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Rigid Mixin Modules

Tom Hirschowitz

ENS Lyon

Abstract. Mixin modules are a notion of modules that allows cross-
module recursion and late binding, two features missing in ML-style
modules. They have been well defined in a call-by-name setting, but in a
call-by-value setting, they tend to conflict with the usual static restric-
tions on recursive definitions. Moreover, the semantics of instantiation
has to specify an order of evaluation, which involves a difficult design
choice. Previous proposals [14, 16] rely on the dependencies between
components to compute a valid order of evaluation. In such systems,
mixin module types must carry some information on the dependencies
between their components, which makes them verbose. In this paper,
we propose a new, simpler design for mixin modules in a call-by-value
setting, which avoids this problem.

1 Introduction

1.1 The problem

For programming “in the large”, it is desirable that the programming language
offers linguistic support for the decomposition and structuring of programs into
modules. A good example of such linguistic support is the ML module system
and its powerful notion of parameterized modules. Nevertheless, this system is
weak on two important points.

(Mutual recursion) Mutually recursive definitions cannot be split across sepa-
rate modules. There are several cases where this hinders modularization [6].

(Modifiability) The language does not propose any mechanism for incremental
modification of an already-defined module, similar to inheritance and over-
riding in object-oriented languages.

Class-based object-oriented languages provide excellent support for these two
features. Classes are naturally mutually recursive, and inheritance and method
overriding answer the need for modifiability. However, viewed as a module sys-
tem, classes have two weaknesses: they do not offer a general parameterization
mechanism (no higher-order functions on classes), and the mechanisms they offer
to describe pre-computations (initialization of static and instance variables) lack
generality, since a module system should allow to naturally alternate function
definitions with computational definitions using these functions.

Mixin modules [4] (hereafter simply called “mixins”) provide an alternative
approach to modularity that combines some of the best aspects of classes and



ML-style modules. Mixins are modules with “holes” (not-yet-defined compo-
nents), where the holes can be plugged later by composition with other mixins,
following a late-binding semantics. However, the handling of pre-computations
and initializations in mixins is still problematic. Most of the previous work on
mixins, notably by Ancona and Zucca [2] and Wells and Vestergaard [20], is bet-
ter suited to a call-by-name evaluation strategy. This strategy makes it impossi-
ble to trigger computations at initialization time (see Sect. 6 for more details).

The choice of a call-by-value setting raises the following two issues.

(Recursive definitions) Since mixin components are not necessarily functions,
arbitrary recursive definitions can appear dynamically by composition. For
instance, consider the following two mixins, (in an informal concrete syntax)

��������� A = �����

? x : int

! y = x + 1
	���


and

��������� B = �����

? y : int

! x = y * 2
	���


Each of these mixins declares the missing value (marking it with ?) and
defines the other one (marking it with !). The composition of A and B involves
the mutually recursive definition x = y * 2 � �
 y = x + 1.
In most call-by-value languages, recursive definitions are statically restricted,
in order to be more efficiently implementable [3, 15], and to avoid some
ill-founded definitions. Obviously, our system should not force language de-
signers to abandon these properties, and thus needs guards on recursive
definitions, at the level of both static and dynamic semantics.

(Order of evaluation) In our system, mixins will contain arbitrary, unevaluated
definitions, whose evaluation will be triggered by instantiation. Because these
definitions are arbitrary, the order in which they will be evaluated matters.
For instance, in a mixin A defining x = 0 and y = x + 1, x must be evalu-
ated before y. Thus, the semantics of instantiation must define an order of
evaluation. Moreover, mixins can be built by composition, so the semantics
of composition must also take the order of definitions into account.

From the standpoint of dynamic semantics, the second issue involves a design
decision. From the standpoint of typing, it reduces to the first issue, since the
existence of a valid order of evaluation is governed by the absence of invalid
recursive definitions.

1.2 Instantiation-time ordering: flexible mixin modules

The MM language of call-by-value mixins [14, 16, 12] is designed as follows. Mix-
ins contain unordered definitions. Only at instantiation does the system com-
pute an order for them, according to their inter-dependencies [14, 16, 12], and to
programmer-supplied annotations that fix some bits of the final order [16, 12].
This solution, which we call flexible mixins is very expressive w.r.t. code reuse,
since components can be re-ordered according to the context. However, it ap-
pears too complex in some respects.



(Instantiation) In particular, instantiation is too costly, since it involves com-
puting the strongly-connected components of a graph whose size is quadratic
in the input term, plus a topological sort of the result.

(Type safety) As explained above, when recursive definitions are restricted, the
type system must prevent invalid ones. In MM , mixin types contain some
information about the dependencies between definitions. Nevertheless, this
makes mixin types verbose, and also over-specified, in the sense that any
change in the dependencies between components can force the type of the
mixin to change, which is undesirable.

The first problem is not so annoying in the context of a module system:
it only has to do with linking operations, and thus should not affect the over-
all efficiency of programs. The second problem makes the proposed language
impractical without dedicated graph support.

1.3 Early ordering: rigid mixin modules

In this paper, we propose a completely different approach, from scratch. We
introduce Mix , a new language of call-by-value mixins, where mixin components
are ordered, in a rigid way. They can be defined either as single components
(briefly called “singles”) or as blocks of components. Blocks contain mutually
recursive definitions, and are restricted to a certain class of values. Conversely,
singles can contain arbitrary, non-recursive computations. Composition preserves
the order of both of its arguments, and instantiation straightforwardly converts
its argument into a module.

In Mix , the components of a mixin are ordered once for all at definition time,
so Mix is less expressive than MM . Yet, it has other advantages. First, with
respect to side effects, annotations are no longer needed, since side effects always
respect the syntactic order. Moreover, instantiation is less costly than in MM ,
since it runs in O(n log n), where n is the size of the input. Concerning typing,
mixin types have the same structure as mixins themselves: they are sequences
of specifications, which can be either singles or blocks. They avoid the use of
explicit graphs, which improves over MM . Compared to ML module types,
the only differences are that the order matters and that mutually recursive
specifications must be explicitly grouped together. Finally, the meta theory
of Mix is much simpler than the one of MM , which makes it more likely to
scale up to a fully-featured language. In summary, we propose Mix as a good
trade-off between expressiveness and user-friendliness for incorporating mixins
into a practical programming language like ML.

The rest of the paper is organized as follows. Section 2 presents an informal
overview of Mix by example. Section 3 formally defines Mix and its dynamic
semantics. Section 4 defines a sound type system for Mix . Finally, sections 5
and 6 review related and future work, respectively. The proofs are omitted from
this paper for lack of space, but a longer version including them is available as
a research report [13].



2 Intuitions

As a simplistic introductory example, consider a program that defines two mu-
tually recursive functions for testing whether an integer is even or odd, and then
tests whether 56 is even, and whether it is odd. Assume now that it is conceptu-
ally obvious that everything concerning oddity must go into one program frag-
ment, and everything concerning evenness must go into another, clearly distinct
fragment. Here is how this can be done in an informal programming language
based on Mix , with a syntax mimicking OCaml [17].

First, define two mixins Even and Odd as follows.

� ��� ��� Even = �����

� 	������	����
 ? odd : int -> bool

� ��
 ! even x = x = 0 ��� odd (x-1)

! even56 = even 56
	�� 


� ��� ��� Odd = � ���

� 	������	����
 ? even : int -> bool

� ��
 ! odd x = x > 0 � ��
 even (x-1)

! odd56 = odd 56
	�� 


Each of these mixins declares the missing function (marking it
with ?) and defines the other one (marking it with !), inside a � 	���������


which delimits a recursive block. Then, outside of this block, each mixin
performs one computation.

In order to link them, and obtain the desired complete mixin, one composes
Even and Odd, by writing � � �� � OpenNat = Odd >> Even. Intuitively, compo-
sition connects the missing components of Even to the corresponding definitions
of Odd, and vice versa, preserving the order of both mixins. Technically, compo-
sition somehow passes Odd through Even, with Even acting as a filter, stopping
the components of Odd when they match one of its own components. This filter-
ing is governed by some rules: the components of Odd go through Even together,
until one of them, say component c, matches some component of Even. Then,
the components of Odd defined to the left of c are stuck at the current point.
The other components continue their way through Even. Additionally, when two
components match, they are merged into a single component.

In our example, odd and even both stop at Even’s recursive block mention-
ing them, so the two recursive blocks are merged. Further, odd56 remains is
unmatched, so it continues until the end of Even. The obtained mixin is thus
equivalent to

� ��� ��� OpenNat = �����

� 	������	����
 ! even x = x = 0 ��� odd (x-1)

� ��
 ! odd x = x > 0 � ��
 even (x-1)

! even56 = even 56



! odd56 = odd 56
	�� 


Note that composition is asymmetric. This mixin remains yet to be instanti-
ated, in order to trigger its evaluation. This is done by writing � � 
���� 	 Nat =
� ����� 	 OpenNat, which makes OpenNat into a module equivalent to

� � 
�� � 	 Nat = ��� �������

� 	�� � 	 � even x = x = 0 ��� odd (x-1)

odd x = x > 0 � ��
 even (x-1)
� 	�� even56 = even 56
� 	�� odd56 = odd 56

	�� 


which evaluates to the desired result. For comparison, in MM , the final evalu-
ation order would be computed upon instantiation, instead of composition. It
would involve a topological sort of the strongly-connected components of the de-
pendency graph of OpenNat. Incidentally, in MM , in order to ensure that even56
is evaluated before odd56, the definition of odd56 should better explicitly state
it. From the standpoint of typing, explicitly grouping possibly recursive defini-
tions together allows to get rid of dependency graphs in the types, thus greatly
simplifying the type system.

3 The Mix language and its dynamic semantics

3.1 Syntax

Pre-terms. Figure 1 defines the set of pre-terms of Mix . It distinguishes names
X from variables x, following Harper and Lillibridge [11]. It includes a standard
record construct {s}, where s ::= (X1 = e1 . . .Xn = en), and selection e.X . It
features two constructs for value binding, letrec for mutually recursive definitions,
and let for single, non-recursive definitions. Finally, the language provides four
mixin constructs. Basic mixins consist of structures m = (c1 . . . cn), wich are lists
of components. A component c is either a single, or a block. A single u is either
a named declaration X B x = •, or a definition L B x = e, where L is a label.
Labels can be names or the special anonymous label, written , in which case
the definition is also said anonymous. Finally, a block q is a list of singles. The
other constructs are composition (e1 � e2), instantiation (close e), and deletion
of a name X , written (e|−X).

Terms. Proper terms are defined by restricting the set of pre-terms, as follows.
We define Mix values v by v ::= {sv} | 〈m〉, where sv ::= (X1 = v1 . . . Xn =
vn). Then The system is parameterized by the set RecExp of valid recursive
expressions, which must contain only values, and be closed under substitution.

Definition 1 (Terms)
A term of Mix is a pre-term such that: records do not define the same name
twice ; bindings do not define the same variable twice ; structures define neither



x ∈ Vars Variable
X ∈ Names Name
L ∈ Names ∪ { } Label

Expression:
e ::= x Variable

| {X1 = e1 . . . Xn = en} Record
| e.X Selection
| letrec x1 = e1 . . . xn = enin e letrec

| let x = e1 in e2 let

| 〈c1 . . . cn〉 Structure
| e1 � e2 Composition
| close e Instantiation
| e|−X Deletion

Definition:
c ::= u Single definition

| [u1 . . . un] Block
Single definition:

u ::= L B x = e | X B x = •

Fig. 1. Syntax

the same name twice nor the same variable twice ; and the right-hand sides of
letrec and block definitions belong to RecExp.

The restriction of letrec and block definitions to valid recursive expressions
both simplifies the semantics of letrec, and models the restrictions put by stan-
dard call-by-value languages on recursive definitions [17, 19]. Typically, recursive
definitions can only be functions.

Records, bindings and structures are respectively considered as finite maps
from names to terms, variables to terms, and pairs of a label and a variable to
terms or •. Thus, given a structure m, the restriction of dom(m) (the domain of
m) to pairs of a name and a variable can be seen as an injective finite map from
names to variables, which we call VofN(m).

Terms are considered equivalent modulo proper [20] renaming of bound vari-
ables and modulo the order in blocks and letrec. We denote by DV(m) and DV(b)
the sets of variables defined by m and b, respectively, and by DN(m) and DN(s)
the sets of names defined by m and s, respectively.

3.2 Dynamic semantics

The semantics of Mix is defined as a reduction relation on pre-terms in figure 2,
using notions defined in figure 3. It is compatible with bound variable renaming
and preserves well-formedness, so we extend it to terms.

Figure 3 defines evaluation contexts, which enforce a deterministic, call-by-
value strategy. We can now examine the rules, from the most interesting to the
most standard.



〈m1〉 � 〈m2〉 → 〈Add(m1, m2, ε)〉 if m1 m m2 (Compose)
close 〈mc〉 → Bind(mc, {Record(mc)}) (Close)

〈m〉|−X → 〈Del(m, X)〉 (Delete)
letrec b in e → {x 7→ letrec b in b(x) | x ∈ dom(b)}(e) (LetRec)

let x = v in e → {x 7→ v}(e) (Let)
{sv}.X → sv(X) (Select)

E[e] → E[e′] if e → e′ (Context)

Fig. 2. Reduction rules

Composition. Rule Compose describes mixin composition. In order to be com-
posed, the structures must be made compatible by α-conversion. Namely, we say
that two structures m1 and m2 are compatible, and write m1 m m2, iff DV(m1)∩
FV(〈m2〉) = DV(m2)∩FV(〈m1〉) = ∅, and for any x ∈ DV(m1)∩DV(m2), there
exists a name X such that VofN(m1)(X) = VofN(m2)(X) = x. This basically
says that both structures agree on the names of variables.

Then, their composition 〈m1〉 � 〈m2〉 is Add(m1, m2, ε), where Add is de-
fined by induction on m1 by

Add(ε, m1, m2) = m1, m2

Add((m1, c), m2, m3) = Add(m1, m2, (c, m3))
if DN(c) ∩ DN(m2, m3) = ∅

Add((m1, c1), (m
1
2, c2, m

2
2), m3) = Add(m1, m

1
2, (c1 ⊗ c2, m

2
2, m3))

if DN(c1) ∩ DN(m1
2, m

2
2, m3) = ∅ and DN(c1) ∩ DN(c2) 6= ∅

Given three arguments m1, m2, m3, Add roughly works as follows. If m1 is
empty, it returns the concatenation of m2 and m3. If the last component c of m1

defines names that are not defined in m2 or m3, then c is pushed at the head
of m3. Finally, when the last component c1 of m1 defines a name also defined
by some c2 in m2, so that m2 = (m1

2, c2, m
2
2), then the third argument becomes

(c1 ⊗ c2, m
2
2, m3), where c1 ⊗ c2 is the merging of c1 and c2, which is defined by

c1 ⊗ c2 = c2 ⊗ c1

(X B x = •) ⊗ c = c if VofN(c)(X) = x

[q1] ⊗ [q2] = [q1, q2] if DN(q1) ∩ DN(q2) = ∅
[X B x = •, q1] ⊗ [q2] = [q1] ⊗ [q2] if VofN(q2)(X) = x

This definition is not algorithmic, but uniquely defines the merging of two
components, and an algorithm is easy to derive from it: one has to apply rules
2 and 4 as long as possible, then commute the arguments and apply rules 2 and
4 as long as possible again, and then finally apply rule 3. Technically, as soon
as a declaration is matched, it is removed, and when two blocks have no more
common defined names, their merging is their union. Note that initially, only
components with common defined names are merged, but that the union takes
place after all the common names have been reduced.



E ::= {sv , X = �, s} | �.X

| let x = � in e

| � � e | v � �

| close � | �|−X

Fig. 3. Evaluation contexts

Example 1. Assuming that Mix is extended with functions, integers and
booleans, the mixin Even described in section 2 is written

even = 〈 [Odd B odd = •,
Even B even = λx.(x = 0) or odd (x − 1) ],

Even56 B even56 = even 56 〉

During composition with the mixin corresponding to Odd, the component
Odd56 traverses the whole structure to go to the rightmost position, then the
two blocks defining Even and Odd are merged, which gives the expected block.

Instantiation. Rule Close describes the instantiation of a complete basic mixin.
A structure is said complete iff it does not contain declarations. We denote com-
plete structures, components, singles, and blocks by mc, cc, uc, and qc, respec-
tively. Given a complete basic mixin 〈mc〉, instantiation first generates a series of
bindings, following the structure of mc, and then stores the results of named def-
initions in a record. Technically, close 〈mc〉 reduces to Bind(mc, {Record(mc)}),
where Record makes mc into a record and Bind makes mc into a binding:

Record(mc) is defined on singles by

Record(X B x = e) = (X = x) and Record( B x = e) = ε,

naturally extended to components and structures by concatenation,
and Bind(mc, e) is defined inductively over mc by

Bind(ε, e) = e

Bind(([uc
1 . . . uc

n], mc), e) = letrec buc
1c . . . buc

nc in Bind(mc, e)
Bind((uc, mc), e) = let bucc in Bind(mc, e),
with bL B x = ec = (x = e).

For each component, Bind defines a letrec (if the component is a block) or a
let (if the component is a single), by extracting bindings x = e from singles
L B (x = e).

Other rules. Rule Delete describes the action of the deletion operation. Given
a basic mixin 〈m〉, 〈m〉|−X reduces to 〈Del(m, X)〉, where Del(m, X) denotes m,
where any definition of the shape X B x = e is replaced with X B x = •.



Type:
τ ∈ Types ::= {S} | 〈C1 . . . Cn〉

C ::= U | [U1 . . . Un]
U ::= δX : τ

δ ::= ! |?

S ∈ Names
fin
−→ Types

Environment:

Γ ∈ Vars
fin
−→ Types

Fig. 4. Types

The next two rules, LetRec, Let, handle value binding. The only non-
obvious rule is LetRec, which enforces the following behavior. The idea is that
the rule applies when the considered binding is fully evaluated, which is always
the case for proper terms. A pre-term letrec b in e reduces to e, where each
x ∈ dom(b) is replaced with a kind of closure representing its definition, namely
letrec b in b(x). Note the notation for capture-avoiding substitution.

Finally, rule Select defines record selection, and rule Context extends the
rule to any evaluation context.

4 Static semantics

We now define a sound type system for Mix terms. Defining it on terms rather
than pre-terms means that the considered expressions are well-formed by defi-
nitions. Types are defined in figure 4. A Mix type τ can be either a record type
or a mixin type. A mixin type has the shape 〈M〉, where M is a signature. A
signature is a list of specifications C, which can be either single specifications U

or block specifications Q. A single specification has the shape δX : τ where δ is
a flag indicating whether the considered name is a declaration of a definition. It
can be either ?, for declarations, or !, for definitions. A block specification is a list
of single specifications. Record types are finite maps from names to types. Types
are identified modulo the order of specifications in blocks. Environments Γ are
finite maps from variables to types. The disjoint union of two environments Γ1

and Γ2 is written Γ1 + Γ2 (which applies only if their domains are disjoint).
Figure 5 presents our type system for Mix .

Basic mixin modules and enriched specifications. Let us begin with the typing of
basic mixins. Rule T-Struct simply delegates the typing of a basic mixin 〈m〉
to the rules for typing structures. These rules basically give each component c an
enriched specification, which is a specification, enriched with the corresponding
variable. Formally, single enriched specifications have the shape δL B x : τ , and
enriched block specifications are finite sets of these. Notably, this allows to type
anonymous definitions (using enriched specifications like δ B x : τ), and also to
recover a typing environment (namely {x 7→ τ}) for typing the next components.



Expressions

T-Struct

Γ ` c1 . . . cn : M
e

Γ ` 〈c1 . . . cn〉 : 〈Sig(Me)〉

T-Compose

Γ ` e1 : 〈M1〉 Γ ` e2 : 〈M2〉

Γ ` e1 � e2 : 〈Add(M1, M2, ε)〉

T-Close

Γ ` e : 〈Mc〉

Γ ` close e : {Record(M c)}

T-Delete

Γ ` 〈m〉 : 〈M〉

Γ ` 〈m〉|−X : 〈Del(M, X)〉

T-Var

Γ ` x : Γ (x)

T-Record

dom(s) = dom(S) ∀X ∈ dom(s), Γ ` s(X) : S(X)

Γ ` {s} : {S}

T-Select

Γ ` e : {S}

Γ ` e.X : S(X)

T-LetRec

Γ + Γb ` b : Γb Γ + Γb ` e : τ

Γ ` letrec b in e : τ

T-Let

Γ ` e1 : τ1 Γ + {x 7→ τ1} ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

Singles

T-Some

Γ ` e : τ

Γ ` (L B x = e) : (!L B x : τ )

T-None

Γ ` (X B x = •) : (?X B x : τ )

Structures and bindings

T-Empty

Γ ` ε : ε

T-Single

Γ ` u : U
e

Γ + Env(Ue) ` m : M
e

Γ ` (u, m) : (Ue
, M

e)

T-Block

Γ + Γq ` m : M
e

Γq =
]

u∈q

Env(Ue
u)

∀u ∈ q, u ∈ RecExp
?

and Γ + Γq ` u : U
e

u

Γ ` ([q], m) : ([
]

u∈q

U
e

u], Me)

T-Binding

dom(b) = dom(Γb)
∀x ∈ dom(b), b(x) ∈ RecExp and Γb ` b(x) : Γb(x)

Γ ` b : Γb

Fig. 5. Type system



Enriched single specifications, block specifications, and signatures are denoted
by Ue, Qe, and Me, respectively. Once the structure m has been given such
an enriched signature M e, this result is converted to a proper signature M =
Sig(Me), assigning to the basic mixin 〈m〉 the type 〈M〉. The Sig function merely
forgets variables and anonymous definitions of its argument: it is defined by
straightforward extension of

Sig(δX B x : τ) = δX : τ Sig(δ B x : τ) = ε.

Here is how structures are given such enriched signatures. By rule T-Some,
a single definition L B x = e is given the enriched single specification !L B x : τ

if e has type τ . By rule T-None, a single declaration X B x = • can be given
any enriched specification of the shape ?X B x : τ .

Given this, we can define the typing of structures. By rule T-Empty, an
empty structure is given the empty signature. By rule T-Single, a structure
of the shape (u, m) is typed as follows. First, u is typed, yielding an enriched
specification U e. This Ue is made into an environment by the Env function from
enriched signatures to environments. This function associates to any enriched
single specification δL B x : τ the finite map {x 7→ τ}, and is straightforwardly
extended to signatures. The obtained environment is added to the current envi-
ronment for typing the remaining components inductively, yielding an enriched
signature M e. The type of the whole structure is (U e, Me).

By rule T-Block, a structure of the shape ([q], m) is typed as follows.
An enriched single specification U e

u is guessed for each single u of q. Then,
the set of these enriched single specifications is converted into an environment

Γq =
⊎

u∈q

Env(Ue
u). This environment Γq is added to the current environment.

Then, it is checked that each single u indeed has the enriched specification U e
u.

Additionally, it is checked that each single u of q is defined by a valid recursive
expression or is a declaration. By abuse of notation, we write this u ∈ RecExp?.
Finally, the structure m is typed, yielding an enriched signature M e, which is

concatenated to [
⊎

u∈q

Ue
u].

Composition. The typing of composition, defined by rule T-Compose, recalls
its dynamic semantics. The type of the composition of two mixins of types 〈M1〉
and 〈M2〉, respectively, is 〈Add(M1, M2, ε)〉, where Add is defined by

Add(ε, M1, M2) = M1, M2

Add((M1, C), M2, M3) = Add(M1, M2, (C, M3))
if DN(C) ∩ DN(M2, M3) = ∅

Add((M1, C1), (M
1
2 , C2, M

2
2 ), M3) = Add(M1, M

1
2 , (C1 ⊗ C2, M

2
2 , M3))

if DN(C1) ∩ DN(M1
2 , M2

2 , M3) = ∅ and DN(C1) ∩ DN(C2) 6= ∅

which does the same as Add on structures. The merging of two specifications is
similarly defined by



C1 ⊗ C2 = C2 ⊗ C1

(?X : τ) ⊗ C = C if C(X) = τ

[Q1] ⊗ [Q2] = [Q1, Q2] if DN(Q1) ∩ DN(Q2) = ∅
[?X : τ, Q1] ⊗ [Q2] = [Q1] ⊗ [Q2] if Q2(X) = τ

It differs from component merging, because it checks that the types of match-
ing specifications are the same.

Example 2. When some mutually recursive definitions are grouped together in
blocks, rule T-Block ensures that they are all defined by valid recursive expres-
sions. Let us now show how the type system rules out mutually recursive defini-
tions that are not in blocks. Assume given mixins with types e1 : 〈?Y : τY , !X :
τX〉 and e2 : 〈?X : τX , !Y : τY 〉. When typing their composition e1 � e2, the
component X in e1, by the third rule in the definition of Add, is merged with
its counterpart in e2. This pushes the component Y of e2 to the right, so that
we obtain the triple (?Y : τY , ε, (!X : τX , !Y : τY )), to which no rule applies.

Other rules. Rule T-Close types instantiation. Following previous notation, we
let M c denote complete signatures. Given a complete mixin of type 〈M c〉, close

makes it into a record. The type of the result is {Record(M c)}, which is obtained
by flattening the blocks in M c, forgetting the ! flags.

Rule T-Delete types deletion. For a mixin e of type 〈M〉, the rule gives e|−X

the type 〈Del(M, X)〉, in which Del(M, X) denotes M , where any declaration of
the shape !X : τ is replaced with ?X : τ .

The other typing rules are straightforward.

Soundness. The type sytem is sound, in the sense that the following results hold.

Lemma 1 (Subject reduction)
If Γ ` e : τ and e → e′, then Γ ` e′ : τ .

Lemma 2 (Progress)
If ∅ ` e : τ , then either e is a value, or there exists e′ such that e → e′.

Theorem 1 (Soundness)
If ∅ ` e : τ , then either e reduces to a value, or its evaluation does not terminate.

5 Related work

Kernel calculi with mixin modules. The idea of mixin modules comes from that of
mixins, introduced by Bracha [4] as a model of inheritance. In this model, called
Jigsaw, classes are represented by mixins, which are equipped with a powerful
set of modularity operations, and can be instantiated into objects. Syntactically,
mixins may contain only values, which makes them as restrictive as classes. What
differentiates them from classes is their cleaner design, which gave other authors
the idea to generalize them to handle modules as well as objects.



Ancona and Zucca [2] propose a call-by-name module system based on some
of Bracha’s ideas, called CMS . As Mix , CMS extends Jigsaw by allowing any
kind of expressions as mixin definitions, not just values. Unlike in Mix , in CMS ,
there is no distinction between modules and mixin modules, which makes sense
in call-by-name languages, since the contents of modules are not evaluated until
selection. In call-by-value, the contents of a module are eagerly evaluated, so they
cannot have a late binding semantics. Thus, modules must be dinstinguished
from mixin modules, and so CMS is not a suitable model. From the standpoint
of typing, CMS , unlike Mix , but consistently with most call-by-name languages,
does not control recursive definitions.

The separation between mixin modules and modules, as well as late binding,
can be encoded in Wells and Vestergaard’s m-calculus [20], which however is
untyped, and does not provide programmer control over the order of evaluation.

In a more recent calculus [1], Ancona et al. separate mixin modules from
modules, and handle side effects as a monad. However, they do not attempt
to statically reject faulty recursive definitions. Moreover, in their system, given
a composition e1 � e2, the monadic (i.e., side-effective) definitions of e1 are
necessarily evaluated before those of e2, which is less flexible than our proposal.

Language designs with mixin modules. Duggan and Sourelis [8] propose an ex-
tension of ML with mixin modules, where mixin modules are divided into a
prelude, a body, and an initialization section. Only definitions from the body are
concerned by mixin module composition, the other sections being simply con-
catenated (and disjoint). Also, the body is restricted to functions and data-type
definitions, which prevents illegal recursive definitions from arising dynamically.
This is less flexible than Mix , since it considerably limits the alternation of
functional and computational definitions.

Flatt and Felleisen [10] introduce the closely related notion of units, in the
form of (1) a theoretical extension to Scheme and ML and (2) an actual ex-
tension of their PLT Scheme implementation of Scheme [9]. In their theoretical
work, they only permit values as unit components, except for a separate initial-
ization section. This is more restrictive than Mix , in the same way as Duggan
and Sourelis. In the implementation, however, the semantics is different. Any ex-
pression is allowed as a definition, and instantiation works in two phases. First,
all fields are initialized to nil; and second, they are evaluated and updated, one
after another. This yields both unexpected behavior (consider the definition x

= cons(1, x)), and dynamic type errors (consider x = x + 1), which do not
occur in Mix . Finally, units do not feature late binding, contrarily to Mix .

Linking calculi. Other languages that are close to mixin modules are linking
calculi [5, 18]. Generally, they support neither nested modules nor late bind-
ing, which significantly departs from Mix . Furthermore, among them, Cardelli’s
proposal [5] does not restrict recursion at all, but the operational semantics is
sequential in nature and does not appear to handle cross-unit recursion. As a
result, the system seems to lack the progress property. Finally, Machkasova and



Turbak [18] explore a linking calculus with a very rich equational theory, but
which does not restrict recursion and is untyped.

Flexible mixin modules. In the latest versions of MM [12], a solution to the
problem of dependency graphs in types is proposed. Instead of imposing that
the graph in a mixin module type exactly reflect the dependencies of the con-
sidered mixin module, it is seen as a bound on its dependencies, thanks to an
adequate notion of subtyping. Roughly, it ensures that the considered mixin
module has no more dependencies than exposed by the graph. This allows two
techniques for preventing MM mixin module types from being verbose and over-
specified. First, the interfaces of a mixin module e can be given more constrained
dependency graphs than that of e. This makes interfaces more robust to later
changes. Second, a certain class of dependency graphs is characterized, that bear
a convenient syntactic description, thus avoiding users to explicitly write graphs
by hand. In fact, this syntactic sugar allows to write MM types exactly as Mix
types. We call MM 2 the language obtained by restricting MM to such types
(in a way that remains to be made precise, for instance by insertion of implicit
coercions).

The expressive power of typed MM 2 w.r.t. reordering lies between MM and
Mix . Intuitively, the order in Mix mixins is fixed at definition time, while MM 2

allows later reordering of input components. For instance, the Mix basic mixin
e1 = 〈X B x = •, Y B y = •〉 cannot be composed with e2 = 〈!Y B y = 0, !X B

x = 0〉, which is unfortunate. The equivalent composition is well-typed in MM 2.
The importance of this loss of flexibility has to be further investigated. In-

tuitively, it can only be annoying when a mixin is reused in an unexpected way,
which makes the initial order incorrect. Unfortunately, the classical examples
using mixins modules (and modules in general) generally show the modular de-
composition of programs, not really the reuse of existing code, with possibly
badly ordered components. This comes from the lack of extensive practice of
any system with mixin modules, which is one of our priorities for future work.

6 Future work

Type components and subtyping. Before to incorporate mixin modules into a
practical language, we have to refine our type system in at least two respects.
First, we have to design an extended version of Mix including ML-style user-
defined type components and data types. This task should benefit from recent
advances in the design of recursive module systems [6, 7]. Second, we have to
enrich our type system with a notion of subtyping over mixin modules. Indeed,
it might turn out too restrictive for a module system to require, as Mix does, a
definition filling a declaration of type τ to have exactly type τ .

Compilation. The Mix language features anonymous definitions, and thus the
compilation scheme for mixin modules proposed by Hirschowitz and Leroy [14]
does not apply. A possible extension of this scheme to anonymous definitions is



sketched in later work [12], but not formalized. This extension might apply to
Mix . However, it should be possible to do better than this, by taking advantage
of the more rigid structure of Mix mixin modules.

Other definitions of composition. The composition operator of Mix is somewhat
arbitrary. This gives the idea to explore other definitions, perhaps more flexible.
Ideally, the system should be parameterized over the notion of composition.
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