
O’Klaim: a coordination language
with mobile mixins

Lorenzo Bettini1 Viviana Bono2 Betti Venneri1

1Dipartimento di Sistemi e Informatica, Università di Firenze,
{bettini,venneri}@dsi.unifi.it

2Dipartimento di Informatica, Università di Torino, bono@di.unito.it

Abstract. This paper presents O’Klaim (Object-Oriented Klaim), a
linguistic extension of the higher-order calculus for mobile processes
Klaim with object-oriented features. Processes interact by an asyn-
chronous communication model: they can distribute and retrieve re-
sources, sometimes structured as incomplete classes, i.e., mixins, to and
from distributed tuple spaces. This mechanism is coordinated by provid-
ing a subtyping relation on classes and mixins, which become polymor-
phic items during communication. We propose a static typing system
for: (i) checking locally each process in its own locality; (ii) decorat-
ing object-oriented code that is sent to remote sites with its type. This
way, tuples can be dynamically retrieved only if they match by subtyp-
ing with the expected type. If this pattern matching succeeds, the so
retrieved code can be composed with local code, dynamically and auto-
matically, in a type-safe way. Thus a global safety condition is guaranteed
without requiring any additional information on the local reconfiguration
of local and foreign code, and, in particular, without any further type
checking. Finally, we present main issues concerning the implementation
of O’Klaim.

1 Introduction

Mixins [14, 22, 2] are (sub)class definitions parameterized over a superclass and
were introduced as an alternative to standard class inheritance. A mixin could
be seen as a function that, given one class as an argument, produces another
class, by adding or overriding specific sets of methods. The same mixin can be
used to produce a variety of classes with the same functionality and behavior,
since they all have the same sets of methods added and/or redefined. The su-
perclass definition is not needed at the time of writing the mixin definition,
thus improving modularity. The uniform extension and modification of classes
is instead absent from the classical class-based languages. Moreover, in class-
based languages, parentage is determined statically at compile time instead of
at run-time.

Due to their dynamic nature, mixin inheritance can be fruitfully used in a
mobile code setting [28, 17]. In [7], we introduced MoMi (Mobile Mixins), a co-
ordination model for mobile processes that exchange object-oriented code. The

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301858475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

underlying idea motivating MoMi is that standard class-based inheritance mech-
anisms, which are often used to implement distributed systems, do not appear to
scale well to a distributed context with mobility. MoMi’s approach consists in
structuring mobile object-oriented code by using mixin-based inheritance, and
this is shown to fit into the dynamic and open nature of a mobile code scenario.
For example, a downloaded mixin, describing a mobile agent that has to access
some files, can be completed with a base class in order to provide access meth-
ods that are specific of the local file system. Conversely, critical operations of
a mobile agent, enclosed in a downloaded class, can be redefined by applying a
local mixin to it (e.g., in order to restrict the access to sensible resources, as in
a sand-box). Therefore, MoMi is a combination of a core coordination calculus
and an object-oriented mixin-based calculus.

MoMi highly relies on typing. The most important feature of MoMi’s typing
is the subtyping relation that guarantees safe, yet flexible, code communication.
We assume that the code that is sent around has been successfully compiled in
its own site (independently from the other sites), and it travels together with its
static type. When the code is received on a site (whose code has been successfully
compiled, too), it is accepted only if its type is compliant with respect to the
one expected, where compliance is based on subtyping. Thus, dynamic type
checking is performed only at communication time. This is a crucial matter for
mobility, since mobile code and in particular mobile agents are expected to be
autonomous: once the communication successfully occurred, transmitted code
behaves remotely in a (type) safe way (no failure communication to the sender
will ever be required). This makes the code exchange an atomic action.

This paper presents the experimental language O’Klaim that is obtained by
applying MoMi’s approach [7] to the language Klaim [18, 4], which is specifi-
cally designed to program distributed systems where mobile components interact
through multiple distributed tuple spaces and mobile code. A preliminary design
that led to O’Klaim was introduced in [6]. Klaim offers a much more sophisti-
cated, complete, and effective coordination mechanism of mobile processes than
the toy language of MoMi, where the focus was mainly on the subtyping rela-
tion on classes and mixins. O’Klaim integrates the mixin-based object-oriented
features into a mobile code calculus with an asynchronous coordination mecha-
nism. To this aim, the notion of “tuple” is extended to include object-oriented
code, therefore Klaim processes can retrieve from and insert into tuple spaces
object-oriented components (in particular, classes, mixins and objects) as well
as standard Klaim processes. A type system is designed for checking statically
the extended notion of processes, so that compiled processes contain some static
type information which is used dynamically. Indeed, the tuples that are added
to a tuple space are decorated with their type. Therefore, a process willing to
retrieve a tuple from a tuple space will employ an extended pattern matching
mechanism that uses also this tuple type information. This matching essentially
consists in checking subtyping on object-oriented components. If the code is
successfully accepted, it can interact with the local code in a safe way (i.e., no
run-time errors) without requiring any further type checking of the whole code.

2

Type safety of the communication results from the static type soundness of lo-
cal and foreign code and a (global) subject reduction property. In particular,
we show that the subject reduction property is based on a crucial property of
substitutivity by subtyping. The underlying substitution operation requires spe-
cific methods renaming, in order to avoid problems that arise when classes and
mixins are used as first-class data in a mobile code setting where matching relies
on subtyping. These new metatheoretical results about the precise concept of
substitution to be used extend and improve the results presented for MoMi in
[7].

Summarizing, O’Klaim aims at two complementary goals. Firstly, subtyping
on classes and mixins (as designed for MoMi) is successfully experimented as
a coordination mechanism within a mobile code calculus with a more sophis-
ticated communication mechanism. Secondly, the language Klaim is enriched
with object-oriented code. This casts some light on how the same approach can
be fruitfully used for extending many other mobile code languages with safe
object-oriented code exchange. Finally, the implementation of O’Klaim is pre-
sented. This consists in a Java package, momi, providing the run-time systems for
classes and mixins that can be dynamically manipulated and composed. The pro-
gramming language X-Klaim (that implements the basic concepts of Klaim)
has been extended in order to be compiled into Java code exploiting the momi
package.

2 O’Klaim: an object-oriented Klaim

O’Klaim is a linguistic integration of Klaim with object-oriented features, fol-
lowing the design of MoMi [7]. The coordination part and the object-oriented
part are orthogonal, so that, in principle, such an integration would work for any
extension/restriction of Klaim (as discussed in [4]) and also for other calculi for
mobility and distribution, such as DJoin [23]. We first recall the main features
of Klaim and MoMi and then we show how they are integrated in order to
build O’Klaim.

2.1 The basics of Klaim

Klaim (Kernel Language for Agent Interaction and Mobility) [18, 4] is a coordi-
nation language inspired by the Linda model [24], hence it relies on the concept
of tuple space. A tuple space is a multiset of tuples; these are sequences of in-
formation items (called fields). There are two kinds of fields: actual fields (i.e.,
expressions, processes, localities, constants, identifiers) and formal fields (i.e.,
variables). Syntactically, a formal field is denoted with !ide, where ide is an
identifier. Tuples are anonymous and content-addressable; pattern-matching is
used to select tuples in a tuple space:

– two tuples match if they have the same number of fields and corresponding
fields have matching values or formals;

– formal fields match any value of the same type, but two formals never match,
and two actual fields match only if they are identical.

3

For instance, tuple ("foo", "bar", 300) matches with ("foo", "bar", !val). After
matching, the variable of a formal field gets the value of the matched field: in
the previous example, after matching, val (an integer variable) will contain the
value 300.

Tuple spaces are placed on nodes (or sites), which are part of a net. Each node
contains a single tuple space and processes in execution, and can be accessed
through its locality. The distinction between logical and physical locality (and
thus the concept of “allocation environment”), the creation of new nodes and
process definitions are not relevant in the O’Klaim context, thus, for the sake
of simplicity, we omit them in the present formal presentation. Notice, however,
that their integration, being orthogonal, is completely smooth.

Klaim processes may run concurrently, both at the same node or at different
nodes, and can perform five basic operations over nodes. in(t)@` looks for tuple
t′ that matches with t in the tuple space located at `. Whenever the matching
tuple t′ is found, it is removed from the tuple space. The corresponding values
of t′ are then assigned to the formal fields of t and the operation terminates.
If no matching tuple is found, the operation is suspended until one is available.
read(t)@` differs from in(t)@` only because the tuple t′, selected by pattern-
matching, is not removed from the tuple space located at `. out(t)@` adds the
tuple t to the tuple space located at `. eval(P)@` spawns process P for execution
at node `.

Klaim is higher-order in that processes can be exchanged as primary class
data. While eval(P)@` spawns a process for (remote) evaluation at `, processes
sent with an out must be retrieved explicitly at the destination site. The re-
ceiver can then execute the received process locally, as in the following process:
in(!X)@self.eval(X)@self.

2.2 MoMi and O’Klaim

MoMi was introduced in [7], where mixin inheritance is shown to be more flex-
ible than standard class inheritance to fit into the dynamic nature of a mobile
code scenario. The key rôle in MoMi’s typing is played by a subtyping relation
that guarantees safe, yet flexible and scalable, code communication. MoMi’s
subtyping involves not only object subtyping, but also a form of class subtyping
and mixin subtyping: therefore, subtyping hierarchies are provided along with
the inheritance hierarchies. It is important to notice that we are not violating
the design rule of keeping inheritance and subtyping separated, since mixin and
class subtyping plays a pivotal role only during the communication, when classes
and mixins become genuine run-time polymorphic values.

In synthesis, MoMi consists of:

1. the definition of an object-oriented “surface calculus” containing essential
features that an object-oriented language must have to write mixin-based
code;

2. the definition of a new subtyping relation on class and mixin types to be
exploited dynamically at communication time;

4

exp ::= v (value)
| new exp (object creation)
| exp ⇐ m (method call)
| exp1 � exp2 (mixin appl.)

v ::= {mi = bi
i∈I} (record)

| x (variable)
| class [mi = bi

i∈I] end (class def)

|

mixin
expect[mi : τmi

i∈I]

redef[mk : τmk with bk
k∈K]

def[mj = bj
j∈J]

end

(mixin def)

Table 1. Syntax of object-oriented terms.

3. a very primitive coordination language consisting in a synchronous send/re-
ceive mechanism, to study the communication of the mixin-based code
among different site.

O’Klaim integrates the object-oriented component of MoMi, in particular
the subtyping relation on classes and mixins (both described in the next section),
within Klaim, which offers a much more sophisticated, complete, and effective
coordination mechanism than the toy one of MoMi.

2.3 O’Klaim: object-oriented expressions

In this section we present the object-oriented part of O’Klaim, which is defined
as a class-based object-oriented language supporting mixin-based class hierar-
chies via mixin definition and mixin application. It is important to notice that
specific incarnations of most object-oriented notions (such as, e.g., functional
or imperative nature of method bodies, object references, cloning, etc.) are ir-
relevant in this context, where the emphasis is on the structure of the object-
oriented mobile code. Hence, we work here with a basic syntax of the kernel
object-oriented calculus.

Object-oriented expressions offer object instantiation, method call and mixin
application; � denotes the mixin application operator. An object-oriented value,
to which an expression reduces, is either an object, which is a (recursive) record
{mi = bi

i∈I}, or a class definition, or a mixin definition, where [mi = bi
i∈I]

denotes a sequence of method definitions, [mk : τmk
with bk

k∈K] denotes a se-
quence of method re-definitions, and I, J and K are sets of indexes. Method
bodies, denoted here with b (possibly with subscripts), are closed terms/pro-
grams and we ignore their actual structure. A mixin can be seen as an abstract
class that is parameterized over a (super)class. Let us describe informally the
mixin use through a tutorial example:

M = mixin
expect [n : τ]
redef [m2 : τ2 with . . . next . . .]
def [m1 = . . . n() . . .]

end

C = class
[n = . . .
m2 = . . .]

end

(new (M � C))⇐ m1()

5

τ ::= Σ | ι | τ1 → τ2

| class〈Σ〉
| mixin〈Σnew , Σred , Σexp〉

Σ ::= {mi : τmi
i∈I}

Table 2. Syntax of types.

(proj)
Γ, x : τ ` x : τ

Γ {mi = bi
i∈I} : {mi : τmi

i∈I}
(rec)

Γ ` {mi = bi
i∈I} : {mi : τmi

i∈I}

Γ ` {mi = bi
i∈I} : {mi : τmi

i∈I}
(class)

Γ ` class [mi = bi
i∈I] end : class〈{mi : τmi

i∈I}〉

Γ,
⋃

i∈I mi : τmi ,
⋃

k∈K mk : τmk ` {mj = bj
j∈J} : {mj : τmj

j∈J}
Γ,

⋃
i∈I mi : τmi ,

⋃
k∈K mk : τmk ,

⋃
j∈J mj : τmj , next : τmr br : τ ′mr

τ ′mr
<: τmr ∀r ∈ K

Subj (Σnew) ∩ Subj (Σexp) = ∅ Subj (Σnew) ∩ Subj (Σred) = ∅
Subj (Σred) ∩ Subj (Σexp) = ∅

(mixin)

Γ `

mixin
expect[mi : τmi

i∈I]

redef[mk : τmk with bk
k∈K]

def[mj = bj
j∈J]

end

: mixin〈Σnew , Σred , Σexp〉

where Σnew = {mj : τmj
j∈J}, Σred = {mk : τmk

k∈K}, Σexp = {mi : τmi
i∈I}

Table 3. Typing rules for object-oriented values
Each mixin consists of three parts:

1. methods defined in the mixins, like m1;
2. expected methods, like n, that must be provided by the superclass;
3. redefined methods, like m2, where next can be used to access the implemen-

tation of m2 in the superclass.

The application M � C constructs a class, which is a subclass of C.
The typing for the object-oriented code essentially refines the typing rules

sketched in [7]. The set T of types is defined in Table 2. ι is a basic type and →
is the functional type operator. Σ (possibly with a subscript) denotes a record
type of the form {mi : τmi

i∈I}. if mi : τmi ∈ Σ we say that the subject mi occurs
in Σ (with type τmi). Subj (Σ) is the set of the subjects of Σ and Meth(Σ) is
the set of all the method names occurring in Σ (e.g., if Σ = {m : {n : τ}}) then
Subj (Σ) = {m} while Meth(Σ) = {m,n}). As we left method bodies unspecified
(see above), we must assume that there is an underlying system to type method
bodies and records. We will denote this typing with . Rules for are obviously
not specified, but -statements are used as assumptions in other typing rules.
The typing rules for values are in Table 3.

Mixin types, in particular, encode the following information:

1. record types Σnew and Σred contain the types of the mixin methods (new
and redefined, respectively);

6

Γ ` exp : {mi : τmi

i∈I} j ∈ I
(lookup)

Γ ` exp ⇐ mj : τmj

Γ ` exp : class〈{mi : τmi

i∈I}〉
(new)

Γ ` new exp : {mi : τmi

i∈I}

Γ ` exp1 : mixin〈Σnew , Σred , Σexp〉
Γ ` exp2 : class〈Σb〉
Σb <: (Σexp ∪Σred)
Meth(Σb) ∩Meth(Σnew) = ∅

(mixin app)
Γ ` exp1 � exp2 : class〈Σb ∪Σnew 〉

Table 4. Typing rules for object-oriented expressions.

2. record type Σexp contains the expected types, i.e., the types of the methods
expected to be supported by the superclass;

3. well typed mixins are well formed, in the sense that name clashes among the
different families of methods are absent (the last three clauses of the (mixin)
rule).

The typing rules for expressions are in Table 4.
Rule (mixin app) relies strongly on a subtyping relation <: . The subtyping

relation rules depend obviously on the nature of the object-oriented language we
choose, but an essential constraint is that it must contain the subtyping-in-width
rule for record types: Σ2 ⊆ Σ1 ⇒ Σ1 <:Σ2.

We consider m : τ1 and m : τ2 as distinct elements, and Σ1 ∪ Σ2 is the
standard record union. Σ1 and Σ2 are considered equivalent, denoted by Σ1 =
Σ2, if they differ only for the order of their pairs mi : τmi

.
In the rule (mixin app), Σb contains the type signatures of all methods sup-

ported by the superclass to which the mixin is applied. The premises of the rule
(mixin app) are as follows:

i) Σb <: (Σexp∪Σred) requires that the superclass provides all the methods that
the mixin expects and redefines.

ii) Meth(Σb) ∩ Meth(Σnew) = ∅ guarantees that name clashes cannot occur
during the mixin application.

Notice that the superclass may have more methods than those required by the
mixin constraints. Thus, the type of the mixin application expression is a class
type containing both the signatures of all the methods supplied by the superclass
(Σb) and those of the new methods defined by the mixin (Σnew).

Now the key point is the introduction of a novel subtyping relation, de-
noted by v, defined on class and mixin types. This subtyping relation is used to
match dynamically the actual parameter’s types against the formal parameter’s
types during communication. The part of the operational semantics of O’Klaim,
which describes communication formally, is presented in Section 2.6. The sub-
typing relation v is defined in Table 5; rule (v class) is naturally induced by the
(width) subtyping on record types, while rule (v mixin): permits the subtype
to define more ‘new’ methods; prohibits to override more methods; and enables
a subtype to require less expected methods.

7

Σ′ <: Σ
(v class)

class〈Σ′〉 v class〈Σ〉

Σ′
new <: Σnew Σexp <: Σ′

exp Σ′
red = Σred

(v mixin)
mixin〈Σ′

new , Σ′
red , Σ′

exp〉 v mixin〈Σnew , Σred , Σexp〉
Table 5. Subtype on class and mixin types.

P ::= nil (null process)∣∣ act.P (action prefixing)∣∣ P1 | P2 (parallel composition)∣∣ X (process variable)∣∣ let x = exp in P (object-oriented expression)

act ::= out(t)@`
∣∣ in(t)@`

∣∣ read(t)@`
∣∣ eval(P)@`

` ::= l
∣∣ χ

t ::= f
∣∣ f, t

f ::= arg
∣∣ ! id : σ

id ::= x
∣∣ X

∣∣ χ

arg ::= id
∣∣ e

∣∣ P
∣∣ l

∣∣ v

N ::= l :: P (single node)∣∣ l :: 〈t〉 (located tuple)∣∣ N1 ‖ N2 (net composition)

Table 6. O’Klaim syntax (see Table 1 for the syntax of exp and v and Section 2.5 for
types σ).

2.4 O’Klaim: processes and nets

O’Klaim syntax is defined in Table 6. In order to obtain O’Klaim, we ex-
tend the Klaim syntax of tuples t to include any object-oriented value v (de-
fined in Table 1). In particular, differently from Klaim, formal fields are now
explicitly typed. Actions in(t)@` (and read(t)@`) and out(t)@` can be used
to move object-oriented code (together with the other Klaim items) from/to
a locality `, respectively. Moreover, we add to Klaim processes the construct
let x = exp in P in order to pass to the sub-process P the result of computing an
object-oriented expression exp (for exp syntax see Table 1). We use the follow-
ing syntactic convention: x, X and χ are variables representing object-oriented
values, processes and localities, respectively. A constant locality (e.g., IP:port)
is denoted by l. Moreover, e is a basic expression (i.e., not object-oriented).

A Net is a finite collection of nodes. A node is a pair where the first component
is a (constant) locality and the second component is either a process P or a tuple
〈t〉. Thus, a tuple space is represented by the parallel composition of located
tuples.

8

(proj)
Γ, id : σ ` id : σ

(loc)
Γ ` l : loc

(nil)
Γ ` nil : proc

a ≡ in, read,out

Γ ` ` : loc
Γ ` fi : σi i = 1, . . . , n ∧ fi ≡ arg
Γ ∪ ftypes(f1, . . . , fn) ` P : proc

(action)
Γ ` a(f1, . . . , fn)@`.P : proc

ftypes(f, t) =

{
{id : σ} ∪ ftypes(t) if f ≡ !id : σ
ftypes(t) otherwise

Γ ` Q : proc Γ ` ` : loc
(eval)

Γ ` eval(Q)@`.P : proc

Γ ` P1 : proc Γ ` P2 : proc
(comp)

Γ ` (P1 | P2) : proc

Γ ` exp : τ Γ, x : τ ` P : proc
(let)

Γ ` let x = exp in P : proc

Table 7. Typing rules for processes

2.5 Typing for O’Klaim

In order to type processes and nets, we extend the set of types T of Table 2
to T ∗ = T ∪ {proc, loc}. σ will range over T ∗; in particular, loc is used to
type localities and proc for well-typed processes. Typing rules for processes are
defined in Table 7. O’Klaim type system is not concerned with access rights
and capabilities, as it is instead the type system for Klaim presented in [19].
In the O’Klaim setting, types serve the purpose of avoiding the “message-not-
understood” error when merging local and foreign object-oriented code in a
site. Thus, we are not interested in typing actions inside processes: from our
perspective, an O’Klaim process is well typed when it has type proc, which
only means that the object-oriented code that the process may contain is well
typed.

O’Klaim requires that every process is statically type-checked separately
on its site and annotated with its type. The annotation process, not formally
presented here, can be performed by the compiler during type checking: namely,
every tuple item ti that takes part in the information exchange (which may be
an object-oriented value) must be decorated with its type information, denoted
by ti

σi . The types of the tuples are built statically by the compiler, while the
types of tuple formal fields have to be written explicitly by the programmer.
In a process of the form in(! id : σ)@`.P , the type σ is used to statically type
check the continuation P , where id is possibly used. More generally, concerning
(action) rule, in a process performing an operation with a tuple (i.e., out, read
and in), the actual fields of the tuple are type checked, and the types of formal
fields (collected by the function ftypes) are used to type check the continuation.

We observe that the typing rules for object-oriented expressions are syntax-
driven and do not contain an explicit subsumption rule. Thus, they define an
algorithm to assign a principal type to each expression, in a given environment Γ .

9

exp1 →→

mixin
expect[mi : τmi

i∈I]

redef[mk : τmk with bk
k∈K]

def[mj = bj
j∈J]

end

exp2 →→ class [ml = bl

l∈L] end

exp1 � exp2 →→

class

[mj = bj
j∈J] ∪

override([mk = bk
k∈K], [ml = bl

l∈L])
end

Table 8. The (mixinapp) operational rule

Analogously, both subtyping and typing rules for processes are in an algorithmic
shape.

2.6 Operational semantics for O’Klaim

The operational semantics of O’Klaim involves two sets of rules. The first set of
rules describes how object-oriented expressions reduce to values and is denoted
by →→. We omit here most of the rules because they are quite standard; they can
be found in [8]. However, we want to discuss the rule concerning mixin applica-
tion, that produces a new class containing all the methods which are added and
redefined by the mixin and those defined by the superclass. The rule (mixinapp)
is presented in Table 8. The function override, defined below and used by rule
(mixinapp), takes care of introducing in the new class the overridden methods,
and of binding the special variable next to the implementations provided by the
super class in the mixin’s redefined method bodies: these “old” method imple-
mentations are given a fresh name, denoted by mi′ . Dynamic binding is then
implemented for redefined methods, and old implementations from the super
class are basically hidden in the derived class, since they are given a fresh name.

Definition 1. Given two method sets, %1 and %2, the result of override(%1, %2)
is the method set %3 defined as follows:

– for all mi = bi ∈ %2 such that mi 6= mj for all mj = bj ∈ %1, then mi = bi ∈
%3;

– for all mi = bi ∈ %1 such that mi = b′i ∈ %2, let mi′ be a fresh method name:
then mi′ = b′i ∈ %3 and mi = bi[mi′/next] ∈ %3.

Notice that name clashes among methods during the application will never take
place, since they have already been solved during the typing of mixin application.

The second set of rules for O’Klaim, shown in Table 9, concerns processes
and it is an extension of the operational semantics of Klaim. Notice that the
O’Klaim’s operational semantics must be defined on typed compiled processes,
i.e., processes where each object-oriented value and tuples are decorated with
their types, as explained in Section 2.5, because the crucial point is the dynamic
matching of types. Indeed, an out operation adds a tuple decorated with a
(static) type to a tuple space. Conversely, a process can perform an in action

10

(out)
l :: out(t)@l′.P ‖ l′ :: P ′ �−→ l :: P ‖ l′ :: P ′ | 〈t〉

match(t, t′)
(in)

l :: in(t)@l′.P ‖ l′ :: 〈t′〉 �−→ l :: P [t′/t] ‖ l′ :: nil

match(t, t′)
(read)

l :: read(t)@l′.P ‖ l′ :: 〈t′〉 �−→ l :: P [t′/t] ‖ l′ :: 〈t′〉

(eval)
l :: eval(P)@l′.P ′ ‖ l′ :: P ′′ �−→ l :: P ′ ‖ l′ :: P ′ | P

exp →→ v
(let)

l :: let x = exp in P �−→ l :: P [v/x]

N ≡ N1 N1 �−→ N2 N2 ≡ N ′

(net)
N �−→ N ′

Table 9. O’Klaim operational rules

match(e, e) match(l, l)

match(t2, t1)

match(t1, t2)

match(t1, t2) match(t3, t4)

match((t1, t3), (t2, t4))

match(σ, σi)

match(!id : σ, ti
σi)

match(σ1, σ2) =

{
σ1 v σ2 if σ1 and σ2 are mixin or class types
σ1 <: σ2 otherwise

Table 10. Matching rules (with proc <: proc and loc <: loc)

by synchronizing with a process which represents a matching typed tuple. The
rule for let x = exp in P relies on the reduction relation for object-oriented
expressions →→.

The predicate for tuples, match, is presented in Table 10. The matching rule
exploits the static type information, delivered together with the tuple items, in
order to dynamically check that the received item is correct with respect to the
type of the formal field, say τ . Therefore, an item is accepted if and only if
it is subtyping-compliant with the expected type of the formal field. Informally
speaking, one can accept any class containing more resources than expected, and
any mixin with weaker requests about methods expected from the superclass can
be accepted. This subtyping checking is analogous to the one we would perform in
a sequential language where mixins and classes could be passed as parameters to

11

N1 ‖ N2 = N2 ‖ N1

(N1 ‖ N2) ‖ N3 = N1 ‖ (N2 ‖ N3)
l :: P = l :: P | nil

l :: (P1 | P2) = l :: P1 ‖ l :: P2

Table 11. Congruence laws

methods. In a sequential setting, this dynamic checking might look as a burden1,
but in a distributed mobile setting the burden seems well-compensated by the
added flexibility in communications.

Finally, the semantics for the distributed part is based on structural congru-
ence and reduction relations. Reduction represents individual computation steps,
and is defined in terms of structural congruence. The structural congruence ≡
(defined as the least congruence relation closed under the rules in Table 11) al-
lows the rearrangement of the syntactic structure of a term so that reduction
rules may be applied.

A final remark. Let us observe that we do not define a matching predicate
for actual fields containing object-oriented values and processes since this would
require to decide equalities on classes, mixins and objects (e.g., equality on their
interfaces) and on processes (e.g., a bisimulation). This issue is out of the scope
of the present work, since matching between two actual fields does not involve
any substitution and then does not cause problems w.r.t. typing.

3 Typing issues and subject-reduction property

The important point in O’Klaim semantics is that if a process P (statically well-
typed) retrieves a tuple by the subtyping matching mechanism and the retrieved
value is merged in the continuation of P , then the evaluation proceeds without
any additional type-checking. Thus, in order to obtain the subject-reduction the-
orem, we need to prove that substitution preserves well-typedness, in particular
when classes and mixins are replaced to variables inside object-oriented expres-
sions. In the following, we address this issue and we outline the main technical
steps, skipping proofs and details for lack of space.

The crucial case concerns mixin application expressions; namely if
class/mixin variables are replaced by classes/mixins having a subtype, acciden-
tal overrides can occur because of names of the new methods added by the
replacing value (see the definition of v). This matter is related to the “width
subtyping versus method addition” problem (well known in the object-based set-
ting, see for instance [21]), that in our case boils down to a careful management
of these dynamic name clashes. Thus, we have to define a suitable capture-avoid-
substitution, [], requiring possible renaming of methods with fresh names.

Definition 2 (Substitution by refresh). If x is a class variable of type
class〈Σ〉 and C is a class value of type class〈Σ′〉 such that class〈Σ′〉 v class〈Σ〉,
then [C/x] denotes the replacement of C ′ to x, where C ′ is obtained from C

1 For example, in [13], mixins and classes are first-order entities, i.e., they can be passed
as parameters in methods, but the matching among formal and actual parameters is
by syntactic equality on types and not by subtyping.

12

by renaming all methods belonging to Meth(Σ′) − Meth(Σ) with fresh names.
For mixins variables and values, the renaming acts on all and only the methods
belonging to Meth(Σ′

new)−Meth(Σnew).

With our solution, new methods added by a class or a mixin value during
substitution are hidden by renaming, for each occurrence of the variable to be
replaced (this is very similar to the “privacy via subsumption” of [27]). On
the other hand, we only rename methods that do not appear in the type of
the variable x. This second constraint ensures a basic property: the refreshed
version C ′ of C has a type τ ′ such that τ ′ v class〈Σ〉. The same holds for
refreshed mixins.

Now, using this property in an essential way, we can prove that substitution
is type safe.

Lemma 1 (Substitution by narrowing). Let v, exp and P be an object-
oriented value, an object-oriented expression and a process, respectively,

1. if x : τ1 ` exp : τ and Γ ` v : τ2 where τ2 v τ1, then Γ ` exp[v/x] : τ ′

with τ ′ v τ ;
2. if x : τ1 ` P : proc and Γ ` v : τ2 where τ2 v τ1, then Γ ` P [v/x] : proc.

Sketch of proof:

1. By induction on typing rules for expressions. The only crucial case is when
exp is a mixin application and v is a class value or a mixin. Notice that,
exp is well-typed and no method occurring in the type x is renamed; then
the last condition in (mixin app) rule is preserved and ensures that no name
clash can occur after substitution.

2. By induction on typing rules for processes using the previous point.

Summarizing, the type safety of the communication results from two main
properties: (i) static type soundness of local and foreign code; (ii) the preserva-
tion of well-typedness under substitution by subtyping. It is standard to verify
that all the other rules concerning →→ preserve well typedness and so we obtain
the subject-reduction theorem. Thus, the local evaluation of a process cannot
produce errors like “message-not-understood” even if it retrieves data from for-
eign sites and merges it in the local configuration. In other words, a well-typed
net (i.e., a net where each process in each site is well-typed) remains well typed
during its evolution (global safety condition).

We remark that, from the point of view of the implementation, the above
treatment of “global” fresh names can be solved with static binding for the
mentioned methods. The technique of using the static types of variables and the
actual types of substituted mixin and class definitions may recall the approach
of [22] of allowing overriding, i.e., dynamic binding, only for methods declared
in the mixin’s inheritance interface.

13

4 The implementation

We recall that the implementation we present is based on X-Klaim [10, 11]
(extended with the proper object-oriented mixin-based primitives), used both
as the “surface” object-oriented calculus and as the coordination language, with
the added bonus of being able to write methods that can perform Klaim actions,
all the same guaranteeing absence of message-not-understood run-time errors,
as shown in the previous section.

The implementation of the O’Klaim object-oriented component in Java con-
sists in a package momi presented in details in [3]. This package provides the
run-time system, or the virtual machine, for classes, mixins and objects that
can be downloaded from the network and dynamically composed (via the mixin
application operation). It thus provides functionalities for checking subtyping
among classes and among mixins and for building at run-time new subclasses.
Since we abstract from the specific communication and mobility features, this
package does not provide means for code mobility and network communication,
so that momi can be smoothly integrated into existing Java mobility frameworks.
We would like to stress that this package should be thought of as an “assem-
bly” language that is the target of a compiler for a high-level language (in our
case the language is X-Klaim). If momi, as it is, was used for directly writing
object-oriented expressions, the programmer would be left with the burden of
writing methods containing Java statements dealing with momi objects, classes
and mixins, and to check manually that they are well typed. Basically these are
the same difficulties a programmer has to face when using an assembly language
directly, instead of a high-level language. We could say that momi enhances the
functionalities of the Java virtual machine: while the latter already provides use-
ful mechanisms for dynamically loading new classes into a running application,
the former supplies means for dynamically building class hierarchies (based on
mixins) and for inserting new subclasses into existing hierarchies (which is not
possible in Java).

In order to implement O’Klaim we extended the Klaim programming frame-
work that consists in the programming language X-Klaim [10, 11], which ex-
tends Klaim with high-level programming constructs, and Klava [12] a Java
package that implements the run-time system for X-Klaim operations (X-
Klaim programs are compiled into Java programs that use Klava). The package
Klava already provided all the primitives for network communication, through
distributed tuple spaces, and, in particular, for code mobility, not supplied by
momi. Thus the package has been modified in order to be able to exchange code
that is based on momi, and for performing subtyping on momi elements during
pattern matching by relying on the MoMiType classes and the associated subtyp-
ing. On the other hand, the X-Klaim compiler generates code that uses both the
Klava package and momi. Obviously, before generating code, it also performs
type checking according to the type system defined by MoMi. All this software
is freely available at http://music.dsi.unifi.it.

The programming example shown in this section involves mixin code mobility,
and implements “dynamic inheritance” since the received mixin is applied to a

14

mixin MyPrinterAgent
expect print doc(doc : str) : str;
def start agent() : str
begin
return
this.print doc
(this.preprocess("my document"))

end;
def preprocess(doc : str) : str
begin
return "preprocessed(" + doc +")"

end
end

rec SendPrinterAgent[server : loc]
declare
var response : str

begin
out(MyPrinterAgent)@server;
in(!response)@server;
print "response is " + response

end

mixin PrinterAgent
expect print doc(doc : str) : str;
def start agent() : str;

end

class LocalPrinter
print doc(doc : str) : str
begin
real printing code omitted :−)
return "printed " + doc

end;
init()
begin
nil # foo init

end
end

rec ReceivePrinterAgent[]
declare
var rec mixin : mixin PrinterAgent;
var result : str

begin
in(!rec mixin)@self;
result :=
(new rec mixin <> LocalPrinter).start agent();
out(result)@self

end

Listing 1: The printer agent example.
local parent class at run-time. We assume that a site provides printing facilities
for local and mobile agents. Access to the printer requires a driver that the site
itself has to provide to those that want to print, since it highly depends on the
system and on the printer. Thus, the agent that wants to print is designed as
a mixin, that expects a method for actually printing, print_doc, and defines a
method start_agent through which the site can start its execution. The actual
instance of the printing agent is instantiated from a class dynamically generated
by applying such mixin to a local superclass that provides the method print_doc
acting as a wrapper for the printer driver. However the system is willing to accept
any agent that has a compatible interface, i.e., any mixin that is a subtype of
the one used for describing the printing agent. Thus any client wishing to print
on this site can send a mixin that is subtyping compliant to the one expected.
In particular such a mixin can implement finer printing formatting capabilities.

Listing 1, where rec is the X-Klaim keyword for defining a process, presents
a possible implementation of the printing client node (on the left) and of the
printer server node (on the right). The printer client sends to the server a mixin
MyPrinterAgent that complies with (it is a subtype of) the mixin that the
server expects to receive, PrinterAgent. In particular MyPrintedAgent mixin
will print a document on the printer of the server after preprocessing it (method
preprocess). On the server, once the mixin is received, it is applied to the local
(super)class LocalPrinter, and an object (the agent) is instantiated from the
resulting class, and started so that it can actually print its document. The result
of the printing task is then retrieved and sent back to the client.

We observe that the sender does not actually know the mixin name
PrinterAgent: it only has to be aware of the mixin type expected by the server.
Furthermore, the sent mixin can also define more methods than those specified

15

in the receiving site, thanks to the mixin subtyping relation. This adds a great
flexibility to such a system, while hiding these additional methods to the receiv-
ing site (since they are not specified in the receiving interface they are actually
unknown statically to the compiler).

5 Conclusions and related work

We have presented the kernel language O’Klaim, which extends the higher-order
calculus Klaim for mobile processes with mixin-based object-oriented code.

The novel contributions of this paper, with respect to [7] where we firstly
presented design motivations for a mixin-based approach in a mobile context,
can be summarized as follows:

1. we integrate the basic ideas of [7] into a mobile process calculus with an
asynchronous and more sophisticated communication mechanism;

2. we refine the typing for the object-oriented component, we define a new
typing system for Klaim processes, and we study main typing concerns (in
particular, a notion of substitution with renaming) in order to demonstrate
the soundness of the proposed solution;

3. we present an implementation of O’Klaim.

Keeping the O’Klaim object-oriented calculus and the O’Klaim processes
separated may appear a limitation, but in fact this is not true. Our system
consists of three components: the “surface” object-oriented component, a mix-
in/class subtyping relation, and a coordination calculus. If the object-oriented
component is chosen to be an object-oriented concurrent/mobile language, the
two components (object-oriented and concurrent/mobile) may interleave in a
deeper way. A good example is the O’Klaim implementation presented in Sec-
tion 4: in there, X-Klaim (extended with the proper object-oriented mixin-based
primitives) is both the “surface” object-oriented calculus and the coordination
language, so that method bodies can perform Klaim actions. The matching
mechanism that allows safe interactions during code exchange is based on the
subtyping relation that acts as a general glue to glue together the two language
components, of whichever nature they are (as long as the object-oriented one
implements classes and mixins).

In the literature, there are several proposals of combining objects with pro-
cesses and/or mobile agents. Obliq [16] is a lexically-scoped language providing
distributed object-oriented computation. Mobile code maintains network refer-
ences and provides transparent access to remote resources. In [15], a general
model for integrating object-oriented features in calculi of mobile agents is pre-
sented where agents are extended with constructs for remote method invoca-
tions. Other works, such as, e.g., [20, 26, 25] do not deal explicitly with mobile
distributed code. Our approach is more related to papers, as [29], where prop-
erties of distributed systems are enforced by a typing system equipped with
subtyping. In our case the property we address is a flexible and type-safe coordi-
nation for exchanging code among processes, up- and down-loading classes and
mixins from different sites.

16

A topic for future research is an extension of O’Klaim with subtyping-in-
depth (a preliminary investigation of this subtyping be found in [9]). Subtyping-
in-depth offers a more flexible communication pattern, but it complicates the
object-oriented code exchange for problems similar to the “subtyping-in-depth
versus override” matter of the object-based languages (see [1, 9] for examples).
Another direction is to enrich the object-oriented component, for example with
incomplete objects, i.e., objects instantiated from mixins [5]; this would imply a
further refinement of the subtyping relation.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. D. Ancona, G. Lagorio, and E. Zucca. Jam - designing a java extension with mixins.

ACM Transaction on Programming Languages and Systems, 2003. To appear.
3. L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming &

their Implementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003.
Available at http://music.dsi.unifi.it.

4. L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The Klaim Project: Theory and Practice.
In Global Computing – Trento, LNCS. Springer, 2003. To appear.

5. L. Bettini, V. Bono, and S. Likavec. A core calculus of mixin-based incomplete
objects. Submitted, 2003.

6. L. Bettini, V. Bono, and B. Venneri. Towards Object-Oriented Klaim. In M. Lenisa
and M. Miculan, editors, TOSCA 2001, volume 62 of ENTCS. Elsevier, 2001.

7. L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile Object-Oriented Code.
In F. Arbarb and C. Talcott, editors, Proc. of Coordination Models and Languages,
volume 2315 of LNCS, pages 56–71. Springer, 2002.

8. L. Bettini, V. Bono, and B. Venneri. MoMi - A Calculus for Mobile Mixins.
Manuscript, 2003.

9. L. Bettini, V. Bono, and B. Venneri. Subtyping Mobile Classes and Mixins. In
Proc. of Int. Workshops on Foundations of Object-Oriented Languages, FOOL 10,
2003.

10. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in
X-Klaim. In P. Ciancarini and R. Tolksdorf, editors, Proc. of the 7th Int. IEEE
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pages 110–115. IEEE Computer Society Press, 1998.

11. L. Bettini, R. De Nicola, and R. Pugliese. X-Klaim and Klava: Programming
Mobile Code. In M. Lenisa and M. Miculan, editors, TOSCA 2001, volume 62 of
ENTCS. Elsevier, 2001.

12. L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java package for distributed
and mobile applications. Software – Practice and Experience, 32(14):1365–1394,
2002.

13. V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins. In
R. Guerraoui, editor, Proceedings ECOOP’99, number 1628 in LCNS, pages 43–66.
Springer-Verlag, 1999.

14. G. Bracha and W. Cook. Mixin-based inheritance. In Proc. OOPSLA ’90, pages
303–311, 1990.

15. M. Bugliesi and G. Castagna. Mobile Objects. In Proc. of FOOL, 2000.
16. L. Cardelli. A Language with Distributed Scope. Computing Systems, 8(1):27–59,

1995.

17

17. A. Carzaniga, G. Picco, and G. Vigna. Designing Distributed Applications with
Mobile Code Paradigms. In R. Taylor, editor, Proc. of the 19th Int. Conf. on
Software Engineering (ICSE ’97), pages 22–33. ACM Press, 1997.

18. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

19. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control.
Theoretical Computer Science, 240(1):215–254, 2000.

20. P. Di Blasio and K. Fisher. A Calculus for Concurrent Objects. In U. Monta-
nari and V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th Int. Conf.,
volume 1119 of LNCS, pages 655–670. Springer, 1996.

21. K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping.
In Proc. of FCT, volume 965 of LNCS, pages 42–61. Springer, 1995.

22. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. POPL
’98, pages 171–183, 1998.

23. C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A Calculus of
Mobile Agents. In U. Montanari and V. Sassone, editors, Proc. of 7th Int. Conf.
on Concurrency Theory (CONCUR’96), volume 1119 of LNCS, pages 406–421.
Springer-Verlag, 1996.

24. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

25. A. Gordon and P. Hankin. A Concurrent Object Calculus: Reduction and Typ-
ing. In U. Nestmann and B. C. Pierce, editors, Proc. of HLCL ’98: High-Level
Concurrent Languages, volume 16.3 of ENTCS. Elsevier, 1998.

26. B. C. Pierce and D. N. Turner. Concurrent Objects in a Process Calculus. In T. Ito
and A. Yonezawa, editors, Proc. Theory and Practice of Parallel Programming
(TPPP 94), volume 907 of LNCS, pages 187–215. Springer, 1995.

27. J. Riecke and C. Stone. Privacy via Subsumption. Information and Computa-
tion, 172:2–28, 2002. 3rd special issue of Theory and Practice of Object-Oriented
Systems (TAPOS).

28. T. Thorn. Programming Languages for Mobile Code. ACM Computing Surveys,
29(3):213–239, 1997. Also Technical Report 1083, University of Rennes IRISA.

29. N. Yoshida and M. Hennessy. Subtyping and Locality in Distributed Higher Order
Mobile Processes (extended abstract). In Proc. of CONCUR’99, volume 1664 of
LNCS, pages 557–572. Springer-Verlag, 1999.

18

