923 research outputs found

    Colloid transport through soil and other porous media under transient flow conditions—A review

    Get PDF
    Understanding colloid transport in porous media under transient-flow conditions is crucial in understanding contaminant transport in soil or the vadose zone where flow conditions vary constantly. In this article, we provide a review of experimental studies, numerical approaches, and new technologies available to determine the transport of colloids in transient flow. Experiments indicate that soil structure and preferential flow are primary factors. In undisturbed soils with preferential flow pathways, macropores serve as main conduits for colloid transport. In homogeneously packed soil, the soil matrix often serves as filter. At the macroscale, transient flow facilitates colloid transport by frequently disturbing the force balance that retains colloids in the soil as indicated by the offset between colloid breakthrough peaks and discharge peaks. At the pore-scale and under saturated condition, straining, and attachment at solid–water interfaces are the main mechanisms for colloid retention. Variably saturated conditions add more complexity, such as immobile water zones, film straining, attachment to air–water interfaces, and air–water–solid contact lines. Filter ripening, size exclusion, ionic strength, and hydrophobicity are identified as the most influential factors. Our review indicates that microscale and continuum-scale models for colloid transport under transient-flow conditions are rare, compared to the numerous steady-state models. The few transient flow models that do exist are highly parameterized and suffer from a lack of a priori information of required pore-scale parameters. However, new techniques are becoming available to measure colloid transport in real-time and in a nondestructive way that might help to better understand transient flow colloid transport. This article is categorized under: Science of Water > Hydrological Processes Science of Water > Water Quality

    Preferential flow phenomena in partially-saturated porous media

    Get PDF

    Guar gum solutions for improved delivery of iron particles in porous media (Part 1): Porous medium rheology and guar gum-induced clogging

    Get PDF
    The present work is the first part of a comprehensive study on the use of guar gum to improve delivery of microscale zero-valent iron particles in contaminated aquifers. Guar gum solutions exhibit peculiar shear thinning properties, with high viscosity in static conditions and lower viscosity in dynamic conditions: this is beneficial both for the storage of MZVI dispersions, and also for the injection in porous media. In the present paper, the processes associated with guar gum injection in porous media are studied performing single-step and multi-step filtration tests in sand-packed columns. The experimental results of single-step tests performed by injecting guar gum solutions prepared at several concentrations and applying different dissolution procedures evidenced that the presence of residual undissolved polymeric particles in the guar gum solution may have a relevant negative impact on the permeability of the porous medium, resulting in evident clogging. The most effective preparation procedure which minimizes the presence of residual particles is dissolution in warm water (60 °C) followed by centrifugation (procedure T60C). The multi-step tests (i.e. injection of guar gum at constant concentration with a step increase of flow velocity), performed at three polymer concentrations (1.5, 3 and 4 g/l) provided information on the rheological properties of guar gum solutions when flowing through a porous medium at variable discharge rates, which mimic the injection in radial geometry. An experimental protocol was defined for the rheological characterization of the fluids in porous media, and empirical relationships were derived for the quantification of rheological properties and clogging with variable injection rate. These relationships will be implemented in the second companion paper (Part II) in a radial transport model for the simulation of large-scale injection of MZVI-guar gum slurries

    Influence of Media Size and Flow Rate on the Transport of Silver Nanoparticles in Saturated Porous Media: Laboratory Experiments and Modeling

    Get PDF
    Silver nanoparticles (AgNPs) are widely produced and used. Because of their potential toxicity and the possibility of their release into the environment, it is important to understand the factors involved in their transport; particularly how they may move in groundwater, which is a potential pathway to human and environmental receptors. By passing a solution of 15 mg/L AgNPs with an average size of 17 nm through sand-filled glass columns, this study looks at the physical effects of flow rate and media size on transport. Three different sand sizes ( 0.074, 0.21-0.297, and 0.4-2.0mm) were used, as well as two different flow rates (1 and 4 mL min-1). Results showed that flow rate had little effect on the transport of AgNPs. As had been found in previous studies, transport through fine sand ( 0.074 mm) was inhibited, and no AgNPs were observed in the column effluent. In contrast to other studies and conventional filtration theory, however, it was observed that more AgNPs were captured in the coarse sand (0.4-2.0 mm) than the medium sand (0.21-0.297 mm). This deviation from conventional filtration theory was attributed to the more heterogeneous size distribution of the coarse sand compared to the medium sand

    Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review

    Get PDF
    Environmental applications of nanoparticles (NP) increasingly result in widespread NP distribution within porous media where they are subject to various concurrent transport mechanisms including irreversible deposition, attachment/detachment (equilibrium or kinetic), agglomeration, physical straining, site-blocking, ripening, and size exclusion. Fundamental research in NP transport is typically conducted at small scale, and theoretical mechanistic modeling of particle transport in porous media faces challenges when considering the simultaneous effects of transport mechanisms. Continuum modeling approaches, in contrast, are scalable across various scales ranging from column experiments to aquifer. They have also been able to successfully describe the simultaneous occurrence of various transport mechanisms of NP in porous media such as blocking/straining or agglomeration/deposition/detachment. However, the diversity of model equations developed by different authors and the lack of effective approaches for their validation present obstacles to the successful robust application of these models for describing or predicting NP transport phenomena. This review aims to describe consistently all the important NP transport mechanisms along with their representative mathematical continuum models as found in the current scientific literature. Detailed characterizations of each transport phenomenon in regards to their manifestation in the column experiment outcomes, i.e., breakthrough curve (BTC) and residual concentration profile (RCP), are presented to facilitate future interpretations of BTCs and RCPs. The review highlights two NP transport mechanisms, agglomeration and size exclusion, which are potentially of great importance in controlling the fate and transport of NP in the subsurface media yet have been widely neglected in many existing modeling studies. A critical limitation of the continuum modeling approach is the number of parameters used upon application to larger scales and when a series of transport mechanisms are involved. We investigate the use of simplifying assumptions, such as the equilibrium assumption, in modeling the attachment/detachment mechanisms within a continuum modelling framework. While acknowledging criticisms about the use of this assumption for NP deposition on a mechanistic (process) basis, we found that its use as a description of dynamic deposition behavior in a continuum model yields broadly similar results to those arising from a kinetic model. Furthermore, we show that in two dimensional (2-D) continuum models the modeling efficiency based on the Akaike information criterion (AIC) is enhanced for equilibrium vs kinetic with no significant reduction in model performance. This is because fewer parameters are needed for the equilibrium model compared to the kinetic model. Two major transport regimes are identified in the transport of NP within porous media. The first regime is characterized by higher particle-surface attachment affinity than particle-particle attachment affinity, and operative transport mechanisms of physicochemical filtration, blocking, and physical retention. The second regime is characterized by the domination of particle-particle attachment tendency over particle-surface affinity. In this regime although physicochemical filtration as well as straining may still be operative, ripening is predominant together with agglomeration and further subsequent retention. In both regimes careful assessment of NP fate and transport is necessary since certain combinations of concurrent transport phenomena leading to large migration distances are possible in either case

    A pore-scale hydro-mechanical coupled model for geomaterials

    Get PDF
    We present a model for ïŹ‚uid-saturated granular media coupled ïŹ‚ow and mechanical deformation. The ïŹ‚uid is assumed to be incompressible and the solid part is assumed to be a cohesive granular material. Forces exerted by the ïŹ‚uid in motion are determinated and applied to solid particles. We derive a ïŹnite volumes formulation of the ïŹ‚ow problem and we couple it to a discrete element method (DEM) formulation of the solid deformation. The ability of the algorithm to solve transient problems is tested by simulating an oedometer test on a soil sample. The numerical solution of our model is in good agreement with Terzaghi’s analytical solution

    Parameterization and prediction of nanoparticle transport in porous media : a reanalysis using artificial neural network

    Get PDF
    The continuing rapid expansion of industrial and consumer processes based on nanoparticles (NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reliably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this paper we report the reanalysis of a data set of 493 published column experiment outcomes together with their continuum modeling results. Experimental properties were parameterized into 20 factors which are commonly available. They were then used to predict five key continuum model parameters as well as the effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD) technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncertainties, respectively. The outcomes shed light on several controversial relationships between the parameters, e.g., it was revealed that the trend of math formula with average pore water velocity was positive. The resulting correlations, despite being developed based on a “black-box” technique (ANN), were able to explain the effects of theoretical parameters such as critical deposition concentration (CDC), even though these parameters were not explicitly considered in the model. Porous media heterogeneity was considered as a parameter for the first time and showed sensitivities higher than those of dispersivity. The model performance was validated well against subsets of the experimental data and was compared with current models. The robustness of the correlation matrices was not completely satisfactory, since they failed to predict the experimental breakthrough curves (BTCs) at extreme values of ionic strengths
    • 

    corecore