
Safe Dynamic Multiple Inheritance

Erik Ernst1

Dept. of Computer Science, University of Aarhus, Denmark

Abstract. Combination of descriptive entities—i.e. multiple inheritance
and related mechanisms—is usually only supported at compile time in
statically typed languages. The language gbeta is statically typed and
has supported run-time creation of classes and methods since 1997, by
means of the pattern combination operator ‘&’. However, with certain
combinations of operands the ‘&’ operator fails; as a result, creation of
new classes and methods at run-time had to be considered a dangerous
operation. This paper presents a large and useful class of combinations,
and proves that combinations in this class will always succeed.

1 Introduction

Descriptive entities—such as classes and methods—can be combined in some
languages. Multiple inheritance is an example of such a mechanism, combining
classes. The pattern combination operator ‘&’ in gbeta [?,?] is another such
mechanism, capable of combining classes as well as methods since the pattern
concept [?,?,?] unifies and generalizes the concepts of class and method.

Conventionally, combination of descriptive entities is confined to compile
time in languages with static type checking. Pattern combination in gbeta has
been supported as a run-time facility since 1997. The resulting patterns could
be used safely, subject to the same kind of type checking as all other patterns
known only by an upper bound, e.g., open virtual patterns. But the combination
operation itself could fail for certain pairs of operands. It is in a sense similar
to a simple arithmetic operation like division: The expression x/y may cause an
exception if y is zero, otherwise the result will be just as safe to use as any other
number—only the operation itself is dangerous, not the outcome.

This paper describes a large and useful class of pairs of operands to the gbeta
operator ‘&’ where the combination will succeed, thereby enabling programmers
to use run-time combination of classes and methods without worrying about
failure. One way to describe this class is to say that at least one operand must
have been created by single inheritance.

It is crucial that this criterion only restricts one operand, the other operand is
allowed to be an arbitrary pattern. Because of this, it is possible for programmers
to employ dynamic combination of patterns which are not known at compile-
time, as in the following gbeta example:



addColor:

(# inClass,outClass: ##Point;

enter inClass## (* argument list *)

do inClass & ColorPoint ## -> outClass## (* method body *)

exit outClass## (* result *)

#) Box
1

The classes Point and ColorPoint are unsurprising and assumed to be defined
elsewhere—technically they are patterns, but we will use the words ‘class’ and
‘method’ as synonyms to ‘pattern’, as a usage hint.

The example in box ?? declares the method addColor; this method receives
an argument inClass which is a class, constrained to be a subclass of Point. The
body computes the combination of the argument and ColorPoint, and stores
the result in outClass, which is then the result of the method. This is a good
example of a kind of dynamic creation of classes that used to be unsafe in gbeta.
With the enhancements described in this paper, it is statically known to be safe.

Assuming that ClickablePoint is a subclass of Point we could do this:

(# myClass: ##Point; (* mutable, class-valued reference *)

myPoint: ∧Point; (* mutable, object-valued reference *)

do ClickablePoint## -> addColor -> myClass##; (* 1 *)

&myClass[] -> myPoint[] (* 2 *)

#) Box
2

This expression declares a local attribute myClass, used to hold the dynamically
created class, and a local attribute myPoint, used to hold an instance of the
dynamically created class. The body of this block then (at ‘1’) proceeds to in-
voke the method addColor, giving it the class ClickablePoint as the argument
and storing the result in myClass. Finally, at ‘2’, an instance of myClass is cre-
ated and a reference to the new object is stored in myPoint. This invocation of
addColor is type correct because the argument ClickablePoint is a subclass of
Point—the declared type bound of the argument of addColor—and because the
returned result is known to be some subclass of Point and myClass is allowed
to contain any subclass of Point. Finally, the new instance of myClass can be
assigned to myPoint because myClass is declared to be some subclass of Point,
and myPoint is allowed to refer to instances of any subclass of Point.

To illustrate the effect of this, here is a version in C++ that uses static class
combination, namely multiple inheritance, to achieve a similar effect:

class CCPoint: public ClickablePoint, public ColorPoint {};

// in some function body:

{
Point *myPoint = new CCPoint();

} Box
3

Here we create a new class CCPoint as a combination of the existing classes
ClickablePoint and ColorPoint. The combined class is then used to create an

2



instance, myPoint. Of course, the C++ example is less flexible than the gbeta ex-
ample, because the C++ example is expressed in terms of compile-time classes and
compile-time class combination operations, whereas the gbeta method addColor
can create a combination of ColorPoint and any subclass of Point, possibly a
subclass that is not known until run-time or even one that is created dynamically.

The rest of this paper concentrates on the treatment of a formalization of the
core of the pattern combination mechanism and its domain. Section ?? presents
the basic domains and operations, such as mixins, patterns, and pattern combi-
nation. Section ?? describes a criterion on the operands of a pattern combination
operation that ensures successful combination, and proves the correctness of this
claim. Section ?? discusses this result in context of the language gbeta. Finally,
Sec. ?? presents related work and Sec. ?? concludes.

2 Basic Entities

This section describes the basic domains and operations in a formalization of the
gbeta pattern combination mechanism. First, we have a countable setM whose
members are known as mixins.M is partially ordered by the relation ‘�’. In this
context we do not need to model the internal structure of mixins, so we consider
the elements of M as primitive; for a more detailed model, see [?, Chap.12].

Definition 1 (Pattern). The set of patterns, P, is defined to be the set of
ordering relations on subsets of M such that each pattern P ∈ P satisfies the
following criteria:

∀x ∈ dom(P ), y ∈M . x � y ⇒ y ∈ dom(P ) (1)
∀x, y ∈ dom(P ) . x � y ⇒ x �P y (2)
∀x, y ∈ dom(P ) . x �P y ∨ y �P x (3)

If R is an order relation on a set A then dom(R) is the domain of R, i.e.,
{x ∈ A | ∃ y ∈ A. (x, y) ∈ R ∨ (y, x) ∈ R}, and �R is R itself used in binary
expressions, i.e., x �R y ⇔ (x, y) ∈ R.

Criterion (??) says that for every mixin x in a pattern P , all elements larger
than x are also in P . In other words, the domain of a pattern is upwards closed.
Criterion (??) says that if two mixins x and y in a pattern P are ordered accord-
ing to ‘�’ then their ordering in P must coincide. In other words, a pattern is
not allowed to contradict the global ordering of mixins. As a consequence, every
pattern P must be a superset of the restriction of ‘�’ to dom(P ). Criterion (??)
just expresses that every pattern is a total order on its domain.

Intuitively, an element ofM is a mixin, i.e., an increment that differentiates
a given class from its immediate super-class. For example, the difference between
Point and ColorPoint could be the mixin (# color: @string #), which adds
an attribute named color to its superclass.

The intuition behind the global ordering ‘�’ is that it expresses inheritance
dependencies. We have x � y if and only if the mixin x statically depends on the

3



mixin y, i.e., if code inside x has been type checked under the assumption that
attributes in y are available. Now, criterion (??) says that each mixin can only
exist in a pattern where all the mixins from which it inherits are also present.
Criterion (??) says that the ordering of mixins in every pattern must respect
the inheritance based ordering. It is a useful approximation of the gbeta seman-
tics to say that this means that we will respect overriding relations: If, e.g., a
mixin ColorPoint overrides a method that it inherits from Point then there
can be no pattern that includes these two mixins and lets the Point implemen-
tation override the ColorPoint implementation—if both are present then the
ColorPoint implementation must dominate. Finally, criterion (??) ensures that
every question about overriding has a well-defined answer.1 Now we can specify
the meaning of the pattern combination operator:

Definition 2 (&). Given two total order relations R1 and R2, the combination
of them is defined as follows:

R1 &R2
4= R ∪ (dom(R2)× dom(R1) \R) (4)

where R 4= (R1∪R2)∗, i.e., the transitive closure of the union of R1 and R2, and
R is the inverse relation of R, i.e. {(y, x)|(x, y) ∈ R}.

In [?] this operator was defined on total pre-orders, so the present definition is
slightly less general. In fact, we tried to integrate patterns as total pre-orders into
gbeta for about two years; but the inherent lack of ordering2 creates profound
problems with combination of behavior: It is simply not appropriate to deny the
programmer explicit control over the ordering of imperative actions. The new
developments starting with the results in this paper seem much more promising.

Intuitively, R1&R2 is computed by adding R1 and R2 (that is R1∪R2), then
adding ordering-elements such that the relation is again transitive (producing
R), and finally adding all elements from R2 to R1 that do not contradict R—
effectively making R2 elements smaller than R1 elements, unless anything is
known to the contrary. A simple algorithm that computes R1&R2 from R1 and
R2 is given in [?, Fig. 4]. It is known as the ‘C3’ linearization algorithm [?].

As it was proved in [?, Prop. 2], this operation will produce a total order
whenever R1 ∪R2 does not have a cycle. Hence, in these cases the result of
merging two patterns P&Q is a totally ordered set of mixins. Moreover, it is
easy to prove that Ri ⊆ R1&R2 for i ∈ {1, 2} for all total orders R1 and R2,
i.e., that merging does not change the ordering of any two mixins in R1 or in
R2. Similarly, it is easy to show that dom(R1)∪ dom(R2) = dom(R1&R2). This
shows that criterion (??) and (??) are also satisfied for P&Q. We conclude:

Lemma 1 (Partial closure property of &). Given two patterns P and Q. If
P ∪Q does not contain cycles then P&Q and Q&P are patterns.
1 Note that overriding is used here as a useful approximation to the actual gbeta

semantics which is based on pattern combination and not overriding.
2 A total order is isomorphic to a list, whereas a total pre-order is isomorphic to a list

of sets of mutually unordered elements

4



3 A Safety Criterion

As we saw in the previous section, two patterns P and Q can be combined to a
new pattern P&Q if P ∪Q does not contain cycles.

A problem arises if P ∪Q does contain cycles. In context of the static analysis
of gbeta, from 1997 until recently, we considered it impossible to ascertain that
two patterns P and Q would satisfy this no-cycles criterion unless both P and
Q were compile-time constant expressions. Hence, any combination operation
applied to a pattern that was only known by an upper bound at compile-time
would be flagged by the gbeta compiler as a dangerous operation.

However, a new possibility arises with the introduction of the global order-
ing ‘�’ (not considered in [?]), and the requirement that patterns respect this
ordering. Consider a special kind of patterns, namely the rigid ones:

Definition 3 (Rigid patterns). A pattern P is rigid iff the restriction of the
global ordering ‘�’ to dom(P ) is a total order.

When the restriction of ‘�’ to dom(P ) is a total order, there can only be
one pattern with domain dom(P ). Hence, any reordering of mixins within P
will produce a non-pattern. ‘Rigid’ refers to this lack of reordering flexibility.
Intuitively, a rigid class is a class that is produced by single inheritance. Using
only single inheritance, the most specific mixin inherits from all the other mixins,
the second most specific inherits from all other except the most specific one, etc.

Lemma 2 (Everybody agrees with a rigid pattern). Let P be a rigid
pattern and Q an arbitrary pattern. If x, y ∈ dom(P ) ∩ dom(Q), then

(x �P y ∧ x �Q y) ∨ (y �P x ∧ y �Q x)

The proof of this lemma can be found in App. ??. Now we can state and
prove the main result of this paper:

Theorem 1 (It is safe to merge with a rigid pattern). Let P be a rigid
pattern and Q an arbitrary pattern. Then P&Q and Q&P are both patterns.

Again, the proof is in App. ??. As a consequence of this theorem, it is suf-
ficient to verify that at least one of the two operands to ‘&’ is rigid, then the
operation will succeed. This is most fortunate, because rigid patterns are a very
natural choice for an incremental enhancement of a given, arbitrary pattern.

The rigid pattern would be a conceptually coherent and focused descriptive
entity, created by single inheritance, referred to by means of a compile-time
constant denotation, and meaningful as a unit of enhancement for a complex
pattern. The other operand can be an arbitrary pattern, e.g., a mutable pattern-
valued attribute like inClass in the method addColor. This allows us to build
a complex pattern by repeatedly adding conceptually focused aspects, i.e. rigid
patterns, with no need for exact static knowledge about the complex pattern
under creation, and without worrying about failure of the combination operation.

5



4 In Context of the Language

How do we know that the language gbeta actually invariantly maintains the
properties (??), (??), and (??) for all patterns?

Property (??) is easy: Since each pattern (in the current implementation) is
represented as a list of representations of mixins, it is indeed a total order.

The property (??), that the domain is upwards closed, is maintained because
no operation can ever remove a mixin from a pattern, and because every mixin
is initially created by evaluation of a pattern expression whose locally, statically
known structure was used to define the ordering ‘�’, and because

The value of a pattern expression is always exactly the
locally, statically known value, or a subpattern thereof.

(5)

A subpattern of a pattern P is a pattern that is a superlist of mixins, i.e., a list
of mixins that can produce P by deleting zero or more mixins. Hence, the locally
statically known mixins will also be available in a subpattern.

Property (??) has been a fundamental element in the gbeta static analysis
for about 5 years, and the several hundred experimental or testing programs and
many thousands of experiments have not produced a counter-example. It would
be highly useful though hardly trivial to formalize the entire gbeta analysis and
establish a proof of this property.

Finally property (??), that patterns respect ‘�’, is ensured by property (??)
together with the fact that pattern combination preserves the ordering of mixins
in each operand. Let us sketch a proof by induction in the number of pattern
combination operations: Property (??) ensures that a pattern that is not created
by pattern combination will satisfy (??), because ‘�’ is derived from the locally,
statically known ordering of mixins at each pattern declaration. For the induction
step, assume that P&Q is a pattern, containing a pair of mixins x and y with
x �P&Q y, but y � x. If y ∈ dom(P ) then also x ∈ dom(P ) by property (??),
and y �P x by the induction hypothesis—which is a contradiction because P&Q
should then also contain y and x in that order. Similarly if y ∈ dom(Q).

A very important observation is that the safety of pattern combination with
a rigid pattern applies recursively: When pattern combination propagates, as
described in [?], it may happen that one of the derived pattern combinations
fails. For instance, we may be able to create a class by merging two existing
classes, but the derived combination of the virtual methods in those two classes
may cause a combination failure. But Th. ?? saves us here just as well as it did in
the one-level case. We just need to check that every virtual pattern syntactically
nested in the rigid pattern is itself rigid. Every derived pattern combination
will then have at least one rigid operand, and hence it will succeed. So all we
need to do is to extend the rigidity test to be applied recursively to syntactically
nested virtuals: a recursively rigid pattern can be safely merged with an arbitrary
pattern, also when the propagation is taken into consideration.

There is one requirement that the implementation of gbeta has not satisfied
until recently. The problem is that gbeta must allow all patterns in the set P
to exist. It has been a deeply built-in restriction in gbeta that no pattern would

6



be allowed to contain two mixins associated with the same syntactic expression
(on the form (#...#)), but with two different environments. It would take too
much space to explain the details of this problem here; suffice it to say that the
difficulties inherent in the required generalization of gbeta seem to be solved by
now, as the implementation of support for multiple mixins with the same syntax
in a pattern is stabilizing. The test according to Th. ?? has been implemented
for about two months. The basic framework of mixins, pattern combination, and
compile-time analysis has been implemented and used for years.

One snake remains, however, in the paradise. A final binding on a virtual
pattern specifies that it cannot be further specialized in subpatterns. In a version
of gbeta without final bindings, the problem does of course not arise. Final
bindings are a well-known means to remove covariance, thereby making it type-
safe to call certain methods etc. However, many years of practical experience with
Beta (which has both virtual patterns and final bindings) seems to indicate
that immutable object references are a more useful tool to this end—it does
not constrain the set of patterns that may exist; and it is crucial for family
polymorphism, where final bindings do not suffice. If we decide to keep final
bindings, one solution would be to define that a mixin with a final binding does
not create a subtype—in other words, the subsumption test which now checks
whether we can create a given pattern Q by deleting zero or more mixins from
a pattern P must then refuse to delete mixins containing a final binding.

5 Related Work

Long ago in 1977, a need arose in AI research to handle multiple classification,
realized in the knowledge representation language KRL [?]. Four years later,
the OO Lisp dialect LOOPS [?] was created, supporting multiple inheritance.
In 1982 the Lisp dialect Flavors [?] was created, also with multiple inheritance,
and with a programmer culture that emphasized the composition of classes from
various ‘flavors’—incomplete classes intended to be mixed and matched with
other classes. In CLOS [?], this programming convention became known as mixin
classes. A version of Smalltalk was also equipped with multiple inheritance [?].
From this point, a dichotomy emerged: Multiple inheritance was formalized [?],
introduced in statically typed languages [?,?], and problematized [?] because of
thorny issues such as name clashes. Being even harder to handle, the idea that
incomplete classes could be ‘mixed’ remained exotic, mostly confined to the Lisp
community.

However, Bracha and Cook [?] introduced mixins as a separate concept that
generalizes several kinds of inheritance. A number of variants [?,?] emerged,
where [?] introduced the notion of an inheritance interface, specifying the re-
quirements of a mixin on potential superclasses. Recently, a class-based object
calculus [?] supporting statically typed mixin application seems to establish mix-
ins as a well-understood mechanism, thus bridging the long-standing gap between
the statically and the dynamically typed side of the dichotomy.

7



The mixin concept is fundamental to gbeta, but mixins cannot be manipu-
lated individually, only via ‘&’; in this sense it is similar to CLOS and the other
early class-based approaches. It also uses linearization, specifically the C3 [?]
algorithm, but the formalization (Def. ??) and proofs of properties in terms
thereof are our contributions. The mixin ordering ‘�’ ensures correctness in a
similar way as the inheritance interface of [?] and the mixin application type
check in [?], but gbeta mixin application is more dynamic because it allows com-
bination of patterns not known before run-time. As this paper shows, dynamic
mixin application is safe under certain conditions.

Finally, dynamic mixin application connects gbeta and languages with delega-
tion. In particular, Lava [?] supports static and dynamic delegation; [?] made it
clear that final declarations are incompatible with subtyping when they occur
in a delegatee, corresponding to a mixin’s superclass.

6 Conclusion

We have presented a formalization of the core of the pattern algebra that allows
the language gbeta to combine classes and methods dynamically, and then use the
outcome in a statically safe manner. It has been a long-standing problem in this
context that the combination operation itself could not be guaranteed to succeed,
unless applied to two compile-time constant pattern expressions—essentially re-
ducing pattern combination to either a static or an unsafe operation. However,
the formalization was used to prove that an important, comprehensible, and use-
ful category of combination operations is indeed safe, namely when at least one
of the operands is a rigid pattern, i.e., it has been created by means of single
inheritance. For safety, final bindings must statically visible, but this problem
seems to be solvable. Since this allows the gradual construction of a complex
pattern by means of repeated enhancements with conceptually clear and whole-
some single-inheritance constructs, we believe that safe, dynamic combination
of classes and methods is now available in a form that is useful for practical
programming.

References

1. Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, Andrew
L. M. Shalit, and P. Tucker Withington. A monotonic superclass linearization for
Dylan. In Proceedings OOPSLA’96, ACM SIGPLAN Notices, volume 31, 10 of
ACM SIGPLAN Notices, pages 69–82, New York, October6–10 1996. ACM Press.

2. D. G. Bobrow and M. S. Stefik. The LOOPS Manual. Xerox PARC, 1981.

3. D. G. Bobrow and T. Winograd. An overview of krl, a knowledge representation
language. Cognitive Sci 1:1, 1977.

4. Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of classes and
mixins. In Rachid Guerraoui, editor, ECOOP ’99 — Object-Oriented Program-
ming 13th European Conference, Lisbon Portugal, volume 1628 of Lecture Notes in
Computer Science, pages 43–66. Springer-Verlag, New York, NY, June 1999.

8



5. Alan H. Borning and Daniel H. H. Ingalls. Multiple inheritance in smalltalk-80. In
Proceedings of the National Conference on Artificial Intelligence, pages 234–237.
American Association for Artificial Intelligence, 1982. Also Univ. of Washington
Tech. Rep. 82-06-02.

6. Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings OOP-
SLA/ECOOP’90, ACM SIGPLAN Notices, volume 25, 10, pages 303–311, October
1990.

7. Howard I. Cannon. Flavors: A non-hierarchical approach to object-oriented pro-
gramming. Symbolics Inc., 1982.

8. L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types,
International Symposium Sophia-Antipolis Proceedings, volume 173 of LNCS, pages
51–67. Springer-Verlag, Berlin, Germany, June 1984.

9. Erik Ernst. gbeta – A Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Devise, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, June 1999.

10. Erik Ernst. Propagating class and method combination. In Rachid Guerraoui,
editor, Proceedings ECOOP’99, LNCS 1628, pages 67–91, Lisboa, Portugal, June
1999. Springer-Verlag.

11. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In Conference Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 171–183, San Diego, Cal-
ifornia, 19–21 January 1998.

12. Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley,
Reading, MA, USA, 1989.

13. Günter Kniesel. Dynamic Object-Based Inheritance with Subtyping. PhD thesis,
Computer Science Department III, University of Bonn, July 2000.

14. Jørgen Lindskov Knudsen. Name collision in multiple classification hierarchies. In
S. Gjessing and K. Nygaard, editors, Proceedings ECOOP’88, LNCS 322, pages
93–109, Oslo, August 15-17 1988. Springer-Verlag.

15. Ole Lehrmann Madsen, Boris Magnusson, and Birger Møller-Pedersen. Strong typ-
ing of object-oriented languages revisited. In Proceedings OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, volume 25, 10, pages 140–150, October 1990.

16. Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
Reading, MA, USA, 1993.

17. B. Meyer. Object-Oriented Software Construction. Prentice Hall International Se-
ries in Computer Science, C.A.R. Hoare Series Editor. Prentice Hall International,
Hemel Hempstead, UK, 1988. Nouvelle édition révisée : [?].

18. Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,
N.Y., second edition, 1997.

19. Patrick Steyaert, Wim Codenie, Theo D’Hondt, Koen De Hondt, Carine Lucas, and
Marc Van Limberghen. Nested Mixin-Methods in Agora. In Oscar M. Nierstrasz,
editor, Proceedings ECOOP’93, LNCS 707, pages 197–219. Springer-Verlag, 1993.

20. Bjarne Stroustrup. Multiple inheritance for C++. In Proceedings of the Spring ’87
EUUG Conference, Helsinki, May 1987.

A Proofs

Proof (of Lemma ??). Assume that x �P y. P is a pattern, so it must respect the
global ordering ‘�’ as specified in (??). Moreover, P is rigid so the restriction of ‘�’ to

9



dom(P ) is a total order. But then every pair of elements in P is ordered in accordance
with ‘�’, hence x � y. Finally, x � y implies that x �Q y, because Q must also
satisfy (??). The argument is similar under the assumption y �P x. ut

Proof (of Theorem ??). Assume that P ∪ Q contains a cycle. We must show that
this leads to a contradiction, and then the result follows from Lemma ??.

First note that P ∪Q is not an order relation, so we cannot assume transitivity etc.
Now, a cycle in P ∪Q is a finite sequence x1, x2 . . . xk of at least two distinct elements
such that

(xi �P xj) ∨ (xi �Q xj)
for i ∈ {1 . . . k − 1} ∧ j = i+ 1 and i = k ∧ j = 1.

Consider the sequence as a circular graph with vertices x1 . . . xk and colored, di-
rected edges between them—a green edge from xi to xj if xi �P xj and a red edge same
place if xi �Q xj (and both a red and a green edge if both xi �P xj and xi �Q xj).

Note that we cannot have have a complete red cycle or a complete green cycle, since
P and Q are both patterns and hence total orders. However, we can replace every green
path xa . . . xb with a green edge from xa to xb, thus deleting all elements between xa
and xb, and similarly for red paths. This is because P is transitive and Q is transitive,
and a single-color path refers to only one of P and Q. Any red edges on a green path
are just deleted in the process, and similarly for green edges on a red path. Assume
that we have performed this transformation as often as possible. The graph will now
have alternating red and green edges, corresponding to a cycle that can be described
as follows: It is a sequence of at least two distinct elements y1 . . . ym such that

(yi �P yi+1) ∧ (yi+1 �Q yj)

for i ∈ {1, 3, 5 . . .m− 3} and j = i+ 2, and i = m− 1 ∧ j = 1.
Note that yi ∈ dom(P )∩dom(Q) for all i ∈ {1 . . . m}, because every yi is adjacent

to both a red and a green edge. Since P is total this means that all elements on the
cycle are related in P . Now consider the sequence y1, y3, . . . ym−1. We cannot have
yi �P yj for all i ∈ {1, 3 . . . m− 3} ∧ j = i+ 2 and i = m− 1∧ j = 1, because then we
would have a cycle in P . So we have yj �P yi for some i ∈ {1, 3 . . . m− 3} ∧ j = i+ 2
or i = m − 1 ∧ j = 1. With a possible renaming we can assume that y3 �P y1. Then
we have y3 �P y1 �P y2 and by transitivity of P , y3 �P y2. But we also had y2 �Q y3,
which establishes the required contradiction since Lemma ?? tells us that the relation
y2 �Q y3 cannot exist in any pattern when y3 �P y2 exists in a rigid pattern. ut

10


