
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 14 pages

Towards Object-Oriented Klaim

Lorenzo Bettini1 Viviana Bono2 Betti Venneri1

1Dipartimento di Sistemi e Informatica, Università di Firenze
{bettini,venneri}@dsi.unifi.it

2Dipartimento di Informatica, Università di Torino
bono@di.unito.it

Abstract

By its own nature, mobile code requires flexibility in order to be adaptive to any
execution context it may be run in. In this paper we investigate this flexibility
requirement from the design point of view, and propose a solution based on the
mixin technique to fulfill it. We also propose an extension of the language Klaim
with object-oriented features, as an application of this approach.

1 Introduction

Internet provides technologies that allow the sharing of resources and services
among computers distributed geographically in wide area networks. The grow-
ing use of Internet as a primary environment for developing, distributing and
running programs requires new supporting infrastructures. A possible answer
to these requirements is the use of mobile code [25,12] and in particular of
mobile agents [19,28], which are software objects made of data and code that
can be sent on the net, or can autonomously migrate to a remote computer
and execute automatically on arrival.

Mobile code should be rather flexible in order to exploit the power of
communication and make a fruitful use of all the features/resources belonging
to the net’s sites taking part into the communication. In particular, the need
of processing tasks for which not all resources are available on the site they
reside may be fulfilled (i) either by importing additional code from remote
sites (code-on-demand); (ii) or by sending the task code for remote evaluation
to a remote site [12].

Thus mobile code must be very adaptive to different execution environ-
ments, yet it should be structured enough to specify, without ambiguities,
which are the needs it expects to fulfill and which are the constraints it is able
to respect. With these objectives in mind, it seems appealing to structure
mobile code following an object-oriented approach. Moreover, the natural
structure of object-oriented languages allows to statically type check the code

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Bettini et al.

in each site independently, and we can use this type information to dynami-
cally match code received from a remote site, so that the execution is still safe
in a distributed context. However, the standard, essentially static, features
of the inheritance mechanism for achieving flexibility do not scale well to a
mobile distributed context, as discussed in Section 3. For these reasons, we
propose an alternative approach, based on the notion of mixins, and in par-
ticular on a mixin-based calculus [5], for modelling the dynamism required by
mobility in case of object-oriented code.

Mixins (classes parameterized over superclasses) have become a focus of
active research both in the software engineering [26,24] and programming lan-
guage design [7,20,15] communities. Mixin inheritance has been shown to be
an expressive alternative to multiple inheritance [6] and a powerful tool for im-
plementing reusable class hierarchies. The key idea of mixin-based inheritance
is that it is more oriented to the concept of “completion” (since it is the derived
class, the mixin, that is completed with base classes, by means of an “appli-
cation” operation), as opposed to the concept of extendibility/specialization,
that is at the heart of class-based inheritance (where the base class is ex-
tended/specialized by subclasses). Thus, for example, the mixin approach
would allow a site to provide the base class, typically implementing the high-
level behavior of an architecture or of a strategy, and let the mobile code (e.g.,
a mobile agent), coded as a mixin, provide the particular implementation (this
is typical of design patterns [16]).

This paper aims at putting at test the mixin approach in a mobile scenario,
where object-oriented code is exchanged on the net. As an application, we
propose an extension of the language Klaim (Kernel Language for Agent
Interaction and Mobility) [13] with object-oriented features. The paper is
structured as follows. Section 2 briefly recalls the mixin calculus of [5]. In
Section 3 we investigate two relevant scenarios for mobile code. Section 4
introduces the object-oriented extension of Klaim, and Section 5 uses this
extension to picture two examples of the scenarios presented earlier.

2 The Mixin Calculus

A mixin (a class definition parameterized over the superclass) can be viewed
as a function that takes a class as a parameter and derives a new subclass
from it. The same mixin can be applied to many classes, obtaining a family of
subclasses with the same set of methods added and/or redefined. A subclass
can be implemented before its superclass has been implemented, thus mixins
remove the dependency of the subclass on the superclass, enabling modular
development of class hierarchies.

The formal setting of our approach is the mixin calculus presented in [5],
which is a standard calculus of functions, records, and imperative features
with new constructs to support classes and mixins. There are four main
expressions involving classes: classval, mixin, � (mixin application), and new

2

Bettini et al.

(class instantiation). Class values can be created by mixin application, and
objects can be created by class instantiation. A class value is essentially a
generator function, that, at the moment of class instantiation, is applied to
the field values and it solves all the hierarchy relations by calling its superclass’
generator function.

The syntax of the calculus is summarized in Table 1 1 ; we briefly comment
the parts that are relevant for our purposes (for the operational details of the
calculus we refer to [5]).

• classval〈vg, [mi]
i∈Meth , [p�]

�∈Prot〉 is a class value, i.e., the result of mixin ap-
plication. It is a triple, containing one function and two sets of variables.
The function vg is the generator for the class. The [mi] set contains the
names of all methods defined in the class, and the [p�] set contains the
names of protected methods.

• mixin

method mj = vmj
; (j∈New)

redefine mk = vmk
; (k∈Redef)

protect [p�];
(�∈Prot)

constructor vc;

end
is a mixin, in which mj = vmj

are definitions of new methods, and mk = vmk

are method redefinitions that will replace methods with the same name in
any class to which the mixin is applied. vmj,k

are value-expressions defining
a method body. Namely, each vmj,k

is a function of self , which will be
bound to the newly created object at instantiation time, and of the private
field. In method redefinitions, vmk

is also a function of next, which will be
bound to the old, redefined method from the superclass. The vc value in
the constructor clause is used when evaluating a mixin application to build
the generator of the class.

• e1 � e2 is an application of mixin e1 to class value e2. It produces a new
class value.

• new e uses generator vg of the class value, to which e evaluates, to create a
function that returns a new object, as briefly explained above.

The mixin calculus also relies on the Wright-Felleisen idea of store [29],
called heap here, in order to evaluate imperative side effects: the expres-
sion H〈x1, v1〉 . . . 〈xn, vn〉.exp associates reference variables x1, . . . xn with val-
ues v1, . . . , vn. H binds x1, . . . , xn to v1, . . . , vn in exp. The set of pairs h
in the expression Hh.exp represents the heap, where the results of evaluating
imperative subexpressions of exp are stored.

Finally, the calculus is equipped with a type system, centered around the
typing of mixin and of mixin application expressions. Here we only comment

1 In order to avoid ambiguity with the . used as the action prefix of Klaim, we use ⇐ for
method selection.

3

Bettini et al.

exp :: = const | x | λx.exp | exp1 exp2 | fix | ref | deref | :=
| {xi = expi}i∈I | exp ⇐ x | H h.exp | new exp

| classval〈vg, [mi]
i∈Meth , [p�]

�∈Prot〉
| mixin

method mj = vmj
; (j∈New)

redefine mk = vmk
; (k∈Redef)

protect [p�];
(�∈Prot)

constructor vc;

end

| exp1 � exp2

Table 1: the syntax of the calculus of mixins of [5].

the types of classes and mixins (we refer the interested reader to [5] for the
complete type system). In the following {xi : τi}i∈I is a record type and [p�] is
a set of names.

A class type has the following form:

class〈γ, {mi:τi}, [p�]〉i∈I,�∈L

where γ is the argument type of the constructor, {mi:τi}i∈All is the record
type of methods (which is also the type of self).

A mixin type gives information about the types of the methods already
present in the mixin itself and makes type assumption about the methods of
the superclass to which the mixin will be applied:

mixin〈γb, γd, {mi : τ
↑
mi , mk : τ

↑
mk}, {mj : τ

↓
mj , mk : τ

↓
mk}, [p�]〉

where

• γb is the expected argument type of the superclass constructor.

• γd is the exact argument type of the mixin constructor.

• {mi : τ ↑
mi , mk : τ ↑

mk} are the expected types of the methods that must be
supported by any class to which the mixin is applied. In particular, mi are
the methods that are not redefined by the mixin but still expected to be
supported by the superclass since they are called by other mixin methods.
Analogously, τ ↑

mk are the types assumed for the old bodies of the methods
redefined in the mixin.

• {mj :τ
↓
mj , mk :τ

↓
mk} are the exact types of mixin methods (new and redefined,

respectively).

• [p�] is an annotation listing the names of all methods to be protected, both
new and redefined.

The exact relationship between the types expected by the mixin and the
actual types of the superclass methods is formalized in the rule for typing
mixin application, where constraints are specified and have to be met in order

4

Bettini et al.

to build a full-fledged type-safe derived class from the application of a mixin
to a (base) class.

3 Mobility and Object-Oriented Code

Mobile code has been introducing some new programming paradigms [12]
that can be seen as evolved instances of the classical client-server design for
distributed applications. Indeed, in order to fulfill a specific task, a distributed
application can rely on mobile code in several ways:

• code can be downloaded from remote sites and executed locally (code-on-
demand);

• code can be sent to a remote site and executed there (remote evaluation);

• mobile agents can be scattered through the net so that they can au-
tonomously continue their execution on the computers they are visiting.

All these scenarios lead to the requirement of strong flexibility for mo-
bile code. This is evident in some, possible orthogonal, aspects that can be
summarized into two main ones:

• architecture and operating system independence (also called on-line porta-
bility [10]): this allows mobile code to execute in several different heteroge-
neous computers and operating systems;

• structural flexibility : mobile code must be able to adapt itself to the current
execution environment and to react accordingly (e.g., when some needed
operations and resources are not available on the local computer).

In this paper we address the second issue, and we aim at investigating it
under an object-oriented perspective. In order for mobile code to be adaptive,
it needs to be “incomplete”: those parts that are independent of the execution
environment must be abstracted away from the operations that need to be
specialized on the execution site (e.g., those that rely on system calls). The
execution site is then demanded to provide the implementations of the latter,
and so to “complete” the mobile code.

The object-oriented approach, with its mechanisms of inheritance and code
specialization, seems to be suitable for dealing with this issue. However, we
observe that the classical inheritance operation is essentially static in that it
fixes the inheritance hierarchy, i.e., it binds derived classes to their parent
class (or to their many parent classes, if multiple inheritance is provided by
the language) once for all. If such a hierarchy has to be changed, the program
must be modified and then recompiled. Indeed, what we are looking for is a
mechanism for providing a dynamic reconfiguration of the inheritance relation
between classes, not only a dynamic implementation of some operations.

Let us illustrate this by considering two different scenarios:

Scenario A (Remote evaluation). A base class is typically more appropriate

5

Bettini et al.

for modelling a generic behavior, so it is suitable for the local code. Thus
the base class provides generic operations of the execution site (e.g. system
calls). On the other hand, mobile code is better seen as the derived class
containing methods that can exploit those generic operations.

Scenario B (Code-on-demand). A site that downloads code for local ex-
ecution may want to redefine some, possible critic, operations that the
downloaded code may execute. This way the local site can be sure that
access to some sensitive resources is not granted to non-trusted code (for
example, it might decide to change some destructive “read” operations in
non-destructive ones in order to avoid that non-trusted code erases infor-
mation). Thus the downloaded code is better modelled with a base class,
that is specialized locally into a derived class after downloading.

Summarizing, in A the base class is the local code, while in B the base class
is the mobile code.

Clearly, the classical inheritance mechanism cannot structure the mobile
object-oriented code in order to reach the dynamism required in both scenar-
ios. Firstly, we could think of a mechanism for dynamically building a class
hierarchy when the code-on-demand base class is downloaded, and this would
somehow implement scenario B. However this technique would not help imple-
menting scenario A, since it would require a not-so-clear dynamic definition
of the base class. Secondly, we are convinced that the two scenarios should be
dealt with by the same mechanism, allowing to dynamically use mobile code,
in different environments, both as a base class for deriving new classes, and
as derived class for being “adopted” by a parent class.

The aim of the present paper is to show, from the point of view of the
design, how the mixin approach is a smooth solution for modelling mobility of
object-oriented code in any scenario, notably the two described above, since
mixin-based inheritance is more oriented to the concept of “completion” than
to the concept of extendibility/specialization typical of the classical form of
inheritance. Namely, with mixin-based inheritance, the inheritance relation
between a derived and a base class is not established through a declaration
(e.g., like extends in Java); instead it actually takes place through an opera-
tion, the mixin application, during the execution of a program, and it is not
in its declaration part.

While with standard class-based inheritance the only operation available
is the one that allows a class to inherit from a base class, in mixin-based in-
heritance also the complementary operation is provided: a base class can be
applied to a class (a mixin) that becomes a derived class. Since all possibly
derived classes (the mixins) are now parameterized over superclasses, the in-
heritance relation does not strongly couple derived classes and base classes
anymore, thus code reusability can be exploited at a higher level.

6

Bettini et al.

4 The language O’Klaim (Object Oriented Klaim)

In this section we propose to use the mixin approach for extending the lan-
guage Klaim 2 (Kernel Language for Agent Interaction and Mobility) with
object-oriented features.

Firstly, we briefly recall the main features of Klaim, then we show its
extended version O’Klaim, and finally we sketch how types are used in or-
der to guarantee the safe transmission and usage of mobile object-oriented
expressions.

4.1 An overview of Klaim

Klaim is a language that supports a programming paradigm where both
processes and data can be moved over different computing environments. It
is specifically centered on the notion of mobile code, implementing mobile
agents, and it is inspired by the Linda coordination model [17,11], relying on
the concept of tuple space; thus, processes can communicate with processes
running in other sites.

A tuple space is a multiset of tuples ; these are containers of information
items (called fields). There can be actual fields (i.e. expressions, processes, lo-
calities, constants, identifiers) and formal fields (i.e. variables). Syntactically,
a formal field is denoted with !ide, where ide is an identifier.

Pattern-matching is used to select tuples in a tuple space: two tuples
match if they have the same number of fields and corresponding fields match:
a formal field matches any value of the same type, and two actual fields match
only if they are identical (but two formals never match). For instance, tuple
(“foo”, “bar”, 100 + 200) matches with (“foo”, “bar”, !V al). After matching,
the variable of a formal field gets the value of the matched field: in the previous
example, after matching, V al (an integer variable) will contain the integer
value 300. The pattern-matching predicate, used in the operational semantics
(see [13] for details), is reported in Table 2. We observe that tuple items in
Klaim are not typed explicitly: the matching relies on the syntactic form
of the identifiers (u for locality variables, x for basic expressions and X for
processes).

In Linda there is only one global shared tuple space; Klaim extends Linda
by handling multiple distributed tuple spaces. Tuple spaces are placed on
nodes that are part of a net. Each node contains a single tuple space and pro-
cesses in execution; a node can be accessed through its locality 3 . A reserved
locality, self, can be used by processes to refer to their execution node.

2 The design philosophy and the detailed description of the language are presented in [13];
Klaim prototype implementation is described in [2].
3 For the purposes of this paper, the distinction between logical localities and physical
localities and the notion of allocation environment are not relevant, so we skip them; we
refer the interested reader to [13] for further details.

7

Bettini et al.

match(e, e) match(�, �) match(P, P)

match(!x, e) match(!u, �) match(!X,P)

match(et2, et1)

match(et1, et2)

match(et1, et2) match(et3, et4)

match((et1, et3), (et2, et4))

Table 2: The Matching Rules

Let us briefly comment the syntax of Klaim Processes, summarized in Ta-
ble 3. Processes are the active computational units and may be executed con-
currently either at the same site or at different sites. They are built from the
basic operations by using standard operators borrowed from process algebras
[21], such as, e.g., action prefixing, parallel composition and nondeterministic
choice.

P :: = nil (null process)

| act.P (action prefixing)

| P1 | P2 (parallel composition)

| P1 + P2 (non-deterministic choice)

| X (process variable)

| A〈P̃ , �̃, ẽ〉 (process invocation)

act :: = out(t)@� | in(t)@� | read(t)@� | eval(P)@� | newloc(u)

t :: = f | f, t

f :: = e | P | � | ! x | !X | !u
Table 3: Klaim Process Syntax

Klaim processes can perform five basic operations over nodes. in(t)@�
evaluates the tuple t and looks for a matching tuple t′ in the tuple space
located at �. Whenever the matching tuple t′ is found, it is removed from the
tuple space. The corresponding values of t′ are then assigned to the formal
fields of t and the operation terminates. If no matching tuple is found, the
operation is suspended until one is available. read(t)@� differs from in(t)@�
only because the tuple t′, selected by pattern-matching, is not removed from
the tuple space located at �. out(t)@� adds the tuple resulting from the
evaluation of t to the tuple space located at �. eval(P)@� spawns process P
for execution at node �. newloc(u) creates a new node in the net and binds its
site to u. The node can be considered a “private” node that can be accessed

8

Bettini et al.

by the other nodes only if the creator communicates the value of variable u,
which is the only way to access the fresh node.

4.2 O’Klaim

In the extension O’Klaim we propose here, object-oriented mobile code can
be exchanged on the net, as well as processes, according to the Linda pro-
gramming paradigm. O’Klaim processes are formally defined in Table 4. By
using the mixin-based approach above introduced, mobile code can be used
by the receiving site in several ways. Namely it can be:

• composed with a class, if it represents a mixin that needs to be completed,
so creating a new class;

• instantiated, if it represents a class or a mixin, so giving rise either to an
object or to an incomplete object, respectively;

• composed with another object, if it represents an incomplete object, i.e. an
object instantiated from a mixin;

P :: = nil (null process)

| act.P (action prefixing)

| P1 | P2 (parallel composition)

| P1 + P2 (non-deterministic choice)

| X (process variable)

| A〈P̃ , �̃, ẽ〉 (process invocation)

| exp (object-oriented expression)

| let x = exp in P (let)

act :: = out(t)@� | in(t)@� | read(t)@� | eval(P)@� | newloc(u)

t :: = f | f, t

f :: = e | P | � | ! x | !X | !u | !m : τ

Table 4: O’Klaim Process Syntax

For our purpose, the operations of in (and read) and out, retrieving from
and inserting into a tuple space, are particularly significant. In order to obtain
O’Klaim, we extend the Klaim syntax of tuples t so including any object-
oriented expression. In particular, !m : τ is a formal field for retrieving an
object oriented expression of type τ (the details of types are explained in
Section 4.3). Then, in the particular case when t is a mixin, the actions in(t)@�
(and read(t)@�) and out(t)@� are used to move a piece of object-oriented

9

Bettini et al.

code from/to a locality �, respectively. Moreover, the set of actions has to
be extended in order to include operations on object-oriented expressions,
as defined in the mixin calculus presented in Section 2. We introduce the
construct let x = exp in P as a terminating process in order to pass to the
sub-process P the results of an object-oriented computation.

Figure 1 depicts a possible use of the extended syntax.

�1 �2

out(M)@�2
in(!m : τ)@self.
(new(m�C)) ⇐ start()

mixin M

Fig. 1: An example of remote evaluation based on object-oriented mobile
code: the receiver site completes the received mixin m (of type τ) with the
local class C, it creates an instance of the new class, and calls method start
on the newly created object.

4.3 Typing

At this stage we are not interested in typing every kind of tuple items, thus we
can associate a type void to them but for the case when they are object oriented
expressions. These are typed by the inference rules defined in [5]. We observe
that rules for classes are standard, while mixin-types encode type requirements
on expected class arguments (Section 2). Thus mixins are type-checked locally,
in the site where they are defined. As a consequence, the operational semantics
of O’Klaim will take account type information. Indeed, an out operation
adds a tuple decorated with a type to a tuple space. Conversely, a process
can perform an in action by synchronizing with a process which represents a
matching typed tuple.

To this aim, the standard matching predicate for tuples, match (Table 2),
is rewritten as typedmatch, as follows:

typedmatch(f1, f2) =

match(f1, f2)

if (type of f1) = (type of f2) = void

(type of f1) = (type of f2)

otherwise

In particular, the last condition checks whether the object-oriented code,
downloaded from a remote site by an in (or read) operation, is an object-
oriented expression that behaves in accordance with the expected features.

The main advantage of this matching is the dynamic use of statically in-
ferred types. The type of the retrieved expression is built statically by the
type inference system of [5]. Then typedmatch uses this type information, de-
livered together with the retrieved expression, in order to dynamically check

10

Bettini et al.

that the received item is correct w.r.t. the type of the formal field, say τ . In a
process of the form in(!m : τ)@l.P , the type τ is used to statically type check
the continuation P , where m is possibly used.

The type inference system of O’Klaim is obviously connected to the issue
of type safety, that naturally pops up when object-oriented expressions are
moved to different localities and used in different environments. This property
can be essentially enforced by the type inference system already defined for
the mixin calculus [5]. Then type matching guarantees that the moved code
complies with the expected code. As a consequence, completing mobile mixins
for defining new derived/base classes on the remote site will produce only
well-typed classes, so avoiding run-time type errors. Thus type safety of the
communication results from the (static) type soundness of local and mobile
code, with no need of further re-compilation and type-checking. This topic will
be widely investigated in a separate paper (work in progress) dealing with
operational semantics and type properties for O’Klaim. Moreover, this type
discipline can be embedded into the type system defined for Klaim in [14],
that aims at enforcing secure access control for processes.

5 Mixin Mobility in O’Klaim

We present in the following two simple examples showing mobility of mixins
in O’Klaim with types. They code the remote evaluation and the code-on-
demand situations discussed in Section 3. Let us observe that both situations
can be seen as examples of mobile agents as well.

Example 1. Let agent represent the type of a mixin defining a mobile agent
that has to print some data by using the local printer on any remote site
where it is shipped for execution. Obviously, since the print operation highly
depends on the execution site (even only because of the printer drivers), it
is sensible to leave such method to be defined. The mixin can be applied,
on the remote site, to a local class printer which provides the specific im-
plementation of the print method in the following way:

in(!mob agent : agent)@self.

let PrinterAgent = mob agent � printer in

(new PrinterAgent) ⇐ start()

Example 2. Let agent be a class defining a mobile agent that has to access
the file system of a remote site. If the remote site wants to execute this
agent while restricting the access to its own file system, it can locally define
a mixin restricted, redefining the methods accessing the file system according
to specific restrictions. Then the arriving agent can be composed with the
local mixin in the following way.

in(!mob agent : agent)@self.

let RestrictedAgent = restricted � mob agent in

(new RestrictedAgent) ⇐ start()

11

Bettini et al.

This example can be seen as an implementation of a “sandbox”.

The above examples highlight how an object-oriented expression
(!mob agent) can be used by the receiver site both as a mixin (Example 1) and
as a base class 4 (Example 2). We remark that a solution based on delegation
would destroy at least the dynamic binding and the reusability of the whole
system [3]. Instead, the main feature of this approach is that new classes, ob-
tained by composing local and remote code, are directly embedded into class
hierarchies locally developed, without changing existing code while preserving
polymorphism by subtyping.

6 Conclusions and Related work

In the literature, there are several proposal for combining objects with pro-
cesses and/or mobile agents. Obliq [9] is a lexically-scoped interpreted lan-
guage providing distributed object-oriented computation. Mobile code main-
tains network references and provides transparent access to remote resources.
In [8], a general model for integrating object-oriented features in calculi of
mobile agents is presented: agents are extended with method definitions and
constructs for remote method invocations. In [4], concurrency is introduced in
a object-based language, through the identification of objects and processes.
In [23], concurrent object-based programming is considered, using the pict
language. [18] extends the Abadi and Cardelli’s imperative object calculus
[1] with operators for concurrency from the π-calculus [22] and with other
operators for synchronization. Apart from [9,8], all these works are then con-
centrated on synchronization features of concurrent objects.

In this paper we are concerned about exchange of mobile code. Central in
our approach is the fact that we chose a class-based calculus, instead of being
centered on a object-based one, and the whole calculus seems to shed some
light on how the mixin-based approach can be fruitfully used to see classes as
mobile (possibly incomplete) processes. In our calculus, objects are not made
distributed explicitly, thus no remote method call functionality is considered.
Instead of formalizing remote procedure calls (like most of the above men-
tioned approaches), we are interested in the introduction of safe and scalable
distribution of object-oriented code, in a calculus where communication facili-
ties are already provided. To this aim we add object-oriented expressions to a
mobile code kernel language and establish the foundations for their integration
in a flexible and uniform setting.

References

[1] Abadi, M. and L. Cardelli, “A Theory of Objects,” Springer, 1996.

4 Every mixin can be formally made into a class value by applying it to the empty top class
Object, as explained in [5].

12

Bettini et al.

[2] Bettini, L., R. De Nicola, G. Ferrari and R. Pugliese, Interactive Mobile Agents
in X-Klaim, in: P. Ciancarini and R. Tolksdorf, editors, Proc. of the 7th Int.
IEEE Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE) (1998), pp. 110–115.

[3] Bettini, L., M. Loreti and B. Venneri, On Multiple Inheritance in Java, in: Proc.
of TOOLS EASTERN EUROPE, Emerging Technologies, Emerging Markets,
2002, to appear.

[4] Blasio, P. D. and K. Fisher, A Calculus for Concurrent Objects, in: U. Montanari
and V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th Int. Conf.,
LNCS 1119 (1996), pp. 655–670.

[5] Bono, V., A. Patel and V. Shmatikov, A Core Calculus of Classes and Mixins,
in: R. Guerraoui, editor, Proceedings ECOOP’99, number 1628 in LCNS (1999),
pp. 43–66.

[6] Boyen, N., C. Lucas and P. Steyaert, Generalised Mixin-based Inheritance
to Support Multiple Inheritance, Technical Report vub-prog-tr-94-12, Vrije
Universiteit Brussel (1994).

[7] Bracha, G. and W. Cook, Mixin-based inheritance, in: Proc. OOPSLA ’90, 1990,
pp. 303–311.

[8] Bugliesi, M. and G. Castagna, Mobile Objects, in: Proc. of FOOL, 2000.

[9] Cardelli, L., A Language with Distributed Scope, Computing Systems 8 (1995),
pp. 27–59.

[10] Cardelli, L., Mobile computation, in: Vitek and Tschudin [27], pp. 3–6.

[11] Carriero, N. and D. Gelernter, Linda in Context, Comm. of the ACM 32 (1989),
pp. 444–458.

[12] Carzaniga, A., G. Picco and G. Vigna, Designing Distributed Applications with
Mobile Code Paradigms, in: R. Taylor, editor, Proc. of the 19th Int. Conf. on
Software Engineering (ICSE ’97) (1997), pp. 22–33.

[13] De Nicola, R., G. Ferrari and R. Pugliese, Klaim: a Kernel Language for
Agents Interaction and Mobility, IEEE Transactions on Software Engineering
24 (1998), pp. 315–330.

[14] De Nicola, R., G. Ferrari, R. Pugliese and B. Venneri, Types for Access Control,
Theoretical Computer Science 240 (2000), pp. 215–254.

[15] Flatt, M., S. Krishnamurthi and M. Felleisen, Classes and mixins, in: Proc.
POPL ’98, 1998, pp. 171–183.

[16] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison-Wesley, 1995.

[17] Gelernter, D., Generative Communication in Linda, ACM Transactions on
Programming Languages and Systems 7 (1985), pp. 80–112.

13

Bettini et al.

[18] Gordon, A. D. and P. D. Hankin, A Concurrent Object Calculus: Reduction
and Typing, in: U. Nestmann and B. C. Pierce, editors, Proc. of HLCL ’98:
High-Level Concurrent Languages, ENTCS 16.3 (1998).

[19] Harrison, C., D. Chess and A. Kershenbaum, Mobile agents: Are they a good
idea?, Research Report 19887, IBM Research Division (1994).

[20] Limberghen, M. V. and T. Mens, Encapsulation and composition as orthogonal
operators on mixins: a solution to multiple inheritance problems, Object
Oriented Systems 3 (1996), pp. 1–30.

[21] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[22] Milner, R., J. Parrow and J. Walker, A Calculus of Mobile Processes, I and II,
Information and Computation 100 (1992), pp. 1–40, 41–77.

[23] Pierce, B. C. and D. N. Turner, Concurrent Objects in a Process Calculus,
in: T. Ito and A. Yonezawa, editors, Proc. Theory and Practice of Parallel
Programming (TPPP 94), LNCS 907 (1995), pp. 187–215.

[24] Smaragdakis, Y. and D. Batory, Implementing layered designs with mixin layers,
in: Proc. ECOOP ’98, 1998, pp. 550–570.

[25] Thorn, T., Programming Languages for Mobile Code, ACM Computing Surveys
29 (1997), pp. 213–239, also Technical Report 1083, University of Rennes
IRISA.

[26] VanHilst, M. and D. Notkin, Using role components to implement collaboration-
based designs, in: Proc. OOPSLA ’96, 1996, pp. 359–369.

[27] Vitek, J. and C. Tschudin, editors, “Mobile Object Systems - Towards the
Programmable Internet,” Springer, 1997.

[28] White, J. E., Mobile Agents, in: J. Bradshaw, editor, Software Agents (1996).

[29] Wright, A. and M. Felleisen, A syntactic approach to type soundness,
Information and Computation 115 (1994), pp. 38–94.

14

