETL execution (i.e., snapshot difference).
For efficiently finding the differences in two snapshots of the source data, the
tight (High) coupledness to the considered data sources is needed. On the other
side, in the scenario illustrated in Examples 2.1 and 2.2 (i.e., Figures 2 and 3,
respectively), some data sources (i.e., item reviews from the Web) are not un-
der the control of the company and moreover they may not be known in advance
as their choice depends on the current user needs. Thus, obviously we cannot
depend on having strong knowledge of these kinds of data sources. l

In the context of modern ETL processes, in [96], the author revisits the
approaches for finding the difference of the consecutive snapshots of source
databases (e.g., [57,62]). However, these snapshot techniques (e.g., timestamps,
triggers, interpreting the source’s logs) still required certain control over the
known source systems (i.e., Medium coupledness). Web-oriented systems have
further imposed more relaxed environments for extracting data located on dis-
parate Web locations. The most common solution introduced for performing data
integration from disparate sources includes building specialized software compo-
nents, called wrappers, for extracting data from different Web sources (e.g., [32];
see Figure 4(E)). Wrappers are typically used in combination with another com-
ponent (namely mediator, see Figure 4(F)), which, based on a user query, invokes

A Unified View of Data-Intensive Flows in BI Systems: A Survey 17

individual wrappers, and combines (i.e., integrates) data they return to answer
the input query. However, the wrapper/mediator architecture still requires a
Medium coupledness, as wrapper design highly relies on the specific technology
of data source systems, while the changes in the source systems typically require
reconsidering the wrappers’ design. Finally, as we mentioned above, to make the
enormously growing data volumes on the Web available and potentially useful
for the enterprise analytical and data discovery actions, the linked and open data
movement (e.g., [7]) has proposed a completely uncoupled environment (i.e., Low
coupledness) with the general idea of having huge amounts of distributed data
on the Web semantically interlinked and preferably provided in easily parseable
formats (e.g., XML, RDF), see Figure 4(E). Approaches that argue for such Low

coupled scenarios, envision architectures that can take the advantage of exist-
ing logic-based solutions for enabling data exploration actions over the external
sources [2], and provide more context-aware data analysis [1].

A separate branch of realated research that strongly argues for High decou-
pling of data sources in data-intensive flows is Complex Even Processing (CEP)
[14]. The idea here is on enabling on-the-fly processing and combining of data
coming in greater speed and typically from external data sources, with the goal of
detecting different correlations or anomalies happening in the “external world”.
Thus, the CEP systems typically decouples from the technical level information
of the data sources (e.g., sensor readings), and rather aims at detecting events at
the application level (e.g., correlations, anomalies). CEP is rather extensive and
separate fields of research, and to this end, we here give its high level overview
in terms of our analysis dimensions, while for the specific approaches and appli-
cations we refer the reader to the survey in [14], which compares and studies in
detail the state of the art approaches in this field.

5.3 Accessability

The practical guidelines for efficiently building an ETL process in [53] proposes
a pre-step of profiling data sources for quality, completeness, fitness, and ac-
cessibility. Apart from transactional data sources, dominant in traditional DW
scenarios [46], with typically High accessability or at least predictable access
policies (e.g., nightly time windows), nowadays a vast amount of potentially
useful data for an enterprise is coming from remote data sources, over the global
networks, like forums, social networks, and Web in general, [1], see Figure 4(E).

Example. Going back to our example scenario, we can notice that in the tradi-
tional DW environment, the company builds the system based on the previously
elicited business needs and accordingly incorporates internal data sources (e.g.,
item and sales) into their analytical processes. ETL flows (e.g., see Figure 1)
are designed and tested in advance for periodically extracting the data from
pre-selected data sources, relying on the High or predictable availability of these
sources. Conversely, the ETO flows in Figures 2 and 3 cannot rely on access-
ing the data sources at all times, due to remote access (e.g., Web and social
networks) and moreover as they can be selected on-the-fly. l

18 P. Jovanovic, O. Romero and A. Abelló

Even though in the linked (open) data movement information about quality
of external data are envisioned to be in the form of catalogs [7], the access to
these data at any moment still cannot be guaranteed (Low accessability), which
brings a new challenge to the process of data extraction in this scenario. In this
context, the authors in [1] study the concept of situational data, which are usu-
ally external to an organization control and hence without a guaranteed access,
but which in fact play an important role in today’s context-aware decision mak-
ing. The authors thus propose a “data as a service” solution, where envisioned
systems will have a registry of possible data providers, and using Web service
interface partially automate the process of finding the most appropriate and
currently accessible data source.

Table 1. Classification of data extraction approaches

Data extraction

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REFERENCE struct. access. coupl.

ETL

Inmon, 1992, [46] 1
High High High

Theodoratos & Sellis, 1999, [90] 2
Labio et al. 1996, [57]

3 High N/A Medium
Lindsay et al. 1987, [62]

Kimball & Caserta, 2004, [53] 1 Medium Medium High

ETO

Feldman & Sanger, 2007, [28]
1 Low N/A N/A

Buneman et al., 1997, [10]
Laender et al., 2002, [58] 1 Low Low Medium

Bizer et al., 2009, Linked Data, [7]
1 Medium Low Low

Cugola and Margara, 2012, CEP, [14]
Abelló et al., 2013, Fusion Cubes, [1]

1 Low Low Low
Abelló et al., 2015, [2]

Garcia-Molina et al., 1997, TSIMMIS, [32] 4 Medium High Medium

5.4 Discussion

We summarize the results of studying the challenges of data extraction stage
(i.e., the classification of the representative approaches) in Table 1. As expected,
we have found more matured (i.e., TRL ¥ 2) works dealing with this stage in
the traditional BI setting (i.e., ETL), considering tighter coupledness to source
systems, relying on high accessibility, and expecting structured data. Several ap-
proaches have opened the issue of dynamically accessing external and unstruc-
tured data, focusing mostly on data coming from the Web, while the majority
considered structured (relational) or at most semi-structured (XML) data.

Data extraction is however an important stage to be reconsidered for today’s
data-intensive flows, especially taking into account new loosely coupled BI envi-
ronments [1]. The main challenges of these (mostly envisioned) ecosystems with
low coupledness relate to the fact that data sources are outside of the organiza-
tion control, and often not even known in advance. Thus, the efficient techniques
to discover the relevant data must be deployed. We can benefit here from the

A Unified View of Data-Intensive Flows in BI Systems: A Survey 19

known techniques proposed to explore the contents on the Web (e.g., Web crawl-
ing). Moreover, being external data sources, the systems become very sensitive
to very probable variability of data formats, as well as the undefined semantics
of data coming from these sources. To overcome the semantics heterogeneity gap
between the data sources, and to automate discovering and extracting the data
from them, we propose to use the semantic-aware exploratory mechanisms [2].

Furthermore, as we can see from our example scenario, specialized data pro-
cessing (e.g., natural language processing, sentiment analysis, text mining) should
be also considered to extract the relevant information from these, often un-
structured, data sources. However, such complex data transformations typically
affect the data latency in a data-intensive flow, hence in most of the current
approaches this kind of input data transformation has been considered as part
of a pre-processing step. An alternative to this, following the principles of linked
(open) data [7], is to have data published in at least semi-structured formats
(e.g., XML, CSV, RDF), which largely facilitates their further exploitation.

6 Data Transformation

After data are extracted from selected (often heterogeneous) sources, the flow
continues with transforming the data for satisfying business requirements and
considered quality standards. Data transformation is characterized as the main
stage of a data-intensive flow by most of the approaches [53,96]. The main dimen-
sions we analyze in the data transformation stage are automation, malleability,
and constraintness.

As previously mentioned, from early years, managing heterogeneous data
has brought the attention of database community, and some fundamental works
stem from the database theory field (i.e., data integration (e.g., [59,94]) and data
exchange (e.g., [27])) to tackle this problem from different perspectives.

Both data exchange and data integration problems are based on the concept
of schema mappings, which in general can be seen as assertions that define the
correspondences between source and target schema elements.

In general, a parallelism can be drawn between the theoretical problems
of data exchange and data integration, and what we today consider as data-
intensive flows. Similar observation has been discussed in [96]. The author com-
pares data exchange to the traditional DW setting, where data transformations
in the ETL pipeline can be generally seen as schema mappings of the data ex-
change setting. However, as also noted in [96], schema mappings, as defined
by these theoretical approaches, are typically limited to simple transformations
over data and do not efficiently support typical transformations of data-intensive
flows (e.g., grouping, aggregation, or black-box operations), nor the diversity of
data sources (i.e., only relational or XML data formats have been considered).

6.1 Malleability

Data-intensive flows, as other software artifacts, do not lend themselves nicely
to evolution events, and in general, maintaining them manually is hard. The

20 P. Jovanovic, O. Romero and A. Abelló

situation is even more critical in the next generation BI settings, where on-
the-fly decision making requires faster and more efficient adapting to changed
domain context, i.e., changed data sources or changed information needs.

For considering the former problem, we revisit the foundational works on
data exchange and data integration, which introduced two main approaches for
schema mappings, i.e., global-as-view (GAV) and local-as-view (LAV) [30,59].

In the GAV approach, the elements of the global schema are characterized in
terms of a query over the source schemata, which further enables less complex
query answering by simply unfolding global queries in terms of the mapped data
sources. However, GAV mappings lack flexibility in supporting the evolution of
data source schemata, as any change on the sources may potentially invalidate
all the mapping assertions (i.e., Low malleability). An example of this approach
is the wrapper/mediator system [32].

Example. As we discussed, in Scenario 1, the company elicits the business
needs prior to designing the DW and ETL flows (e.g., see Figure 1). In the case
a new data source is added, the redesign of the system is performed offline before
the ETL flows are run again. However, notice that in the second scenario (see
Examples 2.1 and 2.2) the flexibility of the system for adding new data sources
must be supported in an ”instant” manner, as business needs are provided on-
the-fly and often require a prompt response. l

As opposed to GAV, LAV schema mappings characterize the elements of
source schemata in terms of a query over the global schema. LAV mappings
are intuitively used in the approaches where changes in dynamic data source
schema are more common (e.g., [54]) as it provides High malleability of the data
integration systems. We can thus observe that the LAV approach fits better the
needs of the next generation BI setting, where the variability and number of
data sources cannot be anticipated (e.g., [1,2]). However, the higher flexibility
of LAV mappings brings the issues of both, the complexity of answering the
user queries and the completeness of the schema mappings. Generally, in LAV,
answering user queries posed in terms of a global schema implies the same logic
as answering queries using materialized views, which is largely discussed as a
computationally complex task [42].

Several approaches further worked on generalizing the concept of schema
mappings by supporting the expressive power of both LAV and GAV, i.e., both-
as-view (BAV) [65], and global-and-local-as-view (GLAV) [30].

However, as we discussed before such approaches are hardly applicable to
the complex data-intensive flows. In the context of the traditional DW systems,
some works have studied the management of data-intensive flows (i.e., ETL pro-
cess) in front of the changes of data source schemata. In [70] the authors propose
a framework for impact prediction of schema changes for ETL workflow evolu-
tion. Upon the occurred change, the ETL flow is annotated with (pre-defined)
actions that should be taken, and the user is notified in the case that the specific
actions require user involvement. Other approaches (e.g., [49]) have dealt with
automatically adapting ETL flows to the changes of user’s information needs.
For each new information requirement, the system searches for the way to adapt

A Unified View of Data-Intensive Flows in BI Systems: A Survey 21

the existing design to additionally answer the new requirement, by finding the
maximal overlapping in both data and transformation. Lastly, some approaches
have also dealt with the problem of adapting DW systems to the changes of the
target DW schema. Being a “non-volatile collection of data” [46], the evolution
changes of the target DW schema are typically represented in terms of different
versions of a DW (i.e., multiversion DW). In particular, the most important issue
was providing a transparent querying mechanisms over different versions of DW
schemata (i.e., cross-version querying; [67,37]). For instance, a solution proposed
in [37] suggested keeping track of change actions to further enable answering the
queries spanning the validity of different DW versions. These approaches pro-
vide a certain (Medium) level of malleability for data-intensive flows, but still
lack the full automation of the evolution changes or applicability in the case of
unpredictable complexity of data transformations.

In addition, after data warehousing was established as a de facto way to an-
alyze historical data, the need for more timely data analysis has also emerged
in order to support prompter detection of different anomalies coming from data.
This led researches to rethink the current DW architecture and make it more
malleable to combine both traditionally mid-term and long-term, with “just-
in-time” analysis. This brought the idea of (near) real-time data warehousing
systems. Several approaches discussed the main requirements of such systems
and proposed architectural changes to traditional DW systems for satisfying
these new requirements (e.g., [8,97]). For instance, besides the main requirement
of data freshness, [97] has also indicated minimal overhead of the source system
and scalability in terms of input data sources, user queries, and data volumes, as
relevant for these systems. They however pointed out the contradiction between
users need for maximal data freshness and completeness, and the high overhead
of the traditional DW workflows that often require costly data cleaning and
transformations. To this end, the approaches in [8] and [97] discuss both con-
ceptual and technological changes that would balance the delays in traditional
ETL processes. In practice, SAP Business Warehouse [66] is an example of such
system. It provides certain flexibility to traditional DW systems for enabling on-
the-fly analysis at different levels of data, i.e., summarized and loaded to a DW,
consolidated operational data (operational data store), or even directly over the
transactional data. Their goal is to enable more real-time data warehousing and
a possibility of also including fresh, up-to-date trasnactional data to the analysis.
Even though the (near) real-time DW approaches bring more malleability (Me-
dium) to data analysis by combining historical and on-the-fly analysis, included
data are still typically coming from the in-house and predefined data sources.

6.2 Constraintness

What further distinguishes data exchange [27,55] from the original data integra-
tion setting, is that the target schema additionally entails a set of constraints
that must be satisfied (together with schema mappings) when creating a target
instance (i.e., High constraintness).

22 P. Jovanovic, O. Romero and A. Abelló

Example. In Figure 1, we can notice that for loading data into a DW, data-
intensive flow must ensure a certain level of data quality to satisfy constraints
entailed by the DW (e.g., Remove Duplicates in Figure 1 removes the repetitive
itemIDs for loading the successFact table into a DW). On the other side,
data-intensive flows in the next generation BI settings (see Figures 2 and 3),
due to their time constraints typically cannot afford to ensure full data quality
standards, but is often sufficient to deliver partially cleaned (i.e., “right”) data,
at the right time to an end-user [22]. l

The work on generalizing schema mappings (GLAV) in [30] also discusses the
importance of adding support for defining the constraints on global schema, but
no concrete solution has been provided. In the data integration setting, although
some works did study query answering in the presence of integrity constraints
on global schema [12], (i.e., Medium constraintness), most of the prominent data
integration systems (e.g., [32,54]) typically do not assume any constraints in
the target schema (i.e., Low constraintness). Furthermore, as we discussed in the
DW context, the design of an ETL process is affected by the integrity constraints
typical in a dimensionally modeled DW schema (see Figure 4(C)).

When working with data from unstructured data sources, one may face two
different problems: (1) how to extract useful information from data in unstruc-
tured formats and create more structured representation; and (2) how to deal
with incomplete and erroneous data occurred due to lack of strict constraints
in source data models. The latter problem becomes even more challenging when
the target data stores entail strict constraints as we discussed above. While the
former problem is usually handled by means of data extraction techniques dis-
cussed in the Section 5, the latter is solved at the data transformation stage,
where data are cleaned to fulfill different quality standards and target constrai-
nts. As expected, such a problem has brought the attention of researchers in the
data exchange (e.g., [25]) and data integration (e.g., [21]) fields. In the modern
DW systems, target data quality and High constraintness is usually guaranteed
as the result of the process called data cleaning. Data cleaning deals with differ-
ent data quality problems detected in sources, e.g., lack of integrity constraints
at sources, naming and structural conflicts, duplicates [75].

6.3 Automation

It is not hard to see from the previously discussed problem of data cleaning
and the flows in the example scenario, that today’s data-intensive flows require
more sophisticated data transformations than the ones (mainly based on logics)
assumed by fundamental approaches of data exchange and data integration. At
the same time, higher automation of the data flow design is also required to
provide interactive, on-the-fly, analysis.

Example. Loading a DW may require complex data cleaning operations to
ensure the entailed constraints. Obviously, complete automation of the design
of such data-intensive flows is not realistic and thus the designers in Scenario 1
usually rely on a set of frequent data transformations when building ETL flows
(e.g., Join, UDF, and Remove Duplicates in Figure 1). But, in Scenario 2, such

A Unified View of Data-Intensive Flows in BI Systems: A Survey 23

an assisted design process is not sufficient, as the flows for answering users’ on-
the-fly queries (e.g., see Examples 2.1 and 2.2) must be created instantaneously.
This, together with the requirement for lower data latency, restricted such flows
to more lightweight operations (e.g., Filter or Match in Figure 2). l

Different design tools are available in the market and provide often overlap-
ping functionalities for the design and execution of data-intensive flows (mostly
ETL; see for example Figure 4(B)). The complexity and variability of data trans-
formations has introduced an additional challenge to the efforts for providing a
commonly accepted modeling notation for these data flows. Several works have
proposed different ETL modeling approaches, either ad-hoc [99], or based on
well-known modeling languages, e.g., UML in [92] or BPMN in [3,101]. How-
ever, these modeling approaches do not provide any automatable means for the
design of an ETL process (i.e., Low automation). Some approaches (e.g., from
UML [68], or from BPMN [4]) are further extended to support certain (i.e.,
Medium) automation of generating an executable code from the conceptual flow
design, by means of model transformations (i.e., Model-driven design).

The design of an ETL process is on the other side described as the most
demanding part of a DW project. As reported in [89] ETL design can take up
to 80% of time of the entire DW project. In [53] the authors give some practical
guidelines for a successful design and deployment of an ETL process, but without
any automatable means (i.e., Low automation), still, a considerable manual effort
is expected from a DW designer. In [98], the framework that uses the ad-hoc
modeling notation from [99] is proposed to assist the design of ETL processes,
along with the palette of frequently used ETL patterns (i.e., Medium).

Several approaches went further with automating the conceptual design of
ETL processes. On the one hand, in [88], the authors introduced the design ap-
proach based on Semantic Web technologies to represent the DW domain (i.e.,
source and target data stores), showing that this would further enable automa-
tion of the design process by benefiting from the automatic reasoning capabilities
of an ontology. [79], on the other hand, assumes that only data sources are cap-
tured by means of a domain ontology with associated source mappings. Both
DW and ETL conceptual designs are then generated to satisfy information re-
quirements posed in the domain vocabulary (i.e., ontology). Finally, [5] entirely
rely on an ontology, both for describing source and target data stores, and cor-
responding mappings among them. Integration processes (ETL) are then also
derived at the ontological level based on the type of mappings between source
and target concepts (e.g., equality, containment). However, even though these
approaches enable High automation of the data flow design, they work on a
limited set of frequent ETL operations.

In parallel, in the field of data exchange, [24] proposes a tool (a.k.a. Clio)
that automatically generates correspondences (i.e., schema mappings) among
schemas without making any initial assumptions about the relationships be-
tween them, nor how these schemas were created. Such a generic approach thus
supports High automation in creating different schema mappings for both data
integration and data exchange settings. [19] went further to provide the inter-

24 P. Jovanovic, O. Romero and A. Abelló

operability between tools for creating declarative schema mappings (e.g., Clio)
and procedural data-intensive tools (e.g., ETL). Still, such schema mappings
either cannot tackle grouping and aggregation or overlook complex transforma-
tions typical in today’s ETL processes. The next generation BI settings, however,
cannot always rely on the manual or partially automated data flow design. More-
over, unlike ETL, ETO cannot completely anticipate end user needs in advance
and thus besides the High level of automation, the design process must also be
agile to efficiently react in front of new or changed business needs (e.g., [78]).

Table 2. Classification of data transformation approaches

Data transformation

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REFERENCE autom. malleab. constr.

ETL

Fagin et al., 2003, Data Exchange, [27]
2

N/A N/A HighKolaitis, 2005, [55]
Rahm & Hai Do, 2000, [75] 1

Kimball & Caserta, 2004, [53] 1 Low Low High
Vassiliadis et al., 2002, [99]

2 Low Low High
Trujillo & Luján-Mora, 2003, UML-ETL [92]

Wilkinson et al., 2010, xLM, [101]
El Akkaoui et al., 2012, BPMN-ETL [3]

Muñoz et al., 2009, [68]
3 Medium Medium HighEl Akkaoui et al., 2013, [4]

Vassiliadis et al., 2003, ARKTOS II, [98]
Papastefanatos et al., 2009, [70]
Morzy & Wrembel, 2004, [67]

Golfarelli et al., 2006, [37]
Skoutas & Simitsis, 2007, [88]

3
High Low HighBellatreche et al., 2013, [5]

Fagin et al., 2009, Clio, [24] 4

ETL & ETO

McDonald et al., 2002, SAP BW, [66] 4 Medium Medium High
Romero et al., 2011, GEM, [79]

3 High Medium HighDessloch et al., 2008, Orchid, [19]
Jovanovic et al., 2012, CoAl, [49]

ETO

Garcia-Molina et al., 1997, TSIMMIS, [32] 4 High Medium Low
Kirk et al., 1995, Information Manifold, [54] 3

High High Low
Romero & Abelló, 2014, [78]

1
Abelló et al., 2014, [2]

McBrien & Poulovassilis, 2003, BAV, [65]
2 N/A High MediumFriedman et al., 1999, GLAV, [30]

Cal̀ı et al., 2004, [11]

6.4 Discussion

As we have seen, in the next generation BI setting (i.e., ETO), where data
sources are often external to the organization control and moreover discovered
dynamically based on current user needs; a more flexible environment is needed
for efficiently supporting adding new data sources to analytical processes. The
local-as-view (LAV) schema mapping approaches are more suitable in order to
support the required level of malleability [65,30]. In the LAV approach, plugging
new data sources requires defining a mapping of the new source schemata to the
global schema, without affecting the existing mappings. However, as we can see

A Unified View of Data-Intensive Flows in BI Systems: A Survey 25

in Table 2, currently, most of these techniques are still purely theoretical (i.e.,
TRL � 2), while the high complexity and intractability of LAV approaches have
been widely discussed, and hence represent a serious drawback for using LAV
mappings in near real-time BI environments.

On the other side, some approaches (e.g., [24]) have worked on automating
the creation of such schema mappings, which can be widely applicable for sup-
porting answering information requirements on-the-fly. Even though we notice
the lower requirement for the cleanness and constraintness of output data in the
next generation BI setting (see Table 2), which would typically result with lower
complexity of a data flow, today’s BI applications do require rather complex data
analytics, which are typically not supported in the schema mapping approaches.
Some approaches try to extend this by automating the flow design (e.g., [79,5]),
but still with very limited and predefined operation sets (i.e., ETL & ETO).
Therefore, automating the creation of more complex data-intensive flows (e.g.,
machine learning algorithms), by means of exploiting different input data char-
acteristics or using metadata mechanisms is still lacking.

7 Data Delivery

After data from multiple sources are cleaned, conformed, and combined together,
a data-intensive flow delivers the data in the format suitable to the user needs
either for visualization, or further analysis and querying. In the data delivery
stage, we focus on analyzing the two following dimensions, namely, interactivity
and openness, subsequently discussed in the following sections.

7.1 Interactivity

One of the important decisions that should be made while building data-intensive
flows is the interactivity of the system when delivering data at the output.

Example. Notice that the ETL flow in Figure 1 is designed to periodically
transfer the complete data about the item sales in a batched back-end process,
so that users may later analyze the subset of these data depending on their needs
(e.g., slicing it only to the sales in the third quarter of the last). ETO flows
in Figures 2 and 3, however, instantly deliver the data from the sources that
are currently asked by the user (e.g., trends of the past weekend, and trending
product items from the first week of March, respectively). Moreover, such ETO
flows are typical examples of answering ad-hoc and one-time analytical queries,
thus storing their results is usually not considered as beneficial. l

Going back again to the fundamental work on data exchange, the data de-
livery in this setting is based on computing a solution, i.e., a complete instance
of the target schema that satisfies both, schema mappings and constraints of
the target schema. The queries are then evaluated over this solution to deliver
the answer to the user. However, due to incompleteness of data and/or schema
mappings, there may be more than one, and theoretically an infinite number of
valid solutions to the data exchange problem [27]. Answering user queries in such

26 P. Jovanovic, O. Romero and A. Abelló

a case would result in evaluating a query over all possible solutions (i.e., finding
the certain answer). To overcome the obvious intractability of query answer-
ing in data exchange, a special class of solutions (universal solutions), having a
homomorphism into any other possible solution, is proposed.

Like in the data exchange setting, materializing the complete data at the
target for the purpose of later answering user queries without accessing the orig-
inal data sources, is also considered in the later approaches for designing a data
warehouse (see Figure 4(G)), i.e., Low interactivity. As we discussed in Section
5, a DW has been initially viewed as a set of materialized views (e.g., [90]).
Similarly, in this case the database specific techniques (e.g., incremental view
maintenance) are studied to minimize the size of the data materialized in each
run of refreshment flows (maintenance queries). However, as DW environments
have become more demanding both considering the heterogeneity and volume
of data, it became unrealistic to consider a DW solely as a set of materialized
views. In addition, many approaches have further studied the modeling and the
design of a target DW schema, which should be able to support analytical needs
of end users. This has resulted in the field of multidimensional (MD) modeling
that is based on fact/dimension dichotomy. These works belong to a broader
field of MD modeling and design that is orthogonal to the scope of this paper,
and thus we refer readers to the survey of MD modeling in [77] and the overview
of the current design approaches covered by Chapter 6 in [38].

Conversely, the data integration setting, as discussed in Section 6, does not
assume materializing a complete instance of data at the target, but rather inter-
actively answering individual user queries (e.g., through a data cube or a report ;
see Figure 4(G)) posed in terms of a global (virtual) schema (i.e., High interac-
tivity). A query is reformulated at runtime into queries over source schemata,
using schema mappings (e.g., [32,54,59,42,94]). Another examples of High in-
teractivity are Complex Event Processing and Data Stream Processing systems.
Besides the differences these systems have (see their comparison in [14]), the
common property of these systems is that they provide on-the-fly delivery of
data, with typically low latency, and for the one-time use only (e.g., monitoring
stocks, fraud detection), without a need to materialize such data.

In [34], in the context of peer data management, a hybrid solution is proposed
based on both data exchange and data integration. The Medium interactivity, by
partially materializing data and using a virtual view over the sources (peers),
has been proposed. To this end, the solution presents schema dependencies that
can be used both for computing the core and query answering.

The “right” (Medium) level of interactivity is also discussed to be crucial
in the next generation BI setting (e.g., [15]) where a partial materialization
is envisioned for a subset of data with low latency and low freshness require-
ments (i.e., for which we can rely on the last batched ETL run). Following
the similar idea, [74] proposes a framework for combining data-intensive flows
with user query pipelines and hence choosing the optimal materialziation point
(i.e., Medium interactivity) in the data flow, based on different cost metrics (e.g.,
source update rates and view maintenance costs). Another field of research also

A Unified View of Data-Intensive Flows in BI Systems: A Survey 27

follows the Medium level of interactivity, and proposes an alternative to tradi-
tional ETL processes, where row data are first loaded to the target storage, and
later, typically on-demand, transformed and delivered to end-users, i.e., extract-
load-transform (ELT). For instance, an example ELT approach in [100] proposes
an ELT architecture that deploys traditional database mechanisms (i.e., hierar-
chical materialized views) for enabling on-demand data processing of fresher row
data previously bulk loaded into a DW.

7.2 Openness

As we have seen, incompleteness in source data (especially in the today’s Web
oriented environments, see Scenario 2 in Section 3), brings several challenges to
data-intensive flows. In addition, when integrating and delivering the data at
the target, due to possibly incomplete (or non-finite) data, the choice between
two main assumptions should be made, i.e., closed world assumption (CWA) or
open world assumption (OWA). This choice depends on different characteristics
of both, the considered data sources and the expected target. For the systems,
like in-house databases or traditional data warehouse systems, where the com-
pleteness of data can be assumed, CWA is preferable since in general we do
not anticipate discovering additional data (i.e., Low openness). On the other
side, when we assume incomplete data at the sources of analysis, we can either
follow CWA and create a single finite answer from incomplete data (e.g., by
means of data cleaning process), or OWA which would in general allow multiple
and possibly an infinite number of interpretations of the answer at the target, by
considering also dynamically added data to the analysis [2] (i.e., High openness).

Example. In our example scenarios, in the traditional BI setting (Scenario
1), the analysis of the revenue share depends solely on the data about the item

sales, currently transferred to DW by means of the ETL process depicted in
Figure 1. On the other hand, the next generation BI setting in Scenario 2, should
assume a more open environment, where at each moment depending on the end
user needs (e.g., following trends and opinions about items as in Examples 2.1
and 2.2) the system must be able to dynamically discover the sources from which
such an information can be extracted (e.g., reviews in forums). l

Similarly, [71] revisits two main paradigms for the Semantic Web: (1) Datalog,
that follows the CWA, and (2) Classical (standard logics) paradigm that follows
OWA. An important conclusion of this work is that the Datalog paradigm as
well as CWA is more suitable for highly structured environments in which we
can ensure completeness of the data, while the Classical paradigm and OWA
provide more advantages in loosely coupled environments, where the analysis
should not only be limited to the existing (i.e., “in-house”) data.

Moreover, coinciding arguments are found in the fields of data integration and
data exchange. Intuitively, CWA (i.e., Low openness) is more suitable assumption
in data exchange, where query answering must rely solely on data transferred
from source to target using defined schema mappings and not on the data that
can be added later [61]. Conversely, more open scenario is typically expected in
data integration systems [20], where additional data can be explored on-the-fly

28 P. Jovanovic, O. Romero and A. Abelló

and added to the analysis [2] (i.e., High openness). However, the high complexity
of query answering under the OWA [71], raises an additional challenge to the
latency of data-intensive flows, which is critical in next generation BI systems.

Table 3. Classification of data delivery appraoches

Data delivery

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REFERENCE interac. open.

ETL

Golfarelli & Rizzi, 2009, [38]

2 Low Low
Fagin et al., 2005, Data Exchange, [27]

Libkin, 2006, [61]
Theodoratos & Sellis, 1999, [90]

ETL & ETO

Dayal et al., 2009, [16] 1
Medium Low

Qu & Dessloch, 2014, [74]
3

Waas et al., 2013, ELT , [100]
Giacomo et al., 2007, [34] 2 Medium Medium

ETO

Cugola & Margara, CEP, 2012, [14] 1 High Medium
Abelló et al., 2013, Fusion Cubes, [1]

1

High High

Abelló et al., 2015, [2]
Lenzerini, 2002, Data Integration, [59]

2
Halevy, 2001, [42]
Ullman, 1997, [94]

Doan et al., 2012, Data Integration [20]
Garcia-Molina et al., 1997, TSIMMIS , [32]

3
Kirk et al., 1995, Information Manifold , [54]

7.3 Discussion

The outcome of studying the data delivery stage of data-intensive flows can be
seen in Table 3. We observed that the same principles for data delivery (i.e., levels
of the studied dimensions in Table 3) are followed in approaches of traditional
data exchange [27] and DW settings [38] (i.e., ETL). At the same time, we also
noticed that the similar principles of the data integration setting [59,20] are
envisioned for next generation BI systems in some of the studied approachs [1,2]
(i.e., ETO), while others propose a mixed approach [16] (i.e., ETL & ETO).

Such observations strongly indicated that the underpinnings for building
a system for managing data-intensive flows in the next generation BI setting
should be searched in the theoretical field of data integration.

Such a trend has been indeed followed in some of the recent approaches. For
example, the idea of creating a unified view over relevant data sources (i.e., the
main principle of the data integration setting), is revisited by some approaches
by creating a common domain vocabulary and integrating it with existing data
sources (e.g., [88,79]). There, the use of a domain ontology to reconcile the lan-
guages of business and IT worlds when building a BI system has been proposed.
In [79], an ontology is used in combination with schema mappings to auto-
matically generate ETL pipelines to satisfy information requirements previously
expressed in terms of an ontology by an end user. The approach works with a
predefined set of data sources which is, as suggested, suitable for building a DW

A Unified View of Data-Intensive Flows in BI Systems: A Survey 29

system, but as data in today’s BI settings are coming from disparate and ex-
ternal data sources, the challenge of capturing their semantics under a common
vocabulary brings additional challenges. To this end, Semantic Web technolo-
gies are discussed (e.g., [2]) as a solution both for capturing the semantics and
further interactive exploration of data, facilitated by the automatic reasoning
mechanisms.

8 Optimization of data-intensive flows

Optimizing the execution of data-intensive flows, is a necessity, especially taking
into account the next generation BI setting that often requires the “right-time”
delivery of information.

8.1 Optimization input

The problem of data flow optimization has been considered from early years
of databases from different perspectives, where each of these perspectives may
affect different parts of a data flow.

– Data. The optimization of a data flow execution can be achieved by trans-
forming the structure of the original dataset (e.g., by means of data par-
titioning [52]). However, notice that simply transforming a dataset would
not achieve a better performance, unless the execution model of a data flow
is able to exploit such a transformation (e.g., distributed or parallel data
processing [18]).

– Data flow. The most typical case considers the optimization of data flow
execution by changing the way data are processed, while ensuring the equiv-
alent semantics of the resulting dataset. Such techniques stem from the early
years of databases, where minimizing data delivery time by changing the or-
der and selecting the most optimal algorithm for operations applied over in-
put data has been studied under the name of query optimization [48]. Moving
to the DW environment, which assumes more complex data transformations
than the ones in relational algebra, has opened a new field of study deal-
ing with optimizing ETL processes (e.g., [83]). In fact, similar principles to
those introduced in query optimization (i.e., generating semantically equiv-
alent execution plans for a query by reordering operations, and then finding
a plan with a minimal cost) have been applied in [83] and extended to the
context of ETL flows.
Another work [44,76] has based operation reordering (i.e., plan rewrites)
on automatically discovering a set of extensible operation properties rather
than relying solely on algebraic specifications, in order to enable reordering
of complex (”black-box”) operators. While low data latency is desirable for
ETL processes, due to limited time windows dedicated to the DW refresh-
ment processes, in the next generation BI setting, having data-intensive flows
with close to zero latency is a must. Other techniques include: choosing the

30 P. Jovanovic, O. Romero and A. Abelló

optimal implementation for the flow operations [93], selecting the optimal
execution engine for executing a data flow [85,56], data flow fragmentation
and pipelining [52,86].

– Multi-flow. In other scenarios, especially in the case of shared execution
resources, the optimization goal may suggest optimizing the overall execution
of a set of data flows, rather than only the execution of an individual flow.
Approaches that deal with this problem fall in two categories. On the one
hand, some approaches assume having a detailed knowledge of included data
flows and thus try to exploit it and optimize the overall execution, by means
of finding shared parts of data workloads and reusing common execution
and data [80,35,49]. Other approaches however assume only a high level
knowledge of included data flows (e.g., input data size, execution time, high-
level flow complexity, time constraints for the flow execution; [73]). In such
cases, the optimization of data flows proceeds by selecting the best scheduling
for the execution of data-intensive flows, while the further optimization of
individual data flows is left to an engine-specific optimizer [86].

8.2 Dynamicity

While the challenges due to the higher complexity of data transformation has
been largely addressed [83,44], proposed cost-based techniques often require cer-
tain statistics metadata available for a given data flow in order to find the optimal
configuration. However, this is typically not the case and gathering and manag-
ing such statistics is not an easy task [41]. [41] proposes a statistics collection
framework, by defining a set of necessary statistics, as well as gathering meth-
ods. However, this approach although powerful assumes a case of ETL process
flow, where data flows are typically designed and optimized in advance (i.e., at
design time), while the statistics gathering depends on the previous execution
of the same ETL process.

Notice that the majority of the optimization approaches discussed in the
previous subsection also assume a static case (see Table 4), where data flows are
optimized once, at design time, and then executed many times. The exception
to this are approaches that besides statically optimizing a data flow, also provide
dynamic optimization of data flow executions in terms of runtime scheduling
(i.e., [86,73,52]).

Some optimization approaches however propose on-the-fly gathering of statis-
tics, more suitable for the next generation data flow setting, and applying data
flow optimization steps at runtime. The approach in [17] proposes performing
micro-benchmarks for building models to estimate the costs of operations using
different implementations or executing them on different engines. They show how
to deal both with the conventional (relational algebra) operators as well as with
complex data transformations typical for the next generation data flows (e.g.,
sentiment or text analysis). The importance of using more accurate statistics
for optimizing data flows in dynamic, cloud-scale environments has been also
discussed in [9]. To deal with uncertainty when optimizing running data flows
they propose an approach that continuously monitors the execution of data flows

A Unified View of Data-Intensive Flows in BI Systems: A Survey 31

at runtime, gathers statistics, and re-optimizes data flows on-the-fly to achieve
better performance. The focus here is however on the distributed computational
model, where execution times are often higher than in the centralized systems
due to necessary synchronization costs, thus the re-optimization overheads are
typically considered as negligible.

Table 4. Classification of data flow optimization approaches

Data flow optimization

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REFERENCE input dynamicity

ETL

Simitsis et al., 2005, [83]

3 Data flow Design time

Hueske et al., 2012, [44]
Rheinlnder et al., 2015, SOFA, [76]

Tziovara et al., 2007, [93]
Simitsis et al., 2005, [85]
Kougka et al., 2015, [56]

Halasipuram et al., 2014, [41]
Giannikis et al., 2014, SharedDB, [35]

3 Multi-flow Design time
Jovanovic et al., 2016, CoAl, [49]

ETO

Karagiannis et al., 2013, [52] 3
Data &

Runtime
Data flow

Dayal et al., 2011, [17]
3

Data flow RuntimeBruno et al., 2013, [9]
Jarke & Koch, 1984, [48] 2

Simitsis et al., 2013, HFMS, [86] 2
Multi-flow Runtime

Polo et al., 2014, [73] 3

8.3 Discussion

In Table 4, we summarize the outcome of studying data flow optimization ap-
proaches in this section. It is easy to see that a static (design time) optimiza-
tion of data flows has been largely studied in academia. While most approaches
worked on the problem of extending traditional query optimization techniques
[48] to support more complex data flow operations [83,44], they typically over-
look the importance of having the needed statistics of input data and data flow
operations to perform cost-based data flow optimization. Such design time op-
timization approaches require higher overhear and are hence mostly applicable
to the traditional BI settings (i.e., ETL). Some of the recent approaches insist
on the importance of having accurate statistics for creating an optimal execu-
tion of a data flow, both for design time [41] and runtime scenarios [9]. Still, the
challenges for efficiently gathering and exploiting such statistics metadata for op-
timizing data-intensive flows remain due to the required close to zero overhead
of an optimization process and the ”right-time” data delivery demands in the
next generation BI settings (i.e., ETO). To this end, the existing algorithms pro-
posed for efficiently capturing the approximate summaries out of massive data
streams [60], should be reconsidered here and adopted for gathering approximate
statistics for data-intensive flows over large input datasets.

32 P. Jovanovic, O. Romero and A. Abelló

9 Overall Discussion

Finally, in this section, we summarize the main observations made from the
results of our study and propose the high level architecture for managing the
lifecycle of data-intensive flows in the next generation BI setting. We also give
further directions for the topics that require special attention of the research
community when studying data-intensive flows.

We have observed some general trends in studying the fields related to data-
intensive flows. We focused on the fields of data exchange, data integration, as
well as ETL, and ETO. The need for managing heterogeneous data has appeared
ever since the database systems start being more broadly used (e.g., federated
databases in the 80’s [43]). Besides, even though the system in [82] from the 70’s
is argued to be the first approach that followed the principles of data exchange,
the data exchange problem has not been formally defined until the early 00’s
[26]. Likewise, the problem of data integration is studied from the 90’s [32,94],
while the strong theoretical overview of the field is given in the early 00’s [59].
Along with these theoretical works, the concept of the traditional DW setting
was defined by Bill Inmon in the early 90’s [46]. ETL, as a separate and rather
complex process, however, appeared in the late 90’s and the early 00’s to replace
simple refreshment processes for a DW modeled as a set of materialized views
[96]. We can, however, notice the disparity among the trends of studying these
fields in the past, showing that they have focused on solving isolated issues.

In the recent years, business environments became more complex, dynamic
and interconnected, hence more interactive analytic systems to support daily
decision making upon the combination of various (external or internal) data
sources, have become a necessity. Moreover, as discussed throughout this paper,
today’s BI environments require efficiently combining these individual solutions
for the problem at hand. To this end, in this paper, we have given a unified
view of data-intensive flows, focusing on the challenges that next generation BI
setting has brought. Currently, even though many works under different names
(i.e., from different perspectives) have envisioned and/or proposed conceptual
frameworks for next generation BI ecosystems (e.g., [1,6,15,17,22,63]), we still
lack an end-to-end solution for managing the complete lifecycle of data-intensive
flows. Going back to Tables 1, 2, and 3, we can observe a certain overlapping of
levels of different dimensions between the theoretical problem of data exchange
and data warehousing approaches (i.e., ETL), as well as between data integration
and data-intensive flows in the next generation BI setting (i.e., ETO).

9.1 Architecture for managing the lifecycle of data-intensive flows
in next generation BI systems

We additionally observed in Tables 1 - 3 that the majority of works supporting
the idea of the next generation BI setting in fact belong to level 1 of technical
readiness (TRL � 1), as they are mostly visionary works that analyze the chal-
lenges of the next generation BI setting from different perspectives. However,
we still lack a complete picture of all the aspects of data-intensive flows in this

A Unified View of Data-Intensive Flows in BI Systems: A Survey 33

Data flow
Integrator

Target schema
Integrator

D
o

m
ain

O

n
to

lo
g

ies

Quality Objectives

Analysis,
Reporting,

Visuatization

Sch
em

a m
ap

p
in

gs
&

Tra
n

sfo
rm

a
tio

n
 ru

les

External
(open) data
repository

Query Assistance Flow Designer

Flow Integrator

Flow Deployer &
Executor

DW

Data-intensive
flow Execution

Querying

Statistics m
etad

a
ta

User input

Internal control f low System component

System metadata

LEGEND
User interaction

Metadata usage

Flow Scheduler

Fig. 6. Architecture for managing the lifecycle of data-intensive flows

new setting, and to this end, we envision here an architecture of a system for
managing data-intensive flows (Figure 6).

The proposed architecture depicts at high level the main outcome of our
study. It points out the main processing steps which need to be considered
during the lifecycle of a data-intensive flow. Moreover, the architecture captures
in a holistic way the complete lifecycle of data-intensive flows, and as such,
it can be seen as a roadmap for both academia and industry toward building
data-intensive flows in next generation BI systems. In what follows, we discuss
in more detail different architectural modules, and if available, we point out
example approaches that tackle the challenges of such modules.

We start with the Query Assistance module that should provide an intuitive
interface to end users when expressing their information requirements. On the
one hand, it should raise the usability of the BI system, for a broader set of busi-
ness users. This module should provide a business-oriented view over the included
data sources (e.g., by means of domain ontologies like in [79,50,5]). On the other
hand, the Query Assistance module should also facilitate the low coupledness
of data sources and be able to efficiently connect to a plethora of external data
source repositories. These, preferably semantically enriched data sources (e.g.,
linked (open) data; [7]), should supplement user analysis with context-aware
data and thus raise the openness of the delivered results (see Section 7).

Previously expressed information requirements further need to be automat-
ically translated in an appropriate data flow (i.e., the Flow Designer module)
that will satisfy such information requirements. Flow Designer must provide ro-
bustness for such loosely coupled systems in dealing with data sources with low
(non-guaranteed) accessibility. Furthermore, to support the high automation of
the Flow Designer module, the system should first revisit the existing approaches

34 P. Jovanovic, O. Romero and A. Abelló

for automatic schema mapping creation (e.g., [24]). Obviously, these approaches
must be extended with more complex data transformations. First, supporting
low structuredness and extracting useful data from unstructured data sources
on-the-fly should be largely supported, as dynamic systems cannot always rely
on having a batched preprocessing step doing so. Furthermore, more complex
data analysis (e.g., machine learning algorithms) should be supported in these
data flows. Here, we can benefit from exploiting different data and flow charac-
teristics (e.g., by revisiting the previously studied field of intelligent assistants
for data analysis [81]). Lastly, the Flow Designer module should automatically
accommodate the flow to ensure the required level of data quality and output
data constraintness (typically in contradiction with required data latency) [91].
Importantly, such a design process must be iterative to support high malleabil-
ity of the data flow design in front of new, changed, or removed data sources or
information requirements.

In the case of partially materializing data, as suggested in [15], the Flow
Designer module should be aware or be able to reconstruct the target schema,
where data are loaded in a previously executed batch process, and further queried
when interactively answering information requirements. Thus, the final data flow
ready for deployment must be integrated from the combination of data flows
that directly access data sources and querying previously materialized target
data (i.e., the Flow Integrator module). Notice that finding the optimal level of
partial materialization is still a challenge and must be decided using previously
collected flow statistics and following desired quality objectives.

Next, the optimization of data-intensive flows should be efficiently supported
at different levels of the flow lifecyle (see Section 8. Initially, when the integrated
data flow is created to answer a user’s requirement at hand, optimization of
a data flow should be done in combination with selecting the optimal partial
materialization of data [74]. Furthermore, having multiple data-intensive flows
answering different requirements of end-users waiting for execution, the sys-
tem requires an optimal schedule for running these data flows over the shared
computational resources (e.g., shared, multi-tenant cluster), i.e., Flow Scheduler
module. Lastly, the automatic optimization means must be also provided when
deploying data flows, for selecting an optimal execution engine (e.g., [85,56]), as
well as for providing the lower level, engine-specific, optimization of a data flow
(i.e., the Flow Deployer module).

From Figure 6 we can observe that the automation of the design and opti-
mization of data-intensive flows, as well as the query assistance, must be largely
facilitated by means of different metadata artifacts (i.e., schema mappings, do-
main ontology, flow and statistics). Indeed, the use of metadata for automating
the design of the next generation data warehouse systems (DW 2.0) has been
previously discussed [47], while recently the main challenges of matadata in the
analytical process of the next generation BI systems have been studied in [95].

Finally, as an important remark, we want to draw a parallelism of the envi-
sioned architecture depicted in Figure 6, and the traditional architecture of cen-
tralized database management systems (DBMS). First, using declarative (SQL)

A Unified View of Data-Intensive Flows in BI Systems: A Survey 35

queries in a DBMS, end users pose their analytical needs to the system. While
based on the traditional database theory, the semantic optimizer is responsi-
ble for transforming a user query into an equivalent one with a lower cost, in
next generation BI systems, user queries need to be additionally transformed
and enriched to access external data by means of data exploration processes
(i.e., Query Assistance; [2]). Furthermore, similarly to the syntactic optimizer
in the traditional DBMSs, Flow Designer needs to translate an information re-
quirement to a sequence of operations (i.e., syntactic tree), which represents a
logical plan of a data-intensive flow execution. The execution plan should be
typically optimized for an individual execution. However, in next generation BI
systems, a data-intensive flow could also be integrated with other data flows for
an optimized multi-flow execution (i.e., Flow Integrator). This conceptually re-
sembles the well-known problem of multi-query optimization [80], but inevitably
brings new challenges considering the complexity of data flow operations, which
cannot always be presented using algebraic specifications [44]. Moreover, the
Flow Integrator module should also transform input execution plan and opti-
mize it considering partial materialization of data, similarly to the query rewrit-
ing techniques for answering queries using materialized views [42]. Following the
traditional DBMS architecture, an integrated execution plan is then optimally
scheduled for execution, together with the rest of the data flows in the system
(i.e., Flow Scheduler). Lastly, the logical data flow is translated into the code of
a selected execution engine (e.g., [51,56]), physically optimized considering avail-
able access structures, and finally deployed for execution (i.e., Flow Deployer
& Executor). Similarly to the concept of the database catalog, throughout the
lifecycle of a data-intensive flow, different metadata artifacts need to be available
(e.g., schema mappings, transformation rules, statistics metadata; see Figure 6)
to lead the automatic design and optimization of a data flow.

The parallelism drawn above finally confirms us that the underpinnings of
data-intensive flows in next generation BI systems should be analyzed in the
frame of the traditional DB theory field. Nevertheless, as we showed through our
study, the inherent complexity of today’s business environments (e.g., data het-
erogeneity, high complexity of data processing) must be additionally addressed,
and comprehensively tackled to provide end-to-end solutions for managing the
complete lifecycle of data-intensive flows.

10 Conclusions

In this paper, we studied data-intensive flows, focusing on the challenges of
the next-generation BI setting. We analyzed the foundational work of database
theory tackling heterogeneity and interoperability (i.e., data exchange and data
integration), as well as the recent approaches both in the context of DW and
next generation BI systems.

We first identified the main characteristics of data-intensive flows, which built
the dimensions of our study setting, and further studied the current approaches

36 P. Jovanovic, O. Romero and A. Abelló

in the frame of these dimensions and determined the level the studied approaches
attain in each of them.

As the main outcome of this study, we outline an architecture for managing
the complexity of data-intensive flows in the next generation BI setting. We dis-
cuss in particular different components that such an architecture should realize,
as well as the processes that the data-intensive flow lifecycle should carry out.

Finally, within the components of the envisioned architecture, we point out
the main remaining challenges that the next generation BI setting brings to
managing data-intensive flows, and which require special attention from both
academia and industry.

Acknowledgements. This work has been partially supported by the Se-
creteria d’Universitats i Recerca de la Generalitat de Catalunya under 2014
SGR 1534, and by the Spanish Ministry of Education grant FPU12/04915.

References

1. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann,
F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion Cubes:
Towards Self-Service Business Intelligence. IJDWM 9(2), 66–88 (2013)

2. Abelló, A., Romero, O., Pedersen, T.B., Llavori, R.B., Nebot, V., Cabo, M.J.A.,
Simitsis, A.: Using semantic web technologies for exploratory OLAP: A survey.
IEEE Trans. Knowl. Data Eng. 27(2), 571–588 (2015)

3. Akkaoui, Z.E., Mazón, J.N., Vaisman, A.A., Zimányi, E.: BPMN-Based Concep-
tual Modeling of ETL Processes. In: DaWaK. pp. 1–14 (2012)

4. Akkaoui, Z.E., Zimányi, E., Mazón, J.N., Trujillo, J.: A BPMN-Based Design and
Maintenance Framework for ETL Processes. IJDWM 9(3), 46–72 (2013)

5. Bellatreche, L., Khouri, S., Berkani, N.: Semantic Data Warehouse Design: From
ETL to Deployment à la Carte. In: DASFAA (2). pp. 64–83 (2013)

6. Berthold, H., Rösch, P., Zöller, S., Wortmann, F., Carenini, A., Campbell, S.,
Bisson, P., Strohmaier, F.: An architecture for ad-hoc and collaborative business
intelligence. In: EDBT/ICDT Workshops (2010)

7. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst. 5(3), 1–22 (2009)

8. Bruckner, R.M., List, B., Schiefer, J.: Striving towards near real-time data in-
tegration for data warehouses. In: Data Warehousing and Knowledge Discovery,
4th International Conference, DaWaK 2002, Aix-en-Provence, France, September
4-6, 2002, Proceedings. pp. 317–326 (2002)

9. Bruno, N., Jain, S., Zhou, J.: Continuous cloud-scale query optimization and
processing. PVLDB 6(11), 961–972 (2013)

10. Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D.: Adding Structure to
Unstructured Data. In: ICDT. pp. 336–350 (1997)

11. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under
integrity constraints. Inf. Syst. 29(2), 147–163 (2004)

12. Cal̀ı, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints
in data integration systems. In: IJCAI. pp. 16–21 (2003)

13. Chen, C.L.P., Zhang, C.: Data-intensive applications, challenges, techniques and
technologies: A survey on big data. Inf. Sci. 275, 314–347 (2014)

A Unified View of Data-Intensive Flows in BI Systems: A Survey 37

14. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44(3), 15 (2012)

15. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows for
business intelligence. In: EDBT. pp. 1–11 (2009)

16. Dayal, U., Kuno, H.A., Wiener, J.L., Wilkinson, K., Ganapathi, A., Krompass, S.:
Managing operational business intelligence workloads. Operating Systems Review
43(1), 92–98 (2009)

17. Dayal, U., Wilkinson, K., Simitsis, A., Castellanos, M., Paz, L.: Optimization of
Analytic Data Flows for Next Generation Business Intelligence Applications. In:
TPCTC. pp. 46–66 (2011)

18. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

19. Dessloch, S., Hernández, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: In-
tegrating Schema Mapping and ETL. In: ICDE. pp. 1307–1316. IEEE (2008)

20. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann (2012)

21. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. VLDB J.
18(2), 469–500 (2009)

22. Eckerson, W.W.: Best practices in operational BI. Business Intelligence Journal
12(3), 7–9 (2007)

23. European Commission: G. technology readiness levels (TRL) (2014)
24. Fagin, R., Haas, L.M., Hernández, M.A., Miller, R.J., Popa, L., Velegrakis, Y.:

Clio: Schema Mapping Creation and Data Exchange. In: Conceptual Modeling:
Foundations and Applications. pp. 198–236. Springer (2009)

25. Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. Journal of
the ACM (JACM) 58(4), 15 (2011)

26. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. In: ICDT. pp. 207–224. Springer (2003)

27. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

28. Feldman, R., Sanger, J.: The text mining handbook: advanced approaches in
analyzing unstructured data. Cambridge University Press (2007)

29. Ferrara, E., Meo, P.D., Fiumara, G., Baumgartner, R.: Web data extraction,
applications and techniques: A survey. Knowl.-Based Syst. 70, 301–323 (2014)

30. Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational Plans for Data Integra-
tion. In: Intelligent Information Integration (1999)

31. Garćıa, S., Romero, O., Ravents, R.: DSS from an RE perspective: A systematic
mapping. Journal of Systems and Software 117, 488 – 507 (2016)

32. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J.D., Vassalos, V., Widom, J.: The TSIMMIS Approach to Mediation:
Data Models and Languages. J. Intell. Inf. Syst. 8(2), 117–132 (1997)

33. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.:
BigBench: towards an industry standard benchmark for big data analytics. In:
SIGMOD Conference. pp. 1197–1208 (2013)

34. Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: On reconciling data ex-
change, data integration, and peer data management. In: PODS. pp. 133–142
(2007)

35. Giannikis, G., Makreshanski, D., Alonso, G., Kossmann, D.: Shared workload
optimization. PVLDB 7(6), 429–440 (2014)

36. Giorgini, P., Rizzi, S., Garzetti, M.: Grand: A goal-oriented approach to require-
ment analysis in data warehouses. DSS 45(1), 4–21 (2008)

38 P. Jovanovic, O. Romero and A. Abelló

37. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in
data warehouses: Enabling cross-version querying via schema augmentation. Data
Knowl. Eng. 59(2), 435–459 (2006)

38. Golfarelli, M., Rizzi, S.: Data Warehouse Design. Modern Principles and Method-
ologies. McGraw-Hill (2009)

39. Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in busi-
ness intelligence? In: DOLAP. pp. 1–6 (2004)

40. Haas, L.M.: Beauty and the Beast: The Theory and Practice of Information In-
tegration. In: ICDT. pp. 28–43 (2007)

41. Halasipuram, R., Deshpande, P.M., Padmanabhan, S.: Determining essential
statistics for cost based optimization of an ETL workflow. In: EDBT. pp. 307–318
(2014)

42. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4), 270–294
(2001)

43. Heimbigner, D., McLeod, D.: A Federated Architecture for Information Manage-
ment. ACM Trans. Inf. Syst. 3(3), 253–278 (1985)

44. Hueske, F., Peters, M., Sax, M., Rheinländer, A., Bergmann, R., Krettek, A.,
Tzoumas, K.: Opening the Black Boxes in Data Flow Optimization. PVLDB
5(11), 1256–1267 (2012)

45. IBM, Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 1st edn. (2011)

46. Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons, Inc. (1992)
47. Inmon, W.H., Strauss, D., Neushloss, G.: DW 2.0: The architecture for the next

generation of data warehousing: The architecture for the next generation of data
warehousing. Morgan Kaufmann (2010)

48. Jarke, M., Koch, J.: Query Optimization in Database Systems. ACM Comput.
Surv. 16(2), 111–152 (1984)

49. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation
of data-intensive multi-flows. IEEE Trans. Knowl. Data Eng. 28(5), 1203–1216
(2016)

50. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Candón, H., Nadal, S.: Quarry:
Digging up the gems of your data treasury. In: EDBT. pp. 549–552 (2015)

51. Jovanovic, P., Simitsis, A., Wilkinson, K.: Engine independence for logical analytic
flows. In: ICDE. pp. 1060–1071 (2014)

52. Karagiannis, A., Vassiliadis, P., Simitsis, A.: Scheduling strategies for efficient
ETL execution. Inf. Syst. 38(6), 927–945 (2013)

53. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit. John Wiley & Sons
(2004)

54. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D., Others: The information manifold.
In: Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from
Heterogeneous, Distributed Enviroments. vol. 7, pp. 85–91 (1995)

55. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In:
PODS. pp. 61–75 (2005)

56. Kougka, G., Gounaris, A., Tsichlas, K.: Practical algorithms for execution engine
selection in data flows. Future Generation Computer Systems 45, 133–148 (2015)

57. Labio, W., Garcia-Molina, H.: Efficient Snapshot Differential Algorithms for Data
Warehousing. In: VLDB. pp. 63–74 (1996)

58. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A Brief Survey
of Web Data Extraction Tools. SIGMOD Record 31(2), 84–93 (2002)

59. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS. pp. 233–
246. ACM (2002)

A Unified View of Data-Intensive Flows in BI Systems: A Survey 39

60. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of massive datasets. Cam-
bridge University Press (2014)

61. Libkin, L.: Data exchange and incomplete information. In: PODS. pp. 60–69
(2006)

62. Lindsay, B.G., Haas, L.M., Mohan, C., Pirahesh, H., Wilms, P.F.: A Snapshot
Differential Refresh Algorithm. In: SIGMOD Conference. pp. 53–60 (1986)

63. Löser, A., Hueske, F., Markl, V.: Situational Business Intelligence. In: BIRTE.
vol. 27, pp. 1–11 (2008)

64. Mazón, J.N., Lechtenbörger, J., Trujillo, J.: A survey on summarizability issues
in multidimensional modeling. Data Knowl. Eng. 68(12), 1452–1469 (2009)

65. McBrien, P., Poulovassilis, A.: Data Integration by Bi-Directional Schema Trans-
formation Rules. In: ICDE. pp. 227–238 (2003)

66. McDonald, K., Wilmsmeier, A., Dixon, D.C., Inmon, W.: Mastering the SAP
Business Information Warehouse. John Wiley & Sons (2002)

67. Morzy, T., Wrembel, R.: On querying versions of multiversion data warehouse.
In: DOLAP. pp. 92–101 (2004)

68. Muñoz, L., Mazón, J.N., Trujillo, J.: Automatic generation of ETL processes from
conceptual models. In: DOLAP. pp. 33–40 (2009)

69. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured
data model and query language: A capabilities survey of sql-on-hadoop, nosql and
newsql databases. CoRR abs/1405.3631 (2014), http://arxiv.org/abs/1405.

3631

70. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Policy-regulated
management of ETL evolution. J. Data Semantics 13, 147–177 (2009)

71. Patel-Schneider, P.F., Horrocks, I.: Position paper: a comparison of two modelling
paradigms in the Semantic Web. In: WWW. pp. 3–12 (2006)

72. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques.
Springer (2010)

73. Polo, J., Becerra, Y., Carrera, D., Torres, J., Ayguadé, E., Steinder, M.: Adaptive
MapReduce scheduling in shared environments. In: IEEE/ACM CCGrid. pp. 61–
70 (2014)

74. Qu, W., Dessloch, S.: A real-time materialized view approach for analytic flows
in hybrid cloud environments. Datenbank-Spektrum 14(2), 97–106 (2014)

75. Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE
Data Eng. Bull. 23(4), 3–13 (2000)

76. Rheinlnder, A., Heise, A., Hueske, F., Leser, U., Naumann, F.: Sofa: An extensible
logical optimizer for UDF-heavy data flows. Information Systems 52(0), 96 – 125
(2015)

77. Romero, O., Abelló, A.: A Survey of Multidimensional Modeling Methodologies.
IJDWM 5(2), 1–23 (2009)

78. Romero, O., Abelló, A.: Open Access Semantic Aware Business Intelligence. In:
Business Intelligence, Lecture Notes in Business Information Processing, vol. 172,
pp. 121–149. Springer (2014)

79. Romero, O., Simitsis, A., Abelló, A.: GEM: Requirement-Driven Generation of
ETL and Multidimensional Conceptual Designs. In: DaWaK. vol. 6862, pp. 80–95.
Springer (2011)

80. Roy, P., Sudarshan, S.: Multi-query optimization. In: Encyclopedia of Database
Systems, pp. 1849–1852. Springer US (2009)

81. Serban, F., Vanschoren, J., Kietz, J., Bernstein, A.: A survey of intelligent assis-
tants for data analysis. ACM Comput. Surv. 45(3), 31 (2013)

40 P. Jovanovic, O. Romero and A. Abelló

82. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A
Data EXtraction, Processing, amd REStructuring System. ACM Trans. Database
Syst. 2(2), 134–174 (1977)

83. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-Space Optimization of ETL Work-
flows. IEEE Trans. Knowl. Data Eng. 17(10), 1404–1419 (2005)

84. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-driven ETL design:
reducing the cost of ETL consulting engagements. In: SIGMOD. pp. 953–960
(2009)

85. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data
flows for multiple execution engines. In: SIGMOD Conference. pp. 829–840 (2012)

86. Simitsis, A., Wilkinson, K., Dayal, U., Hsu, M.: HFMS: managing the lifecycle
and complexity of hybrid analytic data flows. In: ICDE. pp. 1174–1185 (2013)

87. Skoutas, D., Simitsis, A.: Designing ETL processes using semantic web technolo-
gies. In: DOLAP. pp. 67–74 (2006)

88. Skoutas, D., Simitsis, A.: Ontology-Based Conceptual Design of ETL Processes
for Both Structured and Semi-Structured Data. Int. J. Semantic Web Inf. Syst.
3(4), 1–24 (2007)

89. Strange, K.H.: ETL Was the Key to This Data Warehouse’s Success. Gartner
Research, CS-15-3143 (2002)

90. Theodoratos, D., Sellis, T.K.: Designing Data Warehouses. Data Knowl. Eng.
31(3), 279–301 (1999)

91. Theodorou, V., Abelló, A., Thiele, M., Lehner, W.: POIESIS: a tool for quality-
aware ETL process redesign. In: EDBT. pp. 545–548 (2015)

92. Trujillo, J., Luján-Mora, S.: A UML Based Approach for Modeling ETL Processes
in Data Warehouses. In: ER. pp. 307–320 (2003)

93. Tziovara, V., Vassiliadis, P., Simitsis, A.: Deciding the physical implementation
of ETL workflows. In: DOLAP. pp. 49–56 (2007)

94. Ullman, J.D.: Information Integration Using Logical Views. In: ICDT. pp. 19–40
(1997)

95. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Towards next generation BI
systems: The analytical metadata challenge. In: DaWaK. pp. 89–101 (2014)

96. Vassiliadis, P.: A survey of extract-transform-load technology. IJDWM 5(3), 1–27
(2009)

97. Vassiliadis, P., Simitsis, A.: Near real time ETL. In: New Trends in Data Ware-
housing and Data Analysis, pp. 1–31. Springer (2009)

98. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.: A
generic and customizable framework for the design of ETL scenarios. Inf. Syst.
30(7), 492–525 (2005)

99. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL pro-
cesses. In: DOLAP. pp. 14–21 (2002)

100. Waas, F., Wrembel, R., Freudenreich, T., Thiele, M., Koncilia, C., Furtado, P.:
On-demand ELT architecture for right-time BI: extending the vision. IJDWM
9(2), 21–38 (2013)

101. Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.: Leveraging business pro-
cess models for ETL design. In: ER. pp. 15–30 (2010)

102. Winter, R., Strauch, B.: A Method for Demand-driven Information Requirements
Analysis in Data Warehousing Projects. In: In Proc. HICSS. pp. 1359–1365 (2003)

