526 research outputs found

    A Type System for First-Class Layers with Inheritance, Subtyping, and Swapping

    Get PDF
    Context-Oriented Programming (COP) is a programming paradigm to encourage modularization of context-dependent software. Key features of COP are layers---modules to describe context-dependent behavioral variations of a software system---and their dynamic activation, which can modify the behavior of multiple objects that have already been instantiated. Typechecking programs written in a COP language is difficult because the activation of a layer can even change objects' interfaces. Inoue et al. have informally discussed how to make JCop, an extension of Java for COP by Appeltauer et al., type-safe. In this article, we formalize a small COP language called ContextFJ<:_{<:} with its operational semantics and type system and show its type soundness. The language models main features of the type-safe version of JCop, including dynamically activated first-class layers, inheritance of layer definitions, layer subtyping, and layer swapping

    O'Klaim: a coordination language with mobile mixins

    Get PDF

    Rigid Mixin Modules

    Get PDF
    International audienceMixin modules are a notion of modules that allows cross-module recursion and late binding, two features missing in ML-style modules. They have been well defined in a call-by-name setting, but in a call-by-value setting, they tend to conflict with the usual static restrictions on recursive definitions. Moreover, the semantics of instantiation has to specify an order of evaluation, which involves a difficult design choice. Previous proposals rely on the dependencies between components to compute a valid order of evaluation. In such systems, mixin module types must carry some information on the dependencies between their components, which makes them verbose. In this paper, we propose a new, simpler design for mixin modules in a call-by-value setting, which avoids this problem

    Towards Object-Oriented Klaim

    Get PDF
    Abstract By its own nature, mobile code requires flexibility in order to be adaptive to any execution context it may be run in. In this paper we investigate this flexibility requirement from the design point of view, and propose a solution based on the mixin technique to fulfill it. We also propose an extension of the language K laim with object-oriented features, as an application of this approach

    A Theory of Tagged Objects

    Get PDF
    Foundational models of object-oriented constructs typically model objects as records with a structural type. However, many object-oriented languages are class-based; statically-typed formal models of these languages tend to sacrifice the foundational nature of the record-based models, and in addition cannot express dynamic class loading or creation. In this paper, we explore how to model statically-typed object-oriented languages that support dynamic class creation using foundational constructs of type theory. We start with an extensible tag construct motivated by type theory, and adapt it to support static reasoning about class hierarchy and the tags supported by each object. The result is a model that better explains the relationship between object-oriented and functional programming paradigms, suggests a useful enhancement to functional programming languages, and paves the way for more expressive statically typed object-oriented languages. In that vein, we describe the design and implementation of the Wyvern language, which leverages our theory

    What Does Aspect-Oriented Programming Mean for Functional Programmers?

    Get PDF
    Aspect-Oriented Programming (AOP) aims at modularising crosscutting concerns that show up in software. The success of AOP has been almost viral and nearly all areas in Software Engineering and Programming Languages have become "infected" by the AOP bug in one way or another. Interestingly the functional programming community (and, in particular, the pure functional programming community) seems to be resistant to the pandemic. The goal of this paper is to debate the possible causes of the functional programming community's resistance and to raise awareness and interest by showcasing the benefits that could be gained from having a functional AOP language. At the same time, we identify the main challenges and explore the possible design-space

    Magda: A New Language for Modularity

    Get PDF

    Safe Dynamic Multiple Inheritance

    Get PDF
    Combination of descriptive entities--i.e. multiple inheritance and related mechanisms--is usually only supported at compile time in statically typed languages. The language gbeta is statically typed and has supported run-time creation of classes and methods since 1997, by means of the pattern combination operator '&amp;'. However, with certain combinations of operands the '&amp;' operator fails; as a result, creation of new classes and methods at run-time had to be considered a dangerous operation. This paper presents a large and useful class of combinations, and proves that combinations in this class will always succeed
    corecore