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A Type System for First-Class Layers with Inheritance,
Subtyping, and SwappingI

Hiroaki Inoue, Atsushi Igarashi
Graduate School of Informatics

Kyoto University

Abstract

Context-Oriented Programming (COP) is a programming paradigm to encourage mod-
ularization of context-dependent software. Key features of COP are layers—modules
to describe context-dependent behavioral variations of a software system—and their dy-
namic activation, which can modify the behavior of multiple objects that have already
been instantiated. Typechecking programs written in a COP language is difficult be-
cause the activation of a layer can even change objects’ interfaces. Inoue et al. have
informally discussed how to make JCop, an extension of Java for COP by Appeltauer et
al., type-safe.

In this article, we formalize a small COP language called ContextFJ<: with its oper-
ational semantics and type system and show its type soundness. The language models
main features of the type-safe version of JCop, including dynamically activated first-class
layers, inheritance of layer definitions, layer subtyping, and layer swapping.

Keywords: Context-oriented programming, dynamic layer composition, first-class
layers, layer inheritance, type systems

1. Introduction

Software is much more interactive than it used to be: it interacts with not only
users but also external resources such as network and sensors and changes its behavior
according to inputs from these resources. For example, an e-mail reader may switch
to a text-based mode when network throughput is low. Such external information that
affects the behavior of software is often referred to as contexts and software that is aware
of contexts as context-dependent software. However, context-dependent software is hard
to develop and maintain, because the description of context-dependent behavior, which
we desire to be modularized, often crosscuts with the dominating module structure. To
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address such a problem from a programming-language perspective, Context-Oriented
Programming (COP) has been proposed by Hirschfeld et al [25].

The main language constructs for COP are layers, which are modules to specify
context-dependent behavior, and their dynamic layer activation. A layer is basically a
collection of what are called partial methods, which add new behavior to existing objects
or override existing methods. When a layer is activated at run time by a designated
construct, the partial methods defined in it become effective, changing the behavior of
objects until the activation ends. Roughly speaking, a layer abstracts a context and
dynamic layer activation abstracts change of contexts.

The JCop language [3] is an extension of Java with language constructs for COP. Not
only does it support basic COP constructs described above, but also it introduces many
advanced features such as inheritance of layer implementations and first-class layers.
However, typechecking implemented in the JCop compiler does not take into account the
fact that layer activation can change objects’ interface by partial methods that add new
methods and, as a result, not all “method not found” errors are prevented statically. In
our previous work [30], we have studied this problem, proposed a type-safe version of
JCop (we call Safe JCop in this paper) with informal discussions on its type system.

In this paper, we formalize most of the ideas proposed in the previous work and
prove that they really make the language sound. More concretely, we develop a small
COP language called ContextFJ<:, which extends ContextFJ by Igarashi, Hirschfeld,
and Masuhara [26, 27] to layer inheritance, subtyping of layer types, first-class layers,
and a type-safe layer deactivation mechanism called layer swapping [30]; and we prove a
type soundness theorem for ContextFJ<:. Main issues we have to deal with are (1) the
semantics of layer inheritance, which adds another “dimension” to the space of method
lookup, (2) sound subtyping for first-class layers, which led us to two kinds of subtyping
relation, and (3) layer swapping. A preliminary version of this work has been presented
elsewhere [29] under the title “A Sound Type System for Layer Subtyping and Dynam-
ically Activated First-Class Layers.” We have extended ContextFJ<: given there with
superproceed calls, which have been omitted, added proofs, and substantially revised
the paper.

The rest of the article is organized as follows. After informally reviewing features of
Safe JCop in Section 2, we develop ContextFJ<: with its syntax, operational semantics,
and type system in Section 3; and we prove type soundness in Section 4. In Section 5,
we discuss related work and then conclude in Section 6.

2. Language Constructs of Safe JCop

In this section, we review language constructs of Safe JCop, first described in [30], in-
cluding first-class layers, layer inheritance/subtyping, and layer swapping along informal
discussions about the type system.

As a running example, we consider programming a graphical computer game called
RetroAdventure [4]. In this game, a player has a character “hero” that wanders around
the game world. Here, we introduce class Hero that represents the hero, which has
method move to walk around, and class World that represents the game world.
public class Hero {

Position pos;
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public void move( Direction dir){
pos = /* changes pos according to dir */;

}
}
public class World { ... }

2.1. Layers and Partial Methods
As mentioned already, a first distinctive feature of COP is layers—collections of partial

methods to modify the behavior of existing objects. A partial method is syntactically
similar to an ordinary method declared in a class, except that the name is given in a
qualified form Hero.move(); this means the partial method is going to override method
move defined in Hero or (if it does not exist) add to Hero. A layer can contain partial
methods for different classes, so, when it is activated, it can affect objects from various
classes at once. Similarly to super calls in Java, the body of a partial method can contain
proceed calls to invoke the original method overridden by this partial method.

Here, suppose that the hero’s behavior is influenced by weather conditions in the game
world. For example, in a foggy weather, the hero gets slow and, in a stormy weather, the
hero cannot move as he likes. Here are layers that denote weathers of the game world.
public layer Foggy {

/* partial method */
public void Hero.move( Direction dir){

pos = /* the distance of move is shorter */;
}

}
public layer Stormy {

/* partial method */
public void Hero.move( Direction dir){

proceed ( randomDirection (dir));
}
/* baseless partial method */
public Direction Hero. randomDirection ( Direction dir){

return /* add randomness to dir */;
}

}
public layer Sunny { ... }

Foggy and Stormy have the definitions of Hero.move, which change the behavior of the
original definition in different ways. In particular, Hero.move in Stormy uses proceed,
replacing the arguments to calls to move. It also has Hero.randomDirection, used to
determine a new randomized direction to which the hero is going to move.

Methods defined in classes are often referred to as base methods and partial methods
without corresponding base methods as baseless partial methods. Notice that activating
a layer with baseless partial methods extends object interfaces and proceed in a baseless
partial method is unsafe unless another layer activation provides a baseless partial method
of the same signature.

2.2. Layer Activation and First-Class Layers
In Safe JCop, a layer can be activated by using a layer instance (created by a new

expression, just as an ordinary Java object, from a layer definition) in a with statement.
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The following code snippet shows how Foggy can be activated. (hero is an object of the
class Hero).
with(new Foggy ()){

hero.move (); /* The hero will get slow by Rainy weather . */
}

Inside the body of with, dynamic method dispatch is affected by the activated layers so
that partial methods are looked up first. So, movement of the hero will be slow.

Layer activation has a dynamic extent in the sense that the behavior of objects changes
even in methods called from inside with. If more than one layer is activated, a more
recent activation has precedence and a proceed call in a more recently activated layer
may call another partial method (of the same name) in another layer.

In Safe JCop, a layer instance is a first-class citizen and can be stored in a variable,
passed to, or returned from a method. A layer name can be used as a type. Combining
with layer subtyping discussed later, we can switch layers to activate by a run-time
condition. For example, suppose that the game has difficulty levels, determined at run
time according to some parameters, and each level is represented by an instance of a
sublayer of Difficulty. Then, we can set the initial difficulty level by code like this:

Difficulty diff = /* an expression to compute difficulty */ ;
with(diff){ ... }

Moreover, a layer can declare own fields and methods (although we do not model
them in layers in this article). So, first-class layers significantly enhance expressiveness
of the language.

2.3. Dependencies between Layers
Baseless partial methods and layer activation that has dynamic extent pose a chal-

lenge on typechecking because activation of a layer including baseless partial methods
can change object interfaces. So, a method invocation, including a proceed call, may or
may not be safe depending on what layers are activated at the program point. Safe JCop
adopts requires clauses [27] for layer definitions to express which layers should have
been activated before activating each layer (instance). The type system checks whether
each activation satisfies the requires clause associated to the activated layer and also
uses requires clauses to estimate interfaces of objects at every program point.

For example, consider another layer ThunderInStorm, which expresses an event in
a game. It affects the way how the hero’s direction is randomized during a storm and
includes a baseless partial method with a proceed call. To prevent ThunderInStorm
from being activated in a weather other than a storm, the layer requires Stormy as
follows:
public layer ThunderInStorm requires Stormy {

public Direction Hero. randomDirection ( Direction dir){
Direction tmpd = proceed (dir);
... /* change tmpd to speed up */
return tmpd;

}
}
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An attempt at activating ThunderInStorm without activating Stormy will be rejected by
the type system (unless the activation appears in a layer requiring Stormy). Thanks to
the requires clause, the type system knows that the proceed call will not fail. (It will
call the partial method of the same name in Stormy or some other depending on what
layers are activated at run time.)

2.4. Layer Inheritance and Subtyping
In Safe JCop, a layer can inherit definitions from another layer by using the keyword

extends and the extends relation between layers yields subtyping, just like Java classes.
If weather layers have many definitions in common, it is a good idea to define a superlayer
Weather and concrete weather layers as its sublayers.
public layer Weather {

public Text People . sayWeather (){ return new Text(""); }
...

}
public layer Stormy extends Weather {

public Text People . sayWeather (){
Text buf = superproceed ();
buf. setText ("It’s stormy today.");
return buf;

} ...
}
public layer Foggy extends Weather {

public Text People . sayWeather (){ ... }
...

}

Here, Weather provides (baseless) partial method sayWeather to the class People, which
returns Text data that people say about weather condition. The implementation of
People.sayWeather just returns an empty Text and sublayers of the Weather override
it. Safe JCop provides superproceed, which calls a partial method overridden because
of layer inheritance. The partial method of Stormy sets the contents of the text using
superproceed.

Since class subtyping equals to the reflexive and transitive closure of the extends
relation, we expect layer subtyping to be the same; an instance of a sublayer can be
substituted for that of its superlayer. However, substitutability is more subtle than
one might expect and we are led to distinguishing two kinds of substitutability and
introducing two kinds of subtyping relation, called weak and normal subtyping. The
difference arises from requires clauses. To explain the issue, we define layer Thunder,
which is the superlayer of ThunderInStorm and ThunderInFog and a sublayer of a marker
layer Event.
public layer Event { ... }
public layer Thunder extends Event requires Weather {

public void change_font (Text label ){ label . setFont (" Italic "); }
public Text People . sayWeather (){

Text txt = proceed ();
change_font ( txt );
return txt;
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}
}
public layer ThunderInStorm extends Thunder requires Stormy {

public Text People . sayWeather (){
Text buf = superproceed ();
buf. setText (" Escape from here right now !!");
return buf;

}
...

}
public layer ThunderInFog extends Thunder requires Foggy {

public Text People . sayWeather (){ ... }
}

Thunder changes the font of the text of what People say. It seems natural to set the
requires clause of Thunder to be Weather, since its two sublayers require Stormy and
Foggy respectively.

Weak subtyping. An instance of a sublayer can be used where a superlayer is required,
since a sublayer defines more partial methods than its superlayer. For example, to acti-
vate the following layer called Thunder, which requires Weather, it suffices to activate
Foggy, a sublayer of Weather, beforehand.

with(new Foggy ()){
// Thunder requires Weather and Foggy extends Weather
with(new Thunder ()){ ... }

}

We will formalize substitutability about requires as weak subtyping, which is the
reflexive transitive closure of the extends relation between layer types. For the weak
subtyping to work, we require that a sublayer declare, at least, what its superlayer
requires because partial methods inherited from the superlayer may depend on them.
We could relax this condition if a sublayer overrides all the partial methods but such a
case is expected to be rare and so not taken into account.1

Normal subtyping. The above notion of subtyping is called weak because it does not
guarantee safe substitutability for first-class layers. Consider layer Difficulty again and
assume that it requires no other layers and has sublayers Easy and Hard. In the following
code snippet, the activation of diff appears safe because its static type Difficulty does
not require any layers to have been activated.
Difficulty diff = someCondition () ? new Easy () : new Hard ();
with(diff){ ... }

However, the case where Easy or Hard requires some layers breaks the expected invariant
that the dependency expressed by the requires clauses is satisfied at run time. So, for
assignments and parameter passing, we need one more condition for subtyping, namely,
requires of a sublayer must be the same as that of its superlayer. We call this strong
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Figure 1: An example of layer subtyping hierarchy.

notion of subtyping normal subtyping.
In Fig. 1, we show the layer subtyping hierarchy of the examples so far. An oval

means a layer and the notation req {X} beside an oval means its requiring layers. Just
like Object in Java, there is Base, which is a superlayer of all layers, in Safe JCop. If a
layer omits the extends clause, it is implicitly assumed that the layer extends Base.

2.5. Layer Swapping and Deactivation
The original JCop provides constructs to deactivate layers. However, only with

requires, it is not easy to guarantee that layer deactivation does not lead to an er-
ror. For safe deactivation, it has to be checked that there is no layer that requires
the deactivated layer, but the type system is not designed to keep track of the absence
of certain layers. Instead of general-purpose layer deactivation mechanisms, Safe JCop
introduces a special construct to express one important idiom that uses deactivation,
namely layer swapping to deactivate some layers and activate a layer at once.

In Safe JCop, we can define a layer as swappable, which means that all its sublayers
can be swapped with each other, by adding the modifier swappable. The swap statement
for layer swapping is of the following form:

swap(activation_layer, deactivation_layer_type){ ... }

The activation_layer is an expression whose static type must be a sublayer of deactivation_lay-
er_type, which in turn has to be swappable. It deactivates all instances of deactiva-
tion_layer_type (and its sublayers), and activates the activation_layer.

1Re-typechecking inherited methods under the new requires clause would be another way to relax
this condition but this is against modular checking.
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Let’s consider Difficulty once again. We could define Difficulty as a swappable
layer and use swap to switch to another mode temporarily.
swappable layer Difficulty { ... }
...
Difficulty diff = someCondition () ? new Easy () : new Hard ();
with(diff){

...
swap(new Hard (), Difficulty ){

... // Enforce hard mode
}

}

For type safety, the necessary restriction for layer swapping was wrong and has to
be stronger than discussed in the previous work [30]. Specifically, we need the following
restrictions:

• No sublayer of a swappable layer can be required by any other layers.

• Every sublayer of a swappable layer has to have the same interface (namely, set of
public methods) and requires clause as the swappable layer.

The second condition was overlooked in the previous work.

2.6. Method Lookup
We informally explain how Safe JCop’s method lookup mechanism works, before

proceeding to the formal calculus.
When method m is invoked on an instance of class C with layers L1; · · · ;Ln activated,

the corresponding method definition is sought as follows: first, the activated layers Ln,
Ln−1, down to L1 are searched (in this order) for a partial method named C.m; if C.m is not
found, the base class C is searched for the base definition; if m is not found, similar search
continues on the C’s superclass D—namely, the activated layers are searched again for a
partial method named D.m and the base class D is searched for the base definition, and so
on. In addition to the usual inheritance chain in class-based object-oriented languages,
COP adds another dimension to the space of method lookup. Actually, there is yet
another dimension in (Safe) JCop because of layer inheritance: When Li is searched for
a partial method, its superlayers are searched, too, before going to Li−1. For example,
under the following class and layer definitions
class C extends D { }
class D extends E { void m(){ ... } }
class E { void m(){ ... } }
layer L1 { void D.m(){ ... } }
layer L2 extends L3 { void E.m(){ ... } }
layer L3 { void C.m(){ ... } }

the following statement
with(new L1()) {

with(new L2()){
new C().m();

}
}
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will execute partial method C.m defined in L3 (we will use notation L.C.m to mean the
partial method C.m defined in layer L hereafter), whereas the statement
with(new L1()) { new C().m(); }

will execute L1.D.m.
Now, we turn our attention to the semantics of super, proceed, and superproceed.

When a super, proceed or superproceed call is encountered during execution of a
(partial) method, it continues to look for a method definition of the same name as
follows.

Suppose that C.m is found in layer Li with layers L = L1; · · · ;Ln activated (0 < i ≤ n)
and that D is a superclass of C.

• A call super.m() starts looking for a partial method D.m from Ln and so on.

• A proceed call starts looking for a partial method C.m from Li−1 or the base method
of class C (when i = 1), and so on.

• A superproceed call starts looking for C.m in Li
′ (where Li

′ is the superlayer of
Li), Li

′′ (where Li
′′ is the superlayer of Li

′), and so on. If C.m is not found in the
superlayers, it is a run-time error (which the type system will prevent).

For example, consider the following class and layer definitions and suppose L1, L2
and L3 are activated in this order.
class C extends D { }
class D extends E { void m(){ return super.m();} }
class E { void m(){ return ; } }
layer L1 {

void C.m(){ ... super .m(); ... proceed (); ... }
void D.m(){ ... super .m(); ... proceed (); ... }

}
layer L2 {

void C.m(){ ... super .m(); ... proceed (); ... }
}
layer L4 {

void C.m(){ ... super .m(); ... proceed (); ... }
void E.m(){ ... super .m(); ... proceed (); ... }

}
layer L3 extends L4 {

void C.m(){ ... super .m(); ... proceed (); ... }
}

• super.m calls from L4.C.m and L1.C.m will invoke L1.D.m; and those from L1.D.m
and D.m will invoke L4.E.m, since L3 inherits E.m from L4.

• a proceed call from L4.C.m will invoke L2.C.m and that from L1.C.m will invoke
L1.D.m.

• a superproceed call from L3.C.m will invoke L4.C.m.
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Figure 2: Method Lookup Example.

Fig. 2 summarizes how super, proceed, and superproceed calls are resolved. Each
ball represents a (partial) method definition and its location where it is put. The three
axes stands for class inheritance (C extends D and D extends E), activated layers (L1, L2,
and L3 are activated in this order), and layer inheritance (L3 extends L4). Dotted arrows
represent how proceed calls at each method definition are resolved. For example, the
top-most long dotted arrow means that proceed from L4.E.m will invoke E.m. Double-
line arrows represent super and thick arrows superproceed.

Finally, we should note that, for super, proceed, and superproceed calls, the acti-
vated layers are the same as those when the current method is found. So, with or swap
around super, proceed, and superproceed does not affect which definition is invoked;
only method invocations are affected by with and swap.

3. ContextFJ<:

In this section, we formalize a core functional subset of Safe JCop as ContextFJ<: with
its syntax, operational semantics and type system. ContextFJ<:, a descendant of Feather-
weight Java (FJ) [28], extends ContextFJ [26, 27] with layer inheritance, superproceed,
layer subtyping, first-class layers, and swappable layers. JCop features that ContextFJ<:
does not model for simplicity include: fields and (ordinary) methods in layers, special
variable thislayer to refer to the current layer instance, superlayer to invoke an ordi-
nary method in a superlayer, and declarative layer composition.

3.1. Syntax
Let metavariables C, D and E range over class names; L over layer names; f and g

over field names; m over method names; x and y over variables, which contains special
variable this. The abstract syntax of ContextFJ<: is given in Fig. 3.
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T ::= C | L (types)
CL ::= class C / C { T f; K M } (classes)
LA ::= [swappable] layer L / L req L { PM } (layers)
K ::= C(T f){ super(f); this.f = f; } (constructors)
M ::= T m(T x){ return e; } (methods)
PM ::= T C.m(T x){ return e; } (partial methods)
e, d ::= x | e.f | e.m(e) | new T(e) | with e e | swap (e,L) e (expressions)

| proceed(e) | super.m(e) | superproceed(e)
| new C(v)<C,L,L>.m(e) | new C(v)<C,L,L,L>.m(e)

v, w ::= new C(v) | new L() (values)

Figure 3: ContextFJ<:: Syntax.

Following FJ, we use overlines to denote sequences: So, f stands for a possibly empty
sequence f1, · · · , fn and similarly for T, x, e, and so on. The empty sequence is de-
noted by •. Concatenation of sequences is often denoted by a comma except for layer
names, for which we use a semicolon. We also abbreviate pairs of sequences, writing
“T f” for “T1 f1, · · · , Tn fn”, where n is the length of T and f, and similarly “T f;”
as shorthand for the sequence of declarations “T1 f1;. . . Tn fn;” and “this.f=f;” for
“this.f1=f1;. . . ;this.fn=fn;”. Given layer sequence L, We write {L} for the set of lay-
ers (obtained by ignoring the order). Sequences of field declarations, parameter names,
layer names, and method declarations are assumed to contain no duplicate names.

We briefly explain the syntax, focusing on COP-related constructs. A layer definition
LA consists of optional modifier swappable, its name, its superlayer name, layers that it
requires, and partial methods. A partial method (defined as PM) is similar to a method
but specifies which m to modify by qualifying the simple method name with a class name
C.

Instantiation can be a layer instance new L(), as well as a class instance new C(e).
Note that arguments to new L are always empty because ContextFJ<: does not model
fields of layer instances. In the expression with e1 e2, e1 stands for the layer to be
activated and e2 the body of with. In the expression swap (e1, L) e2, e1 means the
layer to be activated, L the swappable layer, e2 the body of swap. By this expression,
during the evaluation of e2, all instances of the swappable layer L and its sublayers
are deactivated, and e1 is activated. super.m(e), proceed(e) and superproceed(e)
are keywords to invoke methods of the superclass, a previously activated layer, and the
superlayer, respectively.

Expressions new C(v)<D,L′,L>.m(e) and new C(v)<D,L,L′,L>.m(e) are special run-
time expressions that are related to method invocation mechanism of COP, and not
supposed to appear in classes and layers. They basically mean that m is going to be
invoked on new C(v). The annotation <D,L′,L> is used to model super and proceed
whereas <D,L,L′,L> is used for superproceed. L stands for a sequence of activated layers
and D, L and L′ (which is assumed to be a prefix of L) play a role of a “cursor” where the
method lookup starts from. We explain how they work in detail in Section 3.2.

Program. A ContextFJ<: program (CT ,LT , e) consists of a class table CT , a layer table
LT and an expression e, which stands for the body of the main method. CT maps a class
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name to a class definition and LT a layer name to a layer definition. A layer definition
can be regarded as a function that maps a partial method name C.m to a partial method
definition. So, we can view LT as a Curried function, and we often write LT (L)(C.m)
for the partial method C.m in L in a program. We assume that the domains of CT and
LT are finite. Precisely speaking, the semantics and type system are parameterized over
CT and LT but, to lighten the notation, we assume them to be fixed and omit from
judgments.

Given CT and LT , extends and requires clauses are considered relations, written
/ and req, respectively, over class/layer names. Namely, we write L req Li if LT (L) =
layer L req L and Li ∈ L. We also write L req {L} if LT (L) = layer L req L.2
As usual, we write R+ for the transitive closure of relation R; similarly for R∗ for the
reflexive transitive closure of R. We write L swappable if LT (L) is defined with the
swappable modifier.

We assume the following sanity conditions are satisfied by a given program:

1. CT (C) = class C ... for any C ∈ dom(CT ).
2. Object < dom(CT ).
3. For every class name C (except Object) appearing anywhere in CT , C ∈ dom(CT ).
4. LT (L) = ... layer L ... for any L ∈ dom(LT ).
5. Base < dom(LT ).
6. For every layer name L (except Base) appearing anywhere in LT , L ∈ dom(LT ).
7. Both for classes and layers, there are no cycles in the transitive closure of the

extends clauses.
8. LT (L)(C.m) = ... C.m(...){...} for any L ∈ dom(LT ) and C , Object and

(C.m) ∈ dom(LT (L)).

These sanity conditions are an extension of those of FJ: conditions for layers (4–7) are
similar to those for classes (1–3, 7). In Condition 6, like Object of classes, layer Base
is defined as the root of the layer inheritance/subtyping hierarchy. In the condition (8),
C , Object means that a layer cannot introduce a method to Object, which has no base
methods. We could allow a layer to add methods to Object but doing so would just
clutter presentation—there are more rules to deal with the fact that super calls cannot
be made in partial methods for Object.

3.2. Operational Semantics
Lookup Functions. We need a few auxiliary lookup functions to define operational se-
mantics and they are defined in Fig. 4. The function fields(C) returns a sequence T f
of pairs of a field name and its type by collecting all field declarations from C and its
superclasses.

The function pmbody(m, C, L) returns the parameters and body x.e of the partial
method C.m defined in layer L. It also returns the layer name L0 at which C.m is found,
which will be used in reduction rules to deal with superproceed. If partial method C.m
is not found in L, its superlayer L′ is searched and so on. The function mbody(m, C, L1, L2)

2Note that L1 req L2 and L1 req {L2} have slightly different meanings; the former means L2 is one
of the layers required by L1, whereas the latter means L2 is the only layer required by L1.
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fields(C) = T f

fields(Object) = • (F-Object)

class C / D { T f; ... } fields(D) = S g
fields(C) = S g, T f

(F-Class)

pmbody(m, C, L) = x.e in L0

LT (L)(C.m) = T0 C.m(T x){ return e; }
pmbody(m, C, L) = x.e in L

(PMB-Layer)

LT (L)(C.m) undefined L / L′ pmbody(m, C, L′) = x.e in L0

pmbody(m, C, L) = x.e in L0
(PMB-Super)

mbody(m, C, L′, L) = x.e in D, L′′

class C / D { ... T0 m(T x){ return e; } ... }
mbody(m, C, •, L) = x.e in C, •

(MB-Class)

pmbody(m, C, L0) = x.e in L1

mbody(m, C, (L′; L0), L) = x.e in C, (L′; L0)
(MB-Layer)

class C / D { ... M } m < M mbody(m, D, L, L) = x.e in E, L′

mbody(m, C, •, L) = x.e in E, L′
(MB-Super)

pmbody(m, C, L0) undefined mbody(m, C, L′, L) = x.e in D, L′′

mbody(m, C, (L′; L0), L) = x.e in D, L′′
(MB-NextLayer)

Figure 4: ContextFJ<:: Lookup functions.

returns the parameters and body x.e of method m in class C when the search starts from
L1; the other sequence L2 keeps track of the layers that are activated when the search
initially started. It also returns D and L′′ (which will be a prefix of L2), information on
where the method has been found. For example, in the rule MB-Layer, which means
that the method is found in class C and layer L0 (or its superlayers), mbody returns
C and (L′; L0). Such information will be used in reduction rules to deal with proceed
and super. Readers familiar with ContextFJ will notice that the rules for mbody are
mostly the same as those in ContextFJ, except that pmbody(m, C, L) is substituted for
PT (m, C, L) to take layer inheritance into account. By reading the four rules defining the
two functions in a bottom-up manner, it is not hard to see the correspondence with the
method lookup procedure, informally described in Section 2.6.

Reduction. The operational semantics of ContextFJ<: is given by a reduction relation
of the form L ` e −→ e′, read “expression e reduces to e′ under the activated layers L.”
The sequence L of layer names stands for nesting of with and the rightmost name stands

13



fields(C) = C f
L ` new C(v).fi −→ vi

(R-Field)

L ` new C(v)<C,L,L>.m(w) −→ e′

L ` new C(v).m(w) −→ e′
(R-Invk)

mbody(m, C′, L′′, L′) = x.e0 in C′′, • class C′′/ D{...}
L ` new C(v)<C′,L′′,L′>.m(w) −→ new C(v) /this,

w /x,
new C(v)<D,L′,L′>/super

 e0

(R-InvkB)

mbody(m, C′, L′′, L′) = x.e0 in C′′, (L′′′; L0) class C′′/ D{...} layer L0/ L1

L ` new C(v)<C′,L′′,L′>.m(w) −→
new C(v) /this,
w /x,
new C(v)<C′′,L′′′,L′>.m /proceed,
new C(v)<D,L′,L′> /super,
new C(v)<C′′,L1,(L′′′;L0),L′>.m/superproceed

 e0

(R-InvkP)

pmbody(m, C′, L1) = x.e0 in L2 class C′/ D{...} layer L2/ L3

L ` new C(v)<C′,L1,(L′′;L0),L′>.m(w) −→
new C(v) /this,
w /x,
new C(v)<C′,L′′,L′>.m /proceed,
new C(v)<D,L′,L′> /super,
new C(v)<C′,L3,(L′′;L0),L′>.m/superproceed

 e0

(R-InvkSP)

Figure 5: ContextFJ<:: Reduction Rules 1.

for the most recently activated layer. As for other sequences, L do not contain duplicate
names. Note that we put a sequence of layer names L rather than layer instances because
layer instances have no fields and new L() and L can be identified. If we modelled fields
in layer instances, we would have to put instances for layer names.

Reduction rules are found in Fig. 5 and Fig. 6. R-Field is for field access and four
rules R-InvkXX are for method invocation: R-Invk initializes the cursor according to
the currently activated layers L; the rules R-InvkB and R-InvkP represent invocation
of a base and partial method, respectively, depending on which kind is found by mbody;
the rule R-InvkSP deals with the case where the cursor in the receiver object is a
quadruple, which occurs when the entire expression was a superproceed call. In the
last case, pmbody is used to find a method body because superproceed denotes a partial
method in one of the superlayers.

Note how this, proceed, super and superproceed are replaced with the receiver
with different cursor locations. For proceed, the cursor of triple moves one layer to the

14



with(L, L) = L′ L′ ` e −→ e′

L ` with new L() e −→ with new L() e′
(RC-With)

swap(L, Lsw, L) = L′ L′ ` e −→ e′

L ` swap (new L(),Lsw) e −→ swap (new L(),Lsw) e′
(RC-Swap)

L ` el −→ el
′

L ` with el e −→ with el
′ e

(RC-WithArg)

L ` el −→ el
′

L ` swap (el,Lsw) e −→ swap (el
′,Lsw) e

(RC-SwapArg)

L ` with new L() v −→ v
(R-WithVal)

L ` swap (new L(), Lsw) v −→ v
(R-SwapVal)

L ` e0 −→ e0
′

L ` e0.f −→ e0
′.f

(RC-Field)

L ` ei −→ ei
′

L ` e0.m(..,ei,..) −→ e0.m(..,ei
′,..)

(RC-InvkArg)

L ` e0 −→ e0
′

L ` e0.m(e) −→ e0
′.m(e)

(RC-InvkRecv)

L ` ei −→ ei
′

L ` new C(..,ei,..) −→ new C(..,ei
′,..)

(RC-New)

L ` ei −→ ei
′

L ` new C(v)<C′,L′′,L′>.m(..,ei,..) −→ new C(v)<C′,L′,L′>.m(..,ei
′,..)

(RC-InvkAArg1)

L ` ei −→ ei
′

L ` new C(v)<C′,L,L′′,L′>.m(..,ei,..) −→ new C(v)<C′,L,L′,L′>.m(..,ei
′,..)

(RC-InvkAArg2)

Figure 6: ContextFJ<:: Reduction Rules 2.

15



left and, for super, the cursor moves one level up in the direction of class inheritance,
resetting the layers. Thanks to Sanity Condition (8), the superclass D is always found.
If we allowed a layer to add baseless partial methods to Object, we would have to have
special rules, in which there is no substitution for super (and typing rules to disallow
the use of super in such partial methods). Igarashi et al. [27] (as well as the conference
version of this article [29]) have overlooked this subtlety. For superproceed, the cursor
moves one level up in the direction of layer inheritance (generating a quadruple from
a triple in R-InvkP). For example, we show how cursors of a triple and a quadruple
work using example in Section 2.6. Let e be new C().m(). Then, the derivation of
L1; L2; L3 ` e −→ e′ will take the form:

mbody(m, C, (L1;L2;L3), (L1;L2;L3)) = •.e4 in C, (L1;L2;L3)
L1; L2; L3 ` new C<C,(L1;L2;L3),(L1;L2;L3)>().m() −→ e′

R-InvkP

L1; L2; L3 ` new C().m() −→ e′
R-Invk

where e′ is
new C<C,(L1;L2;L3),(L1;L2;L3)>() /this
new C<D,(L1;L2;L3),(L1;L2;L3)>() /super
new C<C,(L2;L3),(L1;L2;L3)>().m /proceed
new C<C,L4,(L1;L2;L3),(L1;L2;L3)>().m/superproceed

 e4.

Now, we go back to Fig. 6. The rules RC-With and RC-Swap express layer activa-
tion and swapping, respectively. The auxiliary functions with(L, L) and swap(L, Lsw, L)
for context manipulation are defined by:

with(L, L) = (L \ {L}); L swap(L, Lsw, L) = (L \ {L′ | L′ /* Lsw}); L

The function with removes L (if exists) from layer sequence L and adds L to the end of
L and swap removes all sublayers of Lsw from L, and adds L to the end of L.3 The type
system checks that Lsw is a swappable layer. Based on the above, the rule RC-With
means that with (new L()) e executes e with L activated (as the first layer). The rule
RC-Swap is similar; it means that swap (new L(), Lsw) e executes by deactivating
all sublayers of Lsw and activating layer L. For example, we can derive:

...
L1; L2; L3 ` new C().m() −→ e′

R-Invk

L1; L2 ` with new L3() e −→ e′
R-With

L1 ` with new L2() (with new L3() e) −→ e′
R-With

• ` with new L1() (with new L2() (with new L3() e)) −→ e′
R-With

The rules RC-WithArg and RC-SwapArg are for reduction of expression el that
is expected to become a layer instance. Rules RC-WithVal and RC-SwapVal are for
final reduction steps of with and swap blocks, respectively, that pass the value v as it
is. Other rules for congruence are same as those of ContextFJ: ContextFJ<: reduction
is call by value but the order of reduction of subexpressions is unspecified.

3The symbol \ is usually used to remove entities from a set, but we informally use it for a sequence
here.
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3.3. Type System
As usual, the role of a type system is to ensure the absence of a certain class of run-

time errors. Here, they are “field-not-found” and “method-not-found” errors, including
the failure of proceed, superproceed or super calls.

As discussed in the last section, the type system takes information on activated layers
at every program point into account. We approximate such information by a set Λ of layer
names, which mean that, for any layer in Λ, an instance of one of its sublayers has to be
activated at run time. This set gives underapproximation of activated layers; other layers
might be activated. Activated layers are approximated by sets rather than sequences
because the type system is mainly concerned about access to fields and methods and the
order of activated layers does not influence which fields and methods are accessible.

In our type system, a type judgment for an expression is of the form L; Λ; Γ ` e : T,
where Γ is a type environment, which records types of variables, and L stands for where
e appears, namely, a method in a class (denoted by C.m) or a partial method in a layer
(denoted by L.C.m). For example, the proceed call in the body of the partial method
People.sayWeather() of layer Thunder is typed as follows:

Thunder.People.sayWeather; {Weather, Thunder}; this : People ` proceed() : Text

The layer name set {Weather, Thunder} comes from the fact that Thunder requires
Weather. Thunder is also included because Thunder (or one of its sublayers) is obviously
activated when a partial method defined in this very layer is executed.

We start with the definitions of two kinds of layer subtyping discussed in the last
section and proceed to functions to look up method types and typing rules.

Subtyping. We define subtyping C <: D for class types, weak subtyping L1 <:w L2 and
normal subtyping L1 <: L2 for layer types by the rules in Fig. 7. Class subtyping C <: D
is defined as the reflexive and transitive closure of /, just as FJ. Weak layer subtyping
is also the reflexive and transitive closure of /. We extend it to the relation Λ1 <:w Λ2
between layer name sets by LSS-Intro: Λ1 <:w Λ2 if and only if for every element in Λ2,
there must exist a sublayer of it in Λ1. It is used to check activated layers Λ1 satisfy the
requirement Λ2 given by a requires clause in typechecking a layer activation. Normal
subtyping is almost the reflexive and transitive closure of / but there is one additional
condition: for L1 to be a normal subtype of L2, the layers they require must be the
same (LS-Extends). Obviously, if L1 <: L2, then L1 <:w L2 (but not vice versa).

Method type lookup. Similarly to pmbody and mbody, we define two auxiliary functions
pmtype and mtype to look up the signature T→T0 (consisting of argument type T and
a return type T0) of a (partial) method. pmtype(m, C, L) returns the signature of C.m in
L (or one of its superlayers). mtype(m, C, Λ1, Λ2) returns the type of m in C under the
assumption that Λ1 is activated. The other layer set Λ2 (⊇ Λ1) is used when the lookup
goes on to a superclass. If Λ1 and Λ2 are the same, which is mostly the case, we write
mtype(m, C, Λ1).

These rules by themselves do not define mtype as a function, because different layers
may contain partial methods of the same name with different signatures. So, precisely
speaking, it should rather be understood as a relation; in a well-typed program, it will
behave as a function, though.
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class subtyping <:

C <: C
(CL-Refl)

C <: D D <: E
C <: E

(CL-Trans)

class C / D {...}
C <: D

(CL-Extends)

normal layer subtyping <:

L <: L
(LS-Refl)

L1 <: L2 L2 <: L3

L1 <: L3
(LS-Trans)

L / Base L req ∅
L <: Base

(LS-Base)

L1 / L2 L1 req Λ
L2 req Λ
L1 <: L2

(LS-Extends)

weak layer subtyping <:w

L <:w L
(LSw-Refl)

L1 <:w L2 L2 <:w L3

L1 <:w L3
(LSw-Trans)

L1 / L2

L1 <:w L2
(LSw-Extends)

layer set subtyping

∀L0 ∈ Λ0.∃L1 ∈ Λ1 s.t. L1 <:w L0

Λ1 <:w Λ0
(LSS-Intro)

Figure 7: ContextFJ<:: Subtyping Relations.

Expression Typing. As mentioned already, the type judgment for expressions is of the
form L; Λ; Γ ` e : T, read “e is given type T under context Γ, location L and layer
set Λ”. In addition to C.m and L.C.m, L can be •, which means the top-level (i.e.,
under execution). Typing rules are given in Fig. 9. We defer typing rules for run-time
expressions new C(v)<D,L′,L>.m(e) and new C(v)<D,L,L′,L>.m(e) to the next section
and focus on expressions that appear class and layer definitions.

Rules T-Var, T-Field are easy. T-New and T-NewL are for instance of classes
and instance of layers, respectively. The rule T-Invk is straightforward: the method
signature T→T0 is retrieved from the receiver type C0 and Λ; the types of the actual
arguments must be subtypes of T; and the whole expression is given the method return
type T0. The rule T-With checks, by Λ <:w Λ′, that the layers required by L—the type
of the layer to be activated—are already activated and that the body e0 is well typed
under the assumption that L is additionally activated. T-Swap is similar; the set Λrm

stands for the set of layers after deactivation and must be a weak subtype of the required
set Λ′. The last four rules are for super, proceed, and superproceed calls and so they
are similar to T-Invk. Differences are in how the method signature is obtained. In the
rules T-SuperB and T-SuperP for a super call in a method defined in a class and in a
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pmtype(m, C, L) = T→T0

LT (L)(C.m) = T0 C.m(T x){ return e; }
pmtype(m, C, L) = T→T0

(PMT-Layer)

LT (L)(C.m) undefined L / L′ pmtype(m, C, L′) = T→T0

pmtype(m, C, L) = T→T0
(PMT-Super)

mtype(m, C, Λ1, Λ2) = T→T0

class C / D {... T0 m(T x){ return e; } ...}
mtype(m, C, Λ1, Λ2) = T→T0

(MT-Class)

∃L ∈ Λ1.pmtype(m, C, L) = T→T0

mtype(m, C, Λ1, Λ2) = T→T0
(MT-PMethod)

class C / D {... M } m < M
∀L ∈ Λ1.pmtype(m, C, L) undefined mtype(m, D, Λ2, Λ2) = T→T0

mtype(m, C, Λ1, Λ2) = T→T0
(MT-Super)

Figure 8: ContextFJ<:: Method Type Lookup functions.

partial method, respectively, the superclass E is given to mtype. Layer names are taken
from the requires clause instead of Λ—corresponding to the fact that the method to
be invoked is not affected by with or swap surrounding super (a class cannot require
any layer, hence the empty set). In the rule T-Proceed for a proceed call, the current
class name C is used. Similarly to T-SuperP, layer names are taken from the require
clause. The last argument to mtype is Λ ∪ {L} because a proceed call can proceed to a
partial method D.m (where D is a superclass of C) defined in the same layer L. In the rule
T-SuperProceed, pmtype is used instead of mtype.

In Igarashi et al. [27], in which a type system for ContextFJ is developed, another
layer activation construct called ensure is adopted. The difference from with is that,
if an already activated layer is to be activated, ensure does not change the activated
layer sequence, whereas with will pull that layer to the head of the sequence so that
partial methods in it are invoked first. For example, activating layers L1, L2, L1 in this
order results in L1;L2 with ensure but in L2;L1 with the with statement. Igarashi et
al. argue that the rearrangement of layers by with destroys the layer ordering in which
interlayer dependency is respected. For example, if L2 requires L1, then L2;L1 violates
the require clause in the sense that the layers that L2 requires do not precede L2 in the
sequence. So, for simplicity, Igarashi et al. considered only ensure, which does not have
this problem.

Our discovery is that, in fact, this anomaly caused by with is not really a problem for
type soundness and essentially the same typing rule works—Our typing rule T-With for
with is indeed very similar to that for ensure in ContextFJ; the only difference is the use
of ⊆ in the place of weak subtyping <:w (ContextFJ does not have layer subtyping). The
reason why a layer sequence like L2;L1 is not problematic can be explained as follows.
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L; Λ; Γ ` e : T

(Γ = x:T)
L; Λ; Γ ` xi : Ti

(T-Var)

L; Λ; Γ ` e0 : C0 fields(C0) = T f
L; Λ; Γ ` e0.fi : Ti

(T-Field)

L; Λ; Γ ` e0 : C0 mtype(m, C0, Λ) = T → T0 L; Λ; Γ ` e : S S <: T
L; Λ; Γ ` e0.m(e) : T0

(T-Invk)

fields(C0) = T f L; Λ; Γ ` e : S S <: T
L; Λ; Γ ` new C0(e) : C0

(T-New)

L; Λ; Γ ` new L0() : L0
(T-NewL)

L; Λ; Γ ` el : L L req Λ′ Λ <:w Λ′ L; Λ ∪ {L}; Γ ` e0 : T0

L; Λ; Γ ` with el e0 : T0
(T-With)

L; Λ; Γ ` el : L L <:w Lsw Lsw swappable L req Λ′
Λrm = Λ \ {L′ | L′ <:w Lsw} Λrm <:w Λ′ L; Λrm ∪ {L}; Γ ` e0 : T0

L; Λ; Γ ` swap (el,Lsw) e0 : T0
(T-Swap)

class C / E {...} mtype(m′, E, ∅) = T → T0 C.m; Λ; Γ ` e : S S <: T
C.m; Λ; Γ ` super.m′(e) : T0

(T-SuperB)

class C / E {...} L req Λ′ mtype(m′, E, Λ′ ∪ {L}) = T → T0
L.C.m; Λ; Γ ` e : S S <: T

L.C.m; Λ; Γ ` super.m′(e) : T0
(T-SuperP)

L req Λ′ mtype(m, C, Λ′, Λ′ ∪ {L}) = T → T0 L.C.m; Λ; Γ ` e : S S <: T
L.C.m; Λ; Γ ` proceed(e) : T0

(T-Proceed)

L / L′ pmtype(m, C, L′) = T → T0 L.C.m; Λ; Γ ` e : S S <: T
L.C.m; Λ; Γ ` superproceed(e) : T0

(T-SuperProceed)

Figure 9: ContextFJ<:: Expression typing.
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M ok in C

C.m; ∅; x : T, this : C ` e0 : S0 S0 <: T0

T0 m(T x) { return e0; } ok in C
(T-Method)

PM ok in L

L req Λ L.C.m; Λ ∪ {L}; x : T, this : C ` e0 : S0 S0 <: T0

T0 C.m(T x) { return e0; } ok in L
(T-PMethod)

CL ok

K = C(S g, T f){ super(g); this.f=f; }
fields(D) = S g M ok in C

class C / D { T f; K M } ok
(T-Class)

LA ok

L is not sublayer of any swappable layer
L′ req Λ′ {L} <:w Λ′ PM ok in L

[swappable] layer L req L / L′ { PM } ok
(T-Layer)

L /+ Lsw Lsw swappable
L′ req Λ′ {L} = Λ′

PM ok in L ∀C.m ∈ {PM}. pmtype(m, C, Lsw) defined
¬∃L2 ∈ dom(LT ).L2 req L

layer L req L / L′ { PM } ok
(T-LayerSW)

Figure 10: ContextFJ<:: Method/Class/Layer typing.

Actually, problematic would be a partial method defined in L2 calling another (partial)
method, say C.m, that exists only in L1—that is, one that is undefined in a base class—
via proceed.4 Such a dangling partial method cannot be executed, however: C.m in
L1 cannot contain proceed, which leads to execution of the dangling partial method,
because L1 is activated first, meaning that L1 does not require any other layer, but it
is assumed here that m is not defined in base class C.

Typing for Methods, Partial Methods, Classes, Layers, and Programs. Typing rules for
(partial) methods, layers, and classes and are given in Fig. 10. The rule T-Method is
standard. Readers familiar with FJ may notice that a condition for valid overriding is
missing; it is put in elsewhere–see below. The rule T-PMethod for a partial method
means that the method body e0 is typed under the layer set required by this layer. The
rule T-Layer is for layers that are not sublayers of any swappable layer and demands
that the requires clause of the layer be covariant and all partial methods are well formed.
The rule T-LayerSW is for sublayers of swappable layers. It demands, in addition to

4Invoking m via this or super will find m in L1.
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Valid overriding noconflict(L1, L2), overrideh(L, C), overridev(C)

∀m, C, T, T0, S, S0. if LT (L1)(C.m) = T0 m(T x){...}
and LT (L2)(C.m) = S0 m(S y){...}, then T, T0 = S, S0

noconflict(L1, L2)

∀m, T, T0, S, S0, x. if LT (L)(C.m) = S0 m(S x){...}
and mtype(m, C, ∅, dom(LT )) = T→T0, then T, T0 = S, S0

overrideh(L, C)

∀m, D, T, T0, S, S0. if class C / D {... S0 m(S x){...}...}
and mtype(m, D, dom(LT ), dom(LT )) = T→T0,

then T = S and S0 <: T0

overridev(C)

` (CT ,LT ) ok ` (CT ,LT , e) : T

∀C ∈ dom(CT ).CT (C) ok ∀L ∈ dom(LT ).LT (L) ok
∀L1, L2 ∈ dom(LT ).noconflict(L1, L2)

∀C ∈ dom(CT ).L ∈ dom(LT ).overrideh(L, C) ∀C ∈ dom(CT ).overridev(C)
` (CT ,LT ) ok

(T-Table)

` (CT ,LT ) ok •; ∅; • ` e : T
` (CT ,LT , e) : T

(T-Prog)

Figure 11: ContextFJ<:: Program typing.

the conditions described in T-Layer, that the requires clause of this layer be the same
as those of its parent swappable layer, that no partial method be newly introduced,
and that this layer be not required by other layers. The last condition requires a global
program analysis.

It is worth elaborating the rule T-LayerSW in more detail. First, if the condition
{L} = Λ′ were {L} <:w Λ′ (as in T-Layer), the type system would be unsound. A
counterexample is below:
class C {}
swappable layer L0 { int C.m() { return 0; } }
layer L1 extends L0 {}
layer L2 extends L0 requires L { int C.m() { return proceed (); } }
layer L requires L0 { int C.m() { return proceed (); } }

Layer L2 additionally requires L, which requires L0, a swappable superclass of L2. The
condition {L} <:w Λ′ would be trivially satisfied for L2 because the requires clause of L0
is empty. The partial methods in L2 and L are well formed because L and L0, respectively,
provide definitions to proceed. Under these classes and layers, the following expression
with (new L1())
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with (new L()) // fulfills " requires L0"
swap(L0 , new L2()) // fulfills " requires L"

new C().m()

is well typed, because L1, which is a subclass of L0, is activated before activating L, and
L is activated before activating L2. However, the swap expression executed under L1; L
would get stuck as follows:

L1; L ` swap(L0, new L2()) new C().m()
−→ swap(L0, new L2()) new C<C,L,(L;L2)>().m()
−→ swap(L0, new L2()) new C<C, • ,(L;L2)>().m()
6−→

The method invocation would take place under L; L2, both of which have C.m but the
second proceed call goes nowhere.

Second, if a subclass of a swappable layer were allowed to define a new method (which
is not defined in the swappable), then the type system would be unsound, too. Consider
the following classes and layers.
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class C {}
class D extends C {}

swappable layer L0 {}
layer L1 extends L0 {}
layer L2 extends L0 {

int C.m() { return this.m(); }
int D.m() { return swap(L, new L2()) super .m(); }

}

Layer L2 defines new partial methods C.m and D.m. They are well formed: in particular,
super.m() is well typed because L2 itself provides C.m. The following expression
with (new L2()) new D().m()

is well typed, since D.m invoked with L2 activated. However, reduction of new D().m()
under L2 would get stuck:

L2 ` new D().m()
−→ swap(L, new L1()) new D<C,L2,L2>().m()
−→ swap(L, new L1()) new D().m()
6−→

Since super calls are not affected by swap, super.m() in D.m succeeds but, by the time
this.m() is executed, L2 will be swapped out.

Fig. 11 is for program typing; a program is well typed if all classes and layers in CT
and LT , respectively, are well formed and the main expression e is typed (at the top-level
•).

The most involved is the rule to check valid method overriding used in T-Table.
The predicate noconflict means that for two partial methods of the same (qualified)
name must have the same signature. The predicate overrideh means that, for any partial
method, the overridden method (base method in C or partial methods for C’s superclass)
must have the same signature. The predicate overridev means that a base method can
override a (partial) method in its superclass (or layers modifying it) with a covariant
return type. Note that, unlike Java, checking valid method overriding requires a whole
program because a layer may add a new method to a base class, one of whose subclass
may accidentally define a method of the same name without knowing of that layer.

4. Type Soundness

In this section, we prove type soundness of ContextFJ<: via subject reduction and
progress [43]. Strictly speaking, we should present typing rules for run-time expressions
first before stating these properties but, for ease of understanding, we will reverse the
order and start with the statements of the properties.

Since we model the execution of a main method starting with no layers activated, we
are mainly interested in the case where L is • and the layer sequence is empty. However,
we have to strengthen the statements of these properties so that the layer sequence can
be nonempty. We introduce the notion of well-formed layer sets for this purpose.

We define the relation {L}wf , read “layer set {L} is well formed,” by the rules in
Fig. 12. Intuitively, a set of layers is well-formed if one can obtain the layers by activating
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∅wf
(Wf-Empty)

Λwf La req Λ′ Λ <:w Λ′

Λ ∪ {La}wf
(Wf-With)

Λwf Lsw swappable L <:w Lsw L req Λ′
Λrm = Λ \ {L′ | L′ <:w Lsw} Λrm <:w Λ′

Λrm ∪ {L}wf
(Wf-Swap)

Figure 12: ContextFJ<:: Layer set well-formedness.

them one by one so that requires clauses are satisfied. We ignore the order of activation
because the with statement can change the order of activated layers by activating an
already activated layer again.

Aside from layer well-formedness, the statements of subject reduction, progress, and
type soundness are standard:

Theorem 1 (Subject Reduction). Suppose ` (CT,LT) ok. If •; {L}; Γ ` e : T and
{L} wf and L ` e −→ e′, then •; {L}; Γ ` e′ : S for some S such that S <: T.

Theorem 2 (Progress). Suppose ` (CT,LT) ok. If •; {L}; • ` e : T and {L} wf, then
e is a value or L ` e −→ e′ for some e′.

Theorem 3 (Type Soundness). If ` (CT,LT, e) : T and e reduces to a normal form
under the empty set of layers, then the normal form is new S(v) for some v and S such
that S <: T.

4.1. Typing Rules for Run-time Expressions
To prove the theorems above, we have to give typing rules for run-time expressions

of the forms new C(v)<D,L′,L>.m(e) and new C(v)<D,L,L′,L>.m(e), which are not
supposed to appear in a class/layer table. The typing rules with the rules for a few
auxiliary judgments are given in Fig. 13:

In the rule T-InvkA for new C0(v)<D0,L′,L>.m(e), the premises except for C0.m `
<D0,L′,L> ok and Λ <:sw {L}—they are explained in detail below—are similar to
T-Invk. The method signature is obtained by using the current cursor <D0,L′,L>. The
rule T-InvkAL for a method invoked by superproceed is similar. One difference is
that the method signature is obtained by using pmtype; the receiver is derived from a
superproceed call that originated from a superlayer of L0, hence L0 <:sw L1.

The condition Λ <:sw {L} relates the layer sequence L in the cursor and Λ, which
intuitively represents the set of layers activated at this program point. In many cases,
Λ = {L} holds but if super and proceed calls are surrounded by with or swap, they
can be different. The relation <:sw is similar to <:w but the additional clauses ∃L2 ∈
dom(LT ).L2 swappable and L0 <:w L2 and L1 <:w L2 take into account the possibility
that a layer in Λ may be activated by swapping layers in {L} out.

25



•; Λ; Γ ` new C0(v) : C0 C0.m ` <D0,L′,L> ok Λ <:sw {L}
mtype(m, D0, {L′}, {L}) = T′→T0 •; Λ; Γ ` e : S S <: T′

•; Λ; Γ ` new C0(v)<D0,L′,L>.m(e) : T0
(T-InvkA)

•; Λ; Γ ` new C0(v) : C0 C0.m ` <D0,(L′′;L0),L> ok Λ <:sw {L}
L0 <:w L1 pmtype(m, D0, L1) = T′→T0 •; Λ; Γ ` e : S S <: T′

•; Λ; Γ ` new C0(v)<D0,L1,(L′′;L0),L>.m(e) : T0
(T-InvkAL)

∀L0 ∈ Λ0.∃L1 ∈ Λ1.( L1 <:w L0 or
∃L2 ∈ dom(LT ).L2 swappable and L0 <:w L2 and L1 <:w L2)

Λ1 <:sw Λ0
(LSSW-Intro)

C <: D {L2}wf ndp(m, D, L1, L2)
C.m ` <D,L1,L2> ok

(Wf-Cursor)

class C {.. C0 m(..){..} ..}
ndp(m, C, L1, (L1;L2))

(NDP-Class)

∃L0 ∈ L1.proceed < pmbody(m, C, L0)
ndp(m, C, L1, (L1;L2))

(NDP-Layer)

C / D ndp(m, D, (L1;L2), (L1;L2))
ndp(m, C, L1, (L1;L2))

(NDP-Super)

Figure 13: ContextFJ<:: Runtime expression typing.
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The judgment C.m ` <D,L1,L2> ok, which means that the cursor is well formed
with respect to method m in class C, is defined by Wf-Cursor. It requires that D
to be a superclass of C and L2 to be well formed. The last condition ndp(m, D0, L′, L)
(standing for “non-dangling proceed”) intuitively means “a chain of proceed calls from
the given cursor location <D0,L′,L> eventually reaches a (partial) method that does not
call proceed” and is defined by the rules NDP-Class, NDP-Layer and NDP-Super,
which are straightforward. (Here, “proceed < pmbody(m, C, L0)” means that there is
no proceed calls in the method body obtained by pmbody(m, C, L0).) This predicate
represents an invariant condition throughout a chain of proceed calls and ensures there
will not be a dangling proceed call.

4.2. Subject Reduction
The proof of subject reduction is done by induction on L ` e −→ e′. Similarly to FJ,

one main lemma is the Substitution Lemma, which is used in the case where e is a method
invocation and states substitution of values of types T for variables of types S, where S
are subtypes of T, in a well typed term preserves typing. Another important lemma here
is Lemma 5, which states substitution for proceed, super, and superproceed preserves
typing.

We state several main lemmas to prove the theorems above; their proofs as well
as other lemmas and proofs are found in Appendix. We fix CT and LT and assume
(CT ,LT ) ok in the rest of this section.

As usual, adding an unused variable to the type environment preserves typing (Weak-
ening). Narrowing usually refers to the property that replacing the type of a variable in
the type environment with its subtype preserves typing; here, we need narrowing with
respect to (extended) layer set subtyping <:sw. The next lemma states that a well typed
value remains well typed regardless of its typing context (L; Λ; Γ).

Lemma 1 (Weakening). If L; Λ; Γ ` e : T, then L; Λ; Γ, x : S ` e : T.

Lemma 2 (Layer Set Narrowing). If L; Λ; Γ ` e : T and Λ′ <:sw Λ, then L; Λ′; Γ `
e : T.

Lemma 3 (Strengthening for values). If L; Λ; Γ ` v : T then, L′; Λ′; Γ′ ` v : T.

The statement of the Substitution Lemma is straightforward.

Lemma 4 (Substitution). If L; Λ; Γ, x : T ` e : T and L; Λ; Γ ` v : S and S <: T, then
L; Λ; Γ ` [v/x]e : S and S <: T for some S.

The next lemma states that substitution for proceed, super, and superproceed
preserves typing. The first item is for an invocation of a partial method, which may
contain proceed and superproceed calls as well as super calls; the second is for a
base method, which may contain only super calls. The conditions, which look rather
complicated, correspond to the premises of T-InvkA and T-InvkAL.

Lemma 5 (Substitution for super, proceed and superproceed).
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1. If •; Λ; Γ ` new C0(v) : C0 and L.C.m; Λ; Γ ` e : T and C0.m ` <C,(L′;L′′),L> ok
and C / D and L′′ <:w L / L′ and Λ <:sw {L} and proceed ∈ e =⇒
ndp(m, C, L′, L), then •; Λ; Γ ` Se : T where

S =

 new C0(v)<C,L′,L>.m /proceed,
new C0(v)<D,L,L> /super,
new C0(v)<C,L′,(L′;L′′),L>.m/superproceed

 .

2. If •; Λ; Γ ` new C0(v) : C0 and C.m; Λ; Γ ` e : T and C0.m ` <C,L′,L> ok and
C / D and Λ <:sw {L}, then •; Λ; Γ ` [new C0(v)<D,L,L>/super]e : T.

The next two lemmas state method bodies obtained by pmbody and mbody are well
typed according to the type information obtained by pmtype and mtype, respectively.

Lemma 6 (Inversion for partial method body). If pmbody(m, C, L) = x.e0 in L′

and L req Λ and pmtype(m, C, L) = T → T0, then L.C.m; Λ∪{L}; x : T, this : C ` e0 : S0
for some S0 <:w T0.

Lemma 7 (Inversion for method body). Suppose {L}wf and mbody(m, C, L′, L) =
x.e0 in C′, L′′ and mtype(m, C, {L′}, {L}) = T→T0 and ndp(m, C, L′, L).

1. If L′′ = L′′′;L0, then L0 req Λ and L0.C′.m; Λ ∪ {L0}; x : T, this : C′ ` e0 : U0 and
C <: C′ and U0 <: T0 and ndp(m, C′, L′′, L) for some Λ and U0.

2. If L′′ = •, then C′.m; ∅; x : T, this : C′ ` e0 : U0 and C <: C′ and U0 <: T0 and
ndp(m, C′, •, L) for some U0.

We also need additional lemmas derived from runtime conditions. Layer-set well-
formedness Λwf provides two important properties. The first states that a well formed
layer set is closed under the requires clause and the second that, if method m is found
in C (under the assumption that Λ activated) but not in its direct superclass D, then at
least one of those methods does not call proceed. This lemma is used to prove the next
lemma (Lemma 10), which derives ndp for an initial cursor of the form <C,L,L>.

Lemma 8. ] If Λwf, then ∀L ∈ Λ,∀L′ s.t. L req L′,∃L′′ ∈ Λ.L′′ <:w L′.

Lemma 9. If Λwf and mtype(m, C, Λ) defined and mtype(m, D, Λ) undefined and C / D,
then (∃L′ ∈ Λ.proceed < pmbody(m, C, L′)) or mtype(m, C, ∅, Λ) defined.

Lemma 10. If {L}wf and mtype(m, C, {L}, {L}) = T→T0, then ndp(m, C, L, L).

As stated below, the predicate ndp ensures the existence of a method:

Lemma 11. If ndp(m, C, L′, L) holds for some m, C, L′ and L, then mtype(m, C, {L′}, {L}) =
T→T0 for some T and T0.

28



4.3. Progress
To prove the Progress Theorem, we need the following two lemmas, which show the

existence of a method body from well definedness of pmtype and mtype.

Lemma 12. If pmtype(m, C, L) = T→T0, then there exist x and e0 and L′ (, Base) such
that pmbody(m, C, L) = x.e0 in L′ and the lengths of x and T are equal and L <:w L′.

Lemma 13. If mtype(m, C, {L′}, {L}) = T→T0 and L′ is a prefix of L and {L}wf, then
there exist x and e0 and L′′ and C′ (, Object) such that mbody(m, C, L, L′) = x.e0 in C′, L′′

and the lengths of x and T are equal and, if L′′ is not empty, the last layer name of L′′ is
not Base.

5. Related Work

Foundation of Context-Oriented Programming. Our work is a direct descendant of Igarashi,
Hirschfeld, and Masuhara [26, 27], where a tiny COP language ContextFJ is developed
and its type system is proved to be sound. ContextFJ is not equipped with layer in-
heritance, layer subtyping, or first-class layers but allows baseless partial methods to
be declared in the second type system [27], in which requires declarations are first
introduced into COP.

Our swappable layers resemble atomic layers in ContextL [16], in which mutual ex-
clusion between layers can be specified and activation of an atomic layer automatically
deactivates another layer in conflict. Our syntax is a little verbose in that the swappable
layer name such as Weather has to be explicit because a layer may have more than one
swappable layer in its superlayers. It may be a reasonable idea to disallow a sublayer of
a swappable layer to be swappable for the sake of syntactic conciseness.

Similarly to our swappable layers for layer deactivation, Kamina et al. [32, 36] also
show another approach to safe layer deactivation mechanism and formalized its seman-
tics and type safety with an extension of ContextFJ. Their approach is also based on
requires clauses. The key idea is to modify the method lookup so that it searches not
only activated layers but all layers that are required by those activated layers.

Besides block-style layer activation mechanisms as in JCop, there are other mech-
anisms such as imperative activation of Subjective-C [23], event-based activation of
EventCJ [33], and implicit activation of Flute [5]. The original JCop also supports im-
plicit layer activation [4], but currently we omit it from our formalization. ServalCJ [34]
provides a generalized layer activation mechanism that can treat the layer activation
mechanisms above uniformly. Although some of them [1, 35] study formal semantics,
they do not discuss type soundness of languages with baseless partial methods; e.g.,
ServalCJ does not support baseless partial methods.

Clarke and Sergey [14] independently formalize a core language (also called Con-
textFJ) for context-oriented programming and develop such a type system. In their
type system, each partial/base method (rather than a layer) is equipped with depen-
dency information, a set of the signatures of the methods that it may call. Dependency
information is very fine-grained but their calculus does not support class nor layer inher-
itances.

The JCop compiler transforms a JCop program into a plain Java code which contains
auxiliary classes and methods, constructing a kind of double dispatch. Appeltauer et
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al. [2] discusses two implementation schemes of JCop’s method dispatch mechanism: one
that rely on the translation to plain Java code and the other that rely on invokedynamic
of Java 7.

There are several studies to enrich description of relationships between contexts.
Subjective-C [23], an extension of Objective-C with COP, adopts imperative context ac-
tivation with imperative context relationship description, which supports various kinds of
declarations of dependency between layers, such as implication, requirement, and exclu-
sion. Context Petri Nets [11, 12] is a context-oriented extension of Petri Nets, and helps
formalization of description of context dependencies in Subjective-C. MLCoDa [19, 20]
provides two kinds of components; one for declarative description of context dependen-
cies and the other for functional computation. It also provides a type and effect system
and a loading-time verification mechanism that detects failures in adaptation.

Dynamic Software Product Line. Software product line (SPL) is a paradigm of industrial
software development that enables to create various variations of software by mostly
reusing common modules. Programming languages for SPL, such as Feature-Oriented
Programming [39, 6] and Delta-Oriented Programming (DOP) [41], have been studied.
They provide modules that refine existing classes and combine them according to a given
configuration at compile time or build time.

Recent studies [24, 40] reveal that SPL also needs dynamic reconfiguration of soft-
ware, and so dynamic DOP [18, 17] is proposed. Dynamic DOP provides mainly three
kinds of modules; a delta module for describing refinement of classes (similar to a layer
of COP), a product-line declaration for describing valid configurations, and a dynamic
reconfiguration graph for replacing heap objects dynamically. Unlike COP, the composi-
tion order of delta modules is determined uniquely by a given product line declaration;
this property is called unambiguity. A type system of dynamic DOP also ensures that
all valid reconfigurations lead to type-safe products.

Type systems for advanced composition mechanisms of OOP. There are many type sys-
tems proposed for advanced composition mechanisms such as mixins [9, 22], traits [38, 42],
open classes (a.k.a. inter-type declarations) [15], and revisers [13]. A common idea is to let
programmers declare dependency between modules as required interfaces; our requires
declarations basically follow it. In most work, however, composition is done at compile
or link time unlike COP languages. We think that it is interesting that the same idea
works even for dynamic composition found in COP languages.

Kamina and Tamai [37] propose McJava, in which mixin-based composition can be
deferred to object instantiation. In fact, new expressions can specify a class and mixins
to instantiate an object. So, the type of an object also consists of a class name and a
sequence of mixin names. Whereas composition is per-instance basis in McJava, it is
global in ContextFJ<:. However, in McJava, composition cannot be changed once an
object is instantiated.

Drossopoulou et al. [21] proposed FickleII, a class-based object-oriented language with
dynamic reclassification, which allows an object to change its class at run time. Their
idea of root classes, which serve as interface, is similar to our swappable layers; their
restriction that state classes cannot be used as type for fields is similar to ours that a
sublayer of a swappable cannot be required by any other layer.
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Bettini et al. [8] developed a type system for dynamic trait replacement, which allows
methods in an object to be exchanged at run time. They introduce the notion of replace-
able to describe the signatures of replaceable methods; a replaceable appears as part of
the type of an object and the trait to replace methods of the object has to provide the
methods in that replaceable. The roles of replaceables and traits are somewhat similar
to those of swappable layers, which provide interfaces common to swapped layers, and
sublayers of swappable.

Several studies for dynamism of objects in distributed settings exist. MoMi [7]
presents an approach to having a process communicate mobile code to other processes
in a safe manner; well-typed code sent from external processes can be merged into local
code without recompilation. Dynamic class [31] is a mechanism to modify classes and
a class hierarchy in a type-safe way, where objects are distributed and long-lived, and
so a number of upgrade operations are performed; a series of upgrade operations is used
to type-check the next upgrade operation. Unlike these two approaches, COP realizes
its dynamism with its method dispatching mechanism. It is quite interesting to consider
how COP mechanism works safely in the above distributed settings.

Although not a type system, Burton and Sekerinski [10] studies interference problem
of dynamic mixin composition, in which some order of mixin composition breaks required
specification of class methods. They develop a refinement calculus in order to formalize
dynamic mixin composition.

6. Concluding Remarks

We have developed a formal type system for a small COP language with layer in-
heritance, layer subtyping, layer swapping, and first-class layers, and shown that the
type system is sound with respect to the operational semantics. As in previous work,
requires declarations are important to guarantee safety in the presence of baseless par-
tial methods. Subtyping for first-class layers is subtle because there are two kinds of
substitutability. We have introduced weak subtyping for checking whether a requires
clause is satisfied and normal subtyping for usual substitutability.

In JCop, a layer definition can contain field and (ordinary) method declarations so
that a layer instance can act just like an ordinary object. Typechecking accesses to these
members of layer instances is the same as ordinary objects. If we model fields of layer
instances, we will have to modify the reduction relation so that the sequence of activated
layers consists of layer instances (with their field values) rather than layer names.

JCop also provides special variable thislayer, which can be used in partial methods
and is similar to this of classes. It represents the layer instance in which the invoked
partial method is found at run time and can be used to access fields and methods of
that layer instance. In operational semantics, the layer instance would be substituted for
thislayer, similarly to this. Typing thislayer is also similar to this in the sense that
it is given the name of the layer in which it appears but thislayer cannot be used for
layer activation because, at run time, it may be bound to an instance of a weak subtype.

We have not fully investigated the interaction between our type system with other
features in Java, such as concurrency, generics, and lambda, although we expect most of
them are orthogonal.
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A. Proofs

We fix CT and LT and assume (CT ,LT ) ok throughout this section.

Lemma A.1. If pmtype(m, C, L2) = T→T0 and L1 <:w L2, then pmtype(m, C, L1) = T→T0.

Proof. By induction on L′ <:w L, using noconflict(L′, L) in the case where L′ / L. �

Lemma A.2. If mtype(m, C, Λ1, Λ2) = T→T0 and Λ3 <:sw Λ1 and Λ4 <:sw Λ2 and Λ1 ⊆
Λ2 and Λ3 ⊆ Λ4, then mtype(m, C, Λ3, Λ4) = T→T0.

Proof. By induction on the derivation of mtype(m, C, Λ1, Λ2) = T→T0 with case analysis
on the last rule used.
Case MT-Class: class C / D {... T0 m(T x){ return e; } ...}
MT-Class finishes the case.
Case MT-PMethod: ∃L1 ∈ Λ1.pmtype(m, C, L1) = T→T0

By Λ3 <:sw Λ1, there exists L3 ∈ Λ3 such that either (1) L3 <:w L1 or (2) there exists L
such that L swappable and L1, L3 <:w L. In the case (1), Lemma A.1 and MT-PMethod
finish the case. In the case (2), by T-LayerSW and noconflict(L1, L3), it is easy to show
pmtype(m, C, L3) = T→T0. Then, Lemma A.1 and MT-PMethod finish the case.
Case MT-Super: class C / D {... M} m < M

∀L ∈ Λ1.pmtype(m, C, L) undefined mtype(m, D, Λ2, Λ2) = T→T0

If pmtype(m, C, L) is undefined for all L ∈ Λ3, then the induction hypothesis and MT-Super
finish the case. Otherwise, we have pmtype(m, C, L) = S0 m(S x){...} for some L ∈ Λ3.
Then, mtype(m, C, Λ3, Λ4) = S→S0 holds by MT-PMethod and also there exists L′ such
that LT (L′)(C.m) = S0 m(S x){...}.

By the induction hypothesis,mtype(m, D, dom(LT ), dom(LT )) = T→T0 (since dom(LT ) <:w

Λ2). By MT-Super, mtype(m, C, ∅, dom(LT )) = T→T0. Finally, S, S0 = T, T0 follows
from overrideh(L′, C), finishing the case. �

Lemma A.3. If mtype(m, C, Λ1, Λ2) = T→T0 and mtype(m, C, Λ3, Λ4) = T′→T0
′, then T,

T0 = T′, T0
′.

Proof. By induction on the derivation of mtype(m, C, Λ1, Λ2) = T→T0 with case analysis
on the last rule used.
Case MT-Class: class C / D {... T0 m(T x){...} ...}

Easy. Use overrideh(L, C) for L ∈ dom(LT ) if mtype(m, C, Λ3, Λ4) = T′→T0
′ is derived

by MT-PMethod, in which case there exists L′ such that L <:w L′ and LT (L′)(C.m) =
T0
′ m(T′ x) {...}. (Note thatmtype(m, C, Λ3, Λ4) = T′→T0

′ cannot be derived by MT-Super.)

Case MT-PMethod: ∃L1 ∈ Λ1.pmtype(m, C, L1) = T→T0

There exists L1
′ such that L1 <:w L1

′ and LT (L1
′)(C.m) = T0 m(T x) {...}. Further

case analysis on mtype(m, C, Λ3, Λ4) = T′→T0
′.

Subcase MT-Class:
Similar to the above case.
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Subcase MT-PMethod: ∃L2 ∈ Λ3.pmtype(m, C, L2) = T′→T0
′

There exists L2
′ such that L2 <:w L2

′ and LT (L2
′)(C.m) = T0

′ m(T′ x) {...}. Then,
noconflict(L1

′, L2
′) finishes the case.

Subcase MT-Super: class C / D {... M} m < M
∀L ∈ Λ3.pmtype(m, C, L) undefined mtype(m, D, Λ4, Λ4) = T′→T0

′

In this case, mtype(m, C, ∅, dom(LT )) = T′→T0
′ because we can show that

mtype(m, D, Λ4, Λ4) = mtype(m, D, dom(LT ), dom(LT ))
= mtype(m, C, ∅, dom(LT )).

by Lemma A.2 and MT-Super. Then, overrideh(L1
′, C) finishes the case.

Case MT-Super: class C / D {... M} m < M
∀L ∈ Λ1.pmtype(m, C, L) undefined mtype(m, D, Λ2, Λ2) = T→T0

Further case analysis on mtype(m, C, Λ3, Λ4) = T′→T0
′.

Subcase MT-PMethod:
Similar to the subcase MT-Super above.
Subcase MT-Class:
Cannot happen.
Subcase MT-Super:
By the induction hypothesis, mtype(m, D, Λ2, Λ2) = mtype(m, D, Λ4, Λ4). �

Lemma A.4. If fields(C) = T f and D <: C, then fields(D) = T f, S g for some S, g.

Proof. By induction on D <: C. �

Lemma A.5 (Weakening, Lemma 1). If L; Λ; Γ ` e : T, then L; Λ; Γ, x : S ` e : T.

Proof. By straightforward induction on L; Λ; Γ ` e : T. �

Lemma A.6. If mtype(m, C, Λ) = T→T0 and D <: C, then mtype(m, D, Λ) = T→S0 and
S0 <: T0 for some S0.

Proof. By induction on D <: C. We show only the case where D extends C. If
class D / C {... S0 m(S x){ return e; } ...}, then mtype(m, D, Λ) = S→S0 for
some S by MT-Class. By overridev(D), S = T and S0 <: T0. If ∃L ∈ Λ.pmtype(m, D, L) =
S→S0, then we have mtype(m, D, Λ) = S→S0 by MT-PMethod. By overrideh(L, D), we
get S = T and S0 = T0. Otherwise, mtype(m, D, Λ) = T→T0 by MT-Super. �

Lemma A.7 (Narrowing, Lemma 2). If L; Λ; Γ ` e : T and Λ′ <:sw Λ, then L; Λ′; Γ `
e : T.

Proof. By induction on L; Λ; Γ ` e : T. We show only some representative cases.
Case T-Invk: e = e0.m(e) L; Λ; Γ ` e0 : C0

mtype(m, C0, Λ) = D→C L; Λ; Γ ` e : E E <: D

By Lemma A.2, mtype(m, C0, Λ′) = D→C. Then, the induction hypothesis and T-Invk
finish the case.
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Case T-With: e = with el e0 L; Λ; Γ ` el : L L req Λ′′
Λ <:w Λ′′ L; Λ ∪ {L}; Γ ` e0 : T

By LSSW-Intro, we have Λ′ ∪ {L} <:sw Λ ∪ {L}. By the induction hypothesis,
L; Λ′ ∪ {L}; Γ ` e0 : T.

It is easy to show that <:sw is transitive and so Λ′ <:sw Λ′′. By the induction
hypothesis, we also have L; Λ′; Γ ` el : L.

Moreover, in a well-formed program, L req Λ′′ means that Λ′′ does not contain any
sublayer of swappable layers. By these facts and LSS-Intro, we get Λ′ <:w Λ′′. Then,
by T-With, L; Λ′; Γ ` with el e0 : T, finishing the case.
Case T-Swap: e = swap (el,Lsw) e0 L; Λ; Γ ` el : L

Lsw swappable L <:w Lsw L req Λ′′
Λrm = (Λ\{L′ | L′ <:w Lsw}) Λrm <:w Λ′′ L; Λrm ∪ {L}; Γ ` e0 : T

It is easy to show that (Λ′\{L′ | L′ <:w Lsw}) ∪ {L} <:sw Λrm ∪ {L} from Λ′ <:sw Λ.
By the induction hypothesis, L; (Λ′\{L′|L′ <:w Lsw}) ∪ {L}; Γ ` e0 : T.

By LSSW-Intro, we have (Λ′\{L′|L′ <:w Lsw})∪{L} <:sw Λ′′. Moreover, in a well-
formed program, L req Λ′′ means that Λ′′ does not have any sublayer of swappable
layers. By these facts and LSS-Intro, we get (Λ′\{L′|L′ <:w Lsw}) ∪ {L} <:w Λ′′. By
the induction hypothesis, we also have L; Λ′; Γ ` el : L. Then, by T-Swap, L; Λ′; Γ `
swap (el,Lsw) e0 : T, finishing the case. �

Lemma A.8 (Strengthening for values, Lemma 3)). If L; Λ; Γ ` v : T then, L′; Λ′; Γ′ `
v : T.

Proof. By straightforward induction on L; Λ; Γ ` v : T. �

Lemma A.9 (Substitution, Lemma 4). If L; Λ; Γ, x : T ` e : T and L; Λ; Γ ` v : S
and S <: T, then L; Λ; Γ ` [v/x]e : S and S <: T for some S.

Proof. By induction on L; Λ; Γ, x : T ` e : T with case analysis on the last rule used.
We show main cases of T-With and T-Swap.
Case T-With: e = with el e0 L; Λ; Γ, x : T ` el : L L req Λ′

Λ <:w Λ′ L; Λ ∪ {L}; Γ, x : T ` e0 : T

By the induction hypothesis, L; Λ; Γ ` [v/x]el : L0 and L0 <: L for some L0. By induction
on L0 <: L, it is easy to show that L0 req Λ′. Since L0 <: L, we also have L0 <:w L and
so it is easy to show Λ ∪ {L0} <:w Λ ∪ {L}. By the induction hypothesis, L; Λ ∪ {L}; Γ `
[v/x]e0 : S and S <: T for some S. Then, by Lemma A.7, L; Λ∪ {L0}; Γ ` [v/x]e0 : S; and
T-With finish the case.
Case T-Swap: e = swap (el, Lsw) e0 L; Λ; Γ, x : T ` el : L

Lsw swappable L <:w Lsw L req Λ′
Λrm = Λ \ {L′ | L′ <:w Lsw} Λrm <:w Λ′
L; Λrm ∪ {L}; Γ, x : T ` e0 : T

By the induction hypothesis, L; Λ; Γ ` [v/x]el : L0 and L0 <: L for some L0. By
induction on L0 <: L, it is easy to show L0 req Λ′. Since L0 <: L, we have L0 <:w L and
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L0 <:w Lsw and Λrm∪{L0} <:w Λrm∪{L}. By the induction hypothesis, L; Λrm∪{L}; Γ `
[v/x]e0 : S and S <: T for some S. Then, by Lemma A.7, L; Λrm ∪ {L0}; Γ ` [v/x]e0 : S;
and T-With finishes the case. �

Lemma A.10. If L1 <:w L2 and L1 req Λ1 and L2 req Λ2, then Λ1 <:w Λ2.

Proof. By induction on L1 <:w L2. Use T-Layer in the case for LSw-Extends. �

We prove a stronger property than Lemma 8; in the statement below, (<:w; req)
stands for the composition of the two relations <:w and req.

Lemma A.11. If Λwf, then ∀L ∈ Λ,∀L′ s.t. L (<:w; req) L′,∃L′′ ∈ Λ.L′′ <:w L′.

Proof. Induction on the derivation of Λwf .
Case Wf-Empty:
Trivial.
Case Wf-With: Λ = Λ0 ∪ {La} Λ0 wf La req Λ′ Λ0 <:w Λ′

By the induction hypothesis, we have ∀L ∈ Λ0.∀L′ s.t. L (<:w; req) L′.∃L′′ ∈ Λ0.L′′ <:w L′.
By Λ0 <:w Λ′ and Lemma A.10, we have ∀L′ s.t. La (<:w; req) L′.∃L′′ ∈ Λ0.L′′ <:w L′.
So, ∀L ∈ Λ.∀L′ s.t. L (<:w; req) L′.∃L′′ ∈ Λ.L′′ <:w L′.
Case Wf-Swap: Λ = Λrm ∪ {La} Λ0 wf Lsw swappable La <:w Lsw

La req Λa Λrm = Λ0 \ {L′ | L′ <:w Lsw} Λrm <:w Λa

By the induction hypothesis, we have

∀L ∈ Λ0.∀L′ s.t. L (<:w; req) L′.∃L′′ ∈ Λ0.L′′ <:w L′,

and so
∀L ∈ Λrm.∀L′ s.t. L (<:w; req) L′,∃L′′ ∈ Λ0 s.t. L′′ <:w L′.

In fact, we can show that

∀L ∈ Λrm.∀L′ s.t. L (<:w; req) L′,∃L′′ ∈ (Λrm ∪ {La}) s.t. L′′ <:w L′ :

if L′′ ∈ {Lb | Lb <:w Lsw} for given L and L′, then it must be the case that Lsw <:w L′

because L′ is required by some weak supertype of L and so must not be a sublayer of a
swappable and that La <:w L′.

By La req Λa and Λrm <:w Λa, we finally have

∀L ∈ Λ.∀L′ s.t. L (<:w; req) L′,∃L′′ ∈ (Λrm ∪ {La}) s.t. L′′ <:w L′.

�

Lemma A.12 (Lemma 9). If Λwf and mtype(m, C, Λ) defined and mtype(m, D, Λ) undefined
and C / D, then (∃L′ ∈ Λ.proceed < pmbody(m, C, L′)) or mtype(m, C, ∅, Λ) defined.

Proof. We prove by induction on the derivation of wf a stronger property: If Λwf and
mtype(m, C, Λ) defined and mtype(m, D, Λ) undefined and C / D, then (∃L′ ∈ Λ.proceed <
pmbody(m, C, L′) ∧ (∀L′′, L′′′ s.t. L′ <:w L′′ ∧ L′′ swappable ∧ L′′′ <:w L′′.proceed <
pmbody(m, C, L′′′))) or mtype(m, C, ∅, Λ) is defined.

In what follows, we define predicate npr(m, C, Λ) by (∃L′ ∈ Λ.proceed <
pmbody(m, C, L′) ∧ (∀L′′, L′′′ s.t. L′ <:w L′′ ∧ L′′ swappable ∧ L′′′ <:w L′′.proceed <
pmbody(m, C, L′′′))) or mtype(m, C, ∅, Λ) is defined.
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Case Wf-Empty:
Trivial.
Case Wf-With: Λ = Λ0 ∪ {La} Λ0 wf La req Λ′ Λ0 <:w Λ′

If mtype(m, C, Λ0) is defined, by the induction hypothesis, npr(m, C, Λ0) holds. Since
Λ = Λ0 ∪ {La}, npr(m, C, Λ) also holds.

Otherwise, it must be the case that mtype(m, C, Λ0) undefined and
mtype(m, C, {La}) defined. Since Λ <:w Λ0 <:w Λ′ and neither mtype(m, C, Λ0)
nor mtype(m, D, Λ) is defined, mtype(m, C, Λ′, Λ′ ∪ {La}) is undefined. Then,
proceed < pmbody(m, C, La) holds since if the partial method had proceed, it
would contradict the fact that La is well-typed (in particular, mtype(m, C, Λ′, Λ′ ∪ {La})
would not be defined, as opposed to what T-Proceed requires). If La is a sublayer of
swappable layer Lsw, for all Lb <:w Lsw, proceed < pmbody(m, C, Lb) through the same
argument (note that Lb req Λ′). Then, npr(m, C, Λ) holds.
Case Wf-Swap: Λ = Λrm ∪ {La} Λ0 wf Lsw swappable La <:w Lsw

La req Λa Λrm = Λ0 \ {L′ | L′ <:w Lsw} Λrm <:w Λa

It is easy to show Λ <:sw Λ0 and vice versa. By Lemma A.2, mtype(m, C, Λ0) is defined
and mtype(m, D, Λ0) is undefined. By the induction hypothesis, npr(m, C, Λ0), that is,
either (1) mtype(m, C, ∅, Λ0) is defined, or (2) (∃L′ ∈ Λ0.proceed < pmbody(m, C, L′) ∧
(∀L′′, L′′′ s.t. L′ <:w L′′ ∧ L′′ swappable ∧ L′′′ <:w L′′.proceed < pmbody(m, C, L′′′))).

We show npr(m, C, Λ) by case analysis. In the case (1), we have mtype(m, C, ∅, Λ)
defined by Lemma A.2. The case (2) is also easy: if L′ ∈ Λrm, then L′ ∈ Λ; otherwise,
proceed < pmbody(m, C, La) because L′ <:w Lsw and La <:w Lsw and Lsw swappable,
hence npr(m, C, Λ). �

Lemma A.13 (Lemma 10). If {L}wf and mtype(m, C, {L}, {L}) = T→T0, then ndp(m, C, L, L).

Proof. By induction on the length of C <: D <: · · · Object. The case where the length
is zero is trivial.
Case: C / D mtype(m, D, {L}) undefined

By {L}wf and Lemma A.12, we havemtype(m, C, ∅, {L}) is defined or ∃L1 ∈ {L}.proceed <
pmbody(m, C, L1). If mtype(m, C, ∅, {L}) is defined, class C must have the definition of
method m since mtype(m, D, {L}) is undefined, and so NDP-Class finishes the case. In
the other case, NDP-Layer finishes the case.
Case: C / D mtype(m, D, {L}) defined
By the induction hypothesis, ndp(m, D, L, L) holds. Then, NDP-Super finishes the case.

�

Lemma A.14 (Lemma 11). If ndp(m, C, L′, L), then mtype(m, C, {L′}, {L}) = T→T0 for
some T and T0.

Proof. By induction on ndp(m, C, L′, L). �

Lemma A.15. If L.C.m; Λ; Γ ` e : T and L′ <:w L, then L′.C.m; Λ; Γ ` e : T.

Proof. Suppose that L req Λ0 and L′ req Λ1. Since L and L′ are well-formed, Λ1 <:w

Λ0. We proceed by induction on L.C.m; Λ; Γ ` e : T. We show only main cases.
38



Case T-SuperP: e = super.m′(e) class C / D L req Λ0
mtype(m′, D, Λ0 ∪ {L}) = T→T L.C.m; Λ; Γ ` e : S S <: T

Since L′ <:w L and Λ1 <:w Λ0, we have Λ1∪{L′} <:w Λ0∪{L}. Then, by Lemma A.2,
mtype(m′, D, Λ1∪{L′}) = T→T. The induction hypothesis and T-SuperP finish the case.
Case T-Proceed: e = proceed(e) L req Λ0 mtype(m, C, Λ0, Λ0 ∪ {L}) = T→T

L.C.m; Λ; Γ ` e : S S <: T

Since Λ1 <:w Λ0, we have Λ1∪{L′} <:w Λ0∪{L}. Then, by Lemma A.2,mtype(m, C, Λ1, Λ1∪
{L′}) = T→T. The induction hypothesis and T-Proceed finish the case.
Case T-SuperProceed: e = superproceed(e) L / L′′ pmtype(m, C, L′′) = T → T

L.C.m; Λ; Γ ` e : S S <: T

We have that for some L′′′, L′ / L′′′. Then, L′′′ <:w L′′ and pmtype(m, C, L′′′) = T → T
by Lemma A.1. The induction hypothesis and T-SuperProceed finish the case. �

Lemma A.16 (Inversion for partial method body, Lemma 6). If pmbody(m, C, L) =
x.e0 in L′ and L req Λ and pmtype(m, C, L) = T → T0, then L.C.m; Λ∪{L}; x : T, this :
C ` e0 : S0 for some S0 <:w T0.

Proof. By induction on pmbody(m, C, L) = x.e0 in L′.
Case PMB-Super: LT (L)(C.m) undefined L / L′′ pmbody(m, C, L′′) = x.e0 in L′

By pmtype(m, C, L) = T → T0 and PMT-Super, it must be the case that pmtype(m, C, L′′) =
T → T0. By the induction hypothesis,

L′′.C.m; Λ ∪ {L′′}; x : T, this : C ` e0 : S0

for some S0 <:w T0. Lemmas A.7 and A.15 finish the case.
Case PMB-Layer: LT (L)(C.m) = T0 C.m(T x){ return e; } L′ = L
By T-PMethod, it must be the case that

L.C.m; Λ ∪ {L}; x : T, this : C ` e0 : S0

for some S0 s.t. S0 <:w T0, finishing the case. �

Lemma A.17 (Substitution for super, proceed and superproceed, Lemma 5).
1. If •; Λ; Γ ` new C0(v) : C0 and L.C.m; Λ; Γ ` e : T and C0.m ` <C,(L′;L′′),L> ok

and C / D and L′′ <:w L / L′ and Λ <:sw {L} and proceed ∈ e =⇒
ndp(m, C, L′, L), then •; Λ; Γ ` Se : T where

S =

 new C0(v)<C,L′,L>.m /proceed,
new C0(v)<D,L,L> /super,
new C0(v)<C,L′,(L′;L′′),L>.m/superproceed

 .

2. If •; Λ; Γ ` new C0(v) : C0 and C.m; Λ; Γ ` e : T and C0.m ` <C,L′,L> ok and
C / D and Λ <:sw {L}, then •; Λ; Γ ` [new C0(v)<D,L,L>/super]e : T.

Proof. 1. By induction on L.C.m; Λ; Γ ` e : T with case analysis on the last typing
rule used. We show main cases below.
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Case T-SuperB:
Cannot happen.
Case T-SuperP: e = super.m′(e) mtype(m′, D, Λ′ ∪ {L}) = T′→T

L.C.m; Λ; Γ ` e : S′ L req Λ′ S′ <: T′

It suffices to show that •; Λ; Γ ` new C0(v)<D,L,L>.m′(Se) : T. By assump-
tion, we have •; Λ; Γ ` new C0(v) : C0. Next, we show C0.m ` <D,L,L> ok. By
C0.m ` <C,L′,L> ok, we have C0 <: C, from which C0 <: D follows, and {L}wf .
By Lemma A.11 and L′′ ∈ {L} and L′′ <:w L, for any L1 such that L req L1,
there exists L2 ∈ {L} such that L2 <:w L1; so, {L} <:w Λ′ ∪ {L}. Then, by
mtype(m′, D, Λ′ ∪ {L}) = T′→T and Lemma A.2, we have mtype(m′, D, {L}) = T′→T;
moreover, by Lemma A.13, ndp(m, D, L, L). So, C0.m ` <D,L,L> ok. By the induc-
tion hypothesis, we have •; Λ; Γ ` Se : S′ and, by assumption, S′ <: T′. Finally,
T-InvkA finishes the case.
Case T-Proceed: e = proceed(e) mtype(m, C, Λ′, Λ′ ∪ {L}) = T′→T

L.C.m; Λ; Γ ` e : S′ L req Λ′ S′ <: T′

It suffices to show that •; Λ; Γ ` new C0<C,L′,L>(v).m(Se) : T. By assumption,
we have •; Λ; Γ ` new C0(v) : C0. Since proceed ∈ e, we have ndp(m, C, L′, L),
from which C0.m ` <C,L′,L> ok and follow. By Lemmas A.14 and A.3, we have
mtype(m, C, {L′}, {L}) = T′→T, too. By the induction hypothesis, we have •; Λ; Γ `
Se : S′ and, by assumption, S′ <: T′. Finally, T-InvkA finishes the case.
Case T-SuperProceed: e = superproceed(e) L / L′

pmtype(m, C, L′) = T′→T
L.C.m; Λ; Γ ` e : S′ S′ <: T′

It suffices to show that •; Λ; Γ ` new C0<C,L′,(L′;L′′),L>.m(Se) : T.
By assumption, we have •; Λ; Γ ` new C0(v) : C0 and C0.m ` <C,(L′;L′′),L> ok
and L′′ <:w L′. Also, pmtype(m, C, L′) = T′→T, by assumption. By the induction hy-
pothesis, we have •; Λ; Γ ` Se : S′ and, by assumption, S′ <: T′. Finally, T-InvkAL
finishes the case.
Case T-With: e = with el e0 L.C.m; Λ; Γ ` el : L L req Λ0

Λ <:w Λ0 L.C.m; Λ ∪ {L}; Γ ` e0 : T

Since Λ <:sw {L}, we have Λ ∪ {L} <:sw {L} by LSSW-Intro. By the induction
hypothesis, •; Λ; Γ ` Sel : L and •; Λ∪{L}; Γ ` Se0 : T. T-With finishes the case.
Case T-Swap: e = swap (el,Lsw) e0 L.C.m; Λ; Γ ` el : L L req Λ0

Lsw swappable L <:w Lsw

Λrm = Λ \ {L′ | L′ <:w Lsw} Λrm <:w Λ0
L.C.m; Λrm ∪ {L}; Γ ` e0 : T

Since Λ <:sw {L}, we have Λrm ∪{L} <:sw {L} by LSSW-Intro. By the induction
hypothesis, •; Λ; Γ ` Sel : L and •; Λrm ∪ {L}; Γ ` Se0 : T. T-Swap finishes the
case.

2. By induction on C.m; Λ; Γ ` e : T0 with case analysis on the last typing rule used.
We show only main cases below (note that none of the cases T-Proceed and
T-SuperP and T-SuperProceed can happen).
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Case T-SuperB: e = super.m′(e) mtype(m′, D, ∅) = T′→T0
C.m; Λ; Γ ` e : S′ S′ <: T′

Let S = [new C0(v)<D,L,L>/super]. It suffices to show that •; Λ; Γ `
new C0(v)<D,L,L>.m′(Se) : T0. By assumption, we have •; Λ; Γ ` new C0(v) : C0.
Next, we show C0.m ` <D,L,L> ok. By C0.m ` <C,L′,L> ok, we have C0 <: C, from
which C0 <: D follows, and {L}wf . By mtype(m′, D, ∅) = T′→T0 and Lemma A.2,
we have mtype(m′, D, {L}) = T′→T0; moreover, by Lemma A.13, ndp(m, D, L, L). So,
C0.m ` <D,L,L> ok. By the induction hypothesis, we have •; Λ; Γ ` Se : S′ and,
by assumption, S′ <: T′. Finally, T-InvkA finishes the case. �

Lemma A.18 (Inversion for method body, Lemma 7). Suppose {L}wf and
mbody(m, C, L′, L) = x.e0 in C′, L′′ and mtype(m, C, {L′}, {L}) = T→T0 and ndp(m, C, L′, L).

1. If L′′ = L′′′;L0, then L0 req Λ and L0.C′.m; Λ ∪ {L0}; x : T, this : C′ ` e0 : U0 and
C <: C′ and U0 <: T0 and ndp(m, C′, L′′, L) for some Λ and U0.

2. If L′′ = •, then C′.m; ∅; x : T, this : C′ ` e0 : U0 and C <: C′ and U0 <: T0 and
ndp(m, C′, •, L) for some U0.

Proof. Both 1 and 2 are proved simultaneously by induction on mbody(m, C, L′, L) =
x.e0 in C′, L′′.
Case MB-Class: class C / D {... S0 m(S x){return e0;} ...}

C′ = C L′ = • L′′ = •
By T-Class, T-Method, MT-Class, it must be the case that

T0, T = S0, S C.m; ∅; x : T, this : C ` e0 : U0 U0 <: T0

for some U0. We have ndp(m, C, •, L) by NDP-Class, finishing the case.
Case MB-Layer: pmbody(m, C, L0) = x.e0 in L1 C′ = C L′′ = L′

By the definition of pmbody, there exists some L1 such that LT (L1)(C.m) =
S0 C.m(S x){ return e; } and L0 <:w L1. By T-PMethod, it must be the case that

T0, T = S0, S L1 req Λ1 L1.C.m; Λ1 ∪ {L1}; x : T, this : C ` e0 : U0 U0 <: T0

for some U0 and Λ1. It is easy to show by induction on L0 <:w L1 using Lemma A.7 and
T-Layer and T-LayerSW that

L0.C.m; Λ ∪ {L0}; x : T, this : C ` e0 : U0

for some Λ such that L0 req Λ. Finally, we have ndp(m,C′,L′′,L) by assumption, finishing
the case.
Case MB-Super: L′ = • class C / D { ... M } m < M

mbody(m, D, L, L) = x.e0 in C′, L′′

By MT-Super, it must be the case that mtype(m, D, {L}, {L}) = T→T0. By Lemma A.13,
we have ndp(m,D,L,L). The induction hypothesis and transitivity of subtyping finish the
case.
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Case MB-NextLayer: L′ = Lb;L1 pmbody(m, C, L1) undefined
mbody(m, C, Lb, L) = x.e0 in C′, L′′

We show ndp(m, C, Lb, L) holds by case analysis on ndp(m, C, Lb; L1, L). The cases NDP-Super
and NDP-Class are easy. The case NDP-Layer is easy, too: since pmbody(m, C, L1) undefined,
by NDP-Layer, we have ndp(m, C, Lb, L). Since pmbody(m, C, L1) is undefined andmtype(m, C, {L′}, {L}) =
T→T0, it must be the case that mtype(m, C, {Lb}, {L}) = T→T0. Then, the induction hy-
pothesis finishes the case. �

Theorem A.1 (Subject Reduction). Suppose ` (CT,LT) ok. If •; {L}; Γ ` e : T and
{L} wf and L ` e −→ e′, then •; {L}; Γ ` e′ : S for some S such that S <: T.

Proof. By induction on L ` e −→ e′ with case analysis on the last reduction rule used.
We show only main cases.
Case R-Field: e = new C0(v).fi fields(C0) = C f e′ = vi

By T-Field and T-New, it must be the case that

•; {L}; Γ ` v : D D <: C C = Ci

Then, we have •; {L}; Γ ` vi : Di and Di <: Ci, finishing the case.
Case R-Invk: e = new C0(v).m(w)

L ` new C0(v)<C0,L,L>.m(w) −→ e′

By T-Invk and T-New, it must be the case that

•; {L}; Γ ` v : S fields(C0) = T f S <: T
mtype(m, C0, {L}) = T′→T •; {L}; Γ ` w : S′ S′ <: T′.

By Lemma A.13, ndp(m, C0, L, L) and so C0.m ` <C0,L,L> ok holds. Since {L} <:sw {L},
we have

•; {L}; Γ ` new C0(v)<C0,L,L>.m(w) : T

by T-InvkA. By the induction hypothesis, •; {L}; Γ ` e′ : S for some S <: T, finishing
the case.
Case R-InvkP: e = new C0(v)<C′,L′′,L′>.m(w)

mbody(m, C′, L′′, L′) = x.e0 in C′′, (L′′′; L0)
C′′ / D
L0 / L1

e′ =


new C0(v) /this,
w /x,
new C0(v)<C′′,L′′′,L′>.m /proceed,
new C0(v)<D,L′,L′> /super,
new C0(v)<C′′,L1,(L′′′;L0),L′>.m/superproceed

 e0

By T-InvkA, it must be the case that

•; {L}; Γ ` new C0(v) : C0 C0.m ` <C′,L′′,L′> ok {L} <:sw {L′}
mtype(m, C′, {L′′}, {L′}) = T′→T •; {L}; Γ ` w : S′ S′ <: T′

for some T′ and S′.
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By Lemma A.18,

L0.C′′.m; Λ ∪ {L0}; x : T, this : C′′ ` e0 : S
L0 req Λ
C′ <: C′′

S <: T
ndp(m, C′′, (L′′′;L0), L′)

and for some Λ and S.
By S-Trans, C0 <: C′′. From ndp(m, C′′, (L′′′;L0), L′) and C0.m ` <C′,L′′,L′> ok, it

follows that C0.m ` <C′′,(L′′′;L0),L′> ok.
By {L′}wf and Lemma A.11 and L0 ∈ L′ and L0 req Λ, we have ∀L ∈ Λ,∃L′ ∈

L′.L′ <:w L. So, by LSS-Intro, we have {L′} = {L′} ∪ {L0} <:w Λ ∪ {L0}. By this fact
and {L} <:sw {L′}, we get {L} <:sw Λ ∪ {L0}. By Lemma A.7,

L0.C′′.m; {L}; x : T, this : C′′ ` e0 : S

By ndp(m, C′′, (L′′′;L0), L′) and the definition of ndp, proceed ∈ e0 implies ndp(m, C′, L′′′, L′).
Then, by Lemmas A.8 and Lemma A.17(1),

•; {L}; x : T, this : C′′ `

 new C0(v)<C′′,L′′′,L′>.m /proceed,
new C0(v)<D,L′,L′> /super,
new C0(v)<C′′,L1,(L′′′;L0),L′>.m/superproceed

 e0 : S

By Lemmas A.8, A.5 and A.9, •; {L}; Γ ` e′ : S′ for some S′ <: S. By S-Trans, S′ <: T,
finishing the case.
Case R-InvkSP: e = new C0(v)<C′,L1,(L′′;L0),L′>.m(w)

pmbody(m, C′, L1) = x.e0 in L2
C′ / D
L2 / L3

e′ =


new C0(v) /this
w /x
new C0(v)<C′′,L′′,L′>.m /proceed
new C0(v)<D,L′,L′> /super,
new C0(v)<C′′,L3,(L′′;L0),L′>.m/superproceed

 e0

By T-InvkAL, it must be the case that

•; {L}; Γ ` new C0(v) : C0 C.m ` <C′,(L′′;L0),L′> ok {L} <:sw {L′}
L0 <:w L1 pmtype(m, C′, L1) = T′→T •; {L}; Γ ` w : S′ S′ <: T′

for some T′ and S′. Let Λ be the layer set such that L1 req Λ. By Lemma A.16,

L1.C′.m; Λ ∪ {L1}; x : T, this : C′ ` e0 : S

and S <: T for some S.
Since L0 <:w L1, L0 requires all the layers that L1 requires (including Λ). By {L′}wf

and Lemma A.11 and L0 ∈ L′, we have ∀L ∈ Λ,∃L′ ∈ {L′} such that L′ <:w L. So,
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{L′} = {L′} ∪ {L0} <:w Λ ∪ {L1}. By this and {L} <:sw {L′}, we have {L} <:sw Λ ∪ {L1}.
By Lemma A.7,

L1.C′.m; {L}; x : T, this : C′ ` e0 : S.

By ndp(m, C′, (L′′;L0), L′) (which follows from C.m ` <C′,(L′′;L0),L′> ok) and the defi-
nition of ndp, proceed ∈ e0 implies ndp(m, C′, L′′, L′) holds. Then, by Lemmas A.8, A.5,
A.9 and A.17(1), •; {L}; Γ ` e′ : S′ for some S′ <: S. By S-Trans, S′ <: T, finishing the
case.
Case R-InvkB: e = new C0(v)<C′,L′′,L′>.m(w)

mbody(m, C′, L′′, L′) = x.e0 in C′′, •
C′′ / D

e′ =

 new C0(v) /this
w /x
new C0(v)<D,L′,L′>/super

 e0

By T-InvkA, it must be the case that

•; {L}; Γ ` new C0(v) : C0 C0.m ` <C′,L′′,L′> ok {L} <:sw {L′}
mtype(m, C′, {L′′}, {L′}) = T′→T •; {L}; Γ ` w : S′ S′ <: T′

for some T′ and S′. By Lemma A.18,

C′′.m; ∅; x : T, this : C′′ ` e0 : S

and C′ <: C′′ and S <: T and ndp(m, C′′, •, L′) for some S. By S-Trans, C0 <: C′′. By
Lemma A.5,

C′′.m; {L}; x : T, this : C′′ ` e0 : S

By Lemmas A.8, A.5, A.9 and A.17(2), •; {L}; Γ ` e′ : S′ for some S′ <: S. By S-Trans,
S′ <: T, finishing the case.
Case RC-With: e = with new L() e0 e′ = with new L() e0

′

with(L, L) = L′ L′ ` e0 −→ e0
′

By T-With, it must be the case that

•; {L}; Γ ` new L() : L L req Λ {L} <:w Λ •; {L} ∪ {L}; Γ ` e0 : T

for some Λ. Here, {L′} = {L} ∪ {L}wf by Wf-With. By the induction hypothesis,
•; {L} ∪ {L}; Γ ` e0

′ : S for some S <: T. By T-With, •; {L}; Γ ` e0
′ : S, finishing the

case.
Case RC-WithArg: e = with el e0 e′ = with el

′ e0 L ` el −→ el
′

By T-With, it must be the case that

•; {L}; Γ ` el : L L req Λ {L} <:w Λ •; {L} ∪ {L}; Γ ` e0 : T

for some Λ. By the induction hypothesis, we have •; {L}; Γ ` el
′ : L′ for some L′ <: L. By

LS-Extends, L′ and L have the same require clause Λ. Since L′ <: L, we have L′ <:w L,
and {L}∪{L′} <:w {L}∪{L}. By Lemma A.7 and T-With, •; {L}; Γ ` e′ : T. Reflexivity
of <: finishes the case.
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Case R-WithVal: e = with new L() v0 e′ = v0

By T-With, it must be the case that •; {L}∪{L}; Γ ` v0 : T. By Lemma A.8, •; {L}; Γ `
v0 : T, finishing the case.
Case RC-Swap: e = swap (new L(),Lsw) e0 e′ = swap (new L(),Lsw) e0

′

swap(L, Lsw, L) = L′ L′ ` e0 −→ e0
′

By T-Swap, it must be the case that

•; {L}; Γ ` new L() : L Lsw swappable L <:w Lsw L req Λ
Λrm = {L} \ {L′ | L′ <:w Lsw} Λrm <:w Λ •; Λrm ∪ {L}; Γ ` e0 : T

for some L, Λ, and Λrm. Here, {L′} = Λrm ∪ {L}. Then, {L′}wf by Wf-Swap. By the
induction hypothesis, •; Λrm ∪ {L}; Γ ` e0

′ : S for some S <: T. By T-Swap, •; {L}; Γ `
e0
′ : S, finishing the case.

Case RC-SwapArg: e = swap (el,Lsw) e0 e′ = swap (el
′,Lsw) e0

L ` el −→ el
′

By T-Swap, it must be the case that

•; {L}; Γ ` el : L Lsw swappable L <:w Lsw L req Λ
Λrm = {L} \ {L′ | L′ <:w Lsw} Λrm <:w Λ •; Λrm ∪ {L}; Γ ` e0 : T

for some L, Λ, and Λrm. By the induction hypothesis, we have •; {L}; Γ ` el
′ : L′ for

some L′ <: L. By LS-Extends, L′ and L have the same require clause Λ. Since L′ <: L,
we have L′ <:w L, L′ <:w Lsw, and Λrm ∪ {L′} <:w Λrm ∪ {L} <:w Λ. By Lemma A.7 and
T-Swap, •; {L}; Γ ` e′ : T. Reflexivity of <: finishes the case.
Case R-SwapVal:
Similar to Case R-WithVal.
Case RC-InvkRecv: e = e0.m(e) L ` e0 −→ e0

′ e′ = e0
′.m(e)

By T-Invk, it must be the case that

•; {L}; Γ ` e0 : C0 mtype(m, C0, {L}) = T→T •; {L}; Γ ` e : S S <: T.

for some T and S. By the induction hypothesis, •; {L}; Γ ` e0
′ : D0 for some D0 <: C0.

By Lemma A.6, mtype(m, D0, {L}) = T→S and S <: T for some S. By T-Invk, •; {L}; Γ `
e0
′.m(e) : S, finishing the case.

Case RC-InvkArg: e = e0.m( . . . ,ei, . . . ) L ` ei −→ ei
′ e′ = e0.m( . . . ,ei

′, . . . )

By T-Invk, it must be the case that

•; {L}; Γ ` e0 : C0 mtype(m, C0, {L}) = T→T •; {L}; Γ ` e : S S <: T.

for some T and S. By the induction hypothesis, •; {L}; Γ ` ei
′ : Si

′ for some Si
′ <: Si. By

S-Trans, Si
′ <: Ti. So, by T-Invk, •; {L}; Γ ` e′ : T, finishing the case.

45



Case RC-New, RC-InvkAArg1, RC-InvkAArg2:
Similar to the case above. �

Lemma A.19 (Lemma 12). If pmtype(m, C, L) = T→T0, then there exist x and e0 and
L′ (, Base) such that pmbody(m, C, L) = x.e0 in L′ and the lengths of x and T are equal
and L <:w L′.

Proof. By induction on pmtype(m, C, L) = T→T0.
Case PMT-Layer: LT (L)(C.m) = T0 C.m(T x){ return e; }
By T-PMethod, the lengths of T and x are equal. L <:w L by Reflexivity of <:w. Then,
PMB-Layer finishes the case.
Case PMT-Super: LT (L)(C.m) undefined L / L′ pmtype(m, C, L′) = T→T0

The induction hypothesis and PMB-Layer and LSw-Extends and LSw-Extends
finish the case. �

Lemma A.20 (Lemma 13). If mtype(m, C, {L′}, {L}) = T→T0 and L′ is a prefix of L
and {L}wf, then there exist x and e0 and L′′ and C′ (, Object) such that mbody(m, C, L, L′) =
x.e0 in C′, L′′ and the lengths of x and T are equal and, if L′′ is not empty, the last layer
name of L′′ is not Base.

Proof. By lexicographic induction on mtype(m, C, {L′}, {L}) = T→T0 and the length of
L′.
Case: L′ = • class C / D {... S0 m(S x){ return e0; } ...}
By MT-Class, it must be the case that T, T0 = S, S0 and the lengths of S and x are
equal. Then, by MB-Class, mbody(m, C, •, L) = x.e0 in C, •, finishing the case.
Case: L′ = • class C / D {... M} m < M
It must be the case that mtype(m, C, {L′}, {L}) = T→T0 is derived by MT-Super and
mtype(m, D, {L}, {L}) = T→T0. The induction hypothesis and MB-Super finish the case.
Case: L′ = L′′′, L0 pmtype(m, C, L0) = T→T0

By Lemma A.19 and MB-Layer.
Case: L′ = L′′′; L0 pmtype(m, C, L0) undefined
Since pmtype(m, C, L0) undefined, it must be the case thatmtype(m, C, {L′′′}, {L}) = T→T0.
By the induction hypothesis, there exist x and e0 and L′′ and C′ (, Object) such that
mbody(m, C, L′′′, L′) = x.e0 in C′, L′′ and the lengths of x and T are equal. It follows that
pmbody(m, C, L0) is undefined from pmtype(m, C, L0) undefined. MB-NextLayer finishes
the case. �

Theorem A.2 (Progress). Suppose ` (CT,LT) ok. If •; {L}; • ` e : T and {L} wf,
then e is a value or L ` e −→ e′ for some e′.

Proof. By induction on •; {L}; • ` e : T with case analysis on the last typing rule used.
Case T-Var, T-Super, T-Proceed, T-SuperProceed:
Cannot happen.
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Case T-Field: e = e0.fi •; {L}; • ` e0 : C0 fields(C0) = T f C = Ci

By the induction hypothesis, either e0 is a value or there exists e0
′ such that L ` e0 −→

e0
′. In the latter case, RC-Field finishes the case. In the former case where e0 is a

value, by T-New, we have

e0 = new C0(v) •; {L}; • ` v : S S <: T.

So, we have L ` e −→ vi, finishing the case.
Case T-Invk: e = e0.m(e) •; {L}; • ` e0 : C0

mtype(m, C0, {L}) = T→T •; {L}; • ` e : S S <: T
By the induction hypothesis, there exist i ≥ 0 and ei

′ such that L ` ei −→ ei
′, in which

case RC-InvkRecv or RC-InvkArg finishes the case, or all ei’s are values v0, v. Then,
by T-New, v0 = new C0(w) for some values w. By Lemma A.20, there exist x, e0

′, L′′

and C′ (, Object) such that mbody(m, C0, L, L) = x.e0 in C′, L′′ and the lengths of x and
T are the same. Since C′ , Object, there exists D′ such that class C′ / D′ {...}. We
have two subcases here depending on whether L′′ is empty or not. We will show the case
where L′′ is not empty; the other case is similar. Let L′′ = L′′′; L0 for some L′′′. Since
L0 , Base, there exists L1 such that layer L0 / L1 {...}. Then, the expression

e′ =


new C0(w) /this
v /x
new C0(w)<C′,L′′′,L>.m/proceed
new C0(w)<D′,L,L> /super
new C0(w)<C′,L1,L,L> /superproceed

 e0
′

is well defined (note that the lengths of x and v are equal). Then, by R-InvkP and
R-Invk, L ` e −→ e′.
Case T-New: e = new C(e) fields(C) = T f •; {L}; • ` e : S S <: T
By the induction hypothesis, either (1) e are all values, in which case e is also a value;
or (2) there exists i and ei

′ such that L ` ei −→ ei
′, in which case RC-New finishes the

case.
Case T-NewL:
Trivial.
Case T-With: e = with el e0 •; {L}; • ` el : L •; {L} ∪ {L}; • ` e0 : T

L req Λ {L} <:w Λ
By the induction hypothesis, either el is not a value, in which case RC-WithArg finishes
the case; or e0 is a value, in which case R-WithVal finishes the case; or there exists e0

′

such that with(L, L) ` e0 −→ e0
′, in which case RC-With finishes the case (notice that

{with(L, L)}wf , by Wf-With).
Case T-Swap: e = swap (el,Lsw) e0 •; {L}; • ` el : L

Lsw swappable L <:w Lsw L req Λ′
Λrm = {L} \ {L′ | L′ <:w Lsw} Λrm <:w Λ′ L; Λrm ∪ {L}; Γ ` e0 : T0

By the induction hypothesis, either el is not a value, in which case RC-SwapArg finishes
the case; or e0 is a value, in which case R-SwapVal finishes the case; or there exists e0

′

such that swap(L, Lsw, L) ` e0 −→ e0
′, in which case RC-Swap finishes the case (notice

that, by Wf-Swap, {swap(L, Lsw, L)}wf ).
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Case T-InvkA:
Similar to the case for T-Invk.
Case T-InvkAL: e = new C0(v)<D0,L1,(L′′;L0),L′>.m(e)

•; {L}; • ` new C0(v) : C0 C0.m ` <D0,L1,(L′′;L0),L′> ok
{L} <:sw {L′} L0 <:w L1
pmtype(m, D0, L1) = T′→T0
•; {L}; • ` e : S′ S′ <: T′

By the induction hypothesis, either (1) there exists i ≥ 1 and ei
′ such that L ` ei −→ ei

′,
in which case RC-InvkArg finishes the case, or (2) all ei’s are values w. Then, by
Lemma A.19, there exist x, e0

′ and L2 (, Base) such that pmbody(m, D0, L1) = x.e0 in L2
and the lengths of x and T′ are the same. Since L2

′ , Base, there exists L3 such that
layer L2 / L3 {...}.

By Sanity Condition (8), D0 is not Object and there exists E0 such that class D0 / E0 {...}.
Then, the expression

e′ =


new C0(v) /this
w /x
new C0(v)<D0,L′′,L>.m /proceed
new C0(v)<E0,L,L> /super
new C0(v)<D0,L3,(L′′;L0),L>.m/superproceed

 e0
′

is well defined (note that the lengths of x and v are equal). Then, by R-InvkSP,
L ` e −→ e′. �

Theorem A.3 (Type Soundness). If ` (CT,LT, e) : T and e reduces to a normal
form under the empty set of layers, then the normal form is new S(v) for some v and S
such that S <: T.

Proof. By T-Prog and Theorems A.1 and A.2. �
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