11,311 research outputs found

    Stereo and ToF Data Fusion by Learning from Synthetic Data

    Get PDF
    Time-of-Flight (ToF) sensors and stereo vision systems are both capable of acquiring depth information but they have complementary characteristics and issues. A more accurate representation of the scene geometry can be obtained by fusing the two depth sources. In this paper we present a novel framework for data fusion where the contribution of the two depth sources is controlled by confidence measures that are jointly estimated using a Convolutional Neural Network. The two depth sources are fused enforcing the local consistency of depth data, taking into account the estimated confidence information. The deep network is trained using a synthetic dataset and we show how the classifier is able to generalize to different data, obtaining reliable estimations not only on synthetic data but also on real world scenes. Experimental results show that the proposed approach increases the accuracy of the depth estimation on both synthetic and real data and that it is able to outperform state-of-the-art methods

    New instruments and technologies for Cultural Heritage survey: full integration between point clouds and digital photogrammetry

    Get PDF
    In the last years the Geomatic Research Group of the Politecnico di Torino faced some new research topics about new instruments for point cloud generation (e.g. Time of Flight cameras) and strong integration between multi-image matching techniques and 3D Point Cloud information in order to solve the ambiguities of the already known matching algorithms. ToF cameras can be a good low cost alternative to LiDAR instruments for the generation of precise and accurate point clouds: up to now the application range is still limited but in a near future they will be able to satisfy the most part of the Cultural Heritage metric survey requirements. On the other hand multi-image matching techniques with a correct and deep integration of the point cloud information can give the correct solution for an "intelligent" survey of the geometric object break-lines, which are the correct starting point for a complete survey. These two research topics are strictly connected to a modern Cultural Heritage 3D survey approach. In this paper after a short analysis of the achieved results, an alternative possible scenario for the development of the metric survey approach inside the wider topic of Cultural Heritage Documentation is reporte

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras: Tests and Comparison

    Get PDF
    In this paper experimental comparisons between two Time-of-Flight (ToF) cameras are reported in order to test their performance and to give some procedures for testing data delivered by this kind of technology. In particular, the SR-4000 camera by Mesa Imaging AG and the CamCube3.0 by PMD Technologies have been evaluated since they have good performances and are well known to researchers dealing with Time-of- Flight (ToF) cameras. After a brief overview of commercial ToF cameras available on the market and the main specifications of the tested devices, two topics are presented in this paper. First, the influence of camera warm-up on distance measurement is analyzed: a warm-up of 40 minutes is suggested to obtain the measurement stability, especially in the case of the CamCube3.0 camera, that exhibits distance measurement variations of several centimeters. Secondly, the variation of distance measurement precision variation over integration time is presented: distance measurement precisions of some millimeters are obtained in both cases. Finally, a comparison between the two cameras based on the experiments and some information about future work on evaluation of sunlight influence on distance measurements are reporte

    Depth Fields: Extending Light Field Techniques to Time-of-Flight Imaging

    Full text link
    A variety of techniques such as light field, structured illumination, and time-of-flight (TOF) are commonly used for depth acquisition in consumer imaging, robotics and many other applications. Unfortunately, each technique suffers from its individual limitations preventing robust depth sensing. In this paper, we explore the strengths and weaknesses of combining light field and time-of-flight imaging, particularly the feasibility of an on-chip implementation as a single hybrid depth sensor. We refer to this combination as depth field imaging. Depth fields combine light field advantages such as synthetic aperture refocusing with TOF imaging advantages such as high depth resolution and coded signal processing to resolve multipath interference. We show applications including synthesizing virtual apertures for TOF imaging, improved depth mapping through partial and scattering occluders, and single frequency TOF phase unwrapping. Utilizing space, angle, and temporal coding, depth fields can improve depth sensing in the wild and generate new insights into the dimensions of light's plenoptic function.Comment: 9 pages, 8 figures, Accepted to 3DV 201

    3D scanning of cultural heritage with consumer depth cameras

    Get PDF
    Three dimensional reconstruction of cultural heritage objects is an expensive and time-consuming process. Recent consumer real-time depth acquisition devices, like Microsoft Kinect, allow very fast and simple acquisition of 3D views. However 3D scanning with such devices is a challenging task due to the limited accuracy and reliability of the acquired data. This paper introduces a 3D reconstruction pipeline suited to use consumer depth cameras as hand-held scanners for cultural heritage objects. Several new contributions have been made to achieve this result. They include an ad-hoc filtering scheme that exploits the model of the error on the acquired data and a novel algorithm for the extraction of salient points exploiting both depth and color data. Then the salient points are used within a modified version of the ICP algorithm that exploits both geometry and color distances to precisely align the views even when geometry information is not sufficient to constrain the registration. The proposed method, although applicable to generic scenes, has been tuned to the acquisition of sculptures and in this connection its performance is rather interesting as the experimental results indicate

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects

    Full text link
    We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less.Comment: WACV 201
    • …
    corecore